Angle Beta of Antiparallelogram Formula

Fx Copy
LaTeX Copy
Angle β of Antiparallelogram is the angle between a long side and a short side of Antiparallelogram. Check FAQs
∠β=arccos(SShort2+d'Long(Long side)2-d'Short(Long side)22SShortd'Long(Long side))
∠β - Angle β of Antiparallelogram?SShort - Short Side of Antiparallelogram?d'Long(Long side) - Long Section of Long Side of Antiparallelogram?d'Short(Long side) - Short Section of Long Side of Antiparallelogram?

Angle Beta of Antiparallelogram Example

With values
With units
Only example

Here is how the Angle Beta of Antiparallelogram equation looks like with Values.

Here is how the Angle Beta of Antiparallelogram equation looks like with Units.

Here is how the Angle Beta of Antiparallelogram equation looks like.

15.3589Edit=arccos(7Edit2+6Edit2-2Edit227Edit6Edit)
You are here -
HomeIcon Home » Category Math » Category Geometry » Category 2D Geometry » fx Angle Beta of Antiparallelogram

Angle Beta of Antiparallelogram Solution

Follow our step by step solution on how to calculate Angle Beta of Antiparallelogram?

FIRST Step Consider the formula
∠β=arccos(SShort2+d'Long(Long side)2-d'Short(Long side)22SShortd'Long(Long side))
Next Step Substitute values of Variables
∠β=arccos(7m2+6m2-2m227m6m)
Next Step Prepare to Evaluate
∠β=arccos(72+62-22276)
Next Step Evaluate
∠β=0.268063122822438rad
Next Step Convert to Output's Unit
∠β=15.3588855808256°
LAST Step Rounding Answer
∠β=15.3589°

Angle Beta of Antiparallelogram Formula Elements

Variables
Functions
Angle β of Antiparallelogram
Angle β of Antiparallelogram is the angle between a long side and a short side of Antiparallelogram.
Symbol: ∠β
Measurement: AngleUnit: °
Note: Value can be positive or negative.
Short Side of Antiparallelogram
Short Side of Antiparallelogram is the measurement of the length of the shortest side of Antiparallelogram.
Symbol: SShort
Measurement: LengthUnit: m
Note: Value should be greater than 0.
Long Section of Long Side of Antiparallelogram
Long Section of Long Side of Antiparallelogram is the length of longer section of the long side of Antiparallelogram.
Symbol: d'Long(Long side)
Measurement: LengthUnit: m
Note: Value should be greater than 0.
Short Section of Long Side of Antiparallelogram
Short Section of Long Side of Antiparallelogram is the length of shorter section of the long side of Antiparallelogram.
Symbol: d'Short(Long side)
Measurement: LengthUnit: m
Note: Value should be greater than 0.
cos
Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.
Syntax: cos(Angle)
arccos
Arccosine function, is the inverse function of the cosine function.It is the function that takes a ratio as an input and returns the angle whose cosine is equal to that ratio.
Syntax: arccos(Number)

Other formulas in Angle of Antiparallelogram category

​Go Angle Alpha of Antiparallelogram
∠α=arccos(d'Short(Long side)2+d'Long(Long side)2-SShort22d'Short(Long side)d'Long(Long side))
​Go Angle Gamma of Antiparallelogram
∠γ=arccos(SShort2+d'Short(Long side)2-d'Long(Long side)22SShortd'Short(Long side))
​Go Outer Angle Delta of Antiparallelogram
∠δ=π-∠α

How to Evaluate Angle Beta of Antiparallelogram?

Angle Beta of Antiparallelogram evaluator uses Angle β of Antiparallelogram = arccos((Short Side of Antiparallelogram^2+Long Section of Long Side of Antiparallelogram^2-Short Section of Long Side of Antiparallelogram^2)/(2*Short Side of Antiparallelogram*Long Section of Long Side of Antiparallelogram)) to evaluate the Angle β of Antiparallelogram, The Angle Beta of Antiparallelogram formula is defined as the angle between a long side and a short side of Antiparallelogram. Angle β of Antiparallelogram is denoted by ∠β symbol.

How to evaluate Angle Beta of Antiparallelogram using this online evaluator? To use this online evaluator for Angle Beta of Antiparallelogram, enter Short Side of Antiparallelogram (SShort), Long Section of Long Side of Antiparallelogram (d'Long(Long side)) & Short Section of Long Side of Antiparallelogram (d'Short(Long side)) and hit the calculate button.

FAQs on Angle Beta of Antiparallelogram

What is the formula to find Angle Beta of Antiparallelogram?
The formula of Angle Beta of Antiparallelogram is expressed as Angle β of Antiparallelogram = arccos((Short Side of Antiparallelogram^2+Long Section of Long Side of Antiparallelogram^2-Short Section of Long Side of Antiparallelogram^2)/(2*Short Side of Antiparallelogram*Long Section of Long Side of Antiparallelogram)). Here is an example- 879.9993 = arccos((7^2+6^2-2^2)/(2*7*6)).
How to calculate Angle Beta of Antiparallelogram?
With Short Side of Antiparallelogram (SShort), Long Section of Long Side of Antiparallelogram (d'Long(Long side)) & Short Section of Long Side of Antiparallelogram (d'Short(Long side)) we can find Angle Beta of Antiparallelogram using the formula - Angle β of Antiparallelogram = arccos((Short Side of Antiparallelogram^2+Long Section of Long Side of Antiparallelogram^2-Short Section of Long Side of Antiparallelogram^2)/(2*Short Side of Antiparallelogram*Long Section of Long Side of Antiparallelogram)). This formula also uses Cosine (cos), Inverse Cosine (arccos) function(s).
Can the Angle Beta of Antiparallelogram be negative?
Yes, the Angle Beta of Antiparallelogram, measured in Angle can be negative.
Which unit is used to measure Angle Beta of Antiparallelogram?
Angle Beta of Antiparallelogram is usually measured using the Degree[°] for Angle. Radian[°], Minute[°], Second[°] are the few other units in which Angle Beta of Antiparallelogram can be measured.
Copied!