Fx Kopieren
LaTeX Kopieren
Die Kantenlänge des Stupsdodekaeders ist die Länge einer beliebigen Kante des Stupsdodekaeders. Überprüfen Sie FAQs
le=(V6(3-(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)32((12((3[phi])+1))((([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)-(((36[phi])+7)(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)))-((53[phi])+6))13
le - Kantenlänge des Stupsdodekaeders?V - Volumen des Stupsdodekaeders?[phi] - Goldener Schnitt?[phi] - Goldener Schnitt?[phi] - Goldener Schnitt?[phi] - Goldener Schnitt?[phi] - Goldener Schnitt?[phi] - Goldener Schnitt?[phi] - Goldener Schnitt?[phi] - Goldener Schnitt?[phi] - Goldener Schnitt?[phi] - Goldener Schnitt?[phi] - Goldener Schnitt?[phi] - Goldener Schnitt?[phi] - Goldener Schnitt?[phi] - Goldener Schnitt?[phi] - Goldener Schnitt?

Kantenlänge des Stupsdodekaeders bei gegebenem Volumen Beispiel

Mit Werten
Mit Einheiten
Nur Beispiel

So sieht die Gleichung Kantenlänge des Stupsdodekaeders bei gegebenem Volumen aus: mit Werten.

So sieht die Gleichung Kantenlänge des Stupsdodekaeders bei gegebenem Volumen aus: mit Einheiten.

So sieht die Gleichung Kantenlänge des Stupsdodekaeders bei gegebenem Volumen aus:.

10.0339Edit=(38000Edit6(3-((1.6182+1.618-5272)13+(1.6182-1.618-5272)13)2)32((12((31.618)+1))(((1.6182+1.618-5272)13+(1.6182-1.618-5272)13)2)-(((361.618)+7)((1.6182+1.618-5272)13+(1.6182-1.618-5272)13)))-((531.618)+6))13
Sie sind hier -
HomeIcon Heim » Category Mathe » Category Geometrie » Category 3D-Geometrie » fx Kantenlänge des Stupsdodekaeders bei gegebenem Volumen

Kantenlänge des Stupsdodekaeders bei gegebenem Volumen Lösung

Folgen Sie unserer Schritt-für-Schritt-Lösung zur Berechnung von Kantenlänge des Stupsdodekaeders bei gegebenem Volumen?

Erster Schritt Betrachten Sie die Formel
le=(V6(3-(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)32((12((3[phi])+1))((([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)-(((36[phi])+7)(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)))-((53[phi])+6))13
Nächster Schritt Ersatzwerte von Variablen
le=(380006(3-(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)32((12((3[phi])+1))((([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)-(((36[phi])+7)(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)))-((53[phi])+6))13
Nächster Schritt Ersatzwerte für Konstanten
le=(380006(3-((1.6182+1.618-5272)13+(1.6182-1.618-5272)13)2)32((12((31.618)+1))(((1.6182+1.618-5272)13+(1.6182-1.618-5272)13)2)-(((361.618)+7)((1.6182+1.618-5272)13+(1.6182-1.618-5272)13)))-((531.618)+6))13
Nächster Schritt Bereiten Sie sich auf die Bewertung vor
le=(380006(3-((1.6182+1.618-5272)13+(1.6182-1.618-5272)13)2)32((12((31.618)+1))(((1.6182+1.618-5272)13+(1.6182-1.618-5272)13)2)-(((361.618)+7)((1.6182+1.618-5272)13+(1.6182-1.618-5272)13)))-((531.618)+6))13
Nächster Schritt Auswerten
le=10.033855143478m
Letzter Schritt Rundungsantwort
le=10.0339m

Kantenlänge des Stupsdodekaeders bei gegebenem Volumen Formel Elemente

Variablen
Konstanten
Funktionen
Kantenlänge des Stupsdodekaeders
Die Kantenlänge des Stupsdodekaeders ist die Länge einer beliebigen Kante des Stupsdodekaeders.
Symbol: le
Messung: LängeEinheit: m
Notiz: Der Wert sollte größer als 0 sein.
Volumen des Stupsdodekaeders
Das Volumen des Stupsdodekaeders ist die Gesamtmenge des dreidimensionalen Raums, der von der Oberfläche des Stupsdodekaeders eingeschlossen wird.
Symbol: V
Messung: VolumenEinheit:
Notiz: Der Wert sollte größer als 0 sein.
Goldener Schnitt
Der Goldene Schnitt liegt vor, wenn das Verhältnis zweier Zahlen dem Verhältnis ihrer Summe zur größeren der beiden Zahlen entspricht.
Symbol: [phi]
Wert: 1.61803398874989484820458683436563811
Goldener Schnitt
Der Goldene Schnitt liegt vor, wenn das Verhältnis zweier Zahlen dem Verhältnis ihrer Summe zur größeren der beiden Zahlen entspricht.
Symbol: [phi]
Wert: 1.61803398874989484820458683436563811
Goldener Schnitt
Der Goldene Schnitt liegt vor, wenn das Verhältnis zweier Zahlen dem Verhältnis ihrer Summe zur größeren der beiden Zahlen entspricht.
Symbol: [phi]
Wert: 1.61803398874989484820458683436563811
Goldener Schnitt
Der Goldene Schnitt liegt vor, wenn das Verhältnis zweier Zahlen dem Verhältnis ihrer Summe zur größeren der beiden Zahlen entspricht.
Symbol: [phi]
Wert: 1.61803398874989484820458683436563811
Goldener Schnitt
Der Goldene Schnitt liegt vor, wenn das Verhältnis zweier Zahlen dem Verhältnis ihrer Summe zur größeren der beiden Zahlen entspricht.
Symbol: [phi]
Wert: 1.61803398874989484820458683436563811
Goldener Schnitt
Der Goldene Schnitt liegt vor, wenn das Verhältnis zweier Zahlen dem Verhältnis ihrer Summe zur größeren der beiden Zahlen entspricht.
Symbol: [phi]
Wert: 1.61803398874989484820458683436563811
Goldener Schnitt
Der Goldene Schnitt liegt vor, wenn das Verhältnis zweier Zahlen dem Verhältnis ihrer Summe zur größeren der beiden Zahlen entspricht.
Symbol: [phi]
Wert: 1.61803398874989484820458683436563811
Goldener Schnitt
Der Goldene Schnitt liegt vor, wenn das Verhältnis zweier Zahlen dem Verhältnis ihrer Summe zur größeren der beiden Zahlen entspricht.
Symbol: [phi]
Wert: 1.61803398874989484820458683436563811
Goldener Schnitt
Der Goldene Schnitt liegt vor, wenn das Verhältnis zweier Zahlen dem Verhältnis ihrer Summe zur größeren der beiden Zahlen entspricht.
Symbol: [phi]
Wert: 1.61803398874989484820458683436563811
Goldener Schnitt
Der Goldene Schnitt liegt vor, wenn das Verhältnis zweier Zahlen dem Verhältnis ihrer Summe zur größeren der beiden Zahlen entspricht.
Symbol: [phi]
Wert: 1.61803398874989484820458683436563811
Goldener Schnitt
Der Goldene Schnitt liegt vor, wenn das Verhältnis zweier Zahlen dem Verhältnis ihrer Summe zur größeren der beiden Zahlen entspricht.
Symbol: [phi]
Wert: 1.61803398874989484820458683436563811
Goldener Schnitt
Der Goldene Schnitt liegt vor, wenn das Verhältnis zweier Zahlen dem Verhältnis ihrer Summe zur größeren der beiden Zahlen entspricht.
Symbol: [phi]
Wert: 1.61803398874989484820458683436563811
Goldener Schnitt
Der Goldene Schnitt liegt vor, wenn das Verhältnis zweier Zahlen dem Verhältnis ihrer Summe zur größeren der beiden Zahlen entspricht.
Symbol: [phi]
Wert: 1.61803398874989484820458683436563811
Goldener Schnitt
Der Goldene Schnitt liegt vor, wenn das Verhältnis zweier Zahlen dem Verhältnis ihrer Summe zur größeren der beiden Zahlen entspricht.
Symbol: [phi]
Wert: 1.61803398874989484820458683436563811
Goldener Schnitt
Der Goldene Schnitt liegt vor, wenn das Verhältnis zweier Zahlen dem Verhältnis ihrer Summe zur größeren der beiden Zahlen entspricht.
Symbol: [phi]
Wert: 1.61803398874989484820458683436563811
sqrt
Eine Quadratwurzelfunktion ist eine Funktion, die eine nicht negative Zahl als Eingabe verwendet und die Quadratwurzel der gegebenen Eingabezahl zurückgibt.
Syntax: sqrt(Number)

Andere Formeln zum Finden von Kantenlänge des Stupsdodekaeders

​ge Kantenlänge des Stupsdodekaeders bei gegebenem Umfangsradius
le=2rc2-0.943151259241-0.94315125924

Andere Formeln in der Kategorie Kantenlänge des Stupsdodekaeders

​ge Umfangsradius des Stupsdodekaeders
rc=2-0.943151259241-0.943151259242le
​ge Mittelsphärenradius des Stupsdodekaeders
rm=11-0.943151259242le
​ge Gesamtoberfläche des Stupsdodekaeders
TSA=((203)+(325+(105)))le2
​ge Verhältnis von Oberfläche zu Volumen des Stupsdodekaeders
RA/V=((203)+(325+(105)))6(3-(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)32le(((12((3[phi])+1))((([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)-(((36[phi])+7)(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)))-((53[phi])+6))

Wie wird Kantenlänge des Stupsdodekaeders bei gegebenem Volumen ausgewertet?

Der Kantenlänge des Stupsdodekaeders bei gegebenem Volumen-Evaluator verwendet Edge Length of Snub Dodecahedron = ((Volumen des Stupsdodekaeders*6*(3-(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)^(3/2))/(((12*((3*[phi])+1))*((([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)-(((36*[phi])+7)*(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))))-((53*[phi])+6)))^(1/3), um Kantenlänge des Stupsdodekaeders, Die Kantenlänge des Snub-Dodekaeders bei gegebener Volumenformel ist definiert als die Länge einer beliebigen Kante des Snub-Dodekaeders und wird unter Verwendung des Volumens des Snub-Dodekaeders berechnet auszuwerten. Kantenlänge des Stupsdodekaeders wird durch das Symbol le gekennzeichnet.

Wie wird Kantenlänge des Stupsdodekaeders bei gegebenem Volumen mit diesem Online-Evaluator ausgewertet? Um diesen Online-Evaluator für Kantenlänge des Stupsdodekaeders bei gegebenem Volumen zu verwenden, geben Sie Volumen des Stupsdodekaeders (V) ein und klicken Sie auf die Schaltfläche „Berechnen“.

FAQs An Kantenlänge des Stupsdodekaeders bei gegebenem Volumen

Wie lautet die Formel zum Finden von Kantenlänge des Stupsdodekaeders bei gegebenem Volumen?
Die Formel von Kantenlänge des Stupsdodekaeders bei gegebenem Volumen wird als Edge Length of Snub Dodecahedron = ((Volumen des Stupsdodekaeders*6*(3-(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)^(3/2))/(((12*((3*[phi])+1))*((([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)-(((36*[phi])+7)*(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))))-((53*[phi])+6)))^(1/3) ausgedrückt. Hier ist ein Beispiel: 10.03386 = ((38000*6*(3-(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)^(3/2))/(((12*((3*[phi])+1))*((([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)-(((36*[phi])+7)*(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))))-((53*[phi])+6)))^(1/3).
Wie berechnet man Kantenlänge des Stupsdodekaeders bei gegebenem Volumen?
Mit Volumen des Stupsdodekaeders (V) können wir Kantenlänge des Stupsdodekaeders bei gegebenem Volumen mithilfe der Formel - Edge Length of Snub Dodecahedron = ((Volumen des Stupsdodekaeders*6*(3-(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)^(3/2))/(((12*((3*[phi])+1))*((([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)-(((36*[phi])+7)*(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))))-((53*[phi])+6)))^(1/3) finden. Diese Formel verwendet auch die Funktion(en) Goldener Schnitt, Goldener Schnitt, Goldener Schnitt, Goldener Schnitt, Goldener Schnitt, Goldener Schnitt, Goldener Schnitt, Goldener Schnitt, Goldener Schnitt, Goldener Schnitt, Goldener Schnitt, Goldener Schnitt, Goldener Schnitt, Goldener Schnitt, Goldener Schnitt Konstante(n) und Quadratwurzel (sqrt).
Welche anderen Möglichkeiten gibt es zum Berechnen von Kantenlänge des Stupsdodekaeders?
Hier sind die verschiedenen Möglichkeiten zum Berechnen von Kantenlänge des Stupsdodekaeders-
  • Edge Length of Snub Dodecahedron=(2*Circumsphere Radius of Snub Dodecahedron)/sqrt((2-0.94315125924)/(1-0.94315125924))OpenImg
Kann Kantenlänge des Stupsdodekaeders bei gegebenem Volumen negativ sein?
NEIN, der in Länge gemessene Kantenlänge des Stupsdodekaeders bei gegebenem Volumen kann kann nicht negativ sein.
Welche Einheit wird zum Messen von Kantenlänge des Stupsdodekaeders bei gegebenem Volumen verwendet?
Kantenlänge des Stupsdodekaeders bei gegebenem Volumen wird normalerweise mit Meter[m] für Länge gemessen. Millimeter[m], Kilometer[m], Dezimeter[m] sind die wenigen anderen Einheiten, in denen Kantenlänge des Stupsdodekaeders bei gegebenem Volumen gemessen werden kann.
Copied!