Fx Copy
LaTeX Copy
Hamaker coefficient A can be defined for a Van der Waals body–body interaction. Check FAQs
A=-UVWaals6(2R1R2(z2)-((R1+R2)2))+(2R1R2(z2)-((R1-R2)2))+ln((z2)-((R1+R2)2)(z2)-((R1-R2)2))
A - Hamaker Coefficient?UVWaals - Van der Waals interaction energy?R1 - Radius of Spherical Body 1?R2 - Radius of Spherical Body 2?z - Center-to-center Distance?

Hamaker Coefficient using Van der Waals Interaction Energy Example

With values
With units
Only example

Here is how the Hamaker Coefficient using Van der Waals Interaction Energy equation looks like with Values.

Here is how the Hamaker Coefficient using Van der Waals Interaction Energy equation looks like with Units.

Here is how the Hamaker Coefficient using Van der Waals Interaction Energy equation looks like.

-88913.4178Edit=-550Edit6(212Edit15Edit(40Edit2)-((12Edit+15Edit)2))+(212Edit15Edit(40Edit2)-((12Edit-15Edit)2))+ln((40Edit2)-((12Edit+15Edit)2)(40Edit2)-((12Edit-15Edit)2))
You are here -
HomeIcon Home » Category Chemistry » Category Kinetic Theory of Gases » Category Real Gas » fx Hamaker Coefficient using Van der Waals Interaction Energy

Hamaker Coefficient using Van der Waals Interaction Energy Solution

Follow our step by step solution on how to calculate Hamaker Coefficient using Van der Waals Interaction Energy?

FIRST Step Consider the formula
A=-UVWaals6(2R1R2(z2)-((R1+R2)2))+(2R1R2(z2)-((R1-R2)2))+ln((z2)-((R1+R2)2)(z2)-((R1-R2)2))
Next Step Substitute values of Variables
A=-550J6(212A15A(40A2)-((12A+15A)2))+(212A15A(40A2)-((12A-15A)2))+ln((40A2)-((12A+15A)2)(40A2)-((12A-15A)2))
Next Step Convert Units
A=-550J6(21.2E-9m1.5E-9m(4E-9m2)-((1.2E-9m+1.5E-9m)2))+(21.2E-9m1.5E-9m(4E-9m2)-((1.2E-9m-1.5E-9m)2))+ln((4E-9m2)-((1.2E-9m+1.5E-9m)2)(4E-9m2)-((1.2E-9m-1.5E-9m)2))
Next Step Prepare to Evaluate
A=-5506(21.2E-91.5E-9(4E-92)-((1.2E-9+1.5E-9)2))+(21.2E-91.5E-9(4E-92)-((1.2E-9-1.5E-9)2))+ln((4E-92)-((1.2E-9+1.5E-9)2)(4E-92)-((1.2E-9-1.5E-9)2))
Next Step Evaluate
A=-88913.4177708798J
LAST Step Rounding Answer
A=-88913.4178J

Hamaker Coefficient using Van der Waals Interaction Energy Formula Elements

Variables
Functions
Hamaker Coefficient
Hamaker coefficient A can be defined for a Van der Waals body–body interaction.
Symbol: A
Measurement: EnergyUnit: J
Note: Value can be positive or negative.
Van der Waals interaction energy
Van der Waals interaction energy include attraction and repulsions between atoms, molecules, and surfaces, as well as other intermolecular forces.
Symbol: UVWaals
Measurement: EnergyUnit: J
Note: Value can be positive or negative.
Radius of Spherical Body 1
Radius of Spherical Body 1 represented as R1.
Symbol: R1
Measurement: LengthUnit: A
Note: Value can be positive or negative.
Radius of Spherical Body 2
Radius of Spherical Body 2 represented as R1.
Symbol: R2
Measurement: LengthUnit: A
Note: Value can be positive or negative.
Center-to-center Distance
Center-to-center Distance is a concept for distances, also called on-center spacing, z = R1 + R2 + r.
Symbol: z
Measurement: LengthUnit: A
Note: Value should be greater than 0.
ln
The natural logarithm, also known as the logarithm to the base e, is the inverse function of the natural exponential function.
Syntax: ln(Number)

Other Formulas to find Hamaker Coefficient

​Go Hamaker Coefficient using Potential Energy in Limit of Closest-Approach
A=-PE(R1+R2)6rR1R2
​Go Hamaker Coefficient using Van der Waals Forces between Objects
A=-FVWaals(R1+R2)6(r2)R1R2

Other formulas in Hamaker Coefficient category

​Go Hamaker Coefficient
AHC=(π2)Cρ1ρ2

How to Evaluate Hamaker Coefficient using Van der Waals Interaction Energy?

Hamaker Coefficient using Van der Waals Interaction Energy evaluator uses Hamaker Coefficient = (-Van der Waals interaction energy*6)/(((2*Radius of Spherical Body 1*Radius of Spherical Body 2)/((Center-to-center Distance^2)-((Radius of Spherical Body 1+Radius of Spherical Body 2)^2)))+((2*Radius of Spherical Body 1*Radius of Spherical Body 2)/((Center-to-center Distance^2)-((Radius of Spherical Body 1-Radius of Spherical Body 2)^2)))+ln(((Center-to-center Distance^2)-((Radius of Spherical Body 1+Radius of Spherical Body 2)^2))/((Center-to-center Distance^2)-((Radius of Spherical Body 1-Radius of Spherical Body 2)^2)))) to evaluate the Hamaker Coefficient, The Hamaker coefficient using Van der Waals interaction energy A can be defined for a Van der Waals body–body interaction. Hamaker Coefficient is denoted by A symbol.

How to evaluate Hamaker Coefficient using Van der Waals Interaction Energy using this online evaluator? To use this online evaluator for Hamaker Coefficient using Van der Waals Interaction Energy, enter Van der Waals interaction energy (UVWaals), Radius of Spherical Body 1 (R1), Radius of Spherical Body 2 (R2) & Center-to-center Distance (z) and hit the calculate button.

FAQs on Hamaker Coefficient using Van der Waals Interaction Energy

What is the formula to find Hamaker Coefficient using Van der Waals Interaction Energy?
The formula of Hamaker Coefficient using Van der Waals Interaction Energy is expressed as Hamaker Coefficient = (-Van der Waals interaction energy*6)/(((2*Radius of Spherical Body 1*Radius of Spherical Body 2)/((Center-to-center Distance^2)-((Radius of Spherical Body 1+Radius of Spherical Body 2)^2)))+((2*Radius of Spherical Body 1*Radius of Spherical Body 2)/((Center-to-center Distance^2)-((Radius of Spherical Body 1-Radius of Spherical Body 2)^2)))+ln(((Center-to-center Distance^2)-((Radius of Spherical Body 1+Radius of Spherical Body 2)^2))/((Center-to-center Distance^2)-((Radius of Spherical Body 1-Radius of Spherical Body 2)^2)))). Here is an example- -88913.417771 = (-550*6)/(((2*1.2E-09*1.5E-09)/((4E-09^2)-((1.2E-09+1.5E-09)^2)))+((2*1.2E-09*1.5E-09)/((4E-09^2)-((1.2E-09-1.5E-09)^2)))+ln(((4E-09^2)-((1.2E-09+1.5E-09)^2))/((4E-09^2)-((1.2E-09-1.5E-09)^2)))).
How to calculate Hamaker Coefficient using Van der Waals Interaction Energy?
With Van der Waals interaction energy (UVWaals), Radius of Spherical Body 1 (R1), Radius of Spherical Body 2 (R2) & Center-to-center Distance (z) we can find Hamaker Coefficient using Van der Waals Interaction Energy using the formula - Hamaker Coefficient = (-Van der Waals interaction energy*6)/(((2*Radius of Spherical Body 1*Radius of Spherical Body 2)/((Center-to-center Distance^2)-((Radius of Spherical Body 1+Radius of Spherical Body 2)^2)))+((2*Radius of Spherical Body 1*Radius of Spherical Body 2)/((Center-to-center Distance^2)-((Radius of Spherical Body 1-Radius of Spherical Body 2)^2)))+ln(((Center-to-center Distance^2)-((Radius of Spherical Body 1+Radius of Spherical Body 2)^2))/((Center-to-center Distance^2)-((Radius of Spherical Body 1-Radius of Spherical Body 2)^2)))). This formula also uses Natural Logarithm (ln) function(s).
What are the other ways to Calculate Hamaker Coefficient?
Here are the different ways to Calculate Hamaker Coefficient-
  • Hamaker Coefficient=(-Potential Energy*(Radius of Spherical Body 1+Radius of Spherical Body 2)*6*Distance Between Surfaces)/(Radius of Spherical Body 1*Radius of Spherical Body 2)OpenImg
  • Hamaker Coefficient=(-Van der Waals force*(Radius of Spherical Body 1+Radius of Spherical Body 2)*6*(Distance Between Surfaces^2))/(Radius of Spherical Body 1*Radius of Spherical Body 2)OpenImg
Can the Hamaker Coefficient using Van der Waals Interaction Energy be negative?
Yes, the Hamaker Coefficient using Van der Waals Interaction Energy, measured in Energy can be negative.
Which unit is used to measure Hamaker Coefficient using Van der Waals Interaction Energy?
Hamaker Coefficient using Van der Waals Interaction Energy is usually measured using the Joule[J] for Energy. Kilojoule[J], Gigajoule[J], Megajoule[J] are the few other units in which Hamaker Coefficient using Van der Waals Interaction Energy can be measured.
Copied!