Cerca Formule

Inserisci un minimo di 3 caratteri per iniziare con la ricerca delle formule .

Seleziona Filtra

Restringi i risultati della ricerca con l'aiuto di questi filtri.

50 Formule corrispondenti trovate!

Velocità di deriva data l'area della sezione trasversale

La formula della Velocità di deriva data l'area della sezione trasversale è definita come una misura della Velocità media dei portatori di carica in un conduttore, che è cruciale per comprendere il flusso della corrente elettrica ed è influenzata dall'area della sezione trasversale del conduttore e dalla carica densità dei portatori.

Vd=Ie-[Charge-e]A

Velocità di deriva

La formula della Velocità di deriva è definita come una misura della Velocità media degli elettroni in un conduttore, che è influenzata dal campo elettrico e dalle proprietà del conduttore, fornendo informazioni sul comportamento degli elettroni nei circuiti elettrici.

Vd=E𝛕[Charge-e]2[Mass-e]

Velocità del cedente per la camma tangente del cedente a rulli se il contatto è con fianchi diritti

La formula della Velocità del follower per camma tangente a rulli se il contatto è con fianchi dritti è definita come una misura della Velocità del follower in un sistema camma-follower in cui il contatto è con fianchi dritti, fornendo informazioni sulla cinematica del sistema e consentendo la progettazione di sistemi meccanici efficienti.

v=ω(r1+rroller)sin(θ)(cos(θ))2

Velocità massima del cedente per camma tangente con cedente a rullo

La formula della Velocità massima del follower per camma tangente con follower a rulli è definita come la Velocità massima alla quale il follower si muove in una camma tangente con un follower a rulli, il che è fondamentale nella progettazione e nell'ottimizzazione dei sistemi camma-follower per prestazioni meccaniche efficienti.

Vm=ω(r1+rr)sin(φ)cos(φ)2

Velocità assoluta di Pelton Jet

La Velocità assoluta del getto Pelton è la Velocità con cui l'acqua esce dall'ugello e colpisce le pale della turbina Pelton. Questa Velocità è fondamentale poiché influenza direttamente l'energia cinetica trasferita alle pale della turbina ed è tipicamente determinata dall'altezza e dalla pressione della fonte d'acqua che alimenta la turbina.

V1=Cv2[g]H

Velocità del cedente della camma tangente del cedente del rullo per il contatto con il naso

La formula della Velocità del follower della camma tangente del follower a rulli per il contatto con la punta è definita come la Velocità del follower in un sistema a camma e follower, che è un parametro critico per determinare le prestazioni e l'efficienza del sistema, in particolare quando il follower è a contatto con la punta della camma.

v=ωr(sin(θ1)+rsin(2θ1)2L2-r2(sin(θ1))2)

Velocità dell'aereo per una data potenza in eccesso

La Velocità dell'aereo per una data potenza in eccesso è la Velocità richiesta per mantenere un dato rateo di salita, considerando la potenza in eccesso disponibile e l'equilibrio tra forze di spinta e resistenza durante il volo in salita. Comprendere e applicare questa formula è fondamentale per piloti e ingegneri per ottimizzare le prestazioni in salita.

v=PexcessT-FD

Velocità di salita per una determinata potenza in eccesso

La Velocità di salita per una data potenza in eccesso è la Velocità verticale alla quale un aereo sale, determinata dalla potenza in eccesso disponibile. La potenza in eccesso rappresenta la potenza in eccesso disponibile oltre quella necessaria per mantenere il volo livellato.

RC=PexcessW

Velocità in qualsiasi punto per il coefficiente del tubo di Pitot

La Velocità in qualsiasi punto per il coefficiente della formula del tubo di Pitot è nota considerando l'aumento del liquido nel tubo sopra la superficie libera che è l'altezza del liquido nel bordo superiore del tubo di Pitot.

Vp=Cv29.81hp

Velocità davanti all'urto normale dall'equazione dell'energia dell'urto normale

La formula dell'equazione della Velocità rispetto allo shock normale derivante dall'energia di shock normale è definita come la funzione dell'entalpia totale e della Velocità a monte prima dello shock normale. L'entalpia utilizzata nella formula è l'entalpia per unità di massa.

V1=2(h2+V222-h1)

Velocità dietro lo shock normale dall'equazione dell'energia dello shock normale

La Velocità dietro lo shock normale dall'equazione dell'energia dello shock normale calcola la Velocità di un fluido a valle di un'onda d'urto normale utilizzando l'equazione dell'energia dello shock normale. Questa formula incorpora parametri come l'entalpia davanti e dietro l'urto e la Velocità a monte dell'urto. Fornisce informazioni essenziali sul cambiamento di Velocità derivante dal passaggio dell’onda d’urto.

V2=2(h1+V122-h2)

Velocità di movimento attraverso la falda acquifera e il letto confinante

La formula Velocità di movimento attraverso la falda acquifera e il letto confinante è definita come la Velocità con cui l'acqua sotterranea si muove attraverso i pori o le fratture in un materiale sotterraneo, come il suolo o la roccia.

v=(Kη)dhds

Velocità di pompaggio data trasmissività per unità incoerenti dai grafici distanza-drawdown

La formula della Velocità di pompaggio data la trasmissività per unità incoerenti dalla formula dei grafici distanza-assorbimento è definita come la Velocità con cui un pozzo viene pompato a una Velocità controllata e l'assorbimento viene misurato in uno o più pozzi di osservazione circostanti.

q=TΔs70

Velocità del flusso libero del flusso laminare della piastra piana

La Velocità del flusso libero della formula del flusso laminare della piastra piana è definita come la Velocità del fluido che si avvicina alla piastra piana in un regime di flusso laminare, che è un parametro cruciale nei processi di trasferimento di massa convettivo, in particolare nel contesto della dinamica dei fluidi e dello scambio termico.

u=kL(Sc0.67)(Re0.5)0.322

Velocità del flusso libero del flusso laminare piatto dato il coefficiente di resistenza

La Velocità del flusso libero del flusso laminare su piastra piana, data la formula del coefficiente di resistenza, è definita come una misura della Velocità del flusso del fluido sopra una piastra piana in un regime di flusso laminare, che è influenzata dal coefficiente di resistenza e da altre proprietà fisiche del sistema.

u=2kL(Sc0.67)CD

Velocità angolare costante data l'accelerazione centripeta alla distanza radiale r dall'asse

La formula della Velocità angolare costante, data l'accelerazione centripeta alla distanza radiale r dall'asse, è definita come la Velocità con cui ruota il fluido.

ω=acdr

Velocità di avvicinamento nell'impatto indiretto del corpo con piano fisso

La Velocità di avvicinamento nell'impatto indiretto di un corpo con formula piano fisso è definita come il prodotto della Velocità iniziale del corpo per il cos dell'angolo tra la Velocità iniziale e la linea di impatto.

vapp=ucos(θi)

Velocità Freestream per il coefficiente di trascinamento locale

La Velocità Freestream per il coefficiente di resistenza locale è nota considerando la radice quadrata della sollecitazione di taglio a metà della densità del fluido e il coefficiente di resistenza locale.

V=𝜏12ρfCD*

Velocità massima per evitare il ribaltamento del veicolo lungo il percorso circolare in piano

La formula della Velocità massima per evitare il ribaltamento del veicolo lungo un percorso circolare pianeggiante è definita come la Velocità alla quale un veicolo può percorrere un percorso circolare senza ribaltarsi, tenendo conto della forza gravitazionale, del raggio del percorso e della distribuzione del peso del veicolo.

v=[g]rdw2G

Velocità massima per evitare lo slittamento del veicolo lungo il percorso circolare in piano

La formula della Velocità massima per evitare lo slittamento del veicolo lungo un percorso circolare pianeggiante è definita come la Velocità alla quale un veicolo può viaggiare lungo un percorso circolare su una superficie orizzontale senza slittare o perdere trazione, tenendo conto della forza di attrito e del raggio del percorso circolare.

v=μ[g]r

Velocità di fase

La formula Phase Velocity è definita come un'onda è la Velocità con cui l'onda si propaga in un mezzo. Questa è la Velocità alla quale viaggia la fase di una qualsiasi componente di frequenza dell'onda.

Vp=[c]sin(ψp)

Velocità di taglio dalla temperatura dell'utensile

La formula della Velocità di taglio dalla temperatura dell'utensile è definita come la Velocità impiegata per tagliare un particolare materiale utilizzando l'utensile.

V=(θk0.44c0.56C0UsA0.22)10044

Velocità di taglio per un costo di produzione minimo

La Velocità di taglio per il costo di produzione minimo è un metodo per determinare la Velocità di taglio richiesta per operare su un pezzo in modo tale che il costo di produzione per un determinato lotto sia minimo.

V=Vref(nCtLref(1-n)(Cttc+Ct))n

Velocità di taglio di riferimento data Velocità di taglio

La formula della Velocità di taglio di riferimento fornita con la formula della Velocità di taglio è un metodo per determinare la Velocità di taglio ottimale richiesta per una determinata dimensione del lotto in una condizione di lavorazione di riferimento per la produzione in modo tale che il costo di produzione totale sia minimo.

Vref=V(nCtLref(1-n)(Cttc+Ct))n

Velocità di taglio per il costo di produzione minimo dato il costo di cambio utensile

La Velocità di taglio per il costo di produzione minimo dato il costo di cambio utensile è un metodo per determinare la Velocità di taglio richiesta per operare su un pezzo in modo tale che il costo di produzione per un determinato lotto sia minimo.

V=Vref(nCtLref(1-n)(Cct+Ct))n

Velocità di autopulizia dato il rapporto di profondità medio idraulico

La Velocità di autopulizia, dato il rapporto di profondità idraulica media, è definita come la Velocità minima alla quale il fluido deve scorrere in una fognatura per impedire la deposizione di sedimenti e mantenere un percorso libero.

Vs=V(Nnp)(R)16

Velocità del flusso completo dato il rapporto di profondità media idraulica

La Velocità del flusso completo dato il rapporto di profondità medio idraulico è definita come la Velocità del flusso del fluido in una tubazione quando è completamente riempita, influenzata dalla pendenza e dalla rugosità della tubazione.

V=Vs(Nnp)(R)16

Velocità autopulente data la profondità media idraulica per il flusso completo

La Velocità di autopulizia data la profondità idraulica media per il flusso completo è definita come la Velocità minima alla quale il fluido deve scorrere in una fognatura per impedire la deposizione di sedimenti e mantenere un percorso libero.

Vs=V(Nnp)(rpfRrf)16

Velocità del flusso completo data la profondità media idraulica per il flusso completo

Velocità del flusso completo data la profondità idraulica media per il flusso completo è definita come la Velocità del flusso del fluido in una tubazione quando è completamente riempita, influenzata dalla pendenza e dalla rugosità della tubazione.

V=Vs(Nnp)(rpfRrf)16

Velocità critica data l'energia totale al punto critico

La formula Velocità critica data energia totale al punto critico è definita come la Velocità alla quale il flusso passa dall'essere subcritico a supercritico, considerando l'energia totale al punto critico.

Vc=2g(Ec-(dc+hf))

Velocità critica data la perdita di testa

La formula della Velocità critica data la perdita di carico è definita come la misura della Velocità alla quale il flusso passa da subcritico a supercritico. Nel flusso a canale aperto, la Velocità critica si verifica quando l'energia cinetica del flusso è uguale all'energia potenziale, considerando che si ha l'informazione a priori della perdita di carico.

Vc=(hf2g0.1)12

Velocità di taglio di riferimento data la Velocità di aumento della larghezza del terreno di usura

La Velocità di taglio di riferimento data dal tasso di aumento della larghezza del piano di usura nella lavorazione dei metalli si riferisce alla Velocità lineare desiderata del tagliente dell'utensile da taglio rispetto alla superficie del pezzo, impostata in considerazione della Velocità con cui la larghezza del piano di usura tocca il tagliente. l'utensile aumenta durante la lavorazione.

Vref=V(VrTrefw)n

Velocità di taglio data la Velocità di aumento della larghezza del terreno di usura

La Velocità di taglio, data dal tasso di aumento della larghezza del terreno di usura, denominato Velocità di taglio, è un parametro critico che influenza direttamente l'usura dell'utensile e le prestazioni di lavorazione. Il tasso di aumento della larghezza della superficie usurata, d'altro canto, descrive la rapidità con cui la larghezza della superficie usurata sull'utensile da taglio aumenta nel tempo durante il processo di lavorazione.

V=Vref(VrTrefw)n

Velocità del flusso nel serbatoio dell'olio

La Velocità del flusso nel serbatoio dell'olio è definita come la Velocità alla quale il fluido o l'olio nel serbatoio si muove a causa dell'applicazione della forza del pistone.

uOiltank=(dp|dr0.5RR-CHRμ)-(vpistonRCH)

Velocità del pistone data la Velocità del flusso nel serbatoio dell'olio

La Velocità del pistone data la Velocità del flusso nel serbatoio dell'olio è definita come la Velocità con cui il pistone sta scendendo rispetto alla distanza verticale.

vpiston=((0.5dp|drRR-CHRμ)-uOiltank)(CHR)

Velocità dei pistoni per caduta di pressione sulla lunghezza del pistone

La Velocità dei pistoni per la caduta di pressione sulla lunghezza del pistone è definita come la Velocità alla quale il pistone si sta abbassando.

vpiston=ΔPf(6μLPCR3)(0.5D+CR)

Velocità del pistone per la forza verticale verso l'alto sul pistone

La Velocità del pistone per la forza verticale verso l'alto sul pistone è definita come la Velocità media con cui l'olio o il pistone si muovono nel serbatoio.

vpiston=FvLPπμ(0.75((DCR)3)+1.5((DCR)2))

Velocità RMS data la pressione e il volume del gas in 1D

La Velocità RMS data la pressione e il volume del gas nella formula 1D è definita come la proporzione diretta della radice quadrata della Velocità media con la radice quadrata della pressione e del volume e la proporzione inversa della radice quadrata media con la radice quadrata della massa molare.

CRMS=PgasVMmolar

Velocità RMS data temperatura e massa molare in 1D

La Velocità RMS data la temperatura e la massa molare nella formula 1D è definita come rapporto tra la radice quadrata della temperatura del gas e la massa molare.

CRMS=[R]TgMmolar

Velocità di taglio di riferimento data la durata dell'utensile e la distanza percorsa dall'angolo dell'utensile

La Velocità di taglio di riferimento data la vita utensile e la distanza percorsa dall'angolo utensile è definita come la Velocità alla quale il pezzo si sposta rispetto all'utensile per la vita utensile di riferimento. (normalmente misurato in piedi al minuto).

Vc=((TTref)z)Ktm

Velocità superficiale del pezzo dall'analisi semiempirica di Lindsay

La Velocità superficiale del pezzo dall'analisi semiempirica di Lindsay è un metodo utilizzato per stimare la Velocità superficiale del pezzo nei processi di rettifica. In questa analisi, la Velocità superficiale del pezzo viene calcolata in base a vari parametri quali il diametro della mola, la Velocità di rotazione della mola e la profondità di taglio.

vw=(de0.14Vb0.47dg0.13Nhardness1.42Λt7.93100000(1vt)0.158(1+(4ad3f))f0.58vt)1000158

Velocità della superficie della ruota dall'analisi semiempirica di Lindsay

La Velocità della superficie della mola dalla formula di analisi semiempirica di Lindsay è definita come la Velocità della superficie della mola che viene utilizzata per la rettifica.

vt=(de0.14Vb0.47dg0.13Nhardness1.42Λt7.93100000(vw)0.158(1+(4ad3f))f0.58)11-0.158

Velocità reale dell'aereo (numero di Mach)

La vera Velocità del velivolo (numero di Mach) è definita come la Velocità relativa equivalente corretta per la temperatura e l'altitudine di pressione.

VTAS=cMTrue

Velocità del suono (numero di Mach)

La Velocità del suono (numero di Mach) è definita come il rapporto tra la Velocità equivalente dell'aeromobile e quella del vero numero di corrispondenza.

c=VTASMTrue

Velocità del veicolo per la forza di sollevamento fornita dal corpo alare del veicolo

La Velocità del veicolo per la forza di sollevamento fornita dal corpo alare del veicolo è definita come la Velocità con cui il veicolo si muove o viaggia.

V=(LAircraft0.5ρSCl)

Velocità di stallo del veicolo data il massimo coefficiente di sollevamento raggiungibile

La Velocità di stallo del veicolo data il coefficiente di sollevamento massimo raggiungibile è definita come la Velocità minima alla quale l'aeromobile deve volare per rimanere in quota.

V=2MAircraft[g]ρSCL,max

Velocità assoluta dell'impulso che si sposta verso destra

La formula Absolute Velocity of Surge Moving towards Right è definita come Velocità di picco indipendentemente da qualsiasi mezzo.

vabs=V1h 1-V2D2h 1-D2

Velocità in profondità data Velocità assoluta di picco in movimento verso destra

La Velocità in profondità data la formula della Velocità assoluta del movimento del moto verso destra è definita come la Velocità risultante delle particelle di fluido che tengono conto del movimento del moto.

VNegativesurges=(vabs(h 1-D2))+(V2D2)h 1

Velocità assoluta dell'impulso che si sposta verso destra nei picchi negativi

La formula della Velocità assoluta dei picchi che si muovono verso destra nei picchi negativi è definita come la Velocità di propagazione delle onde avverse verso destra.

vabs=V1+[g]D2(D2+h 1)2h 1

Velocità alla profondità 1 quando l'altezza del picco è trascurabile

La formula Velocità in profondità1 quando l'altezza del picco è trascurabile è definita come Velocità del picco di flusso in un punto.

VNegativesurges=(Hch[g]Cw)+V2

Come trovare Formule?

Ecco alcuni suggerimenti per risultati di ricerca migliori.
Sii specifico: più specifica è la tua query, migliori saranno i tuoi risultati.
Utilizza più parole chiave: combina più parole chiave parole chiave per restringere i risultati.
Sperimenta con i sinonimi: termini diversi possono produrre risultati diversi.
Ricerca con caratteri jolly: utilizza l'operatore * (asterisco). NOTA che questo operatore funziona solo alla fine di una parola. Esempio: Bio*, Area*, ecc.

In alternativa, puoi navigare tra le sottocategorie all'interno di per individuare le Formule di interesse.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!