Cerca Formule

Inserisci un minimo di 3 caratteri per iniziare con la ricerca delle formule .

Seleziona Filtra

Restringi i risultati della ricerca con l'aiuto di questi filtri.

50 Formule corrispondenti trovate!

Velocità angolare data la Velocità in RPM

La Velocità angolare espressa in RPM è definita come una misura della Velocità di variazione dello spostamento angolare rispetto al tempo, descrivendo il moto rotatorio di un oggetto, particolarmente utile nel contesto della cinetica del moto.

ω=2πNA60

Velocità della puleggia di guida

La formula della Velocità della puleggia guida è definita come una misura della Velocità di rotazione della puleggia guida in un sistema meccanico, che è fondamentale per determinare il moto del sistema, in particolare nel contesto della cinetica del moto, dove la Velocità della puleggia guida influisce sulle prestazioni e l'efficienza complessive del sistema.

NP=NDdd1

Velocità finale dei corpi A e B dopo l'urto anelastico

La formula della Velocità finale dei corpi A e B dopo una collisione anelastica è definita come la Velocità di due o più oggetti dopo la collisione e la fusione in un unico oggetto, dove la quantità di moto totale prima della collisione è uguale alla quantità di moto totale dopo la collisione.

v=m1u1+m2u2m1+m2

Velocità dell'oggetto in movimento circolare

La formula della Velocità dell'oggetto nel movimento circolare è definita come la Velocità con cui un oggetto si muove lungo un percorso circolare, influenzato dal raggio del cerchio e dalla frequenza di rotazione, fornendo un concetto fondamentale per comprendere il movimento circolare e le sue applicazioni in fisica e ingegneria .

V=2πrf

Velocità dell'inseguitore dopo il tempo t per il movimento cicloidale

La Velocità del follower dopo il tempo t per la formula del moto cicloidale è definita come la misura della Velocità del follower in un sistema a camma e follower, che subisce un moto cicloidale, descrivendo il moto del follower mentre ruota e si trasla lungo un percorso circolare.

v=ωSθo(1-cos(2πθrotationθo))

Velocità massima del follower durante la corsa di uscita per il movimento cicloidale

La formula della Velocità massima del follower durante la fase di uscita per il moto cicloidale è definita come la Velocità più elevata raggiunta dal follower durante la fase di uscita del moto cicloidale, un concetto fondamentale nei sistemi meccanici e nella cinematica, in particolare nella progettazione e nell'analisi dei collegamenti meccanici e dei sistemi a camme.

Vm=2ωSθo

Velocità massima dell'inseguitore durante la corsa di ritorno per il movimento cicloidale

La formula della Velocità massima del follower durante la corsa di ritorno per il moto cicloidale è definita come la Velocità più elevata raggiunta dal follower durante la sua corsa di ritorno in un moto cicloidale, un concetto fondamentale nei sistemi meccanici e nella cinematica, essenziale per la progettazione e l'ottimizzazione dei componenti meccanici.

Vm=2ωSθR

Velocità di flusso o scarico

La formula della Velocità di flusso o di scarico è definita come la quantità di fluido che scorre al secondo attraverso una sezione di tubo o un canale.

Q=Acsvavg

Velocità di stagnazione del suono

La formula della Velocità di stagnazione del suono è definita come radice quadrata del prodotto dell'indice adiabatico, della costante universale dei gas e della temperatura di stagnazione.

ao=γ[R]T0

Velocità di stagnazione del suono dato il calore specifico a pressione costante

La formula della Velocità di stagnazione del suono dato il calore specifico a pressione costante è definita come la radice quadrata del prodotto dell'indice adiabatico sottratto dall'unità, il calore specifico a pressione costante e la temperatura di stagnazione.

ao=(γ-1)CpT0

Velocità di ristagno del suono data l'entalpia di ristagno

La Velocità di stagnazione del suono data la formula dell'entalpia di stagnazione è definita come la radice quadrata del prodotto dell'indice adiabatico sottratto dall'unità e dall'entalpia di stagnazione.

ao=(γ-1)h0

Velocità per un dato raggio di sterzata

La Velocità per un dato raggio di sterzata è una misura della Velocità di un oggetto mentre gira su un percorso circolare, in base al raggio di sterzata, all'accelerazione gravitazionale e al fattore di carico.

V=R[g](n2-1)

Velocità di svolta

La Velocità di virata è una misura della Velocità angolare di un aereo durante una virata, calcolata considerando la forza gravitazionale, il fattore di carico e la Velocità del volo in virata.

ω=[g]n2-1V

Velocità nella sezione 1-1 per ingrandimento improvviso

La formula della Velocità nella sezione 1-1 per l'allargamento improvviso è nota considerando la Velocità del flusso nella sezione 2-2 dopo l'allargamento e la perdita di carico dovuta all'attrito per un liquido che scorre attraverso il tubo.

V1'=V2'+he2[g]

Velocità nella sezione 2-2 per l'allargamento improvviso

La Velocità nella sezione 2-2 per la formula dell'allargamento improvviso è nota mentre si considera la Velocità del flusso nella sezione 1-1 prima dell'allargamento e la perdita di carico dovuta all'attrito per un liquido che scorre attraverso il tubo.

V2'=V1'-he2[g]

Velocità nella sezione 2-2 per contrazione improvvisa

La Velocità nella sezione 2-2 per la formula della contrazione improvvisa è nota considerando la perdita di testa dovuta alla contrazione improvvisa e il coefficiente di contrazione a cc.

V2'=hc2[g](1Cc)-1

Velocità radiale

La formula Radial Velocity è definita rispetto ad un dato punto è la Velocità di variazione della distanza tra l'oggetto e il punto.

vr=fdλ2

Velocità di taglio media

La Velocità di taglio media viene utilizzata per determinare la media temporale della Velocità di taglio con cui il materiale viene rimosso dal pezzo. Ci fornisce informazioni utili sul tempo stimato necessario per completare l'operazione di lavorazione.

Vt=nπdw+dm2

Velocità lungo l'asse di imbardata per un angolo di incidenza ridotto

La Velocità lungo l'asse di imbardata per un piccolo angolo di attacco è una misura della Velocità di cambiamento della posizione di un oggetto lungo l'asse di imbardata, rispetto al suo movimento dovuto a un piccolo angolo di attacco, viene calcolata moltiplicando la Velocità lungo l'asse di rollio per l'angolo di attacco in radianti, fornendo un parametro cruciale nell'aerodinamica e nella dinamica del volo.

w=uα

Velocità del flusso libero su lastra piana utilizzando il numero di Stanton

La Velocità del flusso libero su una piastra piana utilizzando la formula del numero di Stanton è definita come una misura della Velocità del fluido che si avvicina alla piastra piana in un caso di flusso viscoso, che è essenziale per comprendere le caratteristiche di trasferimento di calore e di flusso del fluido sulla piastra.

V=qwStρ(haw-hw)

Velocità lungo l'asse di rollio per un angolo di incidenza ridotto

La Velocità lungo l'asse di rollio per un angolo di attacco piccolo è una misura della Velocità di rotazione di un oggetto attorno al suo asse di rollio quando l'angolo di attacco è relativamente piccolo e viene calcolata dividendo la Velocità lungo il movimento di imbardata per l'angolo di attacco in radianti.

u=wα

Velocità lungo l'asse del beccheggio per un angolo di deriva laterale ridotto

La Velocità lungo l'asse di beccheggio per un piccolo angolo di scivolata è una misura della Velocità di un aereo o di un oggetto che si muove con un piccolo angolo di scivolata, essenziale per comprendere e prevedere la sua traiettoria e stabilità.

v=βu

Velocità lungo l'asse di rollio per un angolo di scivolata laterale ridotto

La Velocità lungo l'asse di rollio per un angolo di deriva piccolo è una misura della Velocità del velivolo nella direzione dell'asse di rollio quando l'angolo di deriva è piccolo, fornendo informazioni sulla stabilità e sulla reattività del velivolo durante il volo.

u=vβ

Velocità del flusso libero su piastra piana con condizioni di flusso libero

La formula della Velocità del flusso libero su una piastra piana con condizioni di flusso libero è definita come la Velocità del fluido che si avvicina a una piastra piana in un caso di flusso viscoso, che è un concetto fondamentale nella dinamica dei fluidi e nell'aerodinamica, utilizzato per analizzare il comportamento dei fluidi che scorrono su una superficie piana.

V=2(h0-h)

Velocità del flusso libero su piatto piano utilizzando la forza di trascinamento

La Velocità del flusso libero su una piastra piana utilizzando la formula della forza di resistenza è definita come la Velocità del fluido che si avvicina alla piastra piana, che è influenzata dalla forza di resistenza, dalla densità dell'aria, dall'area superficiale e dal coefficiente di resistenza, ed è un parametro essenziale per comprendere il flusso viscoso su una piastra piana.

V=FD0.5ρSCD

Velocità del flusso libero

La formula della Velocità del flusso libero è definita come la viscosità dinamica del fluido divisa per il prodotto del quadrato dell'emissività, della densità del flusso libero e del raggio del naso.

V=μviscosityε2ρrnose

Velocità media del gas data la temperatura

La formula della Velocità media del gas data la temperatura è definita come il rapporto tra la radice quadrata della temperatura e la massa molare del rispettivo gas.

Cav=8[R]TgπMmolar

Velocità media del gas data pressione e volume

La Velocità media del gas data la pressione e la formula del volume è definita come il rapporto tra la radice quadrata della pressione e del volume e la massa molare del rispettivo gas.

vavg_P_V=8PgasVπMmolar

Velocità media del gas data pressione e densità

La formula della Velocità media del gas data la pressione e la densità è definita come la radice quadrata del rapporto tra la pressione del gas e la densità del gas.

vavg_P_D=8Pgasπρgas

Velocità media del gas data la Velocità quadratica media della radice

La Velocità media del gas data la formula della Velocità quadratica media è definita come il prodotto della Velocità quadratica media con 0,9213. La Velocità media è la Velocità media di ogni molecola del gas.

vavg_RMS=(0.9213CRMS_speed)

Velocità RMS data la Velocità media

La formula RMS Velocity data Average Velocity è definita come il rapporto tra la Velocità media del gas e 0,9213.

CRMS=(Cav0.9213)

Velocità media del flusso data la Velocità del flusso senza gradiente di pressione

La Velocità media del flusso data la Velocità del flusso senza gradiente di pressione è definita come la Velocità media del fluido nel tubo.

Vmean=DR

Velocità media del flusso data la sollecitazione di taglio

La Velocità media del flusso dato lo sforzo di taglio è definita come la Velocità media che scorre attraverso il tubo nel flusso.

Vmean=(𝜏+dp|dr(0.5D-R))(Dμ)

Velocità media del flusso nella sezione

La formula della Velocità media del flusso in sezione è definita come la Velocità media nel canale con una pendenza del letto inclinata di un particolare angolo rispetto all'orizzontale.

Vmean=γfdh|dx(dsectionR-R2)μ

Velocità media usando la legge di Darcy

La Velocità media utilizzando la formula della legge di Darcy è definita come la Velocità media di un fluido o di un oggetto in un dato periodo di tempo o distanza che è direttamente proporzionale sia al gradiente idraulico che al coefficiente di permeabilità.

Vmean=kH

Velocità apparente di infiltrazione

La formula della Velocità apparente di infiltrazione è definita come la portata dell'acqua attraverso un mezzo poroso. È definita dalla legge di Darcy ed è calcolata come la portata volumetrica per unità di superficie del mezzo. La progettazione di strutture idrauliche come dighe, argini e strutture di ricarica delle acque sotterranee richiede la conoscenza delle Velocità di infiltrazione per garantire stabilità e prevenire guasti dovuti a infiltrazioni o tubazioni incontrollate.

V=K''dhds

Velocità apparente di infiltrazione quando si considerano la portata e l'area della sezione trasversale

La formula della Velocità apparente di infiltrazione quando si considerano la portata e l'area della sezione trasversale è definita come la Velocità con cui le acque sotterranee sembrano muoversi attraverso una data area della sezione trasversale del terreno o della roccia. Comprendere le Velocità di infiltrazione è fondamentale nella progettazione di dighe, argini e altre strutture idrauliche per garantire stabilità e prevenire cedimenti dovuti a infiltrazioni eccessive.

V=Q'A

Velocità apparente di infiltrazione data Reynolds Number of Value Unity

La Velocità apparente di infiltrazione data la formula del numero di unità di valore di Reynolds è definita come la portata volumetrica del fluido per unità di area attraverso un mezzo poroso. È una Velocità concettuale che presuppone che il fluido si muova uniformemente attraverso l'intera area della sezione trasversale del mezzo poroso.

V=Reνstokesda

Velocità del pistone per il movimento di resistenza alla forza di taglio del pistone

La Velocità del pistone per il movimento di resistenza alla forza di taglio del pistone è definita come la Velocità media con cui si muove il pistone.

vpiston=FsπμLP(1.5(DCR)2+4(DCR))

Velocità del fluido

La Velocità del fluido è definita come la Velocità alla quale il fluido o l'olio nel serbatoio si muove a causa dell'applicazione della forza del pistone.

uOiltank=dp|dr0.5RR-CHRμ

Velocità del pistone per la riduzione della pressione sulla lunghezza del pistone

La Velocità del pistone per la riduzione della pressione sulla lunghezza del pistone è definita come la Velocità alla quale il pistone si sta abbassando.

vpiston=ΔPf(3μLPCR3)(D)

Velocità del pistone data la sollecitazione di taglio

La Velocità del pistone data la sollecitazione di taglio è definita come la Velocità media nel serbatoio dovuta al movimento del pistone.

vpiston=𝜏1.5DμCHCH

Velocità data il fattore di Velocità

La Velocità data Il fattore di Velocità è la Velocità del treno che viene indicata come la Velocità con cui l'oggetto o il treno copre una distanza specifica. unità in km/h.

Vt=Fsf(18.2k)

Velocità usando la formula tedesca

La Velocità utilizzando la formula tedesca è definita come la Velocità del treno sulla pista. Generalmente la Velocità sarà inferiore a 100 km / h, per utilizzare questa equazione.

Vt=Fsf30000

Velocità per lavoro fatto se non c'è perdita di energia

La Velocità del lavoro svolto se non c'è perdita di energia è il tasso di cambiamento della sua posizione rispetto a un sistema di riferimento ed è una funzione del tempo.

vf=(w2Gwf)+v2

Velocità data l'efficienza del sistema

La Velocità data dall'efficienza del sistema è il tasso di variazione della sua posizione rispetto a un sistema di riferimento ed è una funzione del tempo.

vf=v1-η

Velocità in un punto data l'efficienza del sistema

La Velocità al punto data dall'efficienza del sistema è la Velocità di variazione della sua posizione rispetto a un sistema di riferimento ed è una funzione del tempo.

v=1-ηvf

Velocità lineare di Former

La Velocità lineare della formula di Former è definita come la misura della Velocità di variazione dello spostamento rispetto al tempo quando l'oggetto si muove lungo un percorso rettilineo.

v=dω2

Velocità angolare dell'ex

La formula della Velocità angolare di Former è definita come la Velocità di variazione dello spostamento angolare rispetto al tempo. è una misura della Velocità con cui un oggetto ruota o ruota attorno a un punto o asse.

ω=2vd

Velocità di fase o Velocità delle onde

La formula della Velocità di Fase o Celerità dell'Onda è definita come la Velocità con cui un'onda individuale avanza o “si propaga”. Per un'onda di acque profonde la celerità è direttamente proporzionale al periodo dell'onda.

C=λP

Come trovare Formule?

Ecco alcuni suggerimenti per risultati di ricerca migliori.
Sii specifico: più specifica è la tua query, migliori saranno i tuoi risultati.
Utilizza più parole chiave: combina più parole chiave parole chiave per restringere i risultati.
Sperimenta con i sinonimi: termini diversi possono produrre risultati diversi.
Ricerca con caratteri jolly: utilizza l'operatore * (asterisco). NOTA che questo operatore funziona solo alla fine di una parola. Esempio: Bio*, Area*, ecc.

In alternativa, puoi navigare tra le sottocategorie all'interno di per individuare le Formule di interesse.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!