Velocità finale del corpoLa formula della Velocità finale del corpo è definita come la Velocità che un oggetto raggiunge dopo un certo periodo di tempo, considerando la sua Velocità iniziale, l'accelerazione e il tempo, il che è essenziale per comprendere la cinematica del moto e descrivere il moto degli oggetti.
Velocità media del corpo data la Velocità iniziale e finaleLa Velocità media di un corpo, data la formula della Velocità iniziale e finale, è definita come una misura della Velocità media di variazione della posizione di un oggetto rispetto al tempo, fornendo una comprensione completa del movimento di un oggetto tra due punti.
Velocità angolare finale data Velocità angolare iniziale Accelerazione angolare e tempoVelocità angolare finale data la Velocità angolare iniziale. La formula dell'accelerazione angolare e del tempo è definita come una misura della Velocità di rotazione di un oggetto in un punto specifico nel tempo, tenendo conto della sua Velocità angolare iniziale, dell'accelerazione angolare e del tempo trascorso, fornendo una comprensione completa del moto rotatorio di un oggetto.
Velocità angolare data Velocità tangenzialeLa Velocità angolare data la formula della Velocità tangenziale è definita come una misura della Velocità di variazione dello spostamento angolare di un oggetto che si muove lungo un percorso circolare, fornendo un concetto fondamentale per comprendere il moto rotatorio e le sue applicazioni in vari campi della fisica e dell'ingegneria.
Velocità RMSLa Velocità RMS è la misura della Velocità delle particelle in un gas, definita come radice quadrata della Velocità media al quadrato delle molecole in un gas. ... La Velocità radice quadrata media tiene conto sia del peso molecolare che della temperatura, due fattori che influenzano direttamente l'energia cinetica di un materiale.
Velocità media dei gasLa Velocità media dei gas è una raccolta di particelle gassose a una data temperatura.Le Velocità medie dei gas sono spesso espresse come medie quadratiche medie.
Velocità più probabileLa Velocità più probabile è la Velocità nella parte superiore della curva di distribuzione di Maxwell-Boltzmann perché il maggior numero di molecole ha quella Velocità.
Velocità per la trasmissione della massima potenza tramite cinghiaLa formula della Velocità per la trasmissione della massima potenza tramite cinghia è definita come la Velocità massima di trasmissione della potenza di un sistema di trasmissione a cinghia, fondamentale nella progettazione e nell'ottimizzazione dei sistemi di trasmissione a cinghia per una trasmissione efficiente della potenza.
Velocità di rotazione in RPMLa Velocità di rotazione, espressa in RPM, è definita come una misura della Velocità di rotazione di un albero o di un altro elemento rotante, in genere in un sistema meccanico, che è fondamentale per determinare le prestazioni e l'efficienza del sistema.
Velocità angolare media di equilibrioLa formula della Velocità angolare media all'equilibrio è definita come una misura della Velocità angolare media di un albero rotante in un sistema meccanico, solitamente utilizzata nei meccanismi del regolatore per regolare la Velocità di un motore o di altri macchinari.
Velocità media di equilibrio in RPMLa Velocità media di equilibrio, espressa in RPM, è definita come la Velocità di rotazione media di un regolatore alla quale la forza centrifuga delle sfere bilancia esattamente il peso delle sfere, garantendo un funzionamento stabile del motore.
Velocità relativa di ingresso di PeltonLa Velocità relativa di ingresso di Pelton è la Velocità del getto d'acqua rispetto al secchio in movimento. Si determina sottraendo la Velocità della benna dalla Velocità assoluta del getto d'acqua.
Velocità della benna della turbina PeltonLa Velocità delle tazze della turbina Pelton si riferisce alla Velocità con cui le tazze della turbina si muovono quando vengono colpite dai getti d'acqua ad alta Velocità. Questa Velocità è tipicamente circa la metà della Velocità del getto d’acqua, ottimizzando il trasferimento di energia e l’efficienza della turbina.
Velocità relativa di uscita di PeltonLa Velocità relativa di uscita di Pelton è la Velocità dell'acqua quando esce dal secchio rispetto al secchio in movimento. È influenzato dalla forma della benna, dall'angolo di deflessione e dalla Velocità della benna.
Velocità della particella 1 data l'energia cineticaLa formula della Velocità della particella 1 data l'energia cinetica è un metodo per calcolare la Velocità di una particella quando conosciamo la Velocità di altre particelle e l'energia cinetica totale del sistema. Poiché l'energia cinetica totale è la somma dell'energia cinetica individuale di entrambe le particelle, ci rimane solo una variabile e risolvendo l'equazione otteniamo la Velocità richiesta.
Velocità della particella 2 data l'energia cineticaLa formula della Velocità della particella 2 data dall'energia cinetica è un metodo per calcolare la Velocità di una particella quando conosciamo la Velocità di un'altra particella e l'energia cinetica totale del sistema. L'energia cinetica è il lavoro necessario per accelerare un corpo di una data massa da fermo alla sua Velocità dichiarata. Poiché l'energia cinetica, KE, è una somma dell'energia cinetica per ciascuna massa, quindi abbiamo lasciato con una sola variabile e risolvendo l'equazione otteniamo la Velocità richiesta.
Velocità della particella 1La formula della Velocità della particella 1 è definita per mettere in relazione la Velocità con la frequenza di rotazione e il raggio. La Velocità lineare è il raggio moltiplicato per la Velocità angolare e inoltre la relazione della Velocità angolare con la frequenza (Velocità angolare = 2 * pi * frequenza). Quindi, secondo queste equazioni, la Velocità è 2 * pi volte il prodotto del raggio e della frequenza di rotazione.
Velocità della particella 2La formula della Velocità della particella 2 è definita per mettere in relazione la Velocità con la frequenza di rotazione e il raggio. La Velocità lineare è il raggio moltiplicato per la Velocità angolare e ulteriormente la relazione della Velocità angolare con la frequenza (Velocità angolare = 2*pi* frequenza). Quindi, in base a queste equazioni, la Velocità è 2 * pi per il prodotto del raggio e della frequenza di rotazione.
Velocità teoricaLa formula della Velocità teorica è definita dall'equazione di Bernoulli dal flusso attraverso un orifizio. H è la testa del liquido sopra il centro dell'orifizio.
Velocità risultante per due componenti di VelocitàLa Velocità risultante per due componenti di Velocità è nota dal flusso cinematico mentre si considerano le componenti di Velocità u e v nella relazione tra la funzione della corrente e la funzione del potenziale di Velocità.
Velocità del flusso libero data la potenza richiestaLa Velocità del flusso libero data la potenza richiesta si riferisce alla Velocità del fluido (come aria o acqua) a monte di un oggetto o all'interno di un campo di flusso indisturbato, è un parametro cruciale utilizzato per caratterizzare le condizioni di flusso che influenzano le prestazioni aerodinamiche dell'oggetto.
Velocità del flusso usando la formula di ManningLa Velocità del flusso utilizzando la formula di Manning è definita come la portata dell'acqua quando disponiamo di informazioni preliminari sul coefficiente di rugosità del materiale del tubo utilizzato, sulla perdita di energia dovuta ad esso e sul raggio idraulico.
Velocità del rullo data la produzione di compattazione da parte dell'attrezzatura di compattazioneLa Velocità del rullo data dalla formula Produzione di compattazione per attrezzatura di compattazione è definita come la Velocità alla quale le attrezzature di compattazione, come i rulli, operano durante il processo di compattazione. Velocità efficienti contribuiscono a una maggiore produttività nei progetti di costruzione, poiché l'attrezzatura può coprire più aree in meno tempo senza compromettere la qualità.
Velocità nella sezione 1-1 per ingrandimento improvvisoLa formula della Velocità nella sezione 1-1 per l'allargamento improvviso è nota considerando la Velocità del flusso nella sezione 2-2 dopo l'allargamento e la perdita di carico dovuta all'attrito per un liquido che scorre attraverso il tubo.
Velocità nella sezione 2-2 per l'allargamento improvvisoLa Velocità nella sezione 2-2 per la formula dell'allargamento improvviso è nota mentre si considera la Velocità del flusso nella sezione 1-1 prima dell'allargamento e la perdita di carico dovuta all'attrito per un liquido che scorre attraverso il tubo.
Velocità di rimozione del materiale durante l'operazione di perforazioneLa Velocità di rimozione del materiale durante l'operazione di foratura determina il volume di materiale rimosso dal pezzo per unità di tempo. È un parametro cruciale per valutare l'efficienza e la produttività della perforazione. L'MRR nella foratura dipende dal diametro della punta, dalla Velocità di avanzamento, dalla Velocità del mandrino, dalle proprietà del materiale, ecc.
Velocità teorica del flusso che scorreLa formula della Velocità teorica di un corso d'acqua è definita come la Velocità che l'acqua raggiungerebbe se non ci fossero perdite di energia dovute all'attrito o ad altre resistenze.
Velocità effettiva del flusso che scorreLa formula della Velocità effettiva del flusso del fiume è definita come il fatto che l'acqua si muove attraverso una sezione trasversale specifica del fiume.
Velocità iniziale della particella data la componente orizzontale della VelocitàVelocità iniziale di una particella data la componente orizzontale della Velocità. La formula è definita come una misura della Velocità iniziale di una particella in termini della sua componente orizzontale della Velocità e dell'angolo di proiezione, fornendo un concetto fondamentale per comprendere il moto delle particelle in fisica.
Velocità iniziale della particella data la componente verticale della VelocitàVelocità iniziale di una particella data la formula della componente verticale della Velocità è definita come una misura della Velocità iniziale di una particella in termini della sua componente verticale della Velocità e dell'angolo di proiezione, fornendo un concetto fondamentale per comprendere il moto delle particelle sotto l'azione della gravità.
Velocità iniziale della particella dato il tempo di volo del proiettileLa Velocità iniziale della particella data la formula del tempo di volo del proiettile è definita come la Velocità alla quale una particella viene proiettata dal suolo, calcolata considerando il tempo di volo, l'accelerazione dovuta alla gravità e l'angolo di proiezione, fornendo un parametro cruciale per comprendere il moto del proiettile.
Velocità iniziale data la portata orizzontale massima del proiettileLa formula della Velocità iniziale data la gittata orizzontale massima del proiettile è definita come una relazione matematica che determina la Velocità iniziale di un proiettile quando viene proiettato ad un angolo tale da raggiungere la sua gittata orizzontale massima, tenendo conto della forza gravitazionale che agisce sul proiettile.
Velocità del proiettile a una data altezza sopra il punto di proiezioneLa formula della Velocità del proiettile a una data altezza sopra il punto di proiezione è definita come la misura della Velocità di un proiettile a una determinata altezza sopra il punto di proiezione, tenendo conto della Velocità iniziale, dell'accelerazione dovuta alla gravità e dell'altezza sopra il punto di proiezione.
Velocità di dosaggio data la Velocità di rotazioneLa Velocità di dosaggio data dalla Velocità di rotazione è definita come la Velocità alla quale una sostanza o un materiale viene erogato o somministrato, determinata dalla Velocità di rotazione di un meccanismo di dosaggio.
Velocità all'uscita dell'ugello per la massima portata del fluidoLa Velocità all'uscita dell'ugello per la portata massima del fluido è fondamentale per determinare l'efficienza e le prestazioni dei sistemi fluidodinamici. È direttamente correlato al rapporto di pressione sull'ugello, alla densità del fluido e alle caratteristiche di progettazione dell'ugello, influenzando la portata e l'efficienza di propulsione in applicazioni come motori a razzo e sistemi di spruzzatura industriali. Comprendere e ottimizzare questa Velocità è essenziale per ottenere i risultati operativi desiderati nelle applicazioni ingegneristiche e tecnologiche.
Velocità uniforme dell'elettroneLa Velocità uniforme dell'elettrone si riferisce alla Velocità alla quale un elettrone entra nella cavità nel vuoto. Nel vuoto, un elettrone avrà una Velocità uniforme se sottoposto a un campo elettrico costante. La Velocità dell'elettrone dipenderà dalla forza del campo elettrico e dalla massa dell'elettrone.