Cos A - Cos B Formula

Fx Copy
LaTeX Copy
Cos A - Cos B is the difference between values of trigonometric cosine functions of angle A and angle B. Check FAQs
cos A _ cos B=-2sin(A+B2)sin(A-B2)
cos A _ cos B - Cos A - Cos B?A - Angle A of Trigonometry?B - Angle B of Trigonometry?

Cos A - Cos B Example

With values
With units
Only example

Here is how the Cos A - Cos B equation looks like with Values.

Here is how the Cos A - Cos B equation looks like with Units.

Here is how the Cos A - Cos B equation looks like.

0.0737Edit=-2sin(20Edit+30Edit2)sin(20Edit-30Edit2)
You are here -
HomeIcon Home » Category Math » Category Trigonometry and Inverse Trigonometry » Category Trigonometry » fx Cos A - Cos B

Cos A - Cos B Solution

Follow our step by step solution on how to calculate Cos A - Cos B?

FIRST Step Consider the formula
cos A _ cos B=-2sin(A+B2)sin(A-B2)
Next Step Substitute values of Variables
cos A _ cos B=-2sin(20°+30°2)sin(20°-30°2)
Next Step Convert Units
cos A _ cos B=-2sin(0.3491rad+0.5236rad2)sin(0.3491rad-0.5236rad2)
Next Step Prepare to Evaluate
cos A _ cos B=-2sin(0.3491+0.52362)sin(0.3491-0.52362)
Next Step Evaluate
cos A _ cos B=0.0736672170014429
LAST Step Rounding Answer
cos A _ cos B=0.0737

Cos A - Cos B Formula Elements

Variables
Functions
Cos A - Cos B
Cos A - Cos B is the difference between values of trigonometric cosine functions of angle A and angle B.
Symbol: cos A _ cos B
Measurement: NAUnit: Unitless
Note: Value should be between -2.01 to 2.01.
Angle A of Trigonometry
Angle A of Trigonometry is the value of the variable angle used to calculate Trigonometric Identities.
Symbol: A
Measurement: AngleUnit: °
Note: Value should be between 0 to 90.
Angle B of Trigonometry
Angle B of Trigonometry is the value of the variable angle used to calculate Trigonometric Identities.
Symbol: B
Measurement: AngleUnit: °
Note: Value should be between 0 to 90.
sin
Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.
Syntax: sin(Angle)

Other formulas in Sum to Product Trigonometry Identities category

​Go Sin A - Sin B
sin A _ sin B=2cos(A+B2)sin(A-B2)
​Go Sin A + Sin B
sin A + sin B=2sin(A+B2)cos(A-B2)
​Go Cos A + Cos B
cos A + cos B=2cos(A+B2)cos(A-B2)
​Go Tan A + Tan B
Tan A + Tan B=sin(A+B)cos Acos B

How to Evaluate Cos A - Cos B?

Cos A - Cos B evaluator uses Cos A - Cos B = -2*sin((Angle A of Trigonometry+Angle B of Trigonometry)/2)*sin((Angle A of Trigonometry-Angle B of Trigonometry)/2) to evaluate the Cos A - Cos B, The Cos A - Cos B formula is defined as the difference between values of trigonometric cosine functions of angle A and angle B. Cos A - Cos B is denoted by cos A _ cos B symbol.

How to evaluate Cos A - Cos B using this online evaluator? To use this online evaluator for Cos A - Cos B, enter Angle A of Trigonometry (A) & Angle B of Trigonometry (B) and hit the calculate button.

FAQs on Cos A - Cos B

What is the formula to find Cos A - Cos B?
The formula of Cos A - Cos B is expressed as Cos A - Cos B = -2*sin((Angle A of Trigonometry+Angle B of Trigonometry)/2)*sin((Angle A of Trigonometry-Angle B of Trigonometry)/2). Here is an example- 0.073667 = -2*sin((0.3490658503988+0.5235987755982)/2)*sin((0.3490658503988-0.5235987755982)/2).
How to calculate Cos A - Cos B?
With Angle A of Trigonometry (A) & Angle B of Trigonometry (B) we can find Cos A - Cos B using the formula - Cos A - Cos B = -2*sin((Angle A of Trigonometry+Angle B of Trigonometry)/2)*sin((Angle A of Trigonometry-Angle B of Trigonometry)/2). This formula also uses Sine (sin) function(s).
Copied!