Fx Copy
LaTeX Copy
Characteristic Impedanceis defined as the ratio of the amplitudes of voltage and current of a single wave propagating along the transmission line. Check FAQs
Z0=Bsinh(γL)
Z0 - Characteristic Impedance?B - B Parameter?γ - Propagation Constant?L - Length?

Characteristic Impedance using B Parameter (LTL) Example

With values
With units
Only example

Here is how the Characteristic Impedance using B Parameter (LTL) equation looks like with Values.

Here is how the Characteristic Impedance using B Parameter (LTL) equation looks like with Units.

Here is how the Characteristic Impedance using B Parameter (LTL) equation looks like.

50.9212Edit=1050Editsinh(1.24Edit3Edit)
You are here -
HomeIcon Home » Category Engineering » Category Electrical » Category Power System » fx Characteristic Impedance using B Parameter (LTL)

Characteristic Impedance using B Parameter (LTL) Solution

Follow our step by step solution on how to calculate Characteristic Impedance using B Parameter (LTL)?

FIRST Step Consider the formula
Z0=Bsinh(γL)
Next Step Substitute values of Variables
Z0=1050Ωsinh(1.243m)
Next Step Prepare to Evaluate
Z0=1050sinh(1.243)
Next Step Evaluate
Z0=50.9212377651315Ω
LAST Step Rounding Answer
Z0=50.9212Ω

Characteristic Impedance using B Parameter (LTL) Formula Elements

Variables
Functions
Characteristic Impedance
Characteristic Impedanceis defined as the ratio of the amplitudes of voltage and current of a single wave propagating along the transmission line.
Symbol: Z0
Measurement: Electric ResistanceUnit: Ω
Note: Value should be greater than 0.
B Parameter
B parameter is a generalized line constant. also known as short circuit resistance in a transmission line.
Symbol: B
Measurement: Electric ResistanceUnit: Ω
Note: Value should be greater than 0.
Propagation Constant
Propagation Constant is defined as the measure of the change in amplitude and phase per unit distance in a transmission line.
Symbol: γ
Measurement: NAUnit: Unitless
Note: Value should be greater than 0.
Length
Length is defined as the end to end distance of the conductor used in a long transmission line.
Symbol: L
Measurement: LengthUnit: m
Note: Value should be greater than 0.
sinh
The hyperbolic sine function, also known as the sinh function, is a mathematical function that is defined as the hyperbolic analogue of the sine function.
Syntax: sinh(Number)

Other Formulas to find Characteristic Impedance

​Go Characteristic Impedance using C Parameter (LTL)
Z0=1Csinh(γL)
​Go Characteristic Impedance (LTL)
Z0=ZY
​Go Characteristic Impedance using Sending End Current (LTL)
Z0=Vrsinh(γL)Is-Ircosh(γL)
​Go Characteristic Impedance using Sending End Voltage (LTL)
Z0=Vs-Vrcosh(γL)sinh(γL)Ir

Other formulas in Impedance and Admittance category

​Go Impedance using Characteristic Impedance (LTL)
Z=Z02Y
​Go Impedance using Propagation Constant (LTL)
Z=γ2Y
​Go Surge Impedance (LTL)
Zs=LHenryCFarad
​Go Admittance using Characteristic Impedance (LTL)
Y=ZZ02

How to Evaluate Characteristic Impedance using B Parameter (LTL)?

Characteristic Impedance using B Parameter (LTL) evaluator uses Characteristic Impedance = B Parameter/(sinh(Propagation Constant*Length)) to evaluate the Characteristic Impedance, The Characteristic Impedance using B Parameter (LTL) formula is defined as a uniform transmission line is the ratio of the amplitudes of voltage and current of a single wave propagating along the line. Characteristic Impedance is denoted by Z0 symbol.

How to evaluate Characteristic Impedance using B Parameter (LTL) using this online evaluator? To use this online evaluator for Characteristic Impedance using B Parameter (LTL), enter B Parameter (B), Propagation Constant (γ) & Length (L) and hit the calculate button.

FAQs on Characteristic Impedance using B Parameter (LTL)

What is the formula to find Characteristic Impedance using B Parameter (LTL)?
The formula of Characteristic Impedance using B Parameter (LTL) is expressed as Characteristic Impedance = B Parameter/(sinh(Propagation Constant*Length)). Here is an example- 0.557709 = 1050/(sinh(1.24*3)).
How to calculate Characteristic Impedance using B Parameter (LTL)?
With B Parameter (B), Propagation Constant (γ) & Length (L) we can find Characteristic Impedance using B Parameter (LTL) using the formula - Characteristic Impedance = B Parameter/(sinh(Propagation Constant*Length)). This formula also uses Hyperbolic Sine (sinh) function(s).
What are the other ways to Calculate Characteristic Impedance?
Here are the different ways to Calculate Characteristic Impedance-
  • Characteristic Impedance=1/C Parameter*sinh(Propagation Constant*Length)OpenImg
  • Characteristic Impedance=sqrt(Impedance/Admittance)OpenImg
  • Characteristic Impedance=(Receiving End Voltage*sinh(Propagation Constant*Length))/(Sending End Current-Receiving End Current*cosh(Propagation Constant*Length))OpenImg
Can the Characteristic Impedance using B Parameter (LTL) be negative?
No, the Characteristic Impedance using B Parameter (LTL), measured in Electric Resistance cannot be negative.
Which unit is used to measure Characteristic Impedance using B Parameter (LTL)?
Characteristic Impedance using B Parameter (LTL) is usually measured using the Ohm[Ω] for Electric Resistance. Megohm[Ω], Microhm[Ω], Volt per Ampere[Ω] are the few other units in which Characteristic Impedance using B Parameter (LTL) can be measured.
Copied!