Fx Kopieren
LaTeX Kopieren
Halbkugelradius des abgeschnittenen Ikosaeders ist der Radius der Kugel, für den alle Kanten des abgeschnittenen Ikosaeders zu einer Tangentenlinie auf dieser Kugel werden. Überprüfen Sie FAQs
rm=3(1+5)4(4V125+(435))13
rm - Mittelsphärenradius des abgeschnittenen Ikosaeders?V - Volumen des abgeschnittenen Ikosaeders?

Mittelkugelradius des abgeschnittenen Ikosaeders bei gegebenem Volumen Beispiel

Mit Werten
Mit Einheiten
Nur Beispiel

So sieht die Gleichung Mittelkugelradius des abgeschnittenen Ikosaeders bei gegebenem Volumen aus: mit Werten.

So sieht die Gleichung Mittelkugelradius des abgeschnittenen Ikosaeders bei gegebenem Volumen aus: mit Einheiten.

So sieht die Gleichung Mittelkugelradius des abgeschnittenen Ikosaeders bei gegebenem Volumen aus:.

24.2283Edit=3(1+5)4(455000Edit125+(435))13
Sie sind hier -

Mittelkugelradius des abgeschnittenen Ikosaeders bei gegebenem Volumen Lösung

Folgen Sie unserer Schritt-für-Schritt-Lösung zur Berechnung von Mittelkugelradius des abgeschnittenen Ikosaeders bei gegebenem Volumen?

Erster Schritt Betrachten Sie die Formel
rm=3(1+5)4(4V125+(435))13
Nächster Schritt Ersatzwerte von Variablen
rm=3(1+5)4(455000125+(435))13
Nächster Schritt Bereiten Sie sich auf die Bewertung vor
rm=3(1+5)4(455000125+(435))13
Nächster Schritt Auswerten
rm=24.2283333746581m
Letzter Schritt Rundungsantwort
rm=24.2283m

Mittelkugelradius des abgeschnittenen Ikosaeders bei gegebenem Volumen Formel Elemente

Variablen
Funktionen
Mittelsphärenradius des abgeschnittenen Ikosaeders
Halbkugelradius des abgeschnittenen Ikosaeders ist der Radius der Kugel, für den alle Kanten des abgeschnittenen Ikosaeders zu einer Tangentenlinie auf dieser Kugel werden.
Symbol: rm
Messung: LängeEinheit: m
Notiz: Der Wert sollte größer als 0 sein.
Volumen des abgeschnittenen Ikosaeders
Das Volumen des abgeschnittenen Ikosaeders ist die Gesamtmenge des dreidimensionalen Raums, der von der Oberfläche des abgeschnittenen Ikosaeders eingeschlossen wird.
Symbol: V
Messung: VolumenEinheit:
Notiz: Der Wert sollte größer als 0 sein.
sqrt
Eine Quadratwurzelfunktion ist eine Funktion, die eine nicht negative Zahl als Eingabe verwendet und die Quadratwurzel der gegebenen Eingabezahl zurückgibt.
Syntax: sqrt(Number)

Andere Formeln zum Finden von Mittelsphärenradius des abgeschnittenen Ikosaeders

​ge Mittelsphärenradius des abgeschnittenen Ikosaeders
rm=3(1+5)4le
​ge Halbkugelradius des abgeschnittenen Ikosaeders bei gegebener Ikosaeder-Kantenlänge
rm=1+54le(Icosahedron)
​ge Mittelkugelradius des abgeschnittenen Ikosaeders bei gegebener Gesamtoberfläche
rm=3(1+5)4TSA3((103)+25+(105))
​ge Mittelkugelradius des abgeschnittenen Ikosaeders bei gegebenem Verhältnis von Oberfläche zu Volumen
rm=(1+5)9((103)+25+(105))RA/V(125+(435))

Wie wird Mittelkugelradius des abgeschnittenen Ikosaeders bei gegebenem Volumen ausgewertet?

Der Mittelkugelradius des abgeschnittenen Ikosaeders bei gegebenem Volumen-Evaluator verwendet Midsphere Radius of Truncated Icosahedron = (3*(1+sqrt(5)))/4*((4*Volumen des abgeschnittenen Ikosaeders)/(125+(43*sqrt(5))))^(1/3), um Mittelsphärenradius des abgeschnittenen Ikosaeders, Mittelkugelradius des Ikosaederstumpfes bei gegebener Volumenformel ist definiert als der Radius der Kugel, für den alle Kanten des Ikosaederstumpfes zu einer Tangentenlinie auf dieser Kugel werden, und wird unter Verwendung des Volumens des Ikosaederstumpfes berechnet auszuwerten. Mittelsphärenradius des abgeschnittenen Ikosaeders wird durch das Symbol rm gekennzeichnet.

Wie wird Mittelkugelradius des abgeschnittenen Ikosaeders bei gegebenem Volumen mit diesem Online-Evaluator ausgewertet? Um diesen Online-Evaluator für Mittelkugelradius des abgeschnittenen Ikosaeders bei gegebenem Volumen zu verwenden, geben Sie Volumen des abgeschnittenen Ikosaeders (V) ein und klicken Sie auf die Schaltfläche „Berechnen“.

FAQs An Mittelkugelradius des abgeschnittenen Ikosaeders bei gegebenem Volumen

Wie lautet die Formel zum Finden von Mittelkugelradius des abgeschnittenen Ikosaeders bei gegebenem Volumen?
Die Formel von Mittelkugelradius des abgeschnittenen Ikosaeders bei gegebenem Volumen wird als Midsphere Radius of Truncated Icosahedron = (3*(1+sqrt(5)))/4*((4*Volumen des abgeschnittenen Ikosaeders)/(125+(43*sqrt(5))))^(1/3) ausgedrückt. Hier ist ein Beispiel: 24.22833 = (3*(1+sqrt(5)))/4*((4*55000)/(125+(43*sqrt(5))))^(1/3).
Wie berechnet man Mittelkugelradius des abgeschnittenen Ikosaeders bei gegebenem Volumen?
Mit Volumen des abgeschnittenen Ikosaeders (V) können wir Mittelkugelradius des abgeschnittenen Ikosaeders bei gegebenem Volumen mithilfe der Formel - Midsphere Radius of Truncated Icosahedron = (3*(1+sqrt(5)))/4*((4*Volumen des abgeschnittenen Ikosaeders)/(125+(43*sqrt(5))))^(1/3) finden. Diese Formel verwendet auch Quadratwurzel (sqrt) Funktion(en).
Welche anderen Möglichkeiten gibt es zum Berechnen von Mittelsphärenradius des abgeschnittenen Ikosaeders?
Hier sind die verschiedenen Möglichkeiten zum Berechnen von Mittelsphärenradius des abgeschnittenen Ikosaeders-
  • Midsphere Radius of Truncated Icosahedron=(3*(1+sqrt(5)))/4*Edge Length of Truncated IcosahedronOpenImg
  • Midsphere Radius of Truncated Icosahedron=(1+sqrt(5))/4*Icosahedral Edge Length of Truncated IcosahedronOpenImg
  • Midsphere Radius of Truncated Icosahedron=(3*(1+sqrt(5)))/4*sqrt(Total Surface Area of Truncated Icosahedron/(3*((10*sqrt(3))+sqrt(25+(10*sqrt(5))))))OpenImg
Kann Mittelkugelradius des abgeschnittenen Ikosaeders bei gegebenem Volumen negativ sein?
NEIN, der in Länge gemessene Mittelkugelradius des abgeschnittenen Ikosaeders bei gegebenem Volumen kann kann nicht negativ sein.
Welche Einheit wird zum Messen von Mittelkugelradius des abgeschnittenen Ikosaeders bei gegebenem Volumen verwendet?
Mittelkugelradius des abgeschnittenen Ikosaeders bei gegebenem Volumen wird normalerweise mit Meter[m] für Länge gemessen. Millimeter[m], Kilometer[m], Dezimeter[m] sind die wenigen anderen Einheiten, in denen Mittelkugelradius des abgeschnittenen Ikosaeders bei gegebenem Volumen gemessen werden kann.
Copied!