Fx Kopieren
LaTeX Kopieren
Das Volumen des abgeschnittenen Ikosaeders ist die Gesamtmenge des dreidimensionalen Raums, der von der Oberfläche des abgeschnittenen Ikosaeders eingeschlossen wird. Überprüfen Sie FAQs
V=125+(435)4(4rc58+(185))3
V - Volumen des abgeschnittenen Ikosaeders?rc - Umfangsradius des abgeschnittenen Ikosaeders?

Volumen des abgeschnittenen Ikosaeders bei gegebenem Umfangsradius Beispiel

Mit Werten
Mit Einheiten
Nur Beispiel

So sieht die Gleichung Volumen des abgeschnittenen Ikosaeders bei gegebenem Umfangsradius aus: mit Werten.

So sieht die Gleichung Volumen des abgeschnittenen Ikosaeders bei gegebenem Umfangsradius aus: mit Einheiten.

So sieht die Gleichung Volumen des abgeschnittenen Ikosaeders bei gegebenem Umfangsradius aus:.

56772.1151Edit=125+(435)4(425Edit58+(185))3
Sie sind hier -

Volumen des abgeschnittenen Ikosaeders bei gegebenem Umfangsradius Lösung

Folgen Sie unserer Schritt-für-Schritt-Lösung zur Berechnung von Volumen des abgeschnittenen Ikosaeders bei gegebenem Umfangsradius?

Erster Schritt Betrachten Sie die Formel
V=125+(435)4(4rc58+(185))3
Nächster Schritt Ersatzwerte von Variablen
V=125+(435)4(425m58+(185))3
Nächster Schritt Bereiten Sie sich auf die Bewertung vor
V=125+(435)4(42558+(185))3
Nächster Schritt Auswerten
V=56772.1150741146
Letzter Schritt Rundungsantwort
V=56772.1151

Volumen des abgeschnittenen Ikosaeders bei gegebenem Umfangsradius Formel Elemente

Variablen
Funktionen
Volumen des abgeschnittenen Ikosaeders
Das Volumen des abgeschnittenen Ikosaeders ist die Gesamtmenge des dreidimensionalen Raums, der von der Oberfläche des abgeschnittenen Ikosaeders eingeschlossen wird.
Symbol: V
Messung: VolumenEinheit:
Notiz: Der Wert sollte größer als 0 sein.
Umfangsradius des abgeschnittenen Ikosaeders
Umfangsradius des Ikosaederstumpfes ist der Radius der Kugel, die den Ikosaederstumpf so enthält, dass alle Ecken auf der Kugel liegen.
Symbol: rc
Messung: LängeEinheit: m
Notiz: Der Wert sollte größer als 0 sein.
sqrt
Eine Quadratwurzelfunktion ist eine Funktion, die eine nicht negative Zahl als Eingabe verwendet und die Quadratwurzel der gegebenen Eingabezahl zurückgibt.
Syntax: sqrt(Number)

Andere Formeln zum Finden von Volumen des abgeschnittenen Ikosaeders

​ge Volumen eines abgeschnittenen Ikosaeders bei gegebener Ikosaeder-Kantenlänge
V=125+(435)4(le(Icosahedron)3)3
​ge Volumen des abgeschnittenen Ikosaeders bei gegebenem Mittelkugelradius
V=125+(435)4(4rm3(1+5))3
​ge Volumen des abgeschnittenen Ikosaeders bei gegebenem Verhältnis von Oberfläche zu Volumen
V=125+(435)4(12((103)+25+(105))RA/V(125+(435)))3

Wie wird Volumen des abgeschnittenen Ikosaeders bei gegebenem Umfangsradius ausgewertet?

Der Volumen des abgeschnittenen Ikosaeders bei gegebenem Umfangsradius-Evaluator verwendet Volume of Truncated Icosahedron = (125+(43*sqrt(5)))/4*((4*Umfangsradius des abgeschnittenen Ikosaeders)/(sqrt(58+(18*sqrt(5)))))^3, um Volumen des abgeschnittenen Ikosaeders, Das Volumen des Ikosaederstumpfes bei gegebener Zirkumsphärenradiusformel ist definiert als die Gesamtmenge des dreidimensionalen Raums, der von der Oberfläche des Ikosaederstumpfes eingeschlossen ist, und wird unter Verwendung des Umkreisradius des Ikosaederstumpfes berechnet auszuwerten. Volumen des abgeschnittenen Ikosaeders wird durch das Symbol V gekennzeichnet.

Wie wird Volumen des abgeschnittenen Ikosaeders bei gegebenem Umfangsradius mit diesem Online-Evaluator ausgewertet? Um diesen Online-Evaluator für Volumen des abgeschnittenen Ikosaeders bei gegebenem Umfangsradius zu verwenden, geben Sie Umfangsradius des abgeschnittenen Ikosaeders (rc) ein und klicken Sie auf die Schaltfläche „Berechnen“.

FAQs An Volumen des abgeschnittenen Ikosaeders bei gegebenem Umfangsradius

Wie lautet die Formel zum Finden von Volumen des abgeschnittenen Ikosaeders bei gegebenem Umfangsradius?
Die Formel von Volumen des abgeschnittenen Ikosaeders bei gegebenem Umfangsradius wird als Volume of Truncated Icosahedron = (125+(43*sqrt(5)))/4*((4*Umfangsradius des abgeschnittenen Ikosaeders)/(sqrt(58+(18*sqrt(5)))))^3 ausgedrückt. Hier ist ein Beispiel: 56772.12 = (125+(43*sqrt(5)))/4*((4*25)/(sqrt(58+(18*sqrt(5)))))^3.
Wie berechnet man Volumen des abgeschnittenen Ikosaeders bei gegebenem Umfangsradius?
Mit Umfangsradius des abgeschnittenen Ikosaeders (rc) können wir Volumen des abgeschnittenen Ikosaeders bei gegebenem Umfangsradius mithilfe der Formel - Volume of Truncated Icosahedron = (125+(43*sqrt(5)))/4*((4*Umfangsradius des abgeschnittenen Ikosaeders)/(sqrt(58+(18*sqrt(5)))))^3 finden. Diese Formel verwendet auch Quadratwurzel (sqrt) Funktion(en).
Welche anderen Möglichkeiten gibt es zum Berechnen von Volumen des abgeschnittenen Ikosaeders?
Hier sind die verschiedenen Möglichkeiten zum Berechnen von Volumen des abgeschnittenen Ikosaeders-
  • Volume of Truncated Icosahedron=(125+(43*sqrt(5)))/4*(Icosahedral Edge Length of Truncated Icosahedron/3)^3OpenImg
  • Volume of Truncated Icosahedron=(125+(43*sqrt(5)))/4*((4*Midsphere Radius of Truncated Icosahedron)/(3*(1+sqrt(5))))^3OpenImg
  • Volume of Truncated Icosahedron=(125+(43*sqrt(5)))/4*((12*((10*sqrt(3))+sqrt(25+(10*sqrt(5)))))/(Surface to Volume Ratio of Truncated Icosahedron*(125+(43*sqrt(5)))))^3OpenImg
Kann Volumen des abgeschnittenen Ikosaeders bei gegebenem Umfangsradius negativ sein?
NEIN, der in Volumen gemessene Volumen des abgeschnittenen Ikosaeders bei gegebenem Umfangsradius kann kann nicht negativ sein.
Welche Einheit wird zum Messen von Volumen des abgeschnittenen Ikosaeders bei gegebenem Umfangsradius verwendet?
Volumen des abgeschnittenen Ikosaeders bei gegebenem Umfangsradius wird normalerweise mit Kubikmeter[m³] für Volumen gemessen. Kubikzentimeter[m³], Cubikmillimeter[m³], Liter[m³] sind die wenigen anderen Einheiten, in denen Volumen des abgeschnittenen Ikosaeders bei gegebenem Umfangsradius gemessen werden kann.
Copied!