Fx Копировать
LaTeX Копировать
Избыточная свободная энергия Гиббса - это энергия Гиббса раствора, превышающая то, что было бы, если бы оно было идеальным. Проверьте FAQs
GE=(x1x2[R]TNRTL)(((exp(-αb21[R]TNRTL))(b21[R]TNRTL)x1+x2exp(-αb21[R]TNRTL))+((exp(-αb12[R]TNRTL))(b12[R]TNRTL)x2+x1exp(-αb12[R]TNRTL)))
GE - Избыточная свободная энергия Гиббса?x1 - Мольная доля компонента 1 в жидкой фазе?x2 - Мольная доля компонента 2 в жидкой фазе?TNRTL - Температура для модели NRTL?α - Коэффициент уравнения NRTL (α)?b21 - Коэффициент уравнения NRTL (b21)?b12 - Коэффициент уравнения NRTL (b12)?[R] - Универсальная газовая постоянная?[R] - Универсальная газовая постоянная?[R] - Универсальная газовая постоянная?[R] - Универсальная газовая постоянная?[R] - Универсальная газовая постоянная?[R] - Универсальная газовая постоянная?[R] - Универсальная газовая постоянная?

Пример Избыток свободной энергии Гиббса с использованием уравнения NRTL

С ценностями
С единицами
Только пример

Вот как уравнение Избыток свободной энергии Гиббса с использованием уравнения NRTL выглядит как с ценностями.

Вот как уравнение Избыток свободной энергии Гиббса с использованием уравнения NRTL выглядит как с единицами.

Вот как уравнение Избыток свободной энергии Гиббса с использованием уравнения NRTL выглядит как.

0.0255Edit=(0.4Edit0.6Edit8.3145550Edit)(((exp(-0.15Edit0.12Edit8.3145550Edit))(0.12Edit8.3145550Edit)0.4Edit+0.6Editexp(-0.15Edit0.12Edit8.3145550Edit))+((exp(-0.15Edit0.19Edit8.3145550Edit))(0.19Edit8.3145550Edit)0.6Edit+0.4Editexp(-0.15Edit0.19Edit8.3145550Edit)))
Копировать
Сброс
Делиться
Вы здесь -
HomeIcon Дом » Category Инженерное дело » Category Химическая инженерия » Category Термодинамика » fx Избыток свободной энергии Гиббса с использованием уравнения NRTL

Избыток свободной энергии Гиббса с использованием уравнения NRTL Решение

Следуйте нашему пошаговому решению о том, как рассчитать Избыток свободной энергии Гиббса с использованием уравнения NRTL?

Первый шаг Рассмотрим формулу
GE=(x1x2[R]TNRTL)(((exp(-αb21[R]TNRTL))(b21[R]TNRTL)x1+x2exp(-αb21[R]TNRTL))+((exp(-αb12[R]TNRTL))(b12[R]TNRTL)x2+x1exp(-αb12[R]TNRTL)))
Следующий шаг Заменить значения переменных
GE=(0.40.6[R]550K)(((exp(-0.150.12J/mol[R]550K))(0.12J/mol[R]550K)0.4+0.6exp(-0.150.12J/mol[R]550K))+((exp(-0.150.19J/mol[R]550K))(0.19J/mol[R]550K)0.6+0.4exp(-0.150.19J/mol[R]550K)))
Следующий шаг Замещающие значения констант
GE=(0.40.68.3145550K)(((exp(-0.150.12J/mol8.3145550K))(0.12J/mol8.3145550K)0.4+0.6exp(-0.150.12J/mol8.3145550K))+((exp(-0.150.19J/mol8.3145550K))(0.19J/mol8.3145550K)0.6+0.4exp(-0.150.19J/mol8.3145550K)))
Следующий шаг Подготовьтесь к оценке
GE=(0.40.68.3145550)(((exp(-0.150.128.3145550))(0.128.3145550)0.4+0.6exp(-0.150.128.3145550))+((exp(-0.150.198.3145550))(0.198.3145550)0.6+0.4exp(-0.150.198.3145550)))
Следующий шаг Оценивать
GE=0.0255091211453841J
Последний шаг Округление ответа
GE=0.0255J

Избыток свободной энергии Гиббса с использованием уравнения NRTL Формула Элементы

Переменные
Константы
Функции
Избыточная свободная энергия Гиббса
Избыточная свободная энергия Гиббса - это энергия Гиббса раствора, превышающая то, что было бы, если бы оно было идеальным.
Символ: GE
Измерение: ЭнергияЕдиница: J
Примечание: Значение может быть положительным или отрицательным.
Мольная доля компонента 1 в жидкой фазе
Молярную долю компонента 1 в жидкой фазе можно определить как отношение количества молей компонента 1 к общему количеству молей компонентов, присутствующих в жидкой фазе.
Символ: x1
Измерение: NAЕдиница: Unitless
Примечание: Значение должно находиться в диапазоне от 0 до 1.
Мольная доля компонента 2 в жидкой фазе
Молярную долю компонента 2 в жидкой фазе можно определить как отношение количества молей компонента 2 к общему количеству молей компонентов, присутствующих в жидкой фазе.
Символ: x2
Измерение: NAЕдиница: Unitless
Примечание: Значение должно находиться в диапазоне от 0 до 1.
Температура для модели NRTL
Температура для модели NRTL - это степень или интенсивность тепла, присутствующего в веществе или объекте.
Символ: TNRTL
Измерение: ТемператураЕдиница: K
Примечание: Значение может быть положительным или отрицательным.
Коэффициент уравнения NRTL (α)
Коэффициент уравнения NRTL (α) — это коэффициент, используемый в уравнении NRTL, который является параметром, характерным для конкретной пары видов.
Символ: α
Измерение: NAЕдиница: Unitless
Примечание: Значение может быть положительным или отрицательным.
Коэффициент уравнения NRTL (b21)
Коэффициент уравнения NRTL (b21) — это коэффициент, используемый в уравнении NRTL для компонента 2 в бинарной системе. Это не зависит от концентрации и температуры.
Символ: b21
Измерение: Энергия на мольЕдиница: J/mol
Примечание: Значение может быть положительным или отрицательным.
Коэффициент уравнения NRTL (b12)
Коэффициент уравнения NRTL (b12) — это коэффициент, используемый в уравнении NRTL для компонента 1 в бинарной системе. Это не зависит от концентрации и температуры.
Символ: b12
Измерение: Энергия на мольЕдиница: J/mol
Примечание: Значение может быть положительным или отрицательным.
Универсальная газовая постоянная
Универсальная газовая постоянная — это фундаментальная физическая константа, которая появляется в законе идеального газа и связывает давление, объем и температуру идеального газа.
Символ: [R]
Ценить: 8.31446261815324
Универсальная газовая постоянная
Универсальная газовая постоянная — это фундаментальная физическая константа, которая появляется в законе идеального газа и связывает давление, объем и температуру идеального газа.
Символ: [R]
Ценить: 8.31446261815324
Универсальная газовая постоянная
Универсальная газовая постоянная — это фундаментальная физическая константа, которая появляется в законе идеального газа и связывает давление, объем и температуру идеального газа.
Символ: [R]
Ценить: 8.31446261815324
Универсальная газовая постоянная
Универсальная газовая постоянная — это фундаментальная физическая константа, которая появляется в законе идеального газа и связывает давление, объем и температуру идеального газа.
Символ: [R]
Ценить: 8.31446261815324
Универсальная газовая постоянная
Универсальная газовая постоянная — это фундаментальная физическая константа, которая появляется в законе идеального газа и связывает давление, объем и температуру идеального газа.
Символ: [R]
Ценить: 8.31446261815324
Универсальная газовая постоянная
Универсальная газовая постоянная — это фундаментальная физическая константа, которая появляется в законе идеального газа и связывает давление, объем и температуру идеального газа.
Символ: [R]
Ценить: 8.31446261815324
Универсальная газовая постоянная
Универсальная газовая постоянная — это фундаментальная физическая константа, которая появляется в законе идеального газа и связывает давление, объем и температуру идеального газа.
Символ: [R]
Ценить: 8.31446261815324
exp
В показательной функции значение функции изменяется на постоянный множитель при каждом единичном изменении независимой переменной.
Синтаксис: exp(Number)

Другие формулы для поиска Избыточная свободная энергия Гиббса

​Идти Избыточная энергия Гиббса с использованием уравнения Уилсона
GE=(-x1ln(x1+x2Λ12)-x2ln(x2+x1Λ21))[R]TWilson

Другие формулы в категории Локальные модели состава

​Идти Коэффициент активности для компонента 1 с использованием уравнения Уилсона
γ1=exp((ln(x1+x2Λ12))+x2((Λ12x1+x2Λ12)-(Λ21x2+x1Λ21)))
​Идти Коэффициент активности для компонента 1 с использованием уравнения NRTL
γ1=exp((x22)(((b21[R]TNRTL)(exp(-αb21[R]TNRTL)x1+x2exp(-αb21[R]TNRTL))2)+(exp(-αb12[R]TNRTL)b12[R]TNRTL(x2+x1exp(-αb12[R]TNRTL))2)))

Как оценить Избыток свободной энергии Гиббса с использованием уравнения NRTL?

Оценщик Избыток свободной энергии Гиббса с использованием уравнения NRTL использует Excess Gibbs Free Energy = (Мольная доля компонента 1 в жидкой фазе*Мольная доля компонента 2 в жидкой фазе*[R]*Температура для модели NRTL)*((((exp(-(Коэффициент уравнения NRTL (α)*Коэффициент уравнения NRTL (b21))/[R]*Температура для модели NRTL))*(Коэффициент уравнения NRTL (b21)/([R]*Температура для модели NRTL)))/(Мольная доля компонента 1 в жидкой фазе+Мольная доля компонента 2 в жидкой фазе*exp(-(Коэффициент уравнения NRTL (α)*Коэффициент уравнения NRTL (b21))/[R]*Температура для модели NRTL)))+(((exp(-(Коэффициент уравнения NRTL (α)*Коэффициент уравнения NRTL (b12))/[R]*Температура для модели NRTL))*(Коэффициент уравнения NRTL (b12)/([R]*Температура для модели NRTL)))/(Мольная доля компонента 2 в жидкой фазе+Мольная доля компонента 1 в жидкой фазе*exp(-(Коэффициент уравнения NRTL (α)*Коэффициент уравнения NRTL (b12))/[R]*Температура для модели NRTL)))) для оценки Избыточная свободная энергия Гиббса, Избыточная свободная энергия Гиббса по формуле уравнения NRTL определяется как функция параметров, не зависящих от концентрации, температуры и мольной доли в жидкой фазе компонентов 1. Избыточная свободная энергия Гиббса обозначается символом GE.

Как оценить Избыток свободной энергии Гиббса с использованием уравнения NRTL с помощью этого онлайн-оценщика? Чтобы использовать этот онлайн-оценщик для Избыток свободной энергии Гиббса с использованием уравнения NRTL, введите Мольная доля компонента 1 в жидкой фазе (x1), Мольная доля компонента 2 в жидкой фазе (x2), Температура для модели NRTL (TNRTL), Коэффициент уравнения NRTL (α) (α), Коэффициент уравнения NRTL (b21) (b21) & Коэффициент уравнения NRTL (b12) (b12) и нажмите кнопку расчета.

FAQs на Избыток свободной энергии Гиббса с использованием уравнения NRTL

По какой формуле можно найти Избыток свободной энергии Гиббса с использованием уравнения NRTL?
Формула Избыток свободной энергии Гиббса с использованием уравнения NRTL выражается как Excess Gibbs Free Energy = (Мольная доля компонента 1 в жидкой фазе*Мольная доля компонента 2 в жидкой фазе*[R]*Температура для модели NRTL)*((((exp(-(Коэффициент уравнения NRTL (α)*Коэффициент уравнения NRTL (b21))/[R]*Температура для модели NRTL))*(Коэффициент уравнения NRTL (b21)/([R]*Температура для модели NRTL)))/(Мольная доля компонента 1 в жидкой фазе+Мольная доля компонента 2 в жидкой фазе*exp(-(Коэффициент уравнения NRTL (α)*Коэффициент уравнения NRTL (b21))/[R]*Температура для модели NRTL)))+(((exp(-(Коэффициент уравнения NRTL (α)*Коэффициент уравнения NRTL (b12))/[R]*Температура для модели NRTL))*(Коэффициент уравнения NRTL (b12)/([R]*Температура для модели NRTL)))/(Мольная доля компонента 2 в жидкой фазе+Мольная доля компонента 1 в жидкой фазе*exp(-(Коэффициент уравнения NRTL (α)*Коэффициент уравнения NRTL (b12))/[R]*Температура для модели NRTL)))). Вот пример: 0.025509 = (0.4*0.6*[R]*550)*((((exp(-(0.15*0.12)/[R]*550))*(0.12/([R]*550)))/(0.4+0.6*exp(-(0.15*0.12)/[R]*550)))+(((exp(-(0.15*0.19)/[R]*550))*(0.19/([R]*550)))/(0.6+0.4*exp(-(0.15*0.19)/[R]*550)))).
Как рассчитать Избыток свободной энергии Гиббса с использованием уравнения NRTL?
С помощью Мольная доля компонента 1 в жидкой фазе (x1), Мольная доля компонента 2 в жидкой фазе (x2), Температура для модели NRTL (TNRTL), Коэффициент уравнения NRTL (α) (α), Коэффициент уравнения NRTL (b21) (b21) & Коэффициент уравнения NRTL (b12) (b12) мы можем найти Избыток свободной энергии Гиббса с использованием уравнения NRTL, используя формулу - Excess Gibbs Free Energy = (Мольная доля компонента 1 в жидкой фазе*Мольная доля компонента 2 в жидкой фазе*[R]*Температура для модели NRTL)*((((exp(-(Коэффициент уравнения NRTL (α)*Коэффициент уравнения NRTL (b21))/[R]*Температура для модели NRTL))*(Коэффициент уравнения NRTL (b21)/([R]*Температура для модели NRTL)))/(Мольная доля компонента 1 в жидкой фазе+Мольная доля компонента 2 в жидкой фазе*exp(-(Коэффициент уравнения NRTL (α)*Коэффициент уравнения NRTL (b21))/[R]*Температура для модели NRTL)))+(((exp(-(Коэффициент уравнения NRTL (α)*Коэффициент уравнения NRTL (b12))/[R]*Температура для модели NRTL))*(Коэффициент уравнения NRTL (b12)/([R]*Температура для модели NRTL)))/(Мольная доля компонента 2 в жидкой фазе+Мольная доля компонента 1 в жидкой фазе*exp(-(Коэффициент уравнения NRTL (α)*Коэффициент уравнения NRTL (b12))/[R]*Температура для модели NRTL)))). В этой формуле также используются функции Универсальная газовая постоянная, Универсальная газовая постоянная, Универсальная газовая постоянная, Универсальная газовая постоянная, Универсальная газовая постоянная, Универсальная газовая постоянная, Универсальная газовая постоянная, и Экспоненциальный рост (exp).
Какие еще способы расчета Избыточная свободная энергия Гиббса?
Вот различные способы расчета Избыточная свободная энергия Гиббса-
  • Excess Gibbs Free Energy=(-Mole Fraction of Component 1 in Liquid Phase*ln(Mole Fraction of Component 1 in Liquid Phase+Mole Fraction of Component 2 in Liquid Phase*Wilson Equation Coefficient (Λ12))-Mole Fraction of Component 2 in Liquid Phase*ln(Mole Fraction of Component 2 in Liquid Phase+Mole Fraction of Component 1 in Liquid Phase*Wilson Equation Coefficient (Λ21)))*[R]*Temperature for Wilson EquationOpenImg
.
Может ли Избыток свободной энергии Гиббса с использованием уравнения NRTL быть отрицательным?
Да, Избыток свободной энергии Гиббса с использованием уравнения NRTL, измеренная в Энергия может, будет отрицательной.
Какая единица измерения используется для измерения Избыток свободной энергии Гиббса с использованием уравнения NRTL?
Избыток свободной энергии Гиббса с использованием уравнения NRTL обычно измеряется с использованием Джоуль[J] для Энергия. килоджоуль[J], Гигаджоуль[J], мегаджоуль[J] — это несколько других единиц, в которых можно измерить Избыток свободной энергии Гиббса с использованием уравнения NRTL.
Copied!