Cerca Formule

Inserisci un minimo di 3 caratteri per iniziare con la ricerca delle formule .

Seleziona Filtra

Restringi i risultati della ricerca con l'aiuto di questi filtri.

50 Formule corrispondenti trovate!

Velocità di rotazione in RPM

La Velocità di rotazione, espressa in RPM, è definita come una misura della Velocità di rotazione di un albero o di un altro elemento rotante, in genere in un sistema meccanico, che è fondamentale per determinare le prestazioni e l'efficienza del sistema.

Nequillibrium=602πtan(φ)mball

Velocità della particella alfa utilizzando la distanza di avvicinamento più vicino

La Velocità della particella alfa utilizzando la distanza di avvicinamento più vicino è la Velocità con cui una particella alfa viaggia in un nucleo atomico.

v=[Coulomb]Z([Charge-e]2)[Atomic-m]r0

Velocità angolare media di equilibrio

La formula della Velocità angolare media all'equilibrio è definita come una misura della Velocità angolare media di un albero rotante in un sistema meccanico, solitamente utilizzata nei meccanismi del regolatore per regolare la Velocità di un motore o di altri macchinari.

ωequillibrium=ω1+ω22

Velocità media di equilibrio in RPM

La Velocità media di equilibrio, espressa in RPM, è definita come la Velocità di rotazione media di un regolatore alla quale la forza centrifuga delle sfere bilancia esattamente il peso delle sfere, garantendo un funzionamento stabile del motore.

Nequillibrium=N1+N22

Velocità del cedente per la camma tangente del cedente a rulli se il contatto è con fianchi diritti

La formula della Velocità del follower per camma tangente a rulli se il contatto è con fianchi dritti è definita come una misura della Velocità del follower in un sistema camma-follower in cui il contatto è con fianchi dritti, fornendo informazioni sulla cinematica del sistema e consentendo la progettazione di sistemi meccanici efficienti.

v=ω(r1+rroller)sin(θ)(cos(θ))2

Velocità massima del cedente per camma tangente con cedente a rullo

La formula della Velocità massima del follower per camma tangente con follower a rulli è definita come la Velocità massima alla quale il follower si muove in una camma tangente con un follower a rulli, il che è fondamentale nella progettazione e nell'ottimizzazione dei sistemi camma-follower per prestazioni meccaniche efficienti.

Vm=ω(r1+rr)sin(φ)cos(φ)2

Velocità assoluta di Pelton Jet

La Velocità assoluta del getto Pelton è la Velocità con cui l'acqua esce dall'ugello e colpisce le pale della turbina Pelton. Questa Velocità è fondamentale poiché influenza direttamente l'energia cinetica trasferita alle pale della turbina ed è tipicamente determinata dall'altezza e dalla pressione della fonte d'acqua che alimenta la turbina.

V1=Cv2[g]H

Velocità del cedente della camma tangente del cedente del rullo per il contatto con il naso

La formula della Velocità del follower della camma tangente del follower a rulli per il contatto con la punta è definita come la Velocità del follower in un sistema a camma e follower, che è un parametro critico per determinare le prestazioni e l'efficienza del sistema, in particolare quando il follower è a contatto con la punta della camma.

v=ωr(sin(θ1)+rsin(2θ1)2L2-r2(sin(θ1))2)

Velocità angolare data Momento angolare e Inerzia

La Velocità angolare data la formula del momento angolare e dell'inerzia è solo un riarrangiamento della formula del momento angolare (L=Iω). Il momento angolare è espresso come prodotto dell'inerzia e della Velocità angolare.

ω2=LI

Velocità del suono

La Velocità del suono è la Velocità con cui piccoli disturbi di pressione, o onde sonore, si propagano attraverso un mezzo. Rappresenta la Velocità con cui questi disturbi viaggiano attraverso il mezzo, trasferendo energia e informazioni.

a=γ[R-Dry-Air]Ts

Velocità del liquido in CC per Hc, Ha e H

La Velocità del liquido in CC per la formula Hc, Ha e H è considerata dalla relazione di flusso attraverso un boccaglio convergente-divergente.

Vi=29.81(Ha+Hc-HAP)

Velocità dell'aereo per una data potenza in eccesso

La Velocità dell'aereo per una data potenza in eccesso è la Velocità richiesta per mantenere un dato rateo di salita, considerando la potenza in eccesso disponibile e l'equilibrio tra forze di spinta e resistenza durante il volo in salita. Comprendere e applicare questa formula è fondamentale per piloti e ingegneri per ottimizzare le prestazioni in salita.

v=PexcessT-FD

Velocità di salita per una determinata potenza in eccesso

La Velocità di salita per una data potenza in eccesso è la Velocità verticale alla quale un aereo sale, determinata dalla potenza in eccesso disponibile. La potenza in eccesso rappresenta la potenza in eccesso disponibile oltre quella necessaria per mantenere il volo livellato.

RC=PexcessW

Velocità in qualsiasi punto per il coefficiente del tubo di Pitot

La Velocità in qualsiasi punto per il coefficiente della formula del tubo di Pitot è nota considerando l'aumento del liquido nel tubo sopra la superficie libera che è l'altezza del liquido nel bordo superiore del tubo di Pitot.

Vp=Cv29.81hp

Velocità davanti all'urto normale dall'equazione dell'energia dell'urto normale

La formula dell'equazione della Velocità rispetto allo shock normale derivante dall'energia di shock normale è definita come la funzione dell'entalpia totale e della Velocità a monte prima dello shock normale. L'entalpia utilizzata nella formula è l'entalpia per unità di massa.

V1=2(h2+V222-h1)

Velocità dietro lo shock normale dall'equazione dell'energia dello shock normale

La Velocità dietro lo shock normale dall'equazione dell'energia dello shock normale calcola la Velocità di un fluido a valle di un'onda d'urto normale utilizzando l'equazione dell'energia dello shock normale. Questa formula incorpora parametri come l'entalpia davanti e dietro l'urto e la Velocità a monte dell'urto. Fornisce informazioni essenziali sul cambiamento di Velocità derivante dal passaggio dell’onda d’urto.

V2=2(h1+V122-h2)

Velocità del motore del motore CC

La formula Motor Speed of DC Motor è definita come la Velocità del rotore del motore DC rispetto al n. di poli, percorsi paralleli e conduttori.

N=60n||EbZnΦ

Velocità di rotazione per forza di taglio nel cuscinetto portante

La Velocità di rotazione della forza di taglio nel cuscinetto portante è influenzata dalla forza di taglio sperimentata nel cuscinetto. Forze di taglio più elevate richiedono in genere regolazioni della Velocità per mantenere prestazioni ottimali dei cuscinetti e prevenire un'usura eccessiva.

N=Fstμπ2Ds2L

Velocità della sfera nel metodo di resistenza della sfera che cade

La formula del metodo di resistenza alla Velocità della sfera nella caduta della sfera è nota considerando la viscosità del fluido o dell'olio, il diametro della sfera e la forza di trascinamento.

U=FD3πμd

Velocità di virata per un dato carico alare

La Velocità di virata per un determinato carico alare si riferisce alla Velocità con cui un aereo può cambiare direzione o virare, generalmente viene misurata in gradi al secondo o radianti al secondo; combinando questi fattori, la formula si avvicina alla Velocità di virata, offrendo informazioni sulle capacità di manovra dell'aereo.

ω=[g](ρCLn2WS)

Velocità all'uscita per perdita di carico all'uscita del tubo

La formula della Velocità all'uscita per la perdita di carico all'uscita del tubo è nota considerando la radice quadrata della perdita di carico all'uscita del tubo e l'accelerazione gravitazionale.

v=ho2[g]

Velocità del fluido per perdita di carico a causa di un'ostruzione nel tubo

La Velocità del fluido per la perdita di carico dovuta all'ostruzione nella formula del tubo è nota considerando la perdita di carico, il coefficiente di contrazione, l'area del tubo e l'area massima dell'ostruzione.

Vf=Ho2[g](ACc(A-A'))-1

Velocità del liquido in vena-contracta

La formula della Velocità del liquido alla vena-contracta è nota considerando l'area del tubo e l'area massima di ostruzione nel tubo, il coefficiente di contrazione e la Velocità del fluido nel tubo.

Vc=AVfCc(A-A')

Velocità del fluido data la sollecitazione di taglio

La formula della Velocità del fluido data lo sforzo di taglio è definita in funzione dello sforzo di taglio, della viscosità dinamica e della distanza tra gli strati di fluido adiacenti.

V=Yτμ

Velocità radiale

La formula Radial Velocity è definita rispetto ad un dato punto è la Velocità di variazione della distanza tra l'oggetto e il punto.

vr=fdλ2

Velocità di taglio media

La Velocità di taglio media viene utilizzata per determinare la media temporale della Velocità di taglio con cui il materiale viene rimosso dal pezzo. Ci fornisce informazioni utili sul tempo stimato necessario per completare l'operazione di lavorazione.

Vt=nπdw+dm2

Velocità dell'onda sonora dato Bulk Modulus

La Velocità dell'onda sonora, dato il modulo di massa del mezzo, fornisce informazioni sulla Velocità con cui il suono viaggia attraverso quel materiale. Comprendere questa relazione è fondamentale nelle applicazioni di acustica, scienza dei materiali e ingegneria in cui la propagazione del suono e le proprietà meccaniche dei materiali sono considerazioni importanti.

C=Kρa

Velocità dell'onda sonora utilizzando il processo isotermico

La Velocità delle onde sonore utilizzando il processo isotermico fornisce informazioni su come la temperatura e le proprietà fisiche dei gas influiscono sulla Velocità con cui viaggia il suono, consentendo calcoli precisi e decisioni progettuali informate in acustica, aerodinamica e varie applicazioni tecnologiche.

C=Rc

Velocità dell'onda sonora utilizzando il processo adiabatico

La Velocità dell'onda sonora utilizzando il processo adiabatico dipende dall'indice adiabatico (rapporto tra i calori specifici), dalla costante universale del gas, dalla temperatura assoluta del gas e dalla massa molare del gas.

C=yRc

Velocità dell'onda sonora dato il numero di Mach per il flusso di fluido comprimibile

La Velocità dell'onda sonora, dato il numero di Mach per il flusso di fluido comprimibile, indica la Velocità con cui il suono si propaga attraverso il mezzo rispetto alla Velocità del suono in quel mezzo. Questa relazione è fondamentale in aerodinamica, ingegneria aerospaziale e acustica, dove il numero di Mach caratterizza il regime del flusso e influenza il comportamento delle onde d'urto e la trasmissione del suono.

C=VM

Velocità media del flusso del fluido

La Velocità media del flusso del fluido è definita come la Velocità media del flusso che scorre nel tubo misurata per l'intera lunghezza.

Vmean=(18μ)dp|drR2

Velocità media del flusso data la Velocità massima sull'asse dell'elemento cilindrico

La Velocità media del flusso, data la Velocità massima sull'asse dell'elemento cilindrico, è definita come la Velocità media del fluido che scorre attraverso una data area della sezione trasversale in un periodo di tempo specifico.

Vmean=0.5Vmax

Velocità massima all'asse dell'elemento cilindrico data la Velocità media del flusso

La Velocità massima sull'asse dell'elemento cilindrico, data la formula della Velocità media del flusso, è definita come flusso laminare attraverso un tubo circolare, il profilo di Velocità è parabolico e la Velocità massima al centro del tubo è il doppio della Velocità media.

Vmax=2Vmean

Velocità media del flusso data la caduta di pressione sulla lunghezza del tubo

La Velocità media del flusso data la caduta di pressione sulla lunghezza del tubo è definita come Velocità media del flusso nel tubo.

Vmean=ΔP32μLpDpipe2

Velocità finale in caduta libera sotto gravità dati la Velocità iniziale e il tempo

La formula della Velocità finale in caduta libera sotto l'azione della gravità, dati la Velocità iniziale e il tempo, è definita come la Velocità che un oggetto raggiunge sotto la sola influenza della gravità, considerando la Velocità iniziale e il tempo di caduta, fornendo un concetto fondamentale per comprendere il moto di caduta libera.

vf=u+[g]t

Velocità finale in caduta libera sotto gravità dati la Velocità iniziale e lo spostamento

Velocità finale in caduta libera sotto l'azione della gravità, dati la Velocità iniziale e la formula dello spostamento, è definita come una misura della Velocità raggiunta da un oggetto mentre cade liberamente sotto la sola influenza della gravità, considerando la Velocità iniziale e lo spostamento dell'oggetto dalla sua posizione iniziale.

vf=u2+2[g]d

Velocità media del flusso data la perdita di carico sulla lunghezza del tubo

La Velocità media del flusso data la perdita di carico sulla lunghezza del tubo è definita come Velocità media del flusso nel tubo.

Vmean=h32μLpγfDpipe2

Velocità di flusso di Chezy's Formula

La Velocità di flusso secondo la formula di Chezy è definita come la Velocità del flusso dell'acqua in un canale aperto, calcolata utilizzando la costante di Chezy e la pendenza idraulica.

Vc=CScm

Velocità di flusso secondo la formula di Manning

La Velocità di flusso, secondo la formula di Manning, è definita come la Velocità alla quale il fluido si muove attraverso un canale o una conduttura, solitamente misurata in metri al secondo (m/s) o piedi al secondo (ft/s).

Vm=(1n)(m)23s

Velocità del flusso di Crimp e Burge's Formula

La Velocità di flusso, secondo la formula di Crimp e Burge, è definita come la Velocità alla quale il fluido si muove attraverso un canale o una tubazione, solitamente misurata in metri al secondo (m/s) o piedi al secondo (ft/s).

Vcb=83.5(m)23s

Velocità di flusso dalla Formula di William Hazen

La Velocità di flusso, secondo la formula di William Hazen, è definita come la Velocità alla quale il fluido si muove attraverso un canale o una conduttura, solitamente misurata in metri al secondo (m/s) o piedi al secondo (ft/s).

Vwh=0.85CH(m)0.63(s)0.54

Velocità apparente di infiltrazione

La formula della Velocità apparente di infiltrazione è definita come la portata dell'acqua attraverso un mezzo poroso. È definita dalla legge di Darcy ed è calcolata come la portata volumetrica per unità di superficie del mezzo. La progettazione di strutture idrauliche come dighe, argini e strutture di ricarica delle acque sotterranee richiede la conoscenza delle Velocità di infiltrazione per garantire stabilità e prevenire guasti dovuti a infiltrazioni o tubazioni incontrollate.

V=K''dhds

Velocità apparente di infiltrazione quando si considerano la portata e l'area della sezione trasversale

La formula della Velocità apparente di infiltrazione quando si considerano la portata e l'area della sezione trasversale è definita come la Velocità con cui le acque sotterranee sembrano muoversi attraverso una data area della sezione trasversale del terreno o della roccia. Comprendere le Velocità di infiltrazione è fondamentale nella progettazione di dighe, argini e altre strutture idrauliche per garantire stabilità e prevenire cedimenti dovuti a infiltrazioni eccessive.

V=Q'A

Velocità apparente di infiltrazione data Reynolds Number of Value Unity

La Velocità apparente di infiltrazione data la formula del numero di unità di valore di Reynolds è definita come la portata volumetrica del fluido per unità di area attraverso un mezzo poroso. È una Velocità concettuale che presuppone che il fluido si muova uniformemente attraverso l'intera area della sezione trasversale del mezzo poroso.

V=Reνstokesda

Velocità di salita minima data la superficie della vasca di scrematura

La formula della Velocità di salita minima data l'area superficiale del serbatoio di schiumatura viene sfidata come la Velocità minima alla quale particelle o contaminanti (come oli e grassi) salgono sulla superficie dell'acqua. Si tratta di un parametro cruciale per la progettazione e il funzionamento dei serbatoi di scrematura, che vengono utilizzati per rimuovere i materiali galleggianti dalle acque reflue.

Vr=0.00622qflowSA

Velocità di flusso dell'acqua che entra nel serbatoio

La formula della Velocità del flusso dell'acqua in entrata nel serbatoio è definita come il valore della Velocità con cui un fluido si muove all'interno di un serbatoio, tipicamente calcolato in base alle dimensioni del serbatoio e alla portata del fluido.

vw=(QwDt)

Velocità di flusso dell'acqua che entra nel serbatoio data l'area della sezione trasversale del serbatoio

La Velocità del flusso dell'acqua che entra nel serbatoio data la formula dell'area della sezione trasversale del serbatoio è definita come il valore della Velocità con cui un fluido si muove all'interno di un serbatoio, tipicamente calcolato in base all'area della sezione trasversale del serbatoio.

vin=QAcs

Velocità di flusso data la lunghezza del serbatoio

La formula Velocità di flusso data la lunghezza del serbatoio è definita come la Velocità alla quale un fluido si muove attraverso un serbatoio, generalmente calcolata in base alle dimensioni del serbatoio e alla portata del fluido.

Vf=(vsLd)

Velocità di assestamento data la lunghezza del serbatoio

La formula della Velocità di sedimentazione data la lunghezza del serbatoio è definita come la Velocità alla quale le particelle si depositano in un fluido quiescente. È una misura della Velocità con cui le particelle cadono sul fondo di un serbatoio o di un altro bacino di decantazione, considerando la lunghezza del serbatoio.

vs=VfdL

Velocità di assestamento data lo scarico

La formula della Velocità di sedimentazione data scarico è definita come il valore della Velocità alla quale le particelle in una sospensione si depositano fuori dall'acqua sotto l'influenza della gravità, che è essenziale per progettare e analizzare i processi di sedimentazione.

vs=(QswL)

Come trovare Formule?

Ecco alcuni suggerimenti per risultati di ricerca migliori.
Sii specifico: più specifica è la tua query, migliori saranno i tuoi risultati.
Utilizza più parole chiave: combina più parole chiave parole chiave per restringere i risultati.
Sperimenta con i sinonimi: termini diversi possono produrre risultati diversi.
Ricerca con caratteri jolly: utilizza l'operatore * (asterisco). NOTA che questo operatore funziona solo alla fine di una parola. Esempio: Bio*, Area*, ecc.

In alternativa, puoi navigare tra le sottocategorie all'interno di per individuare le Formule di interesse.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!