Fx कॉपी करा
LaTeX कॉपी करा
पंचकोनी Icositetrahedron ची Insphere Radius ही गोलाची त्रिज्या आहे जी पंचकोनी Icositetrahedron मध्ये अशा प्रकारे असते की सर्व चेहरे गोलाला स्पर्श करतात. FAQs तपासा
ri=(12(2-[Tribonacci_C])(3-[Tribonacci_C]))(322(5[Tribonacci_C]-1)(4[Tribonacci_C])-3RA/V11([Tribonacci_C]-4)2((20[Tribonacci_C])-37))
ri - पेंटागोनल आयकोसिटेट्राहेड्रॉनची अंतर्गोल त्रिज्या?RA/V - SA:V of Pentagonal Icositetrahedron?[Tribonacci_C] - त्रिबोनाचि स्थिर?[Tribonacci_C] - त्रिबोनाचि स्थिर?[Tribonacci_C] - त्रिबोनाचि स्थिर?[Tribonacci_C] - त्रिबोनाचि स्थिर?[Tribonacci_C] - त्रिबोनाचि स्थिर?[Tribonacci_C] - त्रिबोनाचि स्थिर?

पृष्ठभाग ते व्हॉल्यूम गुणोत्तर दिलेला पेंटागोनल आयकोसिटेट्राहेड्रॉनची इन्फेअर त्रिज्या उदाहरण

मूल्यांसह
युनिट्ससह
फक्त उदाहरण

पृष्ठभाग ते व्हॉल्यूम गुणोत्तर दिलेला पेंटागोनल आयकोसिटेट्राहेड्रॉनची इन्फेअर त्रिज्या समीकरण मूल्यांसह सारखे कसे दिसते ते येथे आहे.

पृष्ठभाग ते व्हॉल्यूम गुणोत्तर दिलेला पेंटागोनल आयकोसिटेट्राहेड्रॉनची इन्फेअर त्रिज्या समीकरण युनिट्ससह सारखे कसे दिसते ते येथे आहे.

पृष्ठभाग ते व्हॉल्यूम गुणोत्तर दिलेला पेंटागोनल आयकोसिटेट्राहेड्रॉनची इन्फेअर त्रिज्या समीकरण सारखे कसे दिसते ते येथे आहे.

10Edit=(12(2-1.8393)(3-1.8393))(322(51.8393-1)(41.8393)-30.3Edit11(1.8393-4)2((201.8393)-37))

पृष्ठभाग ते व्हॉल्यूम गुणोत्तर दिलेला पेंटागोनल आयकोसिटेट्राहेड्रॉनची इन्फेअर त्रिज्या उपाय

पृष्ठभाग ते व्हॉल्यूम गुणोत्तर दिलेला पेंटागोनल आयकोसिटेट्राहेड्रॉनची इन्फेअर त्रिज्या ची गणना कशी करायची यावर आमचे चरण-दर-चरण उपाय फॉलो करा?

पहिली पायरी सूत्राचा विचार करा
ri=(12(2-[Tribonacci_C])(3-[Tribonacci_C]))(322(5[Tribonacci_C]-1)(4[Tribonacci_C])-3RA/V11([Tribonacci_C]-4)2((20[Tribonacci_C])-37))
पुढचे पाऊल व्हेरिएबल्सची पर्यायी मूल्ये
ri=(12(2-[Tribonacci_C])(3-[Tribonacci_C]))(322(5[Tribonacci_C]-1)(4[Tribonacci_C])-30.3m⁻¹11([Tribonacci_C]-4)2((20[Tribonacci_C])-37))
पुढचे पाऊल स्थिरांकांची मूल्ये बदला
ri=(12(2-1.8393)(3-1.8393))(322(51.8393-1)(41.8393)-30.3m⁻¹11(1.8393-4)2((201.8393)-37))
पुढचे पाऊल मूल्यांकन करण्याची तयारी करा
ri=(12(2-1.8393)(3-1.8393))(322(51.8393-1)(41.8393)-30.311(1.8393-4)2((201.8393)-37))
पुढचे पाऊल मूल्यांकन करा
ri=10.0000000000001m
शेवटची पायरी गोलाकार उत्तर
ri=10m

पृष्ठभाग ते व्हॉल्यूम गुणोत्तर दिलेला पेंटागोनल आयकोसिटेट्राहेड्रॉनची इन्फेअर त्रिज्या सुत्र घटक

चल
स्थिरांक
कार्ये
पेंटागोनल आयकोसिटेट्राहेड्रॉनची अंतर्गोल त्रिज्या
पंचकोनी Icositetrahedron ची Insphere Radius ही गोलाची त्रिज्या आहे जी पंचकोनी Icositetrahedron मध्ये अशा प्रकारे असते की सर्व चेहरे गोलाला स्पर्श करतात.
चिन्ह: ri
मोजमाप: लांबीयुनिट: m
नोंद: मूल्य 0 पेक्षा जास्त असावे.
SA:V of Pentagonal Icositetrahedron
पेंटागोनल आयकोसिटेट्राहेड्रॉनचा SA:V म्हणजे पेंटागोनल आयकोसिटेट्राहेड्रॉनच्या एकूण आकारमानाचा कोणता भाग किंवा अपूर्णांक एकूण पृष्ठभागाचे क्षेत्रफळ आहे.
चिन्ह: RA/V
मोजमाप: परस्पर लांबीयुनिट: m⁻¹
नोंद: मूल्य 0 पेक्षा जास्त असावे.
त्रिबोनाचि स्थिर
ट्रिबोनाची स्थिरांक म्हणजे n अनंताच्या जवळ जाताना ट्रायबोनाची क्रमाच्या (n-1)व्या पदाच्या nव्या पदाच्या गुणोत्तराची मर्यादा आहे.
चिन्ह: [Tribonacci_C]
मूल्य: 1.839286755214161
त्रिबोनाचि स्थिर
ट्रिबोनाची स्थिरांक म्हणजे n अनंताच्या जवळ जाताना ट्रायबोनाची क्रमाच्या (n-1)व्या पदाच्या nव्या पदाच्या गुणोत्तराची मर्यादा आहे.
चिन्ह: [Tribonacci_C]
मूल्य: 1.839286755214161
त्रिबोनाचि स्थिर
ट्रिबोनाची स्थिरांक म्हणजे n अनंताच्या जवळ जाताना ट्रायबोनाची क्रमाच्या (n-1)व्या पदाच्या nव्या पदाच्या गुणोत्तराची मर्यादा आहे.
चिन्ह: [Tribonacci_C]
मूल्य: 1.839286755214161
त्रिबोनाचि स्थिर
ट्रिबोनाची स्थिरांक म्हणजे n अनंताच्या जवळ जाताना ट्रायबोनाची क्रमाच्या (n-1)व्या पदाच्या nव्या पदाच्या गुणोत्तराची मर्यादा आहे.
चिन्ह: [Tribonacci_C]
मूल्य: 1.839286755214161
त्रिबोनाचि स्थिर
ट्रिबोनाची स्थिरांक म्हणजे n अनंताच्या जवळ जाताना ट्रायबोनाची क्रमाच्या (n-1)व्या पदाच्या nव्या पदाच्या गुणोत्तराची मर्यादा आहे.
चिन्ह: [Tribonacci_C]
मूल्य: 1.839286755214161
त्रिबोनाचि स्थिर
ट्रिबोनाची स्थिरांक म्हणजे n अनंताच्या जवळ जाताना ट्रायबोनाची क्रमाच्या (n-1)व्या पदाच्या nव्या पदाच्या गुणोत्तराची मर्यादा आहे.
चिन्ह: [Tribonacci_C]
मूल्य: 1.839286755214161
sqrt
स्क्वेअर रूट फंक्शन हे एक फंक्शन आहे जे इनपुट म्हणून नॉन-ऋणात्मक संख्या घेते आणि दिलेल्या इनपुट नंबरचे वर्गमूळ परत करते.
मांडणी: sqrt(Number)

पेंटागोनल आयकोसिटेट्राहेड्रॉनची अंतर्गोल त्रिज्या शोधण्यासाठी इतर सूत्रे

​जा पंचकोनी Icositetrahedron च्या Insphere त्रिज्या दिलेला Long Edge
ri=le(Long)(2-[Tribonacci_C])(3-[Tribonacci_C])([Tribonacci_C]+1)
​जा पेंटागोनल आयकोसिटेट्राहेड्रॉनची इन्स्पेअर त्रिज्या दिलेला खंड
ri=(12(2-[Tribonacci_C])(3-[Tribonacci_C]))(V13(2((20[Tribonacci_C])-37)11([Tribonacci_C]-4))16)
​जा एकूण पृष्ठभाग क्षेत्रफळ दिलेले पेंटागोनल आयकोसिटेट्राहेड्रॉनच्या अंतर्गोल त्रिज्या
ri=(12(2-[Tribonacci_C])(3-[Tribonacci_C]))(TSA3((4[Tribonacci_C])-322((5[Tribonacci_C])-1))14)
​जा पेंटागोनल आयकोसिटेट्राहेड्रॉनची अंतर्गोल त्रिज्या
ri=le(Snub Cube)2(2-[Tribonacci_C])(3-[Tribonacci_C])

पृष्ठभाग ते व्हॉल्यूम गुणोत्तर दिलेला पेंटागोनल आयकोसिटेट्राहेड्रॉनची इन्फेअर त्रिज्या चे मूल्यमापन कसे करावे?

पृष्ठभाग ते व्हॉल्यूम गुणोत्तर दिलेला पेंटागोनल आयकोसिटेट्राहेड्रॉनची इन्फेअर त्रिज्या मूल्यांकनकर्ता पेंटागोनल आयकोसिटेट्राहेड्रॉनची अंतर्गोल त्रिज्या, पेंटागोनल आयकोसिटेट्राहेड्रॉनची इन्स्पेयर त्रिज्या पृष्ठभाग ते व्हॉल्यूम गुणोत्तर सूत्र दिलेली गोलाची त्रिज्या म्हणून परिभाषित केली जाते जी पंचकोनी आयकोसिटेट्राहेड्रॉनमध्ये अशा प्रकारे असते की सर्व चेहरे गोलाला स्पर्श करतात, पेंटागोनल आयकोच्या पृष्ठभाग ते व्हॉल्यूम गुणोत्तर वापरून गणना केली जाते चे मूल्यमापन करण्यासाठी Insphere Radius of Pentagonal Icositetrahedron = (1/(2*sqrt((2-[Tribonacci_C])*(3-[Tribonacci_C]))))*((3*sqrt((22*(5*[Tribonacci_C]-1))/((4*[Tribonacci_C])-3)))/(SA:V of Pentagonal Icositetrahedron*sqrt((11*([Tribonacci_C]-4))/(2*((20*[Tribonacci_C])-37))))) वापरतो. पेंटागोनल आयकोसिटेट्राहेड्रॉनची अंतर्गोल त्रिज्या हे ri चिन्हाने दर्शविले जाते.

हा ऑनलाइन मूल्यांकनकर्ता वापरून पृष्ठभाग ते व्हॉल्यूम गुणोत्तर दिलेला पेंटागोनल आयकोसिटेट्राहेड्रॉनची इन्फेअर त्रिज्या चे मूल्यमापन कसे करायचे? हा ऑनलाइन मूल्यांकनकर्ता पृष्ठभाग ते व्हॉल्यूम गुणोत्तर दिलेला पेंटागोनल आयकोसिटेट्राहेड्रॉनची इन्फेअर त्रिज्या साठी वापरण्यासाठी, SA:V of Pentagonal Icositetrahedron (RA/V) प्रविष्ट करा आणि गणना बटण दाबा.

FAQs वर पृष्ठभाग ते व्हॉल्यूम गुणोत्तर दिलेला पेंटागोनल आयकोसिटेट्राहेड्रॉनची इन्फेअर त्रिज्या

पृष्ठभाग ते व्हॉल्यूम गुणोत्तर दिलेला पेंटागोनल आयकोसिटेट्राहेड्रॉनची इन्फेअर त्रिज्या शोधण्याचे सूत्र काय आहे?
पृष्ठभाग ते व्हॉल्यूम गुणोत्तर दिलेला पेंटागोनल आयकोसिटेट्राहेड्रॉनची इन्फेअर त्रिज्या चे सूत्र Insphere Radius of Pentagonal Icositetrahedron = (1/(2*sqrt((2-[Tribonacci_C])*(3-[Tribonacci_C]))))*((3*sqrt((22*(5*[Tribonacci_C]-1))/((4*[Tribonacci_C])-3)))/(SA:V of Pentagonal Icositetrahedron*sqrt((11*([Tribonacci_C]-4))/(2*((20*[Tribonacci_C])-37))))) म्हणून व्यक्त केले आहे. येथे एक उदाहरण आहे- 10 = (1/(2*sqrt((2-[Tribonacci_C])*(3-[Tribonacci_C]))))*((3*sqrt((22*(5*[Tribonacci_C]-1))/((4*[Tribonacci_C])-3)))/(0.3*sqrt((11*([Tribonacci_C]-4))/(2*((20*[Tribonacci_C])-37))))).
पृष्ठभाग ते व्हॉल्यूम गुणोत्तर दिलेला पेंटागोनल आयकोसिटेट्राहेड्रॉनची इन्फेअर त्रिज्या ची गणना कशी करायची?
SA:V of Pentagonal Icositetrahedron (RA/V) सह आम्ही सूत्र - Insphere Radius of Pentagonal Icositetrahedron = (1/(2*sqrt((2-[Tribonacci_C])*(3-[Tribonacci_C]))))*((3*sqrt((22*(5*[Tribonacci_C]-1))/((4*[Tribonacci_C])-3)))/(SA:V of Pentagonal Icositetrahedron*sqrt((11*([Tribonacci_C]-4))/(2*((20*[Tribonacci_C])-37))))) वापरून पृष्ठभाग ते व्हॉल्यूम गुणोत्तर दिलेला पेंटागोनल आयकोसिटेट्राहेड्रॉनची इन्फेअर त्रिज्या शोधू शकतो. हे सूत्र त्रिबोनाचि स्थिर, त्रिबोनाचि स्थिर, त्रिबोनाचि स्थिर, त्रिबोनाचि स्थिर, त्रिबोनाचि स्थिर, त्रिबोनाचि स्थिर आणि स्क्वेअर रूट (sqrt) फंक्शन(s) देखील वापरते.
पेंटागोनल आयकोसिटेट्राहेड्रॉनची अंतर्गोल त्रिज्या ची गणना करण्याचे इतर कोणते मार्ग आहेत?
पेंटागोनल आयकोसिटेट्राहेड्रॉनची अंतर्गोल त्रिज्या-
  • Insphere Radius of Pentagonal Icositetrahedron=Long Edge of Pentagonal Icositetrahedron/sqrt((2-[Tribonacci_C])*(3-[Tribonacci_C])*([Tribonacci_C]+1))OpenImg
  • Insphere Radius of Pentagonal Icositetrahedron=(1/(2*sqrt((2-[Tribonacci_C])*(3-[Tribonacci_C]))))*(Volume of Pentagonal Icositetrahedron^(1/3)*((2*((20*[Tribonacci_C])-37))/(11*([Tribonacci_C]-4)))^(1/6))OpenImg
  • Insphere Radius of Pentagonal Icositetrahedron=(1/(2*sqrt((2-[Tribonacci_C])*(3-[Tribonacci_C]))))*(sqrt(Total Surface Area of Pentagonal Icositetrahedron/3)*(((4*[Tribonacci_C])-3)/(22*((5*[Tribonacci_C])-1)))^(1/4))OpenImg
ची गणना करण्याचे वेगवेगळे मार्ग येथे आहेत
पृष्ठभाग ते व्हॉल्यूम गुणोत्तर दिलेला पेंटागोनल आयकोसिटेट्राहेड्रॉनची इन्फेअर त्रिज्या नकारात्मक असू शकते का?
नाही, पृष्ठभाग ते व्हॉल्यूम गुणोत्तर दिलेला पेंटागोनल आयकोसिटेट्राहेड्रॉनची इन्फेअर त्रिज्या, लांबी मध्ये मोजलेले करू शकत नाही ऋण असू शकते.
पृष्ठभाग ते व्हॉल्यूम गुणोत्तर दिलेला पेंटागोनल आयकोसिटेट्राहेड्रॉनची इन्फेअर त्रिज्या मोजण्यासाठी कोणते एकक वापरले जाते?
पृष्ठभाग ते व्हॉल्यूम गुणोत्तर दिलेला पेंटागोनल आयकोसिटेट्राहेड्रॉनची इन्फेअर त्रिज्या हे सहसा लांबी साठी मीटर[m] वापरून मोजले जाते. मिलिमीटर[m], किलोमीटर[m], डेसिमीटर[m] ही काही इतर एकके आहेत ज्यात पृष्ठभाग ते व्हॉल्यूम गुणोत्तर दिलेला पेंटागोनल आयकोसिटेट्राहेड्रॉनची इन्फेअर त्रिज्या मोजता येतात.
Copied!