Cos A Sin B Formula

Fx Copy
LaTeX Copy
Cos A Sin B is the product of values of the trigonometric cosine function of angle A and the trigonometric sine function of angle B. Check FAQs
cos A sin B=sin(A+B)-sin(A-B)2
cos A sin B - Cos A Sin B?A - Angle A of Trigonometry?B - Angle B of Trigonometry?

Cos A Sin B Example

With values
With units
Only example

Here is how the Cos A Sin B equation looks like with Values.

Here is how the Cos A Sin B equation looks like with Units.

Here is how the Cos A Sin B equation looks like.

0.4698Edit=sin(20Edit+30Edit)-sin(20Edit-30Edit)2
You are here -
HomeIcon Home » Category Math » Category Trigonometry and Inverse Trigonometry » Category Trigonometry » fx Cos A Sin B

Cos A Sin B Solution

Follow our step by step solution on how to calculate Cos A Sin B?

FIRST Step Consider the formula
cos A sin B=sin(A+B)-sin(A-B)2
Next Step Substitute values of Variables
cos A sin B=sin(20°+30°)-sin(20°-30°)2
Next Step Convert Units
cos A sin B=sin(0.3491rad+0.5236rad)-sin(0.3491rad-0.5236rad)2
Next Step Prepare to Evaluate
cos A sin B=sin(0.3491+0.5236)-sin(0.3491-0.5236)2
Next Step Evaluate
cos A sin B=0.469846310392885
LAST Step Rounding Answer
cos A sin B=0.4698

Cos A Sin B Formula Elements

Variables
Functions
Cos A Sin B
Cos A Sin B is the product of values of the trigonometric cosine function of angle A and the trigonometric sine function of angle B.
Symbol: cos A sin B
Measurement: NAUnit: Unitless
Note: Value should be between -1.01 to 1.01.
Angle A of Trigonometry
Angle A of Trigonometry is the value of the variable angle used to calculate Trigonometric Identities.
Symbol: A
Measurement: AngleUnit: °
Note: Value should be between 0 to 90.
Angle B of Trigonometry
Angle B of Trigonometry is the value of the variable angle used to calculate Trigonometric Identities.
Symbol: B
Measurement: AngleUnit: °
Note: Value should be between 0 to 90.
sin
Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.
Syntax: sin(Angle)

Other formulas in Product to Sum Trigonometry Identities category

​Go Cos A Cos B
cos A cos B=cos(A+B)+cos(A-B)2
​Go Sin A Cos B
sin A cos B=sin(A+B)+sin(A-B)2
​Go Sin A Sin B
sin A sin B=cos(A-B)-cos(A+B)2

How to Evaluate Cos A Sin B?

Cos A Sin B evaluator uses Cos A Sin B = (sin(Angle A of Trigonometry+Angle B of Trigonometry)-sin(Angle A of Trigonometry-Angle B of Trigonometry))/2 to evaluate the Cos A Sin B, The Cos A Sin B formula is defined as the product of values of the trigonometric cosine function of angle A and the trigonometric sine function of angle B. Cos A Sin B is denoted by cos A sin B symbol.

How to evaluate Cos A Sin B using this online evaluator? To use this online evaluator for Cos A Sin B, enter Angle A of Trigonometry (A) & Angle B of Trigonometry (B) and hit the calculate button.

FAQs on Cos A Sin B

What is the formula to find Cos A Sin B?
The formula of Cos A Sin B is expressed as Cos A Sin B = (sin(Angle A of Trigonometry+Angle B of Trigonometry)-sin(Angle A of Trigonometry-Angle B of Trigonometry))/2. Here is an example- 0.469846 = (sin(0.3490658503988+0.5235987755982)-sin(0.3490658503988-0.5235987755982))/2.
How to calculate Cos A Sin B?
With Angle A of Trigonometry (A) & Angle B of Trigonometry (B) we can find Cos A Sin B using the formula - Cos A Sin B = (sin(Angle A of Trigonometry+Angle B of Trigonometry)-sin(Angle A of Trigonometry-Angle B of Trigonometry))/2. This formula also uses Sine (sin) function(s).
Copied!