Velocità di rotazione in RPMLa Velocità di rotazione, espressa in RPM, è definita come una misura della Velocità di rotazione di un albero o di un altro elemento rotante, in genere in un sistema meccanico, che è fondamentale per determinare le prestazioni e l'efficienza del sistema.
Velocità angolare media di equilibrioLa formula della Velocità angolare media all'equilibrio è definita come una misura della Velocità angolare media di un albero rotante in un sistema meccanico, solitamente utilizzata nei meccanismi del regolatore per regolare la Velocità di un motore o di altri macchinari.
Velocità media di equilibrio in RPMLa Velocità media di equilibrio, espressa in RPM, è definita come la Velocità di rotazione media di un regolatore alla quale la forza centrifuga delle sfere bilancia esattamente il peso delle sfere, garantendo un funzionamento stabile del motore.
Velocità relativa di ingresso di PeltonLa Velocità relativa di ingresso di Pelton è la Velocità del getto d'acqua rispetto al secchio in movimento. Si determina sottraendo la Velocità della benna dalla Velocità assoluta del getto d'acqua.
Velocità della benna della turbina PeltonLa Velocità delle tazze della turbina Pelton si riferisce alla Velocità con cui le tazze della turbina si muovono quando vengono colpite dai getti d'acqua ad alta Velocità. Questa Velocità è tipicamente circa la metà della Velocità del getto d’acqua, ottimizzando il trasferimento di energia e l’efficienza della turbina.
Velocità relativa di uscita di PeltonLa Velocità relativa di uscita di Pelton è la Velocità dell'acqua quando esce dal secchio rispetto al secchio in movimento. È influenzato dalla forma della benna, dall'angolo di deflessione e dalla Velocità della benna.
Velocità angolare di vibrazione usando la forza trasmessaLa Velocità angolare di vibrazione utilizzando la formula della forza trasmessa è definita come una misura della Velocità di rotazione di un oggetto che vibra a causa di una forza esterna, fornendo informazioni sul moto oscillatorio dell'oggetto in un sistema meccanico.
Velocità teoricaLa formula della Velocità teorica è definita dall'equazione di Bernoulli dal flusso attraverso un orifizio. H è la testa del liquido sopra il centro dell'orifizio.
Velocità risultante per due componenti di VelocitàLa Velocità risultante per due componenti di Velocità è nota dal flusso cinematico mentre si considerano le componenti di Velocità u e v nella relazione tra la funzione della corrente e la funzione del potenziale di Velocità.
Velocità del flusso libero data la potenza richiestaLa Velocità del flusso libero data la potenza richiesta si riferisce alla Velocità del fluido (come aria o acqua) a monte di un oggetto o all'interno di un campo di flusso indisturbato, è un parametro cruciale utilizzato per caratterizzare le condizioni di flusso che influenzano le prestazioni aerodinamiche dell'oggetto.
Velocità del flusso usando la formula di ManningLa Velocità del flusso utilizzando la formula di Manning è definita come la portata dell'acqua quando disponiamo di informazioni preliminari sul coefficiente di rugosità del materiale del tubo utilizzato, sulla perdita di energia dovuta ad esso e sul raggio idraulico.
Velocità di stagnazione del suonoLa formula della Velocità di stagnazione del suono è definita come radice quadrata del prodotto dell'indice adiabatico, della costante universale dei gas e della temperatura di stagnazione.
Velocità di punta della girante dato il diametro medioLa Velocità della punta della girante dato il diametro medio calcola la Velocità sulla punta della girante in base alla Velocità di rotazione della girante e al diametro medio. Questa formula ricava la Velocità massima utilizzando il diametro medio e la Velocità di rotazione, considerando la configurazione geometrica della girante.
Velocità minima per avviamento pompa centrifugaLa formula per la Velocità minima di avviamento di una pompa centrifuga è definita come la Velocità più bassa richiesta affinché una pompa centrifuga inizi a funzionare in modo efficiente, tenendo conto dei parametri della pompa quali efficienza del motore, portata dell'acqua e diametri della girante, per garantire un funzionamento di pompaggio regolare ed efficace.
Velocità di punta della girante dato il diametro del mozzoLa Velocità della punta della girante, dato il diametro del mozzo, calcola la Velocità sulla punta della girante in base alla Velocità di rotazione della girante e alle dimensioni geometriche. Questa formula ricava la Velocità della punta considerando il diametro della punta della girante, il diametro del mozzo e la Velocità di rotazione.
Velocità tangenziale dato rapporto di VelocitàLa formula del rapporto di Velocità dato Velocità tangenziale è definita come il prodotto del rapporto di Velocità e radice quadrata del doppio dell'accelerazione dovuta alla gravità e prevalenza manometrica.
Velocità del flusso dato il rapporto di flussoLa Velocità di flusso, data la formula del rapporto di portata, è definita come la Velocità del flusso del fluido all'uscita di una pompa centrifuga, che è un parametro critico per determinare le prestazioni e l'efficienza della pompa ed è influenzato da fattori quali il rapporto di portata, l'accelerazione gravitazionale e la progettazione geometrica della pompa.
Velocità teorica alla sezione 2 in Orifice MeterLa Velocità teorica nella Sezione 2 della formula del misuratore dell'orifizio è definita come la Velocità calcolata del flusso del fluido mentre passa attraverso l'orifizio stretto, determinata utilizzando l'equazione di Bernoulli e il principio di conservazione dell'energia.
Velocità teorica alla sezione 1 in Orifice MeterLa Velocità teorica nella Sezione 1 della formula del misuratore di portata è definita come la Velocità calcolata del flusso del fluido appena prima che entri nella piastra dell'orifizio, determinata in base alle proprietà del fluido e alla differenza di pressione attraverso l'orifizio e utilizzata per calcolare la portata attraverso il misuratore.
Velocità radiale per flusso di sorgenti incomprimibili 2-DLa formula della Velocità radiale per il flusso della sorgente incomprimibile 2-D afferma che la Velocità radiale in qualsiasi punto del campo di flusso è direttamente proporzionale all'intensità della sorgente e inversamente proporzionale alla distanza radiale dal punto della sorgente, ciò significa che la Velocità diminuisce man mano che si allontanarsi dalla fonte e la sua grandezza dipende dalla forza della fonte. Questa formula deriva dalla teoria del flusso potenziale, che è un modello semplificato utilizzato per descrivere il comportamento dei fluidi non viscosi e incomprimibili.
Velocità statica al punto di transizioneLa formula della Velocità statica nel punto di transizione è definita come la Velocità alla quale il flusso passa da laminare a turbolento, caratterizzando il comportamento dello strato limite su una piastra piana in un flusso viscoso e fornendo informazioni sulla dinamica dei fluidi e sui meccanismi di trasferimento del calore.
Velocità alla distanza radiale r2 data la coppia esercitata sul fluidoLa Velocità alla distanza radiale r2 data la coppia esercitata sul fluido è definita come la coppia influenza la Velocità angolare, porta a un corrispondente cambiamento nella Velocità del fluido, risultando in un valore specifico alla data distanza radiale.
Velocità di flusso di Chezy's FormulaLa Velocità di flusso secondo la formula di Chezy è definita come la Velocità del flusso dell'acqua in un canale aperto, calcolata utilizzando la costante di Chezy e la pendenza idraulica.
Velocità di flusso secondo la formula di ManningLa Velocità di flusso, secondo la formula di Manning, è definita come la Velocità alla quale il fluido si muove attraverso un canale o una conduttura, solitamente misurata in metri al secondo (m/s) o piedi al secondo (ft/s).
Velocità del flusso di Crimp e Burge's FormulaLa Velocità di flusso, secondo la formula di Crimp e Burge, è definita come la Velocità alla quale il fluido si muove attraverso un canale o una tubazione, solitamente misurata in metri al secondo (m/s) o piedi al secondo (ft/s).
Velocità di flusso dalla Formula di William HazenLa Velocità di flusso, secondo la formula di William Hazen, è definita come la Velocità alla quale il fluido si muove attraverso un canale o una conduttura, solitamente misurata in metri al secondo (m/s) o piedi al secondo (ft/s).
Velocità di rimozione del metallo durante la molaturaIl tasso di rimozione del metallo durante la rettifica si riferisce al volume di materiale rimosso per unità di tempo dal pezzo durante il processo di rettifica. È una misura fondamentale dell'efficienza e della produttività delle operazioni di rettifica. Valori MRR più elevati indicano Velocità di rimozione del materiale più elevate, che possono portare a tempi di lavorazione più brevi e a una maggiore produttività.
Velocità della superficie del pezzo dato il numero di giri del pezzoVelocità superficiale del pezzo in base al numero di giri del pezzo" indica la superficie del pezzo in movimento rispetto all'utensile di rettifica in base al numero di giri, al parametro di rimozione del pezzo, alla rigidità effettiva e alla larghezza del percorso di rettifica.
Velocità critica data la massima scaricaLa Velocità critica data la formula di scarica massima è definita come la Velocità alla quale il flusso passa da subcritico a supercritico. Nel flusso a canale aperto, la Velocità critica si verifica quando l'energia cinetica del flusso è uguale all'energia potenziale, considerando il flusso di scarico massimo.
Velocità di taglio istantaneaLa Velocità di taglio istantanea si riferisce alla Velocità lineare di un punto specifico sul tagliente dell'utensile da taglio mentre si impegna con il materiale del pezzo durante il processo di lavorazione. Rappresenta la Velocità con cui il tagliente si muove rispetto alla superficie del pezzo in un dato momento durante la lavorazione.