Fx Copy
LaTeX Copy
α-function is a function of temperature and the acentric factor. Check FAQs
α=(1+k(1-TTc))2
α - α-function?k - Pure Component Parameter?T - Temperature?Tc - Critical Temperature?

Alpha-function for Peng Robinson Equation of state given Critical and Actual Temperature Example

With values
With units
Only example

Here is how the Alpha-function for Peng Robinson Equation of state given Critical and Actual Temperature equation looks like with Values.

Here is how the Alpha-function for Peng Robinson Equation of state given Critical and Actual Temperature equation looks like with Units.

Here is how the Alpha-function for Peng Robinson Equation of state given Critical and Actual Temperature equation looks like.

17.5369Edit=(1+5Edit(1-85Edit647Edit))2
You are here -

Alpha-function for Peng Robinson Equation of state given Critical and Actual Temperature Solution

Follow our step by step solution on how to calculate Alpha-function for Peng Robinson Equation of state given Critical and Actual Temperature?

FIRST Step Consider the formula
α=(1+k(1-TTc))2
Next Step Substitute values of Variables
α=(1+5(1-85K647K))2
Next Step Prepare to Evaluate
α=(1+5(1-85647))2
Next Step Evaluate
α=17.5369278782316
LAST Step Rounding Answer
α=17.5369

Alpha-function for Peng Robinson Equation of state given Critical and Actual Temperature Formula Elements

Variables
Functions
α-function
α-function is a function of temperature and the acentric factor.
Symbol: α
Measurement: NAUnit: Unitless
Note: Value can be positive or negative.
Pure Component Parameter
Pure Component Parameter is a function of the acentric factor.
Symbol: k
Measurement: NAUnit: Unitless
Note: Value can be positive or negative.
Temperature
Temperature is the degree or intensity of heat present in a substance or object.
Symbol: T
Measurement: TemperatureUnit: K
Note: Value can be positive or negative.
Critical Temperature
Critical Temperature is the highest temperature at which the substance can exist as a liquid. At this phase boundaries vanish, and the substance can exist both as a liquid and vapor.
Symbol: Tc
Measurement: TemperatureUnit: K
Note: Value should be greater than 0.
sqrt
A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
Syntax: sqrt(Number)

Other Formulas to find α-function

​Go Peng Robinson Alpha-Function using Peng Robinson Equation
α=(([R]TVm-bPR)-p)(Vm2)+(2bPRVm)-(bPR2)aPR
​Go Peng Robinson Alpha-Function using Peng Robinson Equation given Reduced and Critical Parameters
α=(([R](TcTr)(Vm,cVm,r)-bPR)-(PcPr))((Vm,cVm,r)2)+(2bPR(Vm,cVm,r))-(bPR2)aPR
​Go Alpha-function for Peng Robinson Equation of state given Reduced Temperature
α=(1+k(1-Tr))2

Other formulas in Peng Robinson Model of Real Gas category

​Go Pressure of Real Gas using Peng Robinson Equation
p=([R]TVm-bPR)-(aPRα(Vm2)+(2bPRVm)-(bPR2))
​Go Pressure of Real Gas using Peng Robinson Equation given Reduced and Critical Parameters
p=([R](TrTc)(Vm,rVm,c)-bPR)-(aPRα((Vm,rVm,c)2)+(2bPR(Vm,rVm,c))-(bPR2))
​Go Temperature of Real Gas using Peng Robinson Equation
TCE=(p+((aPRα(Vm2)+(2bPRVm)-(bPR2))))(Vm-bPR[R])
​Go Temperature of Real Gas using Peng Robinson Equation given Reduced and Critical Parameters
T=((PrPc)+((aPRα((Vm,rVm,c)2)+(2bPR(Vm,rVm,c))-(bPR2))))((Vm,rVm,c)-bPR[R])

How to Evaluate Alpha-function for Peng Robinson Equation of state given Critical and Actual Temperature?

Alpha-function for Peng Robinson Equation of state given Critical and Actual Temperature evaluator uses α-function = (1+Pure Component Parameter*(1-sqrt(Temperature/Critical Temperature)))^2 to evaluate the α-function, The Alpha-function for Peng Robinson Equation of state given Critical and Actual Temperature formula is defined as a function of temperature and the acentric factor. α-function is denoted by α symbol.

How to evaluate Alpha-function for Peng Robinson Equation of state given Critical and Actual Temperature using this online evaluator? To use this online evaluator for Alpha-function for Peng Robinson Equation of state given Critical and Actual Temperature, enter Pure Component Parameter (k), Temperature (T) & Critical Temperature (Tc) and hit the calculate button.

FAQs on Alpha-function for Peng Robinson Equation of state given Critical and Actual Temperature

What is the formula to find Alpha-function for Peng Robinson Equation of state given Critical and Actual Temperature?
The formula of Alpha-function for Peng Robinson Equation of state given Critical and Actual Temperature is expressed as α-function = (1+Pure Component Parameter*(1-sqrt(Temperature/Critical Temperature)))^2. Here is an example- 17.53693 = (1+5*(1-sqrt(85/647)))^2.
How to calculate Alpha-function for Peng Robinson Equation of state given Critical and Actual Temperature?
With Pure Component Parameter (k), Temperature (T) & Critical Temperature (Tc) we can find Alpha-function for Peng Robinson Equation of state given Critical and Actual Temperature using the formula - α-function = (1+Pure Component Parameter*(1-sqrt(Temperature/Critical Temperature)))^2. This formula also uses Square Root (sqrt) function(s).
What are the other ways to Calculate α-function?
Here are the different ways to Calculate α-function-
  • α-function=((([R]*Temperature)/(Molar Volume-Peng–Robinson Parameter b))-Pressure)*((Molar Volume^2)+(2*Peng–Robinson Parameter b*Molar Volume)-(Peng–Robinson Parameter b^2))/Peng–Robinson Parameter aOpenImg
  • α-function=((([R]*(Critical Temperature*Reduced Temperature))/((Critical Molar Volume*Reduced Molar Volume)-Peng–Robinson Parameter b))-(Critical Pressure*Reduced Pressure))*(((Critical Molar Volume*Reduced Molar Volume)^2)+(2*Peng–Robinson Parameter b*(Critical Molar Volume*Reduced Molar Volume))-(Peng–Robinson Parameter b^2))/Peng–Robinson Parameter aOpenImg
  • α-function=(1+Pure Component Parameter*(1-sqrt(Reduced Temperature)))^2OpenImg
Copied!