Cos A Cos B Formula

Fx Copy
LaTeX Copy
Cos A Cos B is the product of values of trigonometric cosine functions of angle A and angle B. Check FAQs
cos A cos B=cos(A+B)+cos(A-B)2
cos A cos B - Cos A Cos B?A - Angle A of Trigonometry?B - Angle B of Trigonometry?

Cos A Cos B Example

With values
With units
Only example

Here is how the Cos A Cos B equation looks like with Values.

Here is how the Cos A Cos B equation looks like with Units.

Here is how the Cos A Cos B equation looks like.

0.8138Edit=cos(20Edit+30Edit)+cos(20Edit-30Edit)2
You are here -
HomeIcon Home » Category Math » Category Trigonometry and Inverse Trigonometry » Category Trigonometry » fx Cos A Cos B

Cos A Cos B Solution

Follow our step by step solution on how to calculate Cos A Cos B?

FIRST Step Consider the formula
cos A cos B=cos(A+B)+cos(A-B)2
Next Step Substitute values of Variables
cos A cos B=cos(20°+30°)+cos(20°-30°)2
Next Step Convert Units
cos A cos B=cos(0.3491rad+0.5236rad)+cos(0.3491rad-0.5236rad)2
Next Step Prepare to Evaluate
cos A cos B=cos(0.3491+0.5236)+cos(0.3491-0.5236)2
Next Step Evaluate
cos A cos B=0.81379768134944
LAST Step Rounding Answer
cos A cos B=0.8138

Cos A Cos B Formula Elements

Variables
Functions
Cos A Cos B
Cos A Cos B is the product of values of trigonometric cosine functions of angle A and angle B.
Symbol: cos A cos B
Measurement: NAUnit: Unitless
Note: Value should be between -1.01 to 1.01.
Angle A of Trigonometry
Angle A of Trigonometry is the value of the variable angle used to calculate Trigonometric Identities.
Symbol: A
Measurement: AngleUnit: °
Note: Value should be between 0 to 90.
Angle B of Trigonometry
Angle B of Trigonometry is the value of the variable angle used to calculate Trigonometric Identities.
Symbol: B
Measurement: AngleUnit: °
Note: Value should be between 0 to 90.
cos
Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.
Syntax: cos(Angle)

Other formulas in Product to Sum Trigonometry Identities category

​Go Sin A Cos B
sin A cos B=sin(A+B)+sin(A-B)2
​Go Cos A Sin B
cos A sin B=sin(A+B)-sin(A-B)2
​Go Sin A Sin B
sin A sin B=cos(A-B)-cos(A+B)2

How to Evaluate Cos A Cos B?

Cos A Cos B evaluator uses Cos A Cos B = (cos(Angle A of Trigonometry+Angle B of Trigonometry)+cos(Angle A of Trigonometry-Angle B of Trigonometry))/2 to evaluate the Cos A Cos B, The Cos A Cos B formula is defined as the product of values of trigonometric cosine functions of angle A and angle B. Cos A Cos B is denoted by cos A cos B symbol.

How to evaluate Cos A Cos B using this online evaluator? To use this online evaluator for Cos A Cos B, enter Angle A of Trigonometry (A) & Angle B of Trigonometry (B) and hit the calculate button.

FAQs on Cos A Cos B

What is the formula to find Cos A Cos B?
The formula of Cos A Cos B is expressed as Cos A Cos B = (cos(Angle A of Trigonometry+Angle B of Trigonometry)+cos(Angle A of Trigonometry-Angle B of Trigonometry))/2. Here is an example- 0.813798 = (cos(0.3490658503988+0.5235987755982)+cos(0.3490658503988-0.5235987755982))/2.
How to calculate Cos A Cos B?
With Angle A of Trigonometry (A) & Angle B of Trigonometry (B) we can find Cos A Cos B using the formula - Cos A Cos B = (cos(Angle A of Trigonometry+Angle B of Trigonometry)+cos(Angle A of Trigonometry-Angle B of Trigonometry))/2. This formula also uses Cosine (cos) function(s).
Copied!