Fx Copy
LaTeX Copy
Critical Temperature is the highest temperature at which the substance can exist as a liquid. At this phase boundaries vanish, and the substance can exist both as a liquid and vapor. Check FAQs
Tc=((PrPc)+((aPRα((Vm,rVm,c)2)+(2bPR(Vm,rVm,c))-(bPR2))))((Vm,rVm,c)-bPR[R])Tr
Tc - Critical Temperature?Pr - Reduced Pressure?Pc - Critical Pressure?aPR - Peng–Robinson Parameter a?α - α-function?Vm,r - Reduced Molar Volume?Vm,c - Critical Molar Volume?bPR - Peng–Robinson Parameter b?Tr - Reduced Temperature?[R] - Universal gas constant?

Critical Temperature using Peng Robinson Equation given Reduced and Critical Parameters Example

With values
With units
Only example

Here is how the Critical Temperature using Peng Robinson Equation given Reduced and Critical Parameters equation looks like with Values.

Here is how the Critical Temperature using Peng Robinson Equation given Reduced and Critical Parameters equation looks like with Units.

Here is how the Critical Temperature using Peng Robinson Equation given Reduced and Critical Parameters equation looks like.

0.0124Edit=((3.7E-5Edit218Edit)+((0.1Edit2Edit((11.2Edit11.5Edit)2)+(20.12Edit(11.2Edit11.5Edit))-(0.12Edit2))))((11.2Edit11.5Edit)-0.12Edit8.3145)10Edit
You are here -

Critical Temperature using Peng Robinson Equation given Reduced and Critical Parameters Solution

Follow our step by step solution on how to calculate Critical Temperature using Peng Robinson Equation given Reduced and Critical Parameters?

FIRST Step Consider the formula
Tc=((PrPc)+((aPRα((Vm,rVm,c)2)+(2bPR(Vm,rVm,c))-(bPR2))))((Vm,rVm,c)-bPR[R])Tr
Next Step Substitute values of Variables
Tc=((3.7E-5218Pa)+((0.12((11.211.5m³/mol)2)+(20.12(11.211.5m³/mol))-(0.122))))((11.211.5m³/mol)-0.12[R])10
Next Step Substitute values of Constants
Tc=((3.7E-5218Pa)+((0.12((11.211.5m³/mol)2)+(20.12(11.211.5m³/mol))-(0.122))))((11.211.5m³/mol)-0.128.3145)10
Next Step Prepare to Evaluate
Tc=((3.7E-5218)+((0.12((11.211.5)2)+(20.12(11.211.5))-(0.122))))((11.211.5)-0.128.3145)10
Next Step Evaluate
Tc=0.0124177392063826K
LAST Step Rounding Answer
Tc=0.0124K

Critical Temperature using Peng Robinson Equation given Reduced and Critical Parameters Formula Elements

Variables
Constants
Critical Temperature
Critical Temperature is the highest temperature at which the substance can exist as a liquid. At this phase boundaries vanish, and the substance can exist both as a liquid and vapor.
Symbol: Tc
Measurement: TemperatureUnit: K
Note: Value should be greater than 0.
Reduced Pressure
Reduced Pressure is the ratio of the actual pressure of the fluid to its critical pressure. It is dimensionless.
Symbol: Pr
Measurement: NAUnit: Unitless
Note: Value should be between 0 to 1.
Critical Pressure
Critical Pressure is the minimum pressure required to liquify a substance at the critical temperature.
Symbol: Pc
Measurement: PressureUnit: Pa
Note: Value should be greater than 0.
Peng–Robinson Parameter a
Peng–Robinson parameter a is an empirical parameter characteristic to equation obtained from Peng–Robinson model of real gas.
Symbol: aPR
Measurement: NAUnit: Unitless
Note: Value can be positive or negative.
α-function
α-function is a function of temperature and the acentric factor.
Symbol: α
Measurement: NAUnit: Unitless
Note: Value can be positive or negative.
Reduced Molar Volume
Reduced Molar Volume of a fluid is computed from the ideal gas law at the substance's critical pressure and temperature per mole.
Symbol: Vm,r
Measurement: NAUnit: Unitless
Note: Value can be positive or negative.
Critical Molar Volume
Critical Molar Volume is the volume occupied by gas at critical temperature and pressure per mole.
Symbol: Vm,c
Measurement: Molar Magnetic SusceptibilityUnit: m³/mol
Note: Value can be positive or negative.
Peng–Robinson Parameter b
Peng–Robinson parameter b is an empirical parameter characteristic to equation obtained from Peng–Robinson model of real gas.
Symbol: bPR
Measurement: NAUnit: Unitless
Note: Value can be positive or negative.
Reduced Temperature
Reduced Temperature is the ratio of the actual temperature of the fluid to its critical temperature. It is dimensionless.
Symbol: Tr
Measurement: NAUnit: Unitless
Note: Value should be greater than 0.
Universal gas constant
Universal gas constant is a fundamental physical constant that appears in the ideal gas law, relating the pressure, volume, and temperature of an ideal gas.
Symbol: [R]
Value: 8.31446261815324

Other Formulas to find Critical Temperature

​Go Critical Temperature for Peng Robinson Equation using Alpha-function and Pure Component Parameter
Tc=T(1-(α-1k))2
​Go Critical Temperature given Peng Robinson Parameter a, and other Actual and Reduced Parameters
Tc=aPR(pPr)0.45724([R]2)

Other formulas in Critical Temperature category

​Go Critical Temperature using Peng Robinson Equation given Reduced and Actual Parameters
Treal=(p+((aPRα(Vm2)+(2bPRVm)-(bPR2))))(Vm-bPR[R])Tr

How to Evaluate Critical Temperature using Peng Robinson Equation given Reduced and Critical Parameters?

Critical Temperature using Peng Robinson Equation given Reduced and Critical Parameters evaluator uses Critical Temperature = (((Reduced Pressure*Critical Pressure)+(((Peng–Robinson Parameter a*α-function)/(((Reduced Molar Volume*Critical Molar Volume)^2)+(2*Peng–Robinson Parameter b*(Reduced Molar Volume*Critical Molar Volume))-(Peng–Robinson Parameter b^2)))))*(((Reduced Molar Volume*Critical Molar Volume)-Peng–Robinson Parameter b)/[R]))/Reduced Temperature to evaluate the Critical Temperature, The Critical Temperature using Peng Robinson Equation given Reduced and Critical Parameters formula is defined as the highest temperature at which the substance can exist as a liquid. Critical Temperature is denoted by Tc symbol.

How to evaluate Critical Temperature using Peng Robinson Equation given Reduced and Critical Parameters using this online evaluator? To use this online evaluator for Critical Temperature using Peng Robinson Equation given Reduced and Critical Parameters, enter Reduced Pressure (Pr), Critical Pressure (Pc), Peng–Robinson Parameter a (aPR), α-function (α), Reduced Molar Volume (Vm,r), Critical Molar Volume (Vm,c), Peng–Robinson Parameter b (bPR) & Reduced Temperature (Tr) and hit the calculate button.

FAQs on Critical Temperature using Peng Robinson Equation given Reduced and Critical Parameters

What is the formula to find Critical Temperature using Peng Robinson Equation given Reduced and Critical Parameters?
The formula of Critical Temperature using Peng Robinson Equation given Reduced and Critical Parameters is expressed as Critical Temperature = (((Reduced Pressure*Critical Pressure)+(((Peng–Robinson Parameter a*α-function)/(((Reduced Molar Volume*Critical Molar Volume)^2)+(2*Peng–Robinson Parameter b*(Reduced Molar Volume*Critical Molar Volume))-(Peng–Robinson Parameter b^2)))))*(((Reduced Molar Volume*Critical Molar Volume)-Peng–Robinson Parameter b)/[R]))/Reduced Temperature. Here is an example- 0.01241 = (((3.675E-05*218)+(((0.1*2)/(((11.2*11.5)^2)+(2*0.12*(11.2*11.5))-(0.12^2)))))*(((11.2*11.5)-0.12)/[R]))/10.
How to calculate Critical Temperature using Peng Robinson Equation given Reduced and Critical Parameters?
With Reduced Pressure (Pr), Critical Pressure (Pc), Peng–Robinson Parameter a (aPR), α-function (α), Reduced Molar Volume (Vm,r), Critical Molar Volume (Vm,c), Peng–Robinson Parameter b (bPR) & Reduced Temperature (Tr) we can find Critical Temperature using Peng Robinson Equation given Reduced and Critical Parameters using the formula - Critical Temperature = (((Reduced Pressure*Critical Pressure)+(((Peng–Robinson Parameter a*α-function)/(((Reduced Molar Volume*Critical Molar Volume)^2)+(2*Peng–Robinson Parameter b*(Reduced Molar Volume*Critical Molar Volume))-(Peng–Robinson Parameter b^2)))))*(((Reduced Molar Volume*Critical Molar Volume)-Peng–Robinson Parameter b)/[R]))/Reduced Temperature. This formula also uses Universal gas constant .
What are the other ways to Calculate Critical Temperature?
Here are the different ways to Calculate Critical Temperature-
  • Critical Temperature=Temperature/((1-((sqrt(α-function)-1)/Pure Component Parameter))^2)OpenImg
  • Critical Temperature=sqrt((Peng–Robinson Parameter a*(Pressure/Reduced Pressure))/(0.45724*([R]^2)))OpenImg
  • Critical Temperature=(Peng–Robinson Parameter b*(Pressure/Reduced Pressure))/(0.07780*[R])OpenImg
Can the Critical Temperature using Peng Robinson Equation given Reduced and Critical Parameters be negative?
No, the Critical Temperature using Peng Robinson Equation given Reduced and Critical Parameters, measured in Temperature cannot be negative.
Which unit is used to measure Critical Temperature using Peng Robinson Equation given Reduced and Critical Parameters?
Critical Temperature using Peng Robinson Equation given Reduced and Critical Parameters is usually measured using the Kelvin[K] for Temperature. Celsius[K], Fahrenheit[K], Rankine[K] are the few other units in which Critical Temperature using Peng Robinson Equation given Reduced and Critical Parameters can be measured.
Copied!