Fx कॉपी करा
LaTeX कॉपी करा
पेंटागॉनच्या आतमध्ये कोरलेल्या वर्तुळाची त्रिज्या पेंटॅगॉनचा इंरेडियस म्हणून परिभाषित केला जातो. FAQs तपासा
ri=25+(105)d5(1+5)
ri - पेंटॅगॉनचा इंरेडियस?d - पेंटॅगॉनचा कर्ण?

पेंटॅगॉनचा इंरेडियस डायगोनल दिलेला आहे उदाहरण

मूल्यांसह
युनिट्ससह
फक्त उदाहरण

पेंटॅगॉनचा इंरेडियस डायगोनल दिलेला आहे समीकरण मूल्यांसह सारखे कसे दिसते ते येथे आहे.

पेंटॅगॉनचा इंरेडियस डायगोनल दिलेला आहे समीकरण युनिट्ससह सारखे कसे दिसते ते येथे आहे.

पेंटॅगॉनचा इंरेडियस डायगोनल दिलेला आहे समीकरण सारखे कसे दिसते ते येथे आहे.

6.8052Edit=25+(105)16Edit5(1+5)
आपण येथे आहात -
HomeIcon मुख्यपृष्ठ » Category गणित » Category भूमिती » Category २ डी भूमिती » fx पेंटॅगॉनचा इंरेडियस डायगोनल दिलेला आहे

पेंटॅगॉनचा इंरेडियस डायगोनल दिलेला आहे उपाय

पेंटॅगॉनचा इंरेडियस डायगोनल दिलेला आहे ची गणना कशी करायची यावर आमचे चरण-दर-चरण उपाय फॉलो करा?

पहिली पायरी सूत्राचा विचार करा
ri=25+(105)d5(1+5)
पुढचे पाऊल व्हेरिएबल्सची पर्यायी मूल्ये
ri=25+(105)16m5(1+5)
पुढचे पाऊल मूल्यांकन करण्याची तयारी करा
ri=25+(105)165(1+5)
पुढचे पाऊल मूल्यांकन करा
ri=6.80520646681632m
शेवटची पायरी गोलाकार उत्तर
ri=6.8052m

पेंटॅगॉनचा इंरेडियस डायगोनल दिलेला आहे सुत्र घटक

चल
कार्ये
पेंटॅगॉनचा इंरेडियस
पेंटागॉनच्या आतमध्ये कोरलेल्या वर्तुळाची त्रिज्या पेंटॅगॉनचा इंरेडियस म्हणून परिभाषित केला जातो.
चिन्ह: ri
मोजमाप: लांबीयुनिट: m
नोंद: मूल्य 0 पेक्षा जास्त असावे.
पेंटॅगॉनचा कर्ण
पेंटागॉनचा कर्ण ही पेंटागॉनच्या दोन नॉन समीप शिरोबिंदूंना जोडणारी सरळ रेषा आहे.
चिन्ह: d
मोजमाप: लांबीयुनिट: m
नोंद: मूल्य 0 पेक्षा जास्त असावे.
sqrt
स्क्वेअर रूट फंक्शन हे एक फंक्शन आहे जे इनपुट म्हणून नॉन-ऋणात्मक संख्या घेते आणि दिलेल्या इनपुट नंबरचे वर्गमूळ परत करते.
मांडणी: sqrt(Number)

पेंटॅगॉनचा इंरेडियस शोधण्यासाठी इतर सूत्रे

​जा सेंट्रल अँगल वापरून पेंटॅगॉनची इंरेडियस एजची लांबी दिली आहे
ri=le2tan(π5)
​जा सेंट्रल अँगलचा वापर करून पेंटॅगॉनचा इंरेडियस सर्कमरेडियस दिलेला आहे
ri=rccos(π5)
​जा पेंटागॉनचा इंरेडियस सर्कमरेडियस दिलेला आहे
ri=25+(105)50+(105)rc
​जा सेंट्रल अँगल वापरून पेंटागॉनची इंरेडियस दिलेली उंची
ri=h1+(1cos(π5))

पेंटॅगॉनचा इंरेडियस डायगोनल दिलेला आहे चे मूल्यमापन कसे करावे?

पेंटॅगॉनचा इंरेडियस डायगोनल दिलेला आहे मूल्यांकनकर्ता पेंटॅगॉनचा इंरेडियस, पेंटागॉनचे इंरेडियस दिलेले डायगोनल फॉर्म्युला हे मध्यभागी जोडणाऱ्या रेषेची लांबी आणि पेंटॅगॉनच्या वर्तुळावरील बिंदू म्हणून परिभाषित केले जाते, पेंटॅगॉनचे कर्ण वापरून गणना केली जाते चे मूल्यमापन करण्यासाठी Inradius of Pentagon = sqrt(25+(10*sqrt(5)))*पेंटॅगॉनचा कर्ण/(5*(1+sqrt(5))) वापरतो. पेंटॅगॉनचा इंरेडियस हे ri चिन्हाने दर्शविले जाते.

हा ऑनलाइन मूल्यांकनकर्ता वापरून पेंटॅगॉनचा इंरेडियस डायगोनल दिलेला आहे चे मूल्यमापन कसे करायचे? हा ऑनलाइन मूल्यांकनकर्ता पेंटॅगॉनचा इंरेडियस डायगोनल दिलेला आहे साठी वापरण्यासाठी, पेंटॅगॉनचा कर्ण (d) प्रविष्ट करा आणि गणना बटण दाबा.

FAQs वर पेंटॅगॉनचा इंरेडियस डायगोनल दिलेला आहे

पेंटॅगॉनचा इंरेडियस डायगोनल दिलेला आहे शोधण्याचे सूत्र काय आहे?
पेंटॅगॉनचा इंरेडियस डायगोनल दिलेला आहे चे सूत्र Inradius of Pentagon = sqrt(25+(10*sqrt(5)))*पेंटॅगॉनचा कर्ण/(5*(1+sqrt(5))) म्हणून व्यक्त केले आहे. येथे एक उदाहरण आहे- 6.805206 = sqrt(25+(10*sqrt(5)))*16/(5*(1+sqrt(5))).
पेंटॅगॉनचा इंरेडियस डायगोनल दिलेला आहे ची गणना कशी करायची?
पेंटॅगॉनचा कर्ण (d) सह आम्ही सूत्र - Inradius of Pentagon = sqrt(25+(10*sqrt(5)))*पेंटॅगॉनचा कर्ण/(5*(1+sqrt(5))) वापरून पेंटॅगॉनचा इंरेडियस डायगोनल दिलेला आहे शोधू शकतो. हा फॉर्म्युला स्क्वेअर रूट (sqrt) फंक्शन देखील वापरतो.
पेंटॅगॉनचा इंरेडियस ची गणना करण्याचे इतर कोणते मार्ग आहेत?
पेंटॅगॉनचा इंरेडियस-
  • Inradius of Pentagon=(Edge Length of Pentagon)/(2*tan(pi/5))OpenImg
  • Inradius of Pentagon=Circumradius of Pentagon*cos(pi/5)OpenImg
  • Inradius of Pentagon=sqrt(25+(10*sqrt(5)))/sqrt(50+(10*sqrt(5)))*Circumradius of PentagonOpenImg
ची गणना करण्याचे वेगवेगळे मार्ग येथे आहेत
पेंटॅगॉनचा इंरेडियस डायगोनल दिलेला आहे नकारात्मक असू शकते का?
नाही, पेंटॅगॉनचा इंरेडियस डायगोनल दिलेला आहे, लांबी मध्ये मोजलेले करू शकत नाही ऋण असू शकते.
पेंटॅगॉनचा इंरेडियस डायगोनल दिलेला आहे मोजण्यासाठी कोणते एकक वापरले जाते?
पेंटॅगॉनचा इंरेडियस डायगोनल दिलेला आहे हे सहसा लांबी साठी मीटर[m] वापरून मोजले जाते. मिलिमीटर[m], किलोमीटर[m], डेसिमीटर[m] ही काही इतर एकके आहेत ज्यात पेंटॅगॉनचा इंरेडियस डायगोनल दिलेला आहे मोजता येतात.
Copied!