Fx Копировать
LaTeX Копировать
Объем Курносого Додекаэдра – это общее количество трехмерного пространства, заключенного поверхностью Курносого Додекаэдра. Проверьте FAQs
V=((12((3[phi])+1))((([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)-(((36[phi])+7)(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)))-((53[phi])+6)6(3-(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)32le3
V - Объем курносого додекаэдра?le - Длина ребра курносого додекаэдра?[phi] - Золотое сечение?[phi] - Золотое сечение?[phi] - Золотое сечение?[phi] - Золотое сечение?[phi] - Золотое сечение?[phi] - Золотое сечение?[phi] - Золотое сечение?[phi] - Золотое сечение?[phi] - Золотое сечение?[phi] - Золотое сечение?[phi] - Золотое сечение?[phi] - Золотое сечение?[phi] - Золотое сечение?[phi] - Золотое сечение?[phi] - Золотое сечение?

Пример Объем курносого додекаэдра

С ценностями
С единицами
Только пример

Вот как уравнение Объем курносого додекаэдра выглядит как с ценностями.

Вот как уравнение Объем курносого додекаэдра выглядит как с единицами.

Вот как уравнение Объем курносого додекаэдра выглядит как.

37616.65Edit=((12((31.618)+1))(((1.6182+1.618-5272)13+(1.6182-1.618-5272)13)2)-(((361.618)+7)((1.6182+1.618-5272)13+(1.6182-1.618-5272)13)))-((531.618)+6)6(3-((1.6182+1.618-5272)13+(1.6182-1.618-5272)13)2)3210Edit3
Копировать
Сброс
Делиться
Вы здесь -
HomeIcon Дом » Category математика » Category Геометрия » Category 3D геометрия » fx Объем курносого додекаэдра

Объем курносого додекаэдра Решение

Следуйте нашему пошаговому решению о том, как рассчитать Объем курносого додекаэдра?

Первый шаг Рассмотрим формулу
V=((12((3[phi])+1))((([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)-(((36[phi])+7)(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)))-((53[phi])+6)6(3-(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)32le3
Следующий шаг Заменить значения переменных
V=((12((3[phi])+1))((([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)-(((36[phi])+7)(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)))-((53[phi])+6)6(3-(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)3210m3
Следующий шаг Замещающие значения констант
V=((12((31.618)+1))(((1.6182+1.618-5272)13+(1.6182-1.618-5272)13)2)-(((361.618)+7)((1.6182+1.618-5272)13+(1.6182-1.618-5272)13)))-((531.618)+6)6(3-((1.6182+1.618-5272)13+(1.6182-1.618-5272)13)2)3210m3
Следующий шаг Подготовьтесь к оценке
V=((12((31.618)+1))(((1.6182+1.618-5272)13+(1.6182-1.618-5272)13)2)-(((361.618)+7)((1.6182+1.618-5272)13+(1.6182-1.618-5272)13)))-((531.618)+6)6(3-((1.6182+1.618-5272)13+(1.6182-1.618-5272)13)2)32103
Следующий шаг Оценивать
V=37616.6499627317
Последний шаг Округление ответа
V=37616.65

Объем курносого додекаэдра Формула Элементы

Переменные
Константы
Функции
Объем курносого додекаэдра
Объем Курносого Додекаэдра – это общее количество трехмерного пространства, заключенного поверхностью Курносого Додекаэдра.
Символ: V
Измерение: ОбъемЕдиница:
Примечание: Значение должно быть больше 0.
Длина ребра курносого додекаэдра
Длина ребра курносого додекаэдра — это длина любого ребра курносого додекаэдра.
Символ: le
Измерение: ДлинаЕдиница: m
Примечание: Значение должно быть больше 0.
Золотое сечение
Золотое сечение возникает, когда отношение двух чисел равно отношению их суммы к большему из двух чисел.
Символ: [phi]
Ценить: 1.61803398874989484820458683436563811
Золотое сечение
Золотое сечение возникает, когда отношение двух чисел равно отношению их суммы к большему из двух чисел.
Символ: [phi]
Ценить: 1.61803398874989484820458683436563811
Золотое сечение
Золотое сечение возникает, когда отношение двух чисел равно отношению их суммы к большему из двух чисел.
Символ: [phi]
Ценить: 1.61803398874989484820458683436563811
Золотое сечение
Золотое сечение возникает, когда отношение двух чисел равно отношению их суммы к большему из двух чисел.
Символ: [phi]
Ценить: 1.61803398874989484820458683436563811
Золотое сечение
Золотое сечение возникает, когда отношение двух чисел равно отношению их суммы к большему из двух чисел.
Символ: [phi]
Ценить: 1.61803398874989484820458683436563811
Золотое сечение
Золотое сечение возникает, когда отношение двух чисел равно отношению их суммы к большему из двух чисел.
Символ: [phi]
Ценить: 1.61803398874989484820458683436563811
Золотое сечение
Золотое сечение возникает, когда отношение двух чисел равно отношению их суммы к большему из двух чисел.
Символ: [phi]
Ценить: 1.61803398874989484820458683436563811
Золотое сечение
Золотое сечение возникает, когда отношение двух чисел равно отношению их суммы к большему из двух чисел.
Символ: [phi]
Ценить: 1.61803398874989484820458683436563811
Золотое сечение
Золотое сечение возникает, когда отношение двух чисел равно отношению их суммы к большему из двух чисел.
Символ: [phi]
Ценить: 1.61803398874989484820458683436563811
Золотое сечение
Золотое сечение возникает, когда отношение двух чисел равно отношению их суммы к большему из двух чисел.
Символ: [phi]
Ценить: 1.61803398874989484820458683436563811
Золотое сечение
Золотое сечение возникает, когда отношение двух чисел равно отношению их суммы к большему из двух чисел.
Символ: [phi]
Ценить: 1.61803398874989484820458683436563811
Золотое сечение
Золотое сечение возникает, когда отношение двух чисел равно отношению их суммы к большему из двух чисел.
Символ: [phi]
Ценить: 1.61803398874989484820458683436563811
Золотое сечение
Золотое сечение возникает, когда отношение двух чисел равно отношению их суммы к большему из двух чисел.
Символ: [phi]
Ценить: 1.61803398874989484820458683436563811
Золотое сечение
Золотое сечение возникает, когда отношение двух чисел равно отношению их суммы к большему из двух чисел.
Символ: [phi]
Ценить: 1.61803398874989484820458683436563811
Золотое сечение
Золотое сечение возникает, когда отношение двух чисел равно отношению их суммы к большему из двух чисел.
Символ: [phi]
Ценить: 1.61803398874989484820458683436563811
sqrt
Функция квадратного корня — это функция, которая принимает в качестве входных данных неотрицательное число и возвращает квадратный корень заданного входного числа.
Синтаксис: sqrt(Number)

Другие формулы для поиска Объем курносого додекаэдра

​Идти Объем курносого додекаэдра с учетом общей площади поверхности
V=((12((3[phi])+1))((([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)-(((36[phi])+7)(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)))-((53[phi])+6)6(3-(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)32(TSA(203)+(325+(105)))3

Другие формулы в категории Объем курносого додекаэдра

​Идти Радиус окружности курносого додекаэдра
rc=2-0.943151259241-0.943151259242le
​Идти Радиус средней сферы курносого додекаэдра
rm=11-0.943151259242le
​Идти Общая площадь поверхности курносого додекаэдра
TSA=((203)+(325+(105)))le2
​Идти Отношение поверхности к объему курносого додекаэдра
RA/V=((203)+(325+(105)))6(3-(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)32le(((12((3[phi])+1))((([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)-(((36[phi])+7)(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)))-((53[phi])+6))

Как оценить Объем курносого додекаэдра?

Оценщик Объем курносого додекаэдра использует Volume of Snub Dodecahedron = (((12*((3*[phi])+1))*((([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)-(((36*[phi])+7)*(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))))-((53*[phi])+6))/(6*(3-(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)^(3/2))*Длина ребра курносого додекаэдра^3 для оценки Объем курносого додекаэдра, Формула Курносого Додекаэдра определяется как общее количество трехмерного пространства, заключенного поверхностью Курносого Додекаэдра. Объем курносого додекаэдра обозначается символом V.

Как оценить Объем курносого додекаэдра с помощью этого онлайн-оценщика? Чтобы использовать этот онлайн-оценщик для Объем курносого додекаэдра, введите Длина ребра курносого додекаэдра (le) и нажмите кнопку расчета.

FAQs на Объем курносого додекаэдра

По какой формуле можно найти Объем курносого додекаэдра?
Формула Объем курносого додекаэдра выражается как Volume of Snub Dodecahedron = (((12*((3*[phi])+1))*((([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)-(((36*[phi])+7)*(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))))-((53*[phi])+6))/(6*(3-(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)^(3/2))*Длина ребра курносого додекаэдра^3. Вот пример: 37616.65 = (((12*((3*[phi])+1))*((([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)-(((36*[phi])+7)*(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))))-((53*[phi])+6))/(6*(3-(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)^(3/2))*10^3.
Как рассчитать Объем курносого додекаэдра?
С помощью Длина ребра курносого додекаэдра (le) мы можем найти Объем курносого додекаэдра, используя формулу - Volume of Snub Dodecahedron = (((12*((3*[phi])+1))*((([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)-(((36*[phi])+7)*(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))))-((53*[phi])+6))/(6*(3-(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)^(3/2))*Длина ребра курносого додекаэдра^3. В этой формуле также используются функции Золотое сечение, Золотое сечение, Золотое сечение, Золотое сечение, Золотое сечение, Золотое сечение, Золотое сечение, Золотое сечение, Золотое сечение, Золотое сечение, Золотое сечение, Золотое сечение, Золотое сечение, Золотое сечение, Золотое сечение, константа(ы) и Квадратный корень (sqrt).
Какие еще способы расчета Объем курносого додекаэдра?
Вот различные способы расчета Объем курносого додекаэдра-
  • Volume of Snub Dodecahedron=(((12*((3*[phi])+1))*((([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)-(((36*[phi])+7)*(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))))-((53*[phi])+6))/(6*(3-(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)^(3/2))*(sqrt(Total Surface Area of Snub Dodecahedron/((20*sqrt(3))+(3*sqrt(25+(10*sqrt(5)))))))^3OpenImg
.
Может ли Объем курносого додекаэдра быть отрицательным?
Нет, Объем курносого додекаэдра, измеренная в Объем не могу, будет отрицательной.
Какая единица измерения используется для измерения Объем курносого додекаэдра?
Объем курносого додекаэдра обычно измеряется с использованием Кубический метр[m³] для Объем. кубический сантиметр[m³], кубический миллиметр[m³], Литр[m³] — это несколько других единиц, в которых можно измерить Объем курносого додекаэдра.
Copied!