Fx Copy
LaTeX Copy
Insphere Radius of Pentagonal Icositetrahedron is the radius of the sphere that the Pentagonal Icositetrahedron contains in such a way that all the faces touch the sphere. Check FAQs
ri=le(Long)(2-[Tribonacci_C])(3-[Tribonacci_C])([Tribonacci_C]+1)
ri - Insphere Radius of Pentagonal Icositetrahedron?le(Long) - Long Edge of Pentagonal Icositetrahedron?[Tribonacci_C] - Tribonacci constant?[Tribonacci_C] - Tribonacci constant?[Tribonacci_C] - Tribonacci constant?

Insphere Radius of Pentagonal Icositetrahedron given Long Edge Example

With values
With units
Only example

Here is how the Insphere Radius of Pentagonal Icositetrahedron given Long Edge equation looks like with Values.

Here is how the Insphere Radius of Pentagonal Icositetrahedron given Long Edge equation looks like with Units.

Here is how the Insphere Radius of Pentagonal Icositetrahedron given Long Edge equation looks like.

10.9925Edit=8Edit(2-1.8393)(3-1.8393)(1.8393+1)
You are here -

Insphere Radius of Pentagonal Icositetrahedron given Long Edge Solution

Follow our step by step solution on how to calculate Insphere Radius of Pentagonal Icositetrahedron given Long Edge?

FIRST Step Consider the formula
ri=le(Long)(2-[Tribonacci_C])(3-[Tribonacci_C])([Tribonacci_C]+1)
Next Step Substitute values of Variables
ri=8m(2-[Tribonacci_C])(3-[Tribonacci_C])([Tribonacci_C]+1)
Next Step Substitute values of Constants
ri=8m(2-1.8393)(3-1.8393)(1.8393+1)
Next Step Prepare to Evaluate
ri=8(2-1.8393)(3-1.8393)(1.8393+1)
Next Step Evaluate
ri=10.9925146698337m
LAST Step Rounding Answer
ri=10.9925m

Insphere Radius of Pentagonal Icositetrahedron given Long Edge Formula Elements

Variables
Constants
Functions
Insphere Radius of Pentagonal Icositetrahedron
Insphere Radius of Pentagonal Icositetrahedron is the radius of the sphere that the Pentagonal Icositetrahedron contains in such a way that all the faces touch the sphere.
Symbol: ri
Measurement: LengthUnit: m
Note: Value should be greater than 0.
Long Edge of Pentagonal Icositetrahedron
Long Edge of Pentagonal Icositetrahedron is the length of longest edge which is the top edge of the axial-symmetric pentagonal faces of Pentagonal Icositetrahedron.
Symbol: le(Long)
Measurement: LengthUnit: m
Note: Value should be greater than 0.
Tribonacci constant
Tribonacci constant is the limit of the ratio of the nth term to the (n-1)th term of the Tribonacci sequence as n approaches infinity.
Symbol: [Tribonacci_C]
Value: 1.839286755214161
Tribonacci constant
Tribonacci constant is the limit of the ratio of the nth term to the (n-1)th term of the Tribonacci sequence as n approaches infinity.
Symbol: [Tribonacci_C]
Value: 1.839286755214161
Tribonacci constant
Tribonacci constant is the limit of the ratio of the nth term to the (n-1)th term of the Tribonacci sequence as n approaches infinity.
Symbol: [Tribonacci_C]
Value: 1.839286755214161
sqrt
A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
Syntax: sqrt(Number)

Other Formulas to find Insphere Radius of Pentagonal Icositetrahedron

​Go Insphere Radius of Pentagonal Icositetrahedron given Volume
ri=(12(2-[Tribonacci_C])(3-[Tribonacci_C]))(V13(2((20[Tribonacci_C])-37)11([Tribonacci_C]-4))16)
​Go Insphere Radius of Pentagonal Icositetrahedron given Total Surface Area
ri=(12(2-[Tribonacci_C])(3-[Tribonacci_C]))(TSA3((4[Tribonacci_C])-322((5[Tribonacci_C])-1))14)
​Go Insphere Radius of Pentagonal Icositetrahedron given Surface to Volume Ratio
ri=(12(2-[Tribonacci_C])(3-[Tribonacci_C]))(322(5[Tribonacci_C]-1)(4[Tribonacci_C])-3RA/V11([Tribonacci_C]-4)2((20[Tribonacci_C])-37))
​Go Insphere Radius of Pentagonal Icositetrahedron
ri=le(Snub Cube)2(2-[Tribonacci_C])(3-[Tribonacci_C])

How to Evaluate Insphere Radius of Pentagonal Icositetrahedron given Long Edge?

Insphere Radius of Pentagonal Icositetrahedron given Long Edge evaluator uses Insphere Radius of Pentagonal Icositetrahedron = Long Edge of Pentagonal Icositetrahedron/sqrt((2-[Tribonacci_C])*(3-[Tribonacci_C])*([Tribonacci_C]+1)) to evaluate the Insphere Radius of Pentagonal Icositetrahedron, Insphere Radius of Pentagonal Icositetrahedron given Long Edge formula is defined as the radius of the sphere that the Pentagonal Icositetrahedron contains in such a way that all the faces touch the sphere, calculated using the long edge of Pentagonal Icositetrahedron. Insphere Radius of Pentagonal Icositetrahedron is denoted by ri symbol.

How to evaluate Insphere Radius of Pentagonal Icositetrahedron given Long Edge using this online evaluator? To use this online evaluator for Insphere Radius of Pentagonal Icositetrahedron given Long Edge, enter Long Edge of Pentagonal Icositetrahedron (le(Long)) and hit the calculate button.

FAQs on Insphere Radius of Pentagonal Icositetrahedron given Long Edge

What is the formula to find Insphere Radius of Pentagonal Icositetrahedron given Long Edge?
The formula of Insphere Radius of Pentagonal Icositetrahedron given Long Edge is expressed as Insphere Radius of Pentagonal Icositetrahedron = Long Edge of Pentagonal Icositetrahedron/sqrt((2-[Tribonacci_C])*(3-[Tribonacci_C])*([Tribonacci_C]+1)). Here is an example- 10.99251 = 8/sqrt((2-[Tribonacci_C])*(3-[Tribonacci_C])*([Tribonacci_C]+1)).
How to calculate Insphere Radius of Pentagonal Icositetrahedron given Long Edge?
With Long Edge of Pentagonal Icositetrahedron (le(Long)) we can find Insphere Radius of Pentagonal Icositetrahedron given Long Edge using the formula - Insphere Radius of Pentagonal Icositetrahedron = Long Edge of Pentagonal Icositetrahedron/sqrt((2-[Tribonacci_C])*(3-[Tribonacci_C])*([Tribonacci_C]+1)). This formula also uses Tribonacci constant, Tribonacci constant, Tribonacci constant and Square Root (sqrt) function(s).
What are the other ways to Calculate Insphere Radius of Pentagonal Icositetrahedron?
Here are the different ways to Calculate Insphere Radius of Pentagonal Icositetrahedron-
  • Insphere Radius of Pentagonal Icositetrahedron=(1/(2*sqrt((2-[Tribonacci_C])*(3-[Tribonacci_C]))))*(Volume of Pentagonal Icositetrahedron^(1/3)*((2*((20*[Tribonacci_C])-37))/(11*([Tribonacci_C]-4)))^(1/6))OpenImg
  • Insphere Radius of Pentagonal Icositetrahedron=(1/(2*sqrt((2-[Tribonacci_C])*(3-[Tribonacci_C]))))*(sqrt(Total Surface Area of Pentagonal Icositetrahedron/3)*(((4*[Tribonacci_C])-3)/(22*((5*[Tribonacci_C])-1)))^(1/4))OpenImg
  • Insphere Radius of Pentagonal Icositetrahedron=(1/(2*sqrt((2-[Tribonacci_C])*(3-[Tribonacci_C]))))*((3*sqrt((22*(5*[Tribonacci_C]-1))/((4*[Tribonacci_C])-3)))/(SA:V of Pentagonal Icositetrahedron*sqrt((11*([Tribonacci_C]-4))/(2*((20*[Tribonacci_C])-37)))))OpenImg
Can the Insphere Radius of Pentagonal Icositetrahedron given Long Edge be negative?
No, the Insphere Radius of Pentagonal Icositetrahedron given Long Edge, measured in Length cannot be negative.
Which unit is used to measure Insphere Radius of Pentagonal Icositetrahedron given Long Edge?
Insphere Radius of Pentagonal Icositetrahedron given Long Edge is usually measured using the Meter[m] for Length. Millimeter[m], Kilometer[m], Decimeter[m] are the few other units in which Insphere Radius of Pentagonal Icositetrahedron given Long Edge can be measured.
Copied!