Fx Copy
LaTeX Copy
Critical Pressure is the minimum pressure required to liquify a substance at the critical temperature. Check FAQs
Pc=([R](TrTc)(Vm,rVm,c)-bPR)-(aPRα((Vm,rVm,c)2)+(2bPR(Vm,rVm,c))-(bPR2))Pr
Pc - Critical Pressure?Tr - Reduced Temperature?Tc - Critical Temperature?Vm,r - Reduced Molar Volume?Vm,c - Critical Molar Volume?bPR - Peng–Robinson Parameter b?aPR - Peng–Robinson Parameter a?α - α-function?Pr - Reduced Pressure?[R] - Universal gas constant?

Critical Pressure using Peng Robinson Equation given Reduced and Critical Parameters Example

With values
With units
Only example

Here is how the Critical Pressure using Peng Robinson Equation given Reduced and Critical Parameters equation looks like with Values.

Here is how the Critical Pressure using Peng Robinson Equation given Reduced and Critical Parameters equation looks like with Units.

Here is how the Critical Pressure using Peng Robinson Equation given Reduced and Critical Parameters equation looks like.

1.1E+7Edit=(8.3145(10Edit647Edit)(11.2Edit11.5Edit)-0.12Edit)-(0.1Edit2Edit((11.2Edit11.5Edit)2)+(20.12Edit(11.2Edit11.5Edit))-(0.12Edit2))3.7E-5Edit
You are here -
HomeIcon Home » Category Chemistry » Category Kinetic Theory of Gases » Category Real Gas » fx Critical Pressure using Peng Robinson Equation given Reduced and Critical Parameters

Critical Pressure using Peng Robinson Equation given Reduced and Critical Parameters Solution

Follow our step by step solution on how to calculate Critical Pressure using Peng Robinson Equation given Reduced and Critical Parameters?

FIRST Step Consider the formula
Pc=([R](TrTc)(Vm,rVm,c)-bPR)-(aPRα((Vm,rVm,c)2)+(2bPR(Vm,rVm,c))-(bPR2))Pr
Next Step Substitute values of Variables
Pc=([R](10647K)(11.211.5m³/mol)-0.12)-(0.12((11.211.5m³/mol)2)+(20.12(11.211.5m³/mol))-(0.122))3.7E-5
Next Step Substitute values of Constants
Pc=(8.3145(10647K)(11.211.5m³/mol)-0.12)-(0.12((11.211.5m³/mol)2)+(20.12(11.211.5m³/mol))-(0.122))3.7E-5
Next Step Prepare to Evaluate
Pc=(8.3145(10647)(11.211.5)-0.12)-(0.12((11.211.5)2)+(20.12(11.211.5))-(0.122))3.7E-5
Next Step Evaluate
Pc=11375488.5485034Pa
LAST Step Rounding Answer
Pc=1.1E+7Pa

Critical Pressure using Peng Robinson Equation given Reduced and Critical Parameters Formula Elements

Variables
Constants
Critical Pressure
Critical Pressure is the minimum pressure required to liquify a substance at the critical temperature.
Symbol: Pc
Measurement: PressureUnit: Pa
Note: Value should be greater than 0.
Reduced Temperature
Reduced Temperature is the ratio of the actual temperature of the fluid to its critical temperature. It is dimensionless.
Symbol: Tr
Measurement: NAUnit: Unitless
Note: Value should be greater than 0.
Critical Temperature
Critical Temperature is the highest temperature at which the substance can exist as a liquid. At this phase boundaries vanish, and the substance can exist both as a liquid and vapor.
Symbol: Tc
Measurement: TemperatureUnit: K
Note: Value should be greater than 0.
Reduced Molar Volume
Reduced Molar Volume of a fluid is computed from the ideal gas law at the substance's critical pressure and temperature per mole.
Symbol: Vm,r
Measurement: NAUnit: Unitless
Note: Value can be positive or negative.
Critical Molar Volume
Critical Molar Volume is the volume occupied by gas at critical temperature and pressure per mole.
Symbol: Vm,c
Measurement: Molar Magnetic SusceptibilityUnit: m³/mol
Note: Value can be positive or negative.
Peng–Robinson Parameter b
Peng–Robinson parameter b is an empirical parameter characteristic to equation obtained from Peng–Robinson model of real gas.
Symbol: bPR
Measurement: NAUnit: Unitless
Note: Value can be positive or negative.
Peng–Robinson Parameter a
Peng–Robinson parameter a is an empirical parameter characteristic to equation obtained from Peng–Robinson model of real gas.
Symbol: aPR
Measurement: NAUnit: Unitless
Note: Value can be positive or negative.
α-function
α-function is a function of temperature and the acentric factor.
Symbol: α
Measurement: NAUnit: Unitless
Note: Value can be positive or negative.
Reduced Pressure
Reduced Pressure is the ratio of the actual pressure of the fluid to its critical pressure. It is dimensionless.
Symbol: Pr
Measurement: NAUnit: Unitless
Note: Value should be between 0 to 1.
Universal gas constant
Universal gas constant is a fundamental physical constant that appears in the ideal gas law, relating the pressure, volume, and temperature of an ideal gas.
Symbol: [R]
Value: 8.31446261815324

Other Formulas to find Critical Pressure

​Go Critical Pressure given Peng Robinson Parameter a, and other Actual and Reduced Parameters
Pc=0.45724([R]2)(TTr)2aPR
​Go Critical Pressure of Real Gas using Peng Robinson Equation given Peng Robinson Parameter a
Pc=0.45724([R]2)Tc2aPR

Other formulas in Critical Pressure category

​Go Critical Pressure given Peng Robinson Parameter b and other Actual and Reduced Parameters
PcPRP=0.07780[R]TgTrbPR

How to Evaluate Critical Pressure using Peng Robinson Equation given Reduced and Critical Parameters?

Critical Pressure using Peng Robinson Equation given Reduced and Critical Parameters evaluator uses Critical Pressure = ((([R]*(Reduced Temperature*Critical Temperature))/((Reduced Molar Volume*Critical Molar Volume)-Peng–Robinson Parameter b))-((Peng–Robinson Parameter a*α-function)/(((Reduced Molar Volume*Critical Molar Volume)^2)+(2*Peng–Robinson Parameter b*(Reduced Molar Volume*Critical Molar Volume))-(Peng–Robinson Parameter b^2))))/Reduced Pressure to evaluate the Critical Pressure, The Critical Pressure using Peng Robinson equation given reduced and critical parameters formula is defined as minimum pressure required to liquify a substance at the critical temperature. Critical Pressure is denoted by Pc symbol.

How to evaluate Critical Pressure using Peng Robinson Equation given Reduced and Critical Parameters using this online evaluator? To use this online evaluator for Critical Pressure using Peng Robinson Equation given Reduced and Critical Parameters, enter Reduced Temperature (Tr), Critical Temperature (Tc), Reduced Molar Volume (Vm,r), Critical Molar Volume (Vm,c), Peng–Robinson Parameter b (bPR), Peng–Robinson Parameter a (aPR), α-function (α) & Reduced Pressure (Pr) and hit the calculate button.

FAQs on Critical Pressure using Peng Robinson Equation given Reduced and Critical Parameters

What is the formula to find Critical Pressure using Peng Robinson Equation given Reduced and Critical Parameters?
The formula of Critical Pressure using Peng Robinson Equation given Reduced and Critical Parameters is expressed as Critical Pressure = ((([R]*(Reduced Temperature*Critical Temperature))/((Reduced Molar Volume*Critical Molar Volume)-Peng–Robinson Parameter b))-((Peng–Robinson Parameter a*α-function)/(((Reduced Molar Volume*Critical Molar Volume)^2)+(2*Peng–Robinson Parameter b*(Reduced Molar Volume*Critical Molar Volume))-(Peng–Robinson Parameter b^2))))/Reduced Pressure. Here is an example- 1.1E+7 = ((([R]*(10*647))/((11.2*11.5)-0.12))-((0.1*2)/(((11.2*11.5)^2)+(2*0.12*(11.2*11.5))-(0.12^2))))/3.675E-05.
How to calculate Critical Pressure using Peng Robinson Equation given Reduced and Critical Parameters?
With Reduced Temperature (Tr), Critical Temperature (Tc), Reduced Molar Volume (Vm,r), Critical Molar Volume (Vm,c), Peng–Robinson Parameter b (bPR), Peng–Robinson Parameter a (aPR), α-function (α) & Reduced Pressure (Pr) we can find Critical Pressure using Peng Robinson Equation given Reduced and Critical Parameters using the formula - Critical Pressure = ((([R]*(Reduced Temperature*Critical Temperature))/((Reduced Molar Volume*Critical Molar Volume)-Peng–Robinson Parameter b))-((Peng–Robinson Parameter a*α-function)/(((Reduced Molar Volume*Critical Molar Volume)^2)+(2*Peng–Robinson Parameter b*(Reduced Molar Volume*Critical Molar Volume))-(Peng–Robinson Parameter b^2))))/Reduced Pressure. This formula also uses Universal gas constant .
What are the other ways to Calculate Critical Pressure?
Here are the different ways to Calculate Critical Pressure-
  • Critical Pressure=0.45724*([R]^2)*((Temperature/Reduced Temperature)^2)/Peng–Robinson Parameter aOpenImg
  • Critical Pressure=0.45724*([R]^2)*(Critical Temperature^2)/Peng–Robinson Parameter aOpenImg
  • Critical Pressure=0.07780*[R]*Critical Temperature/Peng–Robinson Parameter bOpenImg
Can the Critical Pressure using Peng Robinson Equation given Reduced and Critical Parameters be negative?
No, the Critical Pressure using Peng Robinson Equation given Reduced and Critical Parameters, measured in Pressure cannot be negative.
Which unit is used to measure Critical Pressure using Peng Robinson Equation given Reduced and Critical Parameters?
Critical Pressure using Peng Robinson Equation given Reduced and Critical Parameters is usually measured using the Pascal[Pa] for Pressure. Kilopascal[Pa], Bar[Pa], Pound Per Square Inch[Pa] are the few other units in which Critical Pressure using Peng Robinson Equation given Reduced and Critical Parameters can be measured.
Copied!