Fx Copy
LaTeX Copy
Clausius parameter a is an empirical parameter characteristic to equation obtained from Clausius model of real gas. Check FAQs
a=(([R](Vm,rTc)(Vm,rVm,c)-b)-(PrPc))((TrTc)(((Vm,rVm,c)+c)2))
a - Clausius Parameter a?Vm,r - Reduced Molar Volume?Tc - Critical Temperature?Vm,c - Critical Molar Volume?b - Clausius Parameter b?Pr - Reduced Pressure?Pc - Critical Pressure?Tr - Reduced Temperature?c - Clausius Parameter c?[R] - Universal gas constant?

Clausius Parametera given Reduced and Critical Parameters using Clausius Equation Example

With values
With units
Only example

Here is how the Clausius Parametera given Reduced and Critical Parameters using Clausius Equation equation looks like with Values.

Here is how the Clausius Parametera given Reduced and Critical Parameters using Clausius Equation equation looks like with Units.

Here is how the Clausius Parametera given Reduced and Critical Parameters using Clausius Equation equation looks like.

3.2E+10Edit=((8.3145(11.2Edit647Edit)(11.2Edit11.5Edit)-0.15Edit)-(0.8Edit218Edit))((10Edit647Edit)(((11.2Edit11.5Edit)+0.0002Edit)2))
You are here -
HomeIcon Home » Category Chemistry » Category Kinetic Theory of Gases » Category Real Gas » fx Clausius Parametera given Reduced and Critical Parameters using Clausius Equation

Clausius Parametera given Reduced and Critical Parameters using Clausius Equation Solution

Follow our step by step solution on how to calculate Clausius Parametera given Reduced and Critical Parameters using Clausius Equation?

FIRST Step Consider the formula
a=(([R](Vm,rTc)(Vm,rVm,c)-b)-(PrPc))((TrTc)(((Vm,rVm,c)+c)2))
Next Step Substitute values of Variables
a=(([R](11.2647K)(11.211.5m³/mol)-0.15)-(0.8218Pa))((10647K)(((11.211.5m³/mol)+0.0002)2))
Next Step Substitute values of Constants
a=((8.3145(11.2647K)(11.211.5m³/mol)-0.15)-(0.8218Pa))((10647K)(((11.211.5m³/mol)+0.0002)2))
Next Step Prepare to Evaluate
a=((8.3145(11.2647)(11.211.5)-0.15)-(0.8218))((10647)(((11.211.5)+0.0002)2))
Next Step Evaluate
a=31548074396.715
LAST Step Rounding Answer
a=3.2E+10

Clausius Parametera given Reduced and Critical Parameters using Clausius Equation Formula Elements

Variables
Constants
Clausius Parameter a
Clausius parameter a is an empirical parameter characteristic to equation obtained from Clausius model of real gas.
Symbol: a
Measurement: NAUnit: Unitless
Note: Value can be positive or negative.
Reduced Molar Volume
Reduced Molar Volume of a fluid is computed from the ideal gas law at the substance's critical pressure and temperature per mole.
Symbol: Vm,r
Measurement: NAUnit: Unitless
Note: Value can be positive or negative.
Critical Temperature
Critical Temperature is the highest temperature at which the substance can exist as a liquid. At this phase boundaries vanish, and the substance can exist both as a liquid and vapor.
Symbol: Tc
Measurement: TemperatureUnit: K
Note: Value should be greater than 0.
Critical Molar Volume
Critical Molar Volume is the volume occupied by gas at critical temperature and pressure per mole.
Symbol: Vm,c
Measurement: Molar Magnetic SusceptibilityUnit: m³/mol
Note: Value can be positive or negative.
Clausius Parameter b
Clausius parameter b is an empirical parameter characteristic to equation obtained from Clausius model of real gas.
Symbol: b
Measurement: NAUnit: Unitless
Note: Value can be positive or negative.
Reduced Pressure
Reduced Pressure is the ratio of the actual pressure of the fluid to its critical pressure. It is dimensionless.
Symbol: Pr
Measurement: NAUnit: Unitless
Note: Value should be between 0 to 1.
Critical Pressure
Critical Pressure is the minimum pressure required to liquify a substance at the critical temperature.
Symbol: Pc
Measurement: PressureUnit: Pa
Note: Value should be greater than 0.
Reduced Temperature
Reduced Temperature is the ratio of the actual temperature of the fluid to its critical temperature. It is dimensionless.
Symbol: Tr
Measurement: NAUnit: Unitless
Note: Value should be greater than 0.
Clausius Parameter c
Clausius parameter c is an empirical parameter characteristic to equation obtained from Clausius model of real gas.
Symbol: c
Measurement: NAUnit: Unitless
Note: Value can be positive or negative.
Universal gas constant
Universal gas constant is a fundamental physical constant that appears in the ideal gas law, relating the pressure, volume, and temperature of an ideal gas.
Symbol: [R]
Value: 8.31446261815324

Other Formulas to find Clausius Parameter a

​Go Clausius Parameter given Critical Parameters
a=27([R]2)(Tc3)64Pc
​Go Clausius Parameter given Pressure, Temperature and Molar Volume of Real Gas
a=(([R]TrgVm-b)-p)(Trg((Vm+c)2))

Other formulas in Clausius Parameter category

​Go Clausius Parameter b given Critical Parameters
b=Vc-([R]Tc4P'c)
​Go Clausius Parameter b given Pressure, Temperature and Molar Volume of Real Gas
b=Vm-([R]Trgp+(aTrg((Vm+c)2)))

How to Evaluate Clausius Parametera given Reduced and Critical Parameters using Clausius Equation?

Clausius Parametera given Reduced and Critical Parameters using Clausius Equation evaluator uses Clausius Parameter a = ((([R]*(Reduced Molar Volume*Critical Temperature))/((Reduced Molar Volume*Critical Molar Volume)-Clausius Parameter b))-(Reduced Pressure*Critical Pressure))*((Reduced Temperature*Critical Temperature)*(((Reduced Molar Volume*Critical Molar Volume)+Clausius Parameter c)^2)) to evaluate the Clausius Parameter a, The Clausius parametera given reduced and critical parameters using Clausius equation formula is defined as an empirical parameter characteristic to equation obtained from Clausius model of real gas. Clausius Parameter a is denoted by a symbol.

How to evaluate Clausius Parametera given Reduced and Critical Parameters using Clausius Equation using this online evaluator? To use this online evaluator for Clausius Parametera given Reduced and Critical Parameters using Clausius Equation, enter Reduced Molar Volume (Vm,r), Critical Temperature (Tc), Critical Molar Volume (Vm,c), Clausius Parameter b (b), Reduced Pressure (Pr), Critical Pressure (Pc), Reduced Temperature (Tr) & Clausius Parameter c (c) and hit the calculate button.

FAQs on Clausius Parametera given Reduced and Critical Parameters using Clausius Equation

What is the formula to find Clausius Parametera given Reduced and Critical Parameters using Clausius Equation?
The formula of Clausius Parametera given Reduced and Critical Parameters using Clausius Equation is expressed as Clausius Parameter a = ((([R]*(Reduced Molar Volume*Critical Temperature))/((Reduced Molar Volume*Critical Molar Volume)-Clausius Parameter b))-(Reduced Pressure*Critical Pressure))*((Reduced Temperature*Critical Temperature)*(((Reduced Molar Volume*Critical Molar Volume)+Clausius Parameter c)^2)). Here is an example- 3.2E+10 = ((([R]*(11.2*647))/((11.2*11.5)-0.15))-(0.8*218))*((10*647)*(((11.2*11.5)+0.0002)^2)).
How to calculate Clausius Parametera given Reduced and Critical Parameters using Clausius Equation?
With Reduced Molar Volume (Vm,r), Critical Temperature (Tc), Critical Molar Volume (Vm,c), Clausius Parameter b (b), Reduced Pressure (Pr), Critical Pressure (Pc), Reduced Temperature (Tr) & Clausius Parameter c (c) we can find Clausius Parametera given Reduced and Critical Parameters using Clausius Equation using the formula - Clausius Parameter a = ((([R]*(Reduced Molar Volume*Critical Temperature))/((Reduced Molar Volume*Critical Molar Volume)-Clausius Parameter b))-(Reduced Pressure*Critical Pressure))*((Reduced Temperature*Critical Temperature)*(((Reduced Molar Volume*Critical Molar Volume)+Clausius Parameter c)^2)). This formula also uses Universal gas constant .
What are the other ways to Calculate Clausius Parameter a?
Here are the different ways to Calculate Clausius Parameter a-
  • Clausius Parameter a=(27*([R]^2)*(Critical Temperature^3))/(64*Critical Pressure)OpenImg
  • Clausius Parameter a=((([R]*Temperature of Real Gas)/(Molar Volume-Clausius Parameter b))-Pressure)*(Temperature of Real Gas*((Molar Volume+Clausius Parameter c)^2))OpenImg
  • Clausius Parameter a=(27*([R]^2)*((Temperature of Real Gas/Reduced Temperature)^3))/(64*(Pressure/Reduced Pressure))OpenImg
Copied!