Eigenvalue of Energy given Angular Momentum Quantum Number Formula

Fx Copy
LaTeX Copy
Eigenvalue of Energy is the value of the solution that exists for the time-independent Schrodinger equation only for certain values of energy. Check FAQs
E=l(l+1)([hP])22I
E - Eigenvalue of Energy?l - Angular Momentum Quantum Number?I - Moment of Inertia?[hP] - Planck constant?

Eigenvalue of Energy given Angular Momentum Quantum Number Example

With values
With units
Only example

Here is how the Eigenvalue of Energy given Angular Momentum Quantum Number equation looks like with Values.

Here is how the Eigenvalue of Energy given Angular Momentum Quantum Number equation looks like with Units.

Here is how the Eigenvalue of Energy given Angular Momentum Quantum Number equation looks like.

7.2E-63Edit=1.9Edit(1.9Edit+1)(6.6E-34)220.0002Edit
You are here -
HomeIcon Home » Category Chemistry » Category Analytical chemistry » Category Molecular Spectroscopy » fx Eigenvalue of Energy given Angular Momentum Quantum Number

Eigenvalue of Energy given Angular Momentum Quantum Number Solution

Follow our step by step solution on how to calculate Eigenvalue of Energy given Angular Momentum Quantum Number?

FIRST Step Consider the formula
E=l(l+1)([hP])22I
Next Step Substitute values of Variables
E=1.9(1.9+1)([hP])220.0002kg·m²
Next Step Substitute values of Constants
E=1.9(1.9+1)(6.6E-34)220.0002kg·m²
Next Step Prepare to Evaluate
E=1.9(1.9+1)(6.6E-34)220.0002
Next Step Evaluate
E=7.19986520845746E-63J
LAST Step Rounding Answer
E=7.2E-63J

Eigenvalue of Energy given Angular Momentum Quantum Number Formula Elements

Variables
Constants
Eigenvalue of Energy
Eigenvalue of Energy is the value of the solution that exists for the time-independent Schrodinger equation only for certain values of energy.
Symbol: E
Measurement: EnergyUnit: J
Note: Value can be positive or negative.
Angular Momentum Quantum Number
Angular Momentum Quantum Number is the quantum number associated with the angular momentum of an atomic electron.
Symbol: l
Measurement: NAUnit: Unitless
Note: Value can be positive or negative.
Moment of Inertia
Moment of Inertia is the measure of the resistance of a body to angular acceleration about a given axis.
Symbol: I
Measurement: Moment of InertiaUnit: kg·m²
Note: Value should be greater than 0.
Planck constant
Planck constant is a fundamental universal constant that defines the quantum nature of energy and relates the energy of a photon to its frequency.
Symbol: [hP]
Value: 6.626070040E-34

Other formulas in Electronic Spectroscopy category

​Go Rydberg Constant given Compton Wavelength
R=(α)22λc
​Go Binding Energy of Photoelectron
Ebinding=([hP]ν)-Ekinetic-Φ
​Go Frequency of Absorbed Radiation
νmn=Em-En[hP]
​Go Coherence Length of Wave
lC=(λwave)22Δλ

How to Evaluate Eigenvalue of Energy given Angular Momentum Quantum Number?

Eigenvalue of Energy given Angular Momentum Quantum Number evaluator uses Eigenvalue of Energy = (Angular Momentum Quantum Number*(Angular Momentum Quantum Number+1)*([hP])^2)/(2*Moment of Inertia) to evaluate the Eigenvalue of Energy, The Eigenvalue of Energy given Angular Momentum Quantum Number is the solution that exists for the time-independent Schrodinger equation only for certain values of energy. Eigenvalue of Energy is denoted by E symbol.

How to evaluate Eigenvalue of Energy given Angular Momentum Quantum Number using this online evaluator? To use this online evaluator for Eigenvalue of Energy given Angular Momentum Quantum Number, enter Angular Momentum Quantum Number (l) & Moment of Inertia (I) and hit the calculate button.

FAQs on Eigenvalue of Energy given Angular Momentum Quantum Number

What is the formula to find Eigenvalue of Energy given Angular Momentum Quantum Number?
The formula of Eigenvalue of Energy given Angular Momentum Quantum Number is expressed as Eigenvalue of Energy = (Angular Momentum Quantum Number*(Angular Momentum Quantum Number+1)*([hP])^2)/(2*Moment of Inertia). Here is an example- 7.2E-63 = (1.9*(1.9+1)*([hP])^2)/(2*0.000168).
How to calculate Eigenvalue of Energy given Angular Momentum Quantum Number?
With Angular Momentum Quantum Number (l) & Moment of Inertia (I) we can find Eigenvalue of Energy given Angular Momentum Quantum Number using the formula - Eigenvalue of Energy = (Angular Momentum Quantum Number*(Angular Momentum Quantum Number+1)*([hP])^2)/(2*Moment of Inertia). This formula also uses Planck constant .
Can the Eigenvalue of Energy given Angular Momentum Quantum Number be negative?
Yes, the Eigenvalue of Energy given Angular Momentum Quantum Number, measured in Energy can be negative.
Which unit is used to measure Eigenvalue of Energy given Angular Momentum Quantum Number?
Eigenvalue of Energy given Angular Momentum Quantum Number is usually measured using the Joule[J] for Energy. Kilojoule[J], Gigajoule[J], Megajoule[J] are the few other units in which Eigenvalue of Energy given Angular Momentum Quantum Number can be measured.
Copied!