Fx Copy
LaTeX Copy
Temperature is the degree or intensity of heat present in a substance or object. Check FAQs
T=Tc((1-(α-1k))2)
T - Temperature?Tc - Critical Temperature?α - α-function?k - Pure Component Parameter?

Actual Temperature for Peng Robinson Equation using Alpha-function and Pure Component Parameter Example

With values
With units
Only example

Here is how the Actual Temperature for Peng Robinson Equation using Alpha-function and Pure Component Parameter equation looks like with Values.

Here is how the Actual Temperature for Peng Robinson Equation using Alpha-function and Pure Component Parameter equation looks like with Units.

Here is how the Actual Temperature for Peng Robinson Equation using Alpha-function and Pure Component Parameter equation looks like.

544.2418Edit=647Edit((1-(2Edit-15Edit))2)
You are here -

Actual Temperature for Peng Robinson Equation using Alpha-function and Pure Component Parameter Solution

Follow our step by step solution on how to calculate Actual Temperature for Peng Robinson Equation using Alpha-function and Pure Component Parameter?

FIRST Step Consider the formula
T=Tc((1-(α-1k))2)
Next Step Substitute values of Variables
T=647K((1-(2-15))2)
Next Step Prepare to Evaluate
T=647((1-(2-15))2)
Next Step Evaluate
T=544.241836069412K
LAST Step Rounding Answer
T=544.2418K

Actual Temperature for Peng Robinson Equation using Alpha-function and Pure Component Parameter Formula Elements

Variables
Functions
Temperature
Temperature is the degree or intensity of heat present in a substance or object.
Symbol: T
Measurement: TemperatureUnit: K
Note: Value can be positive or negative.
Critical Temperature
Critical Temperature is the highest temperature at which the substance can exist as a liquid. At this phase boundaries vanish, and the substance can exist both as a liquid and vapor.
Symbol: Tc
Measurement: TemperatureUnit: K
Note: Value should be greater than 0.
α-function
α-function is a function of temperature and the acentric factor.
Symbol: α
Measurement: NAUnit: Unitless
Note: Value can be positive or negative.
Pure Component Parameter
Pure Component Parameter is a function of the acentric factor.
Symbol: k
Measurement: NAUnit: Unitless
Note: Value can be positive or negative.
sqrt
A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
Syntax: sqrt(Number)

Other Formulas to find Temperature

​Go Temperature of Real Gas using Peng Robinson Equation given Reduced and Critical Parameters
T=((PrPc)+((aPRα((Vm,rVm,c)2)+(2bPR(Vm,rVm,c))-(bPR2))))((Vm,rVm,c)-bPR[R])
​Go Actual Temperature given Peng Robinson Parameter a, and other Reduced and Critical Parameters
T=Tr(aPRPc0.45724([R]2))
​Go Actual Temperature given Peng Robinson Parameter a, and other Actual and Reduced Parameters
T=Tr(aPR(pPr)0.45724([R]2))
​Go Actual Temperature given Peng Robinson Parameter b, other Actual and Reduced Parameters
T=Tr(bPR(pPr)0.07780[R])

Other formulas in Peng Robinson Model of Real Gas category

​Go Pressure of Real Gas using Peng Robinson Equation
p=([R]TVm-bPR)-(aPRα(Vm2)+(2bPRVm)-(bPR2))
​Go Pressure of Real Gas using Peng Robinson Equation given Reduced and Critical Parameters
p=([R](TrTc)(Vm,rVm,c)-bPR)-(aPRα((Vm,rVm,c)2)+(2bPR(Vm,rVm,c))-(bPR2))
​Go Temperature of Real Gas using Peng Robinson Equation
TCE=(p+((aPRα(Vm2)+(2bPRVm)-(bPR2))))(Vm-bPR[R])
​Go Peng Robinson Alpha-Function using Peng Robinson Equation
α=(([R]TVm-bPR)-p)(Vm2)+(2bPRVm)-(bPR2)aPR

How to Evaluate Actual Temperature for Peng Robinson Equation using Alpha-function and Pure Component Parameter?

Actual Temperature for Peng Robinson Equation using Alpha-function and Pure Component Parameter evaluator uses Temperature = Critical Temperature*((1-((sqrt(α-function)-1)/Pure Component Parameter))^2) to evaluate the Temperature, The Actual Temperature for Peng Robinson Equation using Alpha-function and Pure Component Parameter formula is defined as the degree or intensity of heat present in the volume of real gas. Temperature is denoted by T symbol.

How to evaluate Actual Temperature for Peng Robinson Equation using Alpha-function and Pure Component Parameter using this online evaluator? To use this online evaluator for Actual Temperature for Peng Robinson Equation using Alpha-function and Pure Component Parameter, enter Critical Temperature (Tc), α-function (α) & Pure Component Parameter (k) and hit the calculate button.

FAQs on Actual Temperature for Peng Robinson Equation using Alpha-function and Pure Component Parameter

What is the formula to find Actual Temperature for Peng Robinson Equation using Alpha-function and Pure Component Parameter?
The formula of Actual Temperature for Peng Robinson Equation using Alpha-function and Pure Component Parameter is expressed as Temperature = Critical Temperature*((1-((sqrt(α-function)-1)/Pure Component Parameter))^2). Here is an example- 544.2418 = 647*((1-((sqrt(2)-1)/5))^2).
How to calculate Actual Temperature for Peng Robinson Equation using Alpha-function and Pure Component Parameter?
With Critical Temperature (Tc), α-function (α) & Pure Component Parameter (k) we can find Actual Temperature for Peng Robinson Equation using Alpha-function and Pure Component Parameter using the formula - Temperature = Critical Temperature*((1-((sqrt(α-function)-1)/Pure Component Parameter))^2). This formula also uses Square Root (sqrt) function(s).
What are the other ways to Calculate Temperature?
Here are the different ways to Calculate Temperature-
  • Temperature=((Reduced Pressure*Critical Pressure)+(((Peng–Robinson Parameter a*α-function)/(((Reduced Molar Volume*Critical Molar Volume)^2)+(2*Peng–Robinson Parameter b*(Reduced Molar Volume*Critical Molar Volume))-(Peng–Robinson Parameter b^2)))))*(((Reduced Molar Volume*Critical Molar Volume)-Peng–Robinson Parameter b)/[R])OpenImg
  • Temperature=Reduced Temperature*(sqrt((Peng–Robinson Parameter a*Critical Pressure)/(0.45724*([R]^2))))OpenImg
  • Temperature=Reduced Temperature*(sqrt((Peng–Robinson Parameter a*(Pressure/Reduced Pressure))/(0.45724*([R]^2))))OpenImg
Can the Actual Temperature for Peng Robinson Equation using Alpha-function and Pure Component Parameter be negative?
Yes, the Actual Temperature for Peng Robinson Equation using Alpha-function and Pure Component Parameter, measured in Temperature can be negative.
Which unit is used to measure Actual Temperature for Peng Robinson Equation using Alpha-function and Pure Component Parameter?
Actual Temperature for Peng Robinson Equation using Alpha-function and Pure Component Parameter is usually measured using the Kelvin[K] for Temperature. Celsius[K], Fahrenheit[K], Rankine[K] are the few other units in which Actual Temperature for Peng Robinson Equation using Alpha-function and Pure Component Parameter can be measured.
Copied!