Fx Kopieren
LaTeX Kopieren
Root Mean Square Voltage ist die Quadratwurzel des Zeitmittels der quadrierten Spannung. Überprüfen Sie FAQs
Vrms=(PLcos(Φ))ρPlossV
Vrms - Effektivspannung?P - Leistung übertragen?L - Länge des unterirdischen Wechselstromkabels?Φ - Phasendifferenz?ρ - Widerstand?Ploss - Leitungsverluste?V - Lautstärke des Dirigenten?

RMS-Spannung unter Verwendung des Volumens des Leitermaterials (3-Phasen-4-Draht-US) Beispiel

Mit Werten
Mit Einheiten
Nur Beispiel

So sieht die Gleichung RMS-Spannung unter Verwendung des Volumens des Leitermaterials (3-Phasen-4-Draht-US) aus: mit Werten.

So sieht die Gleichung RMS-Spannung unter Verwendung des Volumens des Leitermaterials (3-Phasen-4-Draht-US) aus: mit Einheiten.

So sieht die Gleichung RMS-Spannung unter Verwendung des Volumens des Leitermaterials (3-Phasen-4-Draht-US) aus:.

2.7083Edit=(300Edit24Editcos(30Edit))1.7E-5Edit2.67Edit60Edit
Sie sind hier -
HomeIcon Heim » Category Maschinenbau » Category Elektrisch » Category Stromversorgungssystem » fx RMS-Spannung unter Verwendung des Volumens des Leitermaterials (3-Phasen-4-Draht-US)

RMS-Spannung unter Verwendung des Volumens des Leitermaterials (3-Phasen-4-Draht-US) Lösung

Folgen Sie unserer Schritt-für-Schritt-Lösung zur Berechnung von RMS-Spannung unter Verwendung des Volumens des Leitermaterials (3-Phasen-4-Draht-US)?

Erster Schritt Betrachten Sie die Formel
Vrms=(PLcos(Φ))ρPlossV
Nächster Schritt Ersatzwerte von Variablen
Vrms=(300W24mcos(30°))1.7E-5Ω*m2.67W60
Nächster Schritt Einheiten umrechnen
Vrms=(300W24mcos(0.5236rad))1.7E-5Ω*m2.67W60
Nächster Schritt Bereiten Sie sich auf die Bewertung vor
Vrms=(30024cos(0.5236))1.7E-52.6760
Nächster Schritt Auswerten
Vrms=2.70828939751168V
Letzter Schritt Rundungsantwort
Vrms=2.7083V

RMS-Spannung unter Verwendung des Volumens des Leitermaterials (3-Phasen-4-Draht-US) Formel Elemente

Variablen
Funktionen
Effektivspannung
Root Mean Square Voltage ist die Quadratwurzel des Zeitmittels der quadrierten Spannung.
Symbol: Vrms
Messung: Elektrisches PotenzialEinheit: V
Notiz: Der Wert sollte größer als 0 sein.
Leistung übertragen
Die übertragene Leistung ist die Menge an Leistung, die von ihrem Erzeugungsort zu einem Ort übertragen wird, an dem sie zur Verrichtung nützlicher Arbeit verwendet wird.
Symbol: P
Messung: LeistungEinheit: W
Notiz: Der Wert kann positiv oder negativ sein.
Länge des unterirdischen Wechselstromkabels
Die Länge des unterirdischen Wechselstromkabels ist die Gesamtlänge des Kabels von einem Ende zum anderen Ende.
Symbol: L
Messung: LängeEinheit: m
Notiz: Der Wert sollte größer als 0 sein.
Phasendifferenz
Die Phasendifferenz ist definiert als die Differenz zwischen dem Zeiger der Schein- und Wirkleistung (in Grad) oder zwischen Spannung und Strom in einem Wechselstromkreis.
Symbol: Φ
Messung: WinkelEinheit: °
Notiz: Der Wert sollte größer als 0 sein.
Widerstand
Widerstand, elektrischer Widerstand eines Leiters mit Einheitsquerschnittsfläche und Einheitslänge.
Symbol: ρ
Messung: Elektrischer WiderstandEinheit: Ω*m
Notiz: Der Wert kann positiv oder negativ sein.
Leitungsverluste
Leitungsverluste sind definiert als die Gesamtverluste, die in einer unterirdischen Wechselstromleitung während des Betriebs auftreten.
Symbol: Ploss
Messung: LeistungEinheit: W
Notiz: Der Wert kann positiv oder negativ sein.
Lautstärke des Dirigenten
Volumen des Leiters der dreidimensionale Raum, der von einem Leitermaterial umschlossen wird.
Symbol: V
Messung: VolumenEinheit:
Notiz: Der Wert sollte größer als 0 sein.
cos
Der Kosinus eines Winkels ist das Verhältnis der an den Winkel angrenzenden Seite zur Hypothenuse des Dreiecks.
Syntax: cos(Angle)
sqrt
Eine Quadratwurzelfunktion ist eine Funktion, die eine nicht negative Zahl als Eingabe verwendet und die Quadratwurzel der gegebenen Eingabezahl zurückgibt.
Syntax: sqrt(Number)

Andere Formeln zum Finden von Effektivspannung

​ge RMS-Spannung unter Verwendung des Laststroms (3-Phasen-4-Draht-US)
Vrms=(2P3Icos(Φ))
​ge RMS-Spannung unter Verwendung des Bereichs des X-Abschnitts (3 Phase 4 Leiter US)
Vrms=(2Pcos(Φ))ρL6PlossA

Andere Formeln in der Kategorie Leistung und Leistungsfaktor

​ge Übertragene Leistung unter Verwendung des Volumens des Leitermaterials (3 Phasen 4 Leiter US)
P=PlossV(Vmcos(Φ))27ρ(L)2
​ge Leistungsfaktor unter Verwendung des Volumens des Leitermaterials (3 Phasen 4 Leiter US)
PF=(1.75)KV

Wie wird RMS-Spannung unter Verwendung des Volumens des Leitermaterials (3-Phasen-4-Draht-US) ausgewertet?

Der RMS-Spannung unter Verwendung des Volumens des Leitermaterials (3-Phasen-4-Draht-US)-Evaluator verwendet Root Mean Square Voltage = (Leistung übertragen*Länge des unterirdischen Wechselstromkabels/cos(Phasendifferenz))*sqrt(Widerstand/(Leitungsverluste*Lautstärke des Dirigenten)), um Effektivspannung, Die RMS-Spannung unter Verwendung des Volumens des Leitermaterials (3 Phasen 4 Leiter US) ist definiert als die Quadratwurzel des Zeitmittels der Spannung im Quadrat auszuwerten. Effektivspannung wird durch das Symbol Vrms gekennzeichnet.

Wie wird RMS-Spannung unter Verwendung des Volumens des Leitermaterials (3-Phasen-4-Draht-US) mit diesem Online-Evaluator ausgewertet? Um diesen Online-Evaluator für RMS-Spannung unter Verwendung des Volumens des Leitermaterials (3-Phasen-4-Draht-US) zu verwenden, geben Sie Leistung übertragen (P), Länge des unterirdischen Wechselstromkabels (L), Phasendifferenz (Φ), Widerstand (ρ), Leitungsverluste (Ploss) & Lautstärke des Dirigenten (V) ein und klicken Sie auf die Schaltfläche „Berechnen“.

FAQs An RMS-Spannung unter Verwendung des Volumens des Leitermaterials (3-Phasen-4-Draht-US)

Wie lautet die Formel zum Finden von RMS-Spannung unter Verwendung des Volumens des Leitermaterials (3-Phasen-4-Draht-US)?
Die Formel von RMS-Spannung unter Verwendung des Volumens des Leitermaterials (3-Phasen-4-Draht-US) wird als Root Mean Square Voltage = (Leistung übertragen*Länge des unterirdischen Wechselstromkabels/cos(Phasendifferenz))*sqrt(Widerstand/(Leitungsverluste*Lautstärke des Dirigenten)) ausgedrückt. Hier ist ein Beispiel: 2.708289 = (300*24/cos(0.5235987755982))*sqrt(1.7E-05/(2.67*60)).
Wie berechnet man RMS-Spannung unter Verwendung des Volumens des Leitermaterials (3-Phasen-4-Draht-US)?
Mit Leistung übertragen (P), Länge des unterirdischen Wechselstromkabels (L), Phasendifferenz (Φ), Widerstand (ρ), Leitungsverluste (Ploss) & Lautstärke des Dirigenten (V) können wir RMS-Spannung unter Verwendung des Volumens des Leitermaterials (3-Phasen-4-Draht-US) mithilfe der Formel - Root Mean Square Voltage = (Leistung übertragen*Länge des unterirdischen Wechselstromkabels/cos(Phasendifferenz))*sqrt(Widerstand/(Leitungsverluste*Lautstärke des Dirigenten)) finden. Diese Formel verwendet auch Kosinus (cos), Quadratwurzel (sqrt) Funktion(en).
Welche anderen Möglichkeiten gibt es zum Berechnen von Effektivspannung?
Hier sind die verschiedenen Möglichkeiten zum Berechnen von Effektivspannung-
  • Root Mean Square Voltage=(2*Power Transmitted/3*Current Underground AC*cos(Phase Difference))OpenImg
  • Root Mean Square Voltage=(2*Power Transmitted/cos(Phase Difference))*sqrt(Resistivity*Length of Underground AC Wire/(6*Line Losses*Area of Underground AC Wire))OpenImg
  • Root Mean Square Voltage=(2*Power Transmitted/cos(Phase Difference))*sqrt(Resistance Underground AC/(6*Line Losses))OpenImg
Kann RMS-Spannung unter Verwendung des Volumens des Leitermaterials (3-Phasen-4-Draht-US) negativ sein?
NEIN, der in Elektrisches Potenzial gemessene RMS-Spannung unter Verwendung des Volumens des Leitermaterials (3-Phasen-4-Draht-US) kann kann nicht negativ sein.
Welche Einheit wird zum Messen von RMS-Spannung unter Verwendung des Volumens des Leitermaterials (3-Phasen-4-Draht-US) verwendet?
RMS-Spannung unter Verwendung des Volumens des Leitermaterials (3-Phasen-4-Draht-US) wird normalerweise mit Volt[V] für Elektrisches Potenzial gemessen. Millivolt[V], Mikrovolt[V], Nanovolt[V] sind die wenigen anderen Einheiten, in denen RMS-Spannung unter Verwendung des Volumens des Leitermaterials (3-Phasen-4-Draht-US) gemessen werden kann.
Copied!