Ideale Lösung Gibbs-Energie unter Verwendung des idealen Lösungsmodells im Binärsystem Formel

Fx Kopieren
LaTeX Kopieren
Freie Gibbs-Energie in idealer Lösung ist die Gibbs-Energie in einem idealen Lösungszustand. Überprüfen Sie FAQs
Gid=(x1G1id+x2G2id)+[R]T(x1ln(x1)+x2ln(x2))
Gid - Ideale Lösung Gibbs Free Energy?x1 - Molenbruch von Komponente 1 in flüssiger Phase?G1id - Ideallösung Gibbs-freie Energie von Komponente 1?x2 - Molenbruch von Komponente 2 in flüssiger Phase?G2id - Ideallösung Gibbs-freie Energie von Komponente 2?T - Temperatur?[R] - Universelle Gas Konstante?

Ideale Lösung Gibbs-Energie unter Verwendung des idealen Lösungsmodells im Binärsystem Beispiel

Mit Werten
Mit Einheiten
Nur Beispiel

So sieht die Gleichung Ideale Lösung Gibbs-Energie unter Verwendung des idealen Lösungsmodells im Binärsystem aus: mit Werten.

So sieht die Gleichung Ideale Lösung Gibbs-Energie unter Verwendung des idealen Lösungsmodells im Binärsystem aus: mit Einheiten.

So sieht die Gleichung Ideale Lösung Gibbs-Energie unter Verwendung des idealen Lösungsmodells im Binärsystem aus:.

-2436.8787Edit=(0.4Edit71Edit+0.6Edit88Edit)+8.3145450Edit(0.4Editln(0.4Edit)+0.6Editln(0.6Edit))
Sie sind hier -
HomeIcon Heim » Category Maschinenbau » Category Chemieingenieurwesen » Category Thermodynamik » fx Ideale Lösung Gibbs-Energie unter Verwendung des idealen Lösungsmodells im Binärsystem

Ideale Lösung Gibbs-Energie unter Verwendung des idealen Lösungsmodells im Binärsystem Lösung

Folgen Sie unserer Schritt-für-Schritt-Lösung zur Berechnung von Ideale Lösung Gibbs-Energie unter Verwendung des idealen Lösungsmodells im Binärsystem?

Erster Schritt Betrachten Sie die Formel
Gid=(x1G1id+x2G2id)+[R]T(x1ln(x1)+x2ln(x2))
Nächster Schritt Ersatzwerte von Variablen
Gid=(0.471J+0.688J)+[R]450K(0.4ln(0.4)+0.6ln(0.6))
Nächster Schritt Ersatzwerte für Konstanten
Gid=(0.471J+0.688J)+8.3145450K(0.4ln(0.4)+0.6ln(0.6))
Nächster Schritt Bereiten Sie sich auf die Bewertung vor
Gid=(0.471+0.688)+8.3145450(0.4ln(0.4)+0.6ln(0.6))
Nächster Schritt Auswerten
Gid=-2436.87865611826J
Letzter Schritt Rundungsantwort
Gid=-2436.8787J

Ideale Lösung Gibbs-Energie unter Verwendung des idealen Lösungsmodells im Binärsystem Formel Elemente

Variablen
Konstanten
Funktionen
Ideale Lösung Gibbs Free Energy
Freie Gibbs-Energie in idealer Lösung ist die Gibbs-Energie in einem idealen Lösungszustand.
Symbol: Gid
Messung: EnergieEinheit: J
Notiz: Der Wert kann positiv oder negativ sein.
Molenbruch von Komponente 1 in flüssiger Phase
Der Molenbruch der Komponente 1 in flüssiger Phase kann als das Verhältnis der Molzahl einer Komponente 1 zur Gesamtmolzahl der in der flüssigen Phase vorhandenen Komponenten definiert werden.
Symbol: x1
Messung: NAEinheit: Unitless
Notiz: Der Wert sollte zwischen 0 und 1 liegen.
Ideallösung Gibbs-freie Energie von Komponente 1
Ideale Lösung Die freie Gibbs-Energie der Komponente 1 ist die Gibbs-Energie der Komponente 1 in einem idealen Lösungszustand.
Symbol: G1id
Messung: EnergieEinheit: J
Notiz: Der Wert kann positiv oder negativ sein.
Molenbruch von Komponente 2 in flüssiger Phase
Der Molenbruch der Komponente 2 in flüssiger Phase kann als das Verhältnis der Molzahl einer Komponente 2 zur Gesamtmolzahl der in der flüssigen Phase vorhandenen Komponenten definiert werden.
Symbol: x2
Messung: NAEinheit: Unitless
Notiz: Der Wert sollte zwischen 0 und 1 liegen.
Ideallösung Gibbs-freie Energie von Komponente 2
Ideallösung Gibbs Free Energy von Komponente 2 ist die Gibbs-Energie von Komponente 2 in einem idealen Lösungszustand.
Symbol: G2id
Messung: EnergieEinheit: J
Notiz: Der Wert kann positiv oder negativ sein.
Temperatur
Temperatur ist der Grad oder die Intensität der Wärme, die in einer Substanz oder einem Objekt vorhanden ist.
Symbol: T
Messung: TemperaturEinheit: K
Notiz: Der Wert kann positiv oder negativ sein.
Universelle Gas Konstante
Die universelle Gaskonstante ist eine grundlegende physikalische Konstante, die im Gesetz des idealen Gases auftritt und den Druck, das Volumen und die Temperatur eines idealen Gases in Beziehung setzt.
Symbol: [R]
Wert: 8.31446261815324
ln
Der natürliche Logarithmus, auch Logarithmus zur Basis e genannt, ist die Umkehrfunktion der natürlichen Exponentialfunktion.
Syntax: ln(Number)

Andere Formeln in der Kategorie Ideales Lösungsmodell

​ge Enthalpie der idealen Lösung unter Verwendung des Modells der idealen Lösung im Binärsystem
Hid=x1H1id+x2H2id
​ge Ideallösungsentropie unter Verwendung des Ideallösungsmodells im Binärsystem
Sid=(x1S1id+x2S2id)-[R](x1ln(x1)+x2ln(x2))
​ge Ideales Lösungsvolumen unter Verwendung des idealen Lösungsmodells im Binärsystem
Vid=x1V2id+x2V2id

Wie wird Ideale Lösung Gibbs-Energie unter Verwendung des idealen Lösungsmodells im Binärsystem ausgewertet?

Der Ideale Lösung Gibbs-Energie unter Verwendung des idealen Lösungsmodells im Binärsystem-Evaluator verwendet Ideal Solution Gibbs Free Energy = (Molenbruch von Komponente 1 in flüssiger Phase*Ideallösung Gibbs-freie Energie von Komponente 1+Molenbruch von Komponente 2 in flüssiger Phase*Ideallösung Gibbs-freie Energie von Komponente 2)+[R]*Temperatur*(Molenbruch von Komponente 1 in flüssiger Phase*ln(Molenbruch von Komponente 1 in flüssiger Phase)+Molenbruch von Komponente 2 in flüssiger Phase*ln(Molenbruch von Komponente 2 in flüssiger Phase)), um Ideale Lösung Gibbs Free Energy, Die Ideallösungs-Gibbs-Energie unter Verwendung des Ideallösungsmodells in der Formel des binären Systems ist definiert als die Funktion der idealen Lösungs-Gibbs-Energie beider Komponenten und des Molenbruchs beider Komponenten in flüssiger Phase im binären System auszuwerten. Ideale Lösung Gibbs Free Energy wird durch das Symbol Gid gekennzeichnet.

Wie wird Ideale Lösung Gibbs-Energie unter Verwendung des idealen Lösungsmodells im Binärsystem mit diesem Online-Evaluator ausgewertet? Um diesen Online-Evaluator für Ideale Lösung Gibbs-Energie unter Verwendung des idealen Lösungsmodells im Binärsystem zu verwenden, geben Sie Molenbruch von Komponente 1 in flüssiger Phase (x1), Ideallösung Gibbs-freie Energie von Komponente 1 (G1id), Molenbruch von Komponente 2 in flüssiger Phase (x2), Ideallösung Gibbs-freie Energie von Komponente 2 (G2id) & Temperatur (T) ein und klicken Sie auf die Schaltfläche „Berechnen“.

FAQs An Ideale Lösung Gibbs-Energie unter Verwendung des idealen Lösungsmodells im Binärsystem

Wie lautet die Formel zum Finden von Ideale Lösung Gibbs-Energie unter Verwendung des idealen Lösungsmodells im Binärsystem?
Die Formel von Ideale Lösung Gibbs-Energie unter Verwendung des idealen Lösungsmodells im Binärsystem wird als Ideal Solution Gibbs Free Energy = (Molenbruch von Komponente 1 in flüssiger Phase*Ideallösung Gibbs-freie Energie von Komponente 1+Molenbruch von Komponente 2 in flüssiger Phase*Ideallösung Gibbs-freie Energie von Komponente 2)+[R]*Temperatur*(Molenbruch von Komponente 1 in flüssiger Phase*ln(Molenbruch von Komponente 1 in flüssiger Phase)+Molenbruch von Komponente 2 in flüssiger Phase*ln(Molenbruch von Komponente 2 in flüssiger Phase)) ausgedrückt. Hier ist ein Beispiel: -2436.878656 = (0.4*71+0.6*88)+[R]*450*(0.4*ln(0.4)+0.6*ln(0.6)).
Wie berechnet man Ideale Lösung Gibbs-Energie unter Verwendung des idealen Lösungsmodells im Binärsystem?
Mit Molenbruch von Komponente 1 in flüssiger Phase (x1), Ideallösung Gibbs-freie Energie von Komponente 1 (G1id), Molenbruch von Komponente 2 in flüssiger Phase (x2), Ideallösung Gibbs-freie Energie von Komponente 2 (G2id) & Temperatur (T) können wir Ideale Lösung Gibbs-Energie unter Verwendung des idealen Lösungsmodells im Binärsystem mithilfe der Formel - Ideal Solution Gibbs Free Energy = (Molenbruch von Komponente 1 in flüssiger Phase*Ideallösung Gibbs-freie Energie von Komponente 1+Molenbruch von Komponente 2 in flüssiger Phase*Ideallösung Gibbs-freie Energie von Komponente 2)+[R]*Temperatur*(Molenbruch von Komponente 1 in flüssiger Phase*ln(Molenbruch von Komponente 1 in flüssiger Phase)+Molenbruch von Komponente 2 in flüssiger Phase*ln(Molenbruch von Komponente 2 in flüssiger Phase)) finden. Diese Formel verwendet auch die Funktion(en) Universelle Gas Konstante und Natürlicher Logarithmus (ln).
Kann Ideale Lösung Gibbs-Energie unter Verwendung des idealen Lösungsmodells im Binärsystem negativ sein?
Ja, der in Energie gemessene Ideale Lösung Gibbs-Energie unter Verwendung des idealen Lösungsmodells im Binärsystem kann dürfen negativ sein.
Welche Einheit wird zum Messen von Ideale Lösung Gibbs-Energie unter Verwendung des idealen Lösungsmodells im Binärsystem verwendet?
Ideale Lösung Gibbs-Energie unter Verwendung des idealen Lösungsmodells im Binärsystem wird normalerweise mit Joule[J] für Energie gemessen. Kilojoule[J], Gigajoule[J], Megajoule[J] sind die wenigen anderen Einheiten, in denen Ideale Lösung Gibbs-Energie unter Verwendung des idealen Lösungsmodells im Binärsystem gemessen werden kann.
Copied!