Fx Kopieren
LaTeX Kopieren
Die natürliche Kreisfrequenz ist die Anzahl der Schwingungen pro Zeiteinheit eines Systems, das ohne äußere Krafteinwirkung frei im Quermodus schwingt. Überprüfen Sie FAQs
ωn=π2EIshaftgwLshaft4
ωn - Natürliche Kreisfrequenz?E - Elastizitätsmodul?Ishaft - Trägheitsmoment der Welle?g - Erdbeschleunigung?w - Belastung pro Längeneinheit?Lshaft - Schaftlänge?π - Archimedes-Konstante?

Kreisfrequenz aufgrund gleichmäßig verteilter Last Beispiel

Mit Werten
Mit Einheiten
Nur Beispiel

So sieht die Gleichung Kreisfrequenz aufgrund gleichmäßig verteilter Last aus: mit Werten.

So sieht die Gleichung Kreisfrequenz aufgrund gleichmäßig verteilter Last aus: mit Einheiten.

So sieht die Gleichung Kreisfrequenz aufgrund gleichmäßig verteilter Last aus:.

5.876Edit=3.1416215Edit1.0855Edit9.8Edit3Edit3.5Edit4
Sie sind hier -
HomeIcon Heim » Category Physik » Category Mechanisch » Category Theorie der Maschine » fx Kreisfrequenz aufgrund gleichmäßig verteilter Last

Kreisfrequenz aufgrund gleichmäßig verteilter Last Lösung

Folgen Sie unserer Schritt-für-Schritt-Lösung zur Berechnung von Kreisfrequenz aufgrund gleichmäßig verteilter Last?

Erster Schritt Betrachten Sie die Formel
ωn=π2EIshaftgwLshaft4
Nächster Schritt Ersatzwerte von Variablen
ωn=π215N/m1.0855kg·m²9.8m/s²33.5m4
Nächster Schritt Ersatzwerte für Konstanten
ωn=3.1416215N/m1.0855kg·m²9.8m/s²33.5m4
Nächster Schritt Bereiten Sie sich auf die Bewertung vor
ωn=3.14162151.08559.833.54
Nächster Schritt Auswerten
ωn=5.8759895060384rad/s
Letzter Schritt Rundungsantwort
ωn=5.876rad/s

Kreisfrequenz aufgrund gleichmäßig verteilter Last Formel Elemente

Variablen
Konstanten
Funktionen
Natürliche Kreisfrequenz
Die natürliche Kreisfrequenz ist die Anzahl der Schwingungen pro Zeiteinheit eines Systems, das ohne äußere Krafteinwirkung frei im Quermodus schwingt.
Symbol: ωn
Messung: WinkelgeschwindigkeitEinheit: rad/s
Notiz: Der Wert sollte größer als 0 sein.
Elastizitätsmodul
Der Elastizitätsmodul ist ein Maß für die Steifigkeit eines festen Materials und wird zur Berechnung der Eigenfrequenz freier Querschwingungen verwendet.
Symbol: E
Messung: SteifigkeitskonstanteEinheit: N/m
Notiz: Der Wert sollte größer als 0 sein.
Trägheitsmoment der Welle
Das Trägheitsmoment einer Welle ist das Maß für den Widerstand eines Objekts gegenüber Änderungen seiner Rotation und beeinflusst die Eigenfrequenz freier Querschwingungen.
Symbol: Ishaft
Messung: TrägheitsmomentEinheit: kg·m²
Notiz: Der Wert sollte größer als 0 sein.
Erdbeschleunigung
Die Erdbeschleunigung ist die Änderungsrate der Geschwindigkeit eines Objekts unter dem Einfluss der Schwerkraft, die sich auf die Eigenfrequenz freier Querschwingungen auswirkt.
Symbol: g
Messung: BeschleunigungEinheit: m/s²
Notiz: Der Wert sollte größer als 0 sein.
Belastung pro Längeneinheit
Die Last pro Längeneinheit ist die Kraft pro Längeneinheit, die auf ein System ausgeübt wird und die dessen Eigenfrequenz freier Querschwingungen beeinflusst.
Symbol: w
Messung: NAEinheit: Unitless
Notiz: Der Wert sollte größer als 0 sein.
Schaftlänge
Die Wellenlänge ist der Abstand von der Rotationsachse bis zum Punkt der maximalen Schwingungsamplitude bei einer quer schwingenden Welle.
Symbol: Lshaft
Messung: LängeEinheit: m
Notiz: Der Wert sollte größer als 0 sein.
Archimedes-Konstante
Die Archimedes-Konstante ist eine mathematische Konstante, die das Verhältnis des Umfangs eines Kreises zu seinem Durchmesser darstellt.
Symbol: π
Wert: 3.14159265358979323846264338327950288
sqrt
Eine Quadratwurzelfunktion ist eine Funktion, die eine nicht negative Zahl als Eingabe verwendet und die Quadratwurzel der gegebenen Eingabezahl zurückgibt.
Syntax: sqrt(Number)

Andere Formeln zum Finden von Natürliche Kreisfrequenz

​ge Kreisfrequenz bei statischer Ablenkung
ωn=2π0.5615δ

Andere Formeln in der Kategorie Gleichmäßig verteilte Last auf einer einfach gelagerten Welle

​ge Eigenfrequenz bei statischer Durchbiegung
f=0.5615δ
​ge Gleichmäßig verteilte Länge der Ladeeinheit bei statischer Durchbiegung
w=δ384EIshaft5Lshaft4
​ge Schaftlänge bei statischer Durchbiegung
Lshaft=(δ384EIshaft5w)14
​ge Trägheitsmoment der Welle bei gegebener statischer Durchbiegung bei gegebener Last pro Längeneinheit
Ishaft=5wLshaft4384Eδ

Wie wird Kreisfrequenz aufgrund gleichmäßig verteilter Last ausgewertet?

Der Kreisfrequenz aufgrund gleichmäßig verteilter Last-Evaluator verwendet Natural Circular Frequency = pi^2*sqrt((Elastizitätsmodul*Trägheitsmoment der Welle*Erdbeschleunigung)/(Belastung pro Längeneinheit*Schaftlänge^4)), um Natürliche Kreisfrequenz, Die Formel zur Berechnung der Kreisfrequenz aufgrund gleichmäßig verteilter Last ist definiert als die Eigenfrequenz freier Querschwingungen einer Welle unter gleichmäßig verteilter Last. Im Maschinenbau ist sie ein entscheidender Parameter zur Bestimmung des Schwingungsverhaltens und der Stabilität der Welle auszuwerten. Natürliche Kreisfrequenz wird durch das Symbol ωn gekennzeichnet.

Wie wird Kreisfrequenz aufgrund gleichmäßig verteilter Last mit diesem Online-Evaluator ausgewertet? Um diesen Online-Evaluator für Kreisfrequenz aufgrund gleichmäßig verteilter Last zu verwenden, geben Sie Elastizitätsmodul (E), Trägheitsmoment der Welle (Ishaft), Erdbeschleunigung (g), Belastung pro Längeneinheit (w) & Schaftlänge (Lshaft) ein und klicken Sie auf die Schaltfläche „Berechnen“.

FAQs An Kreisfrequenz aufgrund gleichmäßig verteilter Last

Wie lautet die Formel zum Finden von Kreisfrequenz aufgrund gleichmäßig verteilter Last?
Die Formel von Kreisfrequenz aufgrund gleichmäßig verteilter Last wird als Natural Circular Frequency = pi^2*sqrt((Elastizitätsmodul*Trägheitsmoment der Welle*Erdbeschleunigung)/(Belastung pro Längeneinheit*Schaftlänge^4)) ausgedrückt. Hier ist ein Beispiel: 5.87599 = pi^2*sqrt((15*1.085522*9.8)/(3*3.5^4)).
Wie berechnet man Kreisfrequenz aufgrund gleichmäßig verteilter Last?
Mit Elastizitätsmodul (E), Trägheitsmoment der Welle (Ishaft), Erdbeschleunigung (g), Belastung pro Längeneinheit (w) & Schaftlänge (Lshaft) können wir Kreisfrequenz aufgrund gleichmäßig verteilter Last mithilfe der Formel - Natural Circular Frequency = pi^2*sqrt((Elastizitätsmodul*Trägheitsmoment der Welle*Erdbeschleunigung)/(Belastung pro Längeneinheit*Schaftlänge^4)) finden. Diese Formel verwendet auch die Funktion(en) Archimedes-Konstante und Quadratwurzel (sqrt).
Welche anderen Möglichkeiten gibt es zum Berechnen von Natürliche Kreisfrequenz?
Hier sind die verschiedenen Möglichkeiten zum Berechnen von Natürliche Kreisfrequenz-
  • Natural Circular Frequency=2*pi*0.5615/(sqrt(Static Deflection))OpenImg
Kann Kreisfrequenz aufgrund gleichmäßig verteilter Last negativ sein?
NEIN, der in Winkelgeschwindigkeit gemessene Kreisfrequenz aufgrund gleichmäßig verteilter Last kann kann nicht negativ sein.
Welche Einheit wird zum Messen von Kreisfrequenz aufgrund gleichmäßig verteilter Last verwendet?
Kreisfrequenz aufgrund gleichmäßig verteilter Last wird normalerweise mit Radiant pro Sekunde[rad/s] für Winkelgeschwindigkeit gemessen. Radiant / Tag[rad/s], Radiant / Stunde[rad/s], Bogenmaß pro Minute[rad/s] sind die wenigen anderen Einheiten, in denen Kreisfrequenz aufgrund gleichmäßig verteilter Last gemessen werden kann.
Copied!