Fx Kopieren
LaTeX Kopieren
Die Diagonale über drei Seiten des Zehnecks ist eine gerade Linie, die zwei nicht benachbarte Seiten verbindet und sich über drei Seiten des Zehnecks erstreckt. Überprüfen Sie FAQs
d3=14+(65)2d51+5
d3 - Diagonal über drei Seiten des Zehnecks?d5 - Diagonal über fünf Seiten des Zehnecks?

Diagonale des Zehnecks über drei Seiten gegeben Diagonale über fünf Seiten Beispiel

Mit Werten
Mit Einheiten
Nur Beispiel

So sieht die Gleichung Diagonale des Zehnecks über drei Seiten gegeben Diagonale über fünf Seiten aus: mit Werten.

So sieht die Gleichung Diagonale des Zehnecks über drei Seiten gegeben Diagonale über fünf Seiten aus: mit Einheiten.

So sieht die Gleichung Diagonale des Zehnecks über drei Seiten gegeben Diagonale über fünf Seiten aus:.

25.8885Edit=14+(65)232Edit1+5
Sie sind hier -

Diagonale des Zehnecks über drei Seiten gegeben Diagonale über fünf Seiten Lösung

Folgen Sie unserer Schritt-für-Schritt-Lösung zur Berechnung von Diagonale des Zehnecks über drei Seiten gegeben Diagonale über fünf Seiten?

Erster Schritt Betrachten Sie die Formel
d3=14+(65)2d51+5
Nächster Schritt Ersatzwerte von Variablen
d3=14+(65)232m1+5
Nächster Schritt Bereiten Sie sich auf die Bewertung vor
d3=14+(65)2321+5
Nächster Schritt Auswerten
d3=25.8885438199983m
Letzter Schritt Rundungsantwort
d3=25.8885m

Diagonale des Zehnecks über drei Seiten gegeben Diagonale über fünf Seiten Formel Elemente

Variablen
Funktionen
Diagonal über drei Seiten des Zehnecks
Die Diagonale über drei Seiten des Zehnecks ist eine gerade Linie, die zwei nicht benachbarte Seiten verbindet und sich über drei Seiten des Zehnecks erstreckt.
Symbol: d3
Messung: LängeEinheit: m
Notiz: Der Wert sollte größer als 0 sein.
Diagonal über fünf Seiten des Zehnecks
Die Diagonale über fünf Seiten des Zehnecks ist eine gerade Linie, die zwei gegenüberliegende Seiten verbindet und sich über fünf Seiten des Zehnecks erstreckt.
Symbol: d5
Messung: LängeEinheit: m
Notiz: Der Wert sollte größer als 0 sein.
sqrt
Eine Quadratwurzelfunktion ist eine Funktion, die eine nicht negative Zahl als Eingabe verwendet und die Quadratwurzel der gegebenen Eingabezahl zurückgibt.
Syntax: sqrt(Number)

Andere Formeln zum Finden von Diagonal über drei Seiten des Zehnecks

​ge Diagonale des Zehnecks über drei Seiten
d3=14+(65)2S
​ge Diagonale des Zehnecks über drei Seiten gegeben Diagonale über vier Seiten
d3=14+(65)2d45+(25)
​ge Diagonale des Zehnecks über drei Seiten gegeben Diagonale über zwei Seiten
d3=14+(65)22d210+(25)
​ge Diagonale des Zehnecks über drei Seiten mit gegebenem Umfang
d3=14+(65)2P10

Wie wird Diagonale des Zehnecks über drei Seiten gegeben Diagonale über fünf Seiten ausgewertet?

Der Diagonale des Zehnecks über drei Seiten gegeben Diagonale über fünf Seiten-Evaluator verwendet Diagonal across Three Sides of Decagon = sqrt(14+(6*sqrt(5)))/2*Diagonal über fünf Seiten des Zehnecks/(1+sqrt(5)), um Diagonal über drei Seiten des Zehnecks, Die Diagonale des Zehnecks über drei Seiten bei gegebener Diagonale über fünf Seiten ist definiert als die gerade Linie, die zwei nicht benachbarte Eckpunkte über die drei Seiten des Zehnecks verbindet, berechnet unter Verwendung der Diagonale über fünf Seiten auszuwerten. Diagonal über drei Seiten des Zehnecks wird durch das Symbol d3 gekennzeichnet.

Wie wird Diagonale des Zehnecks über drei Seiten gegeben Diagonale über fünf Seiten mit diesem Online-Evaluator ausgewertet? Um diesen Online-Evaluator für Diagonale des Zehnecks über drei Seiten gegeben Diagonale über fünf Seiten zu verwenden, geben Sie Diagonal über fünf Seiten des Zehnecks (d5) ein und klicken Sie auf die Schaltfläche „Berechnen“.

FAQs An Diagonale des Zehnecks über drei Seiten gegeben Diagonale über fünf Seiten

Wie lautet die Formel zum Finden von Diagonale des Zehnecks über drei Seiten gegeben Diagonale über fünf Seiten?
Die Formel von Diagonale des Zehnecks über drei Seiten gegeben Diagonale über fünf Seiten wird als Diagonal across Three Sides of Decagon = sqrt(14+(6*sqrt(5)))/2*Diagonal über fünf Seiten des Zehnecks/(1+sqrt(5)) ausgedrückt. Hier ist ein Beispiel: 25.88854 = sqrt(14+(6*sqrt(5)))/2*32/(1+sqrt(5)).
Wie berechnet man Diagonale des Zehnecks über drei Seiten gegeben Diagonale über fünf Seiten?
Mit Diagonal über fünf Seiten des Zehnecks (d5) können wir Diagonale des Zehnecks über drei Seiten gegeben Diagonale über fünf Seiten mithilfe der Formel - Diagonal across Three Sides of Decagon = sqrt(14+(6*sqrt(5)))/2*Diagonal über fünf Seiten des Zehnecks/(1+sqrt(5)) finden. Diese Formel verwendet auch Quadratwurzel (sqrt) Funktion(en).
Welche anderen Möglichkeiten gibt es zum Berechnen von Diagonal über drei Seiten des Zehnecks?
Hier sind die verschiedenen Möglichkeiten zum Berechnen von Diagonal über drei Seiten des Zehnecks-
  • Diagonal across Three Sides of Decagon=sqrt(14+(6*sqrt(5)))/2*Side of DecagonOpenImg
  • Diagonal across Three Sides of Decagon=sqrt(14+(6*sqrt(5)))/2*Diagonal across Four Sides of Decagon/sqrt(5+(2*sqrt(5)))OpenImg
  • Diagonal across Three Sides of Decagon=sqrt(14+(6*sqrt(5)))/2*(2*Diagonal across Two Sides of Decagon)/sqrt(10+(2*sqrt(5)))OpenImg
Kann Diagonale des Zehnecks über drei Seiten gegeben Diagonale über fünf Seiten negativ sein?
NEIN, der in Länge gemessene Diagonale des Zehnecks über drei Seiten gegeben Diagonale über fünf Seiten kann kann nicht negativ sein.
Welche Einheit wird zum Messen von Diagonale des Zehnecks über drei Seiten gegeben Diagonale über fünf Seiten verwendet?
Diagonale des Zehnecks über drei Seiten gegeben Diagonale über fünf Seiten wird normalerweise mit Meter[m] für Länge gemessen. Millimeter[m], Kilometer[m], Dezimeter[m] sind die wenigen anderen Einheiten, in denen Diagonale des Zehnecks über drei Seiten gegeben Diagonale über fünf Seiten gemessen werden kann.
Copied!