Critical Elastic Moment for Box Sections and Solid Bars evaluator uses Critical Elastic Moment for Box Section = (57000*Moment Gradient Factor*sqrt(Torsional Constant*Cross Sectional Area in Steel Structures))/(Unbraced Length of Member/Radius of Gyration about Minor Axis) to evaluate the Critical Elastic Moment for Box Section, The Critical Elastic Moment for Box Sections and Solid Bars formula is defined as the maximum limit of the moment a box beam or solid bar can withstand, any further moment can make the beam or member in failure. It is the maximum moment a box-section beam can withstand before it reaches the elastic buckling stage. Elastic buckling is a condition where a structural member deforms significantly due to instability under compressive stresses, but the material has not yet yielded. Critical Elastic Moment for Box Section is denoted by Mbs symbol.
How to evaluate Critical Elastic Moment for Box Sections and Solid Bars using this online evaluator? To use this online evaluator for Critical Elastic Moment for Box Sections and Solid Bars, enter Moment Gradient Factor (Cb), Torsional Constant (J), Cross Sectional Area in Steel Structures (A), Unbraced Length of Member (L) & Radius of Gyration about Minor Axis (ry) and hit the calculate button.