Fx Копировать
LaTeX Копировать
Отношение поверхности к объему курносого додекаэдра — это численное отношение общей площади поверхности курносого додекаэдра к объему курносого додекаэдра. Проверьте FAQs
RA/V=((203)+(325+(105)))6(3-(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)322rm11-0.94315125924(((12((3[phi])+1))((([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)-(((36[phi])+7)(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)))-((53[phi])+6))
RA/V - Отношение поверхности к объему курносого додекаэдра?rm - Радиус средней сферы курносого додекаэдра?[phi] - Золотое сечение?[phi] - Золотое сечение?[phi] - Золотое сечение?[phi] - Золотое сечение?[phi] - Золотое сечение?[phi] - Золотое сечение?[phi] - Золотое сечение?[phi] - Золотое сечение?[phi] - Золотое сечение?[phi] - Золотое сечение?[phi] - Золотое сечение?[phi] - Золотое сечение?[phi] - Золотое сечение?[phi] - Золотое сечение?[phi] - Золотое сечение?

Пример Отношение поверхности к объему курносого додекаэдра с учетом радиуса средней сферы

С ценностями
С единицами
Только пример

Вот как уравнение Отношение поверхности к объему курносого додекаэдра с учетом радиуса средней сферы выглядит как с ценностями.

Вот как уравнение Отношение поверхности к объему курносого додекаэдра с учетом радиуса средней сферы выглядит как с единицами.

Вот как уравнение Отношение поверхности к объему курносого додекаэдра с учетом радиуса средней сферы выглядит как.

0.1468Edit=((203)+(325+(105)))6(3-((1.6182+1.618-5272)13+(1.6182-1.618-5272)13)2)32221Edit11-0.94315125924(((12((31.618)+1))(((1.6182+1.618-5272)13+(1.6182-1.618-5272)13)2)-(((361.618)+7)((1.6182+1.618-5272)13+(1.6182-1.618-5272)13)))-((531.618)+6))
Копировать
Сброс
Делиться

Отношение поверхности к объему курносого додекаэдра с учетом радиуса средней сферы Решение

Следуйте нашему пошаговому решению о том, как рассчитать Отношение поверхности к объему курносого додекаэдра с учетом радиуса средней сферы?

Первый шаг Рассмотрим формулу
RA/V=((203)+(325+(105)))6(3-(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)322rm11-0.94315125924(((12((3[phi])+1))((([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)-(((36[phi])+7)(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)))-((53[phi])+6))
Следующий шаг Заменить значения переменных
RA/V=((203)+(325+(105)))6(3-(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)32221m11-0.94315125924(((12((3[phi])+1))((([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)-(((36[phi])+7)(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)))-((53[phi])+6))
Следующий шаг Замещающие значения констант
RA/V=((203)+(325+(105)))6(3-((1.6182+1.618-5272)13+(1.6182-1.618-5272)13)2)32221m11-0.94315125924(((12((31.618)+1))(((1.6182+1.618-5272)13+(1.6182-1.618-5272)13)2)-(((361.618)+7)((1.6182+1.618-5272)13+(1.6182-1.618-5272)13)))-((531.618)+6))
Следующий шаг Подготовьтесь к оценке
RA/V=((203)+(325+(105)))6(3-((1.6182+1.618-5272)13+(1.6182-1.618-5272)13)2)3222111-0.94315125924(((12((31.618)+1))(((1.6182+1.618-5272)13+(1.6182-1.618-5272)13)2)-(((361.618)+7)((1.6182+1.618-5272)13+(1.6182-1.618-5272)13)))-((531.618)+6))
Следующий шаг Оценивать
RA/V=0.146767937253493m⁻¹
Последний шаг Округление ответа
RA/V=0.1468m⁻¹

Отношение поверхности к объему курносого додекаэдра с учетом радиуса средней сферы Формула Элементы

Переменные
Константы
Функции
Отношение поверхности к объему курносого додекаэдра
Отношение поверхности к объему курносого додекаэдра — это численное отношение общей площади поверхности курносого додекаэдра к объему курносого додекаэдра.
Символ: RA/V
Измерение: Обратная длинаЕдиница: m⁻¹
Примечание: Значение должно быть больше 0.
Радиус средней сферы курносого додекаэдра
Радиус срединной сферы курносого додекаэдра — это радиус сферы, для которого все ребра курносого додекаэдра становятся касательной на этой сфере.
Символ: rm
Измерение: ДлинаЕдиница: m
Примечание: Значение должно быть больше 0.
Золотое сечение
Золотое сечение возникает, когда отношение двух чисел равно отношению их суммы к большему из двух чисел.
Символ: [phi]
Ценить: 1.61803398874989484820458683436563811
Золотое сечение
Золотое сечение возникает, когда отношение двух чисел равно отношению их суммы к большему из двух чисел.
Символ: [phi]
Ценить: 1.61803398874989484820458683436563811
Золотое сечение
Золотое сечение возникает, когда отношение двух чисел равно отношению их суммы к большему из двух чисел.
Символ: [phi]
Ценить: 1.61803398874989484820458683436563811
Золотое сечение
Золотое сечение возникает, когда отношение двух чисел равно отношению их суммы к большему из двух чисел.
Символ: [phi]
Ценить: 1.61803398874989484820458683436563811
Золотое сечение
Золотое сечение возникает, когда отношение двух чисел равно отношению их суммы к большему из двух чисел.
Символ: [phi]
Ценить: 1.61803398874989484820458683436563811
Золотое сечение
Золотое сечение возникает, когда отношение двух чисел равно отношению их суммы к большему из двух чисел.
Символ: [phi]
Ценить: 1.61803398874989484820458683436563811
Золотое сечение
Золотое сечение возникает, когда отношение двух чисел равно отношению их суммы к большему из двух чисел.
Символ: [phi]
Ценить: 1.61803398874989484820458683436563811
Золотое сечение
Золотое сечение возникает, когда отношение двух чисел равно отношению их суммы к большему из двух чисел.
Символ: [phi]
Ценить: 1.61803398874989484820458683436563811
Золотое сечение
Золотое сечение возникает, когда отношение двух чисел равно отношению их суммы к большему из двух чисел.
Символ: [phi]
Ценить: 1.61803398874989484820458683436563811
Золотое сечение
Золотое сечение возникает, когда отношение двух чисел равно отношению их суммы к большему из двух чисел.
Символ: [phi]
Ценить: 1.61803398874989484820458683436563811
Золотое сечение
Золотое сечение возникает, когда отношение двух чисел равно отношению их суммы к большему из двух чисел.
Символ: [phi]
Ценить: 1.61803398874989484820458683436563811
Золотое сечение
Золотое сечение возникает, когда отношение двух чисел равно отношению их суммы к большему из двух чисел.
Символ: [phi]
Ценить: 1.61803398874989484820458683436563811
Золотое сечение
Золотое сечение возникает, когда отношение двух чисел равно отношению их суммы к большему из двух чисел.
Символ: [phi]
Ценить: 1.61803398874989484820458683436563811
Золотое сечение
Золотое сечение возникает, когда отношение двух чисел равно отношению их суммы к большему из двух чисел.
Символ: [phi]
Ценить: 1.61803398874989484820458683436563811
Золотое сечение
Золотое сечение возникает, когда отношение двух чисел равно отношению их суммы к большему из двух чисел.
Символ: [phi]
Ценить: 1.61803398874989484820458683436563811
sqrt
Функция квадратного корня — это функция, которая принимает в качестве входных данных неотрицательное число и возвращает квадратный корень заданного входного числа.
Синтаксис: sqrt(Number)

Другие формулы для поиска Отношение поверхности к объему курносого додекаэдра

​Идти Отношение поверхности к объему курносого додекаэдра
RA/V=((203)+(325+(105)))6(3-(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)32le(((12((3[phi])+1))((([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)-(((36[phi])+7)(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)))-((53[phi])+6))
​Идти Отношение поверхности к объему курносого додекаэдра с учетом общей площади поверхности
RA/V=((203)+(325+(105)))6(3-(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)32TSA(203)+(325+(105))(((12((3[phi])+1))((([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)-(((36[phi])+7)(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)))-((53[phi])+6))
​Идти Отношение поверхности к объему курносого додекаэдра при заданном объеме
RA/V=((203)+(325+(105)))6(3-(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)32(V6(3-(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)32((12((3[phi])+1))((([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)-(((36[phi])+7)(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)))-((53[phi])+6))13(((12((3[phi])+1))((([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)-(((36[phi])+7)(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)))-((53[phi])+6))
​Идти Отношение поверхности к объему курносого додекаэдра при заданном радиусе окружности
RA/V=((203)+(325+(105)))6(3-(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)322rc2-0.943151259241-0.94315125924(((12((3[phi])+1))((([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)-(((36[phi])+7)(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)))-((53[phi])+6))

Как оценить Отношение поверхности к объему курносого додекаэдра с учетом радиуса средней сферы?

Оценщик Отношение поверхности к объему курносого додекаэдра с учетом радиуса средней сферы использует Surface to Volume Ratio of Snub Dodecahedron = (((20*sqrt(3))+(3*sqrt(25+(10*sqrt(5)))))*6*(3-(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)^(3/2))/((2*Радиус средней сферы курносого додекаэдра)/sqrt(1/(1-0.94315125924))*(((12*((3*[phi])+1))*((([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)-(((36*[phi])+7)*(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))))-((53*[phi])+6))) для оценки Отношение поверхности к объему курносого додекаэдра, Отношение поверхности к объему курносого додекаэдра с учетом формулы радиуса срединной сферы определяется как численное отношение общей площади поверхности курносого додекаэдра к объему курносого додекаэдра и рассчитывается с использованием радиуса срединной сферы курносого додекаэдра. Отношение поверхности к объему курносого додекаэдра обозначается символом RA/V.

Как оценить Отношение поверхности к объему курносого додекаэдра с учетом радиуса средней сферы с помощью этого онлайн-оценщика? Чтобы использовать этот онлайн-оценщик для Отношение поверхности к объему курносого додекаэдра с учетом радиуса средней сферы, введите Радиус средней сферы курносого додекаэдра (rm) и нажмите кнопку расчета.

FAQs на Отношение поверхности к объему курносого додекаэдра с учетом радиуса средней сферы

По какой формуле можно найти Отношение поверхности к объему курносого додекаэдра с учетом радиуса средней сферы?
Формула Отношение поверхности к объему курносого додекаэдра с учетом радиуса средней сферы выражается как Surface to Volume Ratio of Snub Dodecahedron = (((20*sqrt(3))+(3*sqrt(25+(10*sqrt(5)))))*6*(3-(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)^(3/2))/((2*Радиус средней сферы курносого додекаэдра)/sqrt(1/(1-0.94315125924))*(((12*((3*[phi])+1))*((([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)-(((36*[phi])+7)*(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))))-((53*[phi])+6))). Вот пример: 0.146768 = (((20*sqrt(3))+(3*sqrt(25+(10*sqrt(5)))))*6*(3-(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)^(3/2))/((2*21)/sqrt(1/(1-0.94315125924))*(((12*((3*[phi])+1))*((([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)-(((36*[phi])+7)*(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))))-((53*[phi])+6))).
Как рассчитать Отношение поверхности к объему курносого додекаэдра с учетом радиуса средней сферы?
С помощью Радиус средней сферы курносого додекаэдра (rm) мы можем найти Отношение поверхности к объему курносого додекаэдра с учетом радиуса средней сферы, используя формулу - Surface to Volume Ratio of Snub Dodecahedron = (((20*sqrt(3))+(3*sqrt(25+(10*sqrt(5)))))*6*(3-(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)^(3/2))/((2*Радиус средней сферы курносого додекаэдра)/sqrt(1/(1-0.94315125924))*(((12*((3*[phi])+1))*((([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)-(((36*[phi])+7)*(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))))-((53*[phi])+6))). В этой формуле также используются функции Золотое сечение, Золотое сечение, Золотое сечение, Золотое сечение, Золотое сечение, Золотое сечение, Золотое сечение, Золотое сечение, Золотое сечение, Золотое сечение, Золотое сечение, Золотое сечение, Золотое сечение, Золотое сечение, Золотое сечение, константа(ы) и Квадратный корень (sqrt).
Какие еще способы расчета Отношение поверхности к объему курносого додекаэдра?
Вот различные способы расчета Отношение поверхности к объему курносого додекаэдра-
  • Surface to Volume Ratio of Snub Dodecahedron=(((20*sqrt(3))+(3*sqrt(25+(10*sqrt(5)))))*6*(3-(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)^(3/2))/(Edge Length of Snub Dodecahedron*(((12*((3*[phi])+1))*((([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)-(((36*[phi])+7)*(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))))-((53*[phi])+6)))OpenImg
  • Surface to Volume Ratio of Snub Dodecahedron=(((20*sqrt(3))+(3*sqrt(25+(10*sqrt(5)))))*6*(3-(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)^(3/2))/(sqrt(Total Surface Area of Snub Dodecahedron/((20*sqrt(3))+(3*sqrt(25+(10*sqrt(5))))))*(((12*((3*[phi])+1))*((([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)-(((36*[phi])+7)*(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))))-((53*[phi])+6)))OpenImg
  • Surface to Volume Ratio of Snub Dodecahedron=(((20*sqrt(3))+(3*sqrt(25+(10*sqrt(5)))))*6*(3-(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)^(3/2))/(((Volume of Snub Dodecahedron*6*(3-(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)^(3/2))/(((12*((3*[phi])+1))*((([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)-(((36*[phi])+7)*(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))))-((53*[phi])+6)))^(1/3)*(((12*((3*[phi])+1))*((([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)-(((36*[phi])+7)*(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))))-((53*[phi])+6)))OpenImg
.
Может ли Отношение поверхности к объему курносого додекаэдра с учетом радиуса средней сферы быть отрицательным?
Нет, Отношение поверхности к объему курносого додекаэдра с учетом радиуса средней сферы, измеренная в Обратная длина не могу, будет отрицательной.
Какая единица измерения используется для измерения Отношение поверхности к объему курносого додекаэдра с учетом радиуса средней сферы?
Отношение поверхности к объему курносого додекаэдра с учетом радиуса средней сферы обычно измеряется с использованием 1 на метр[m⁻¹] для Обратная длина. 1 / километр[m⁻¹], 1 / миля[m⁻¹], 1 / двор[m⁻¹] — это несколько других единиц, в которых можно измерить Отношение поверхности к объему курносого додекаэдра с учетом радиуса средней сферы.
Copied!