Heat Transfer Coefficient for Subcooling Inside Vertical Tubes evaluator uses Inside Subcooling Coefficient = 7.5*(4*(Mass Flowrate in Heat Exchanger/(Fluid Viscosity at Average Temperature*Pipe Inner Diameter in Exchanger*pi))*((Specific Heat Capacity*Fluid Density in Heat Transfer^2*Thermal Conductivity in Heat Exchanger^2)/Fluid Viscosity at Average Temperature))^(1/3) to evaluate the Inside Subcooling Coefficient, The Heat Transfer Coefficient for Subcooling Inside Vertical Tubes formula is defined as the film coefficient when the vapors are condensed inside a vertical tube and the corresponding liquid phase is further subcooled. Inside Subcooling Coefficient is denoted by hsc inner symbol.
How to evaluate Heat Transfer Coefficient for Subcooling Inside Vertical Tubes using this online evaluator? To use this online evaluator for Heat Transfer Coefficient for Subcooling Inside Vertical Tubes, enter Mass Flowrate in Heat Exchanger (Mf), Fluid Viscosity at Average Temperature (μ), Pipe Inner Diameter in Exchanger (Di), Specific Heat Capacity (Cp), Fluid Density in Heat Transfer (ρf) & Thermal Conductivity in Heat Exchanger (kf) and hit the calculate button.