Cerca Formule

Inserisci un minimo di 3 caratteri per iniziare con la ricerca delle formule .

Seleziona Filtra

Restringi i risultati della ricerca con l'aiuto di questi filtri.

50 Formule corrispondenti trovate!

Velocità angolare data la Velocità in RPM

La Velocità angolare espressa in RPM è definita come una misura della Velocità di variazione dello spostamento angolare rispetto al tempo, descrivendo il moto rotatorio di un oggetto, particolarmente utile nel contesto della cinetica del moto.

ω=2πNA60

Velocità della puleggia di guida

La formula della Velocità della puleggia guida è definita come una misura della Velocità di rotazione della puleggia guida in un sistema meccanico, che è fondamentale per determinare il moto del sistema, in particolare nel contesto della cinetica del moto, dove la Velocità della puleggia guida influisce sulle prestazioni e l'efficienza complessive del sistema.

NP=NDdd1

Velocità finale dei corpi A e B dopo l'urto anelastico

La formula della Velocità finale dei corpi A e B dopo una collisione anelastica è definita come la Velocità di due o più oggetti dopo la collisione e la fusione in un unico oggetto, dove la quantità di moto totale prima della collisione è uguale alla quantità di moto totale dopo la collisione.

v=m1u1+m2u2m1+m2

Velocità dell'oggetto in movimento circolare

La formula della Velocità dell'oggetto nel movimento circolare è definita come la Velocità con cui un oggetto si muove lungo un percorso circolare, influenzato dal raggio del cerchio e dalla frequenza di rotazione, fornendo un concetto fondamentale per comprendere il movimento circolare e le sue applicazioni in fisica e ingegneria .

V=2πrf

Velocità massima dell'inseguitore durante la corsa di ritorno per un'accelerazione uniforme

La formula della Velocità massima del follower durante la corsa di ritorno per un'accelerazione uniforme è definita come la Velocità più elevata raggiunta dal follower durante la sua corsa di ritorno in un sistema meccanico con accelerazione uniforme, dove il follower si muove lungo un percorso circolare e la sua Velocità varia con lo spostamento angolare.

Vm=2SωθR

Velocità angolare della macchina DC utilizzando Kf

La Velocità angolare della macchina DC utilizzando la formula Kf è definita come il tasso di variazione dello spostamento angolare della macchina DC.

ωs=VaKfΦIa

Velocità angolare del generatore CC in serie data la coppia

La Velocità angolare del generatore CC in serie data la formula della coppia è definita come la Velocità angolare del generatore CC in serie quando viene fornita la potenza in ingresso.

ωs=Pinτ

Velocità media data la Velocità di attrito

La formula della Velocità media data dalla Velocità di attrito è definita come un metodo per mettere in relazione la Velocità media di un getto di liquido con la sua Velocità di attrito, fornendo informazioni sul comportamento e le prestazioni del fluido in varie applicazioni meccaniche. Questa relazione è fondamentale per ottimizzare la dinamica dei fluidi nei sistemi di ingegneria.

V=Vff8

Velocità critica o vorticosa in RPS

La Velocità critica o di rotazione nella formula RPS è definita come la Velocità alla quale un albero rotante inizia a vibrare violentemente a causa dello squilibrio dell'albero, che può portarne al guasto, ed è un parametro importante nella progettazione e nel funzionamento delle macchine rotanti.

ωc=0.4985δ

Velocità critica o vorticosa data la deflessione statica

La Velocità critica o di rotazione data la formula della deflessione statica è definita come la Velocità alla quale un albero rotante inizia a vibrare violentemente a causa del suo peso, facendolo girare o vibrare, ed è un parametro critico nella progettazione di macchine rotanti.

ωc=gδ

Velocità critica o vorticosa data la rigidità dell'albero

La formula della Velocità critica o di rotazione data la rigidità dell'albero è definita come una misura della Velocità di rotazione alla quale un albero inizia a vibrare violentemente, il che può portarne alla rottura, e dipende dalla rigidità dell'albero e dalla massa dell'elemento rotante.

ωc=Ssm

Velocità dell'aereo per una data potenza in eccesso

La Velocità dell'aereo per una data potenza in eccesso è la Velocità richiesta per mantenere un dato rateo di salita, considerando la potenza in eccesso disponibile e l'equilibrio tra forze di spinta e resistenza durante il volo in salita. Comprendere e applicare questa formula è fondamentale per piloti e ingegneri per ottimizzare le prestazioni in salita.

v=PexcessT-FD

Velocità di salita per una determinata potenza in eccesso

La Velocità di salita per una data potenza in eccesso è la Velocità verticale alla quale un aereo sale, determinata dalla potenza in eccesso disponibile. La potenza in eccesso rappresenta la potenza in eccesso disponibile oltre quella necessaria per mantenere il volo livellato.

RC=PexcessW

Velocità in qualsiasi punto per il coefficiente del tubo di Pitot

La Velocità in qualsiasi punto per il coefficiente della formula del tubo di Pitot è nota considerando l'aumento del liquido nel tubo sopra la superficie libera che è l'altezza del liquido nel bordo superiore del tubo di Pitot.

Vp=Cv29.81hp

Velocità davanti all'urto normale dall'equazione dell'energia dell'urto normale

La formula dell'equazione della Velocità rispetto allo shock normale derivante dall'energia di shock normale è definita come la funzione dell'entalpia totale e della Velocità a monte prima dello shock normale. L'entalpia utilizzata nella formula è l'entalpia per unità di massa.

V1=2(h2+V222-h1)

Velocità dietro lo shock normale dall'equazione dell'energia dello shock normale

La Velocità dietro lo shock normale dall'equazione dell'energia dello shock normale calcola la Velocità di un fluido a valle di un'onda d'urto normale utilizzando l'equazione dell'energia dello shock normale. Questa formula incorpora parametri come l'entalpia davanti e dietro l'urto e la Velocità a monte dell'urto. Fornisce informazioni essenziali sul cambiamento di Velocità derivante dal passaggio dell’onda d’urto.

V2=2(h1+V122-h2)

Velocità nella sezione 1-1 per ingrandimento improvviso

La formula della Velocità nella sezione 1-1 per l'allargamento improvviso è nota considerando la Velocità del flusso nella sezione 2-2 dopo l'allargamento e la perdita di carico dovuta all'attrito per un liquido che scorre attraverso il tubo.

V1'=V2'+he2[g]

Velocità nella sezione 2-2 per l'allargamento improvviso

La Velocità nella sezione 2-2 per la formula dell'allargamento improvviso è nota mentre si considera la Velocità del flusso nella sezione 1-1 prima dell'allargamento e la perdita di carico dovuta all'attrito per un liquido che scorre attraverso il tubo.

V2'=V1'-he2[g]

Velocità nella sezione 2-2 per contrazione improvvisa

La Velocità nella sezione 2-2 per la formula della contrazione improvvisa è nota considerando la perdita di testa dovuta alla contrazione improvvisa e il coefficiente di contrazione a cc.

V2'=hc2[g](1Cc)-1

Velocità di taglio risultante

La Velocità di taglio risultante è la Velocità risultante dalla Velocità dell'utensile primario e dalla Velocità di avanzamento simultanee, fornite all'utensile durante la lavorazione. In condizioni ideali, viene considerata uguale alla Velocità di taglio.

Vr=vccos((η))

Velocità di taglio data l'aumento medio della temperatura del materiale nella zona di taglio primaria

La Velocità di taglio data l'aumento della temperatura media del materiale sotto la zona di taglio primaria è definita come la Velocità (di solito in piedi al minuto) di un utensile quando sta tagliando il pezzo.

Vcut=(1-Γ)PsρwpCθavgacdcut

Velocità media del flusso del fluido

La Velocità media del flusso del fluido è definita come la Velocità media del flusso che scorre nel tubo misurata per l'intera lunghezza.

Vmean=(18μ)dp|drR2

Velocità media del flusso data la Velocità massima sull'asse dell'elemento cilindrico

La Velocità media del flusso, data la Velocità massima sull'asse dell'elemento cilindrico, è definita come la Velocità media del fluido che scorre attraverso una data area della sezione trasversale in un periodo di tempo specifico.

Vmean=0.5Vmax

Velocità massima all'asse dell'elemento cilindrico data la Velocità media del flusso

La Velocità massima sull'asse dell'elemento cilindrico, data la formula della Velocità media del flusso, è definita come flusso laminare attraverso un tubo circolare, il profilo di Velocità è parabolico e la Velocità massima al centro del tubo è il doppio della Velocità media.

Vmax=2Vmean

Velocità media del flusso data la caduta di pressione sulla lunghezza del tubo

La Velocità media del flusso data la caduta di pressione sulla lunghezza del tubo è definita come Velocità media del flusso nel tubo.

Vmean=ΔP32μLpDpipe2

Velocità finale in caduta libera sotto gravità dati la Velocità iniziale e il tempo

La formula della Velocità finale in caduta libera sotto l'azione della gravità, dati la Velocità iniziale e il tempo, è definita come la Velocità che un oggetto raggiunge sotto la sola influenza della gravità, considerando la Velocità iniziale e il tempo di caduta, fornendo un concetto fondamentale per comprendere il moto di caduta libera.

vf=u+[g]t

Velocità finale in caduta libera sotto gravità dati la Velocità iniziale e lo spostamento

Velocità finale in caduta libera sotto l'azione della gravità, dati la Velocità iniziale e la formula dello spostamento, è definita come una misura della Velocità raggiunta da un oggetto mentre cade liberamente sotto la sola influenza della gravità, considerando la Velocità iniziale e lo spostamento dell'oggetto dalla sua posizione iniziale.

vf=u2+2[g]d

Velocità media del flusso data la perdita di carico sulla lunghezza del tubo

La Velocità media del flusso data la perdita di carico sulla lunghezza del tubo è definita come Velocità media del flusso nel tubo.

Vmean=h32μLpγfDpipe2

Velocità media del flusso dato il fattore di attrito

La Velocità media del flusso data il fattore di attrito è definita come la Velocità media che scorre attraverso un'area della sezione del tubo.

Vmean=64μfρFluidDpipe

Velocità media del flusso data la sollecitazione di taglio e la densità

La Velocità media del flusso data la sollecitazione di taglio e la densità è definita come la Velocità media di un fluido sul tubo.

Vmean=8𝜏ρFluidf

Velocità di taglio

La formula della Velocità di taglio è definita come il rapporto tra lo sforzo di taglio e la densità, presa in modo radicale, e risulta essere la Velocità per dimensione.

Vshear=Vmeanf8

Velocità media del flusso data la Velocità di taglio

La Velocità media del flusso data la Velocità di taglio è definita come la Velocità media con cui il flusso avviene nel tubo.

Vmean=Vshearf8

Velocità media del flusso data la potenza totale richiesta

La formula della Velocità media del flusso data la potenza totale richiesta è definita come la Velocità media che scorre attraverso il tubo.

Vmean=PLpdp|drA

Velocità superficiale di Ergun dato il numero di Reynolds

La Velocità superficiale di Ergun data la formula del numero di Reynolds è definita come la portata volumetrica di quel fluido divisa per l'area della sezione trasversale.

Ub=Repbμ(1-)Deffρ

Velocità critica data l'energia totale al punto critico

La formula Velocità critica data energia totale al punto critico è definita come la Velocità alla quale il flusso passa dall'essere subcritico a supercritico, considerando l'energia totale al punto critico.

Vc=2g(Ec-(dc+hf))

Velocità critica data la perdita di testa

La formula della Velocità critica data la perdita di carico è definita come la misura della Velocità alla quale il flusso passa da subcritico a supercritico. Nel flusso a canale aperto, la Velocità critica si verifica quando l'energia cinetica del flusso è uguale all'energia potenziale, considerando che si ha l'informazione a priori della perdita di carico.

Vc=(hf2g0.1)12

Velocità di lavorazione e funzionamento data la Velocità ottimale del mandrino

La Velocità di lavorazione e funzionamento data la Velocità ottimale del mandrino è un metodo per determinare l'importo massimo che può essere speso per la lavorazione e il funzionamento quando le risorse da utilizzare sono strettamente limitate al costo di produzione minimo.

Ms=(Ct(Vref2πRoωs)1n(1+n1-n)(1-Rw1-Rwn+1n)Tref-tc)

Velocità ottimale del mandrino dato il costo di cambio utensile

La Velocità ottimale del mandrino in considerazione del costo di cambio utensile è fondamentale per ottenere processi di lavorazione dei metalli efficienti. I macchinisti spesso si affidano all'esperienza, ai dati empirici, alle raccomandazioni del produttore e alle simulazioni di lavorazione per determinare la Velocità ottimale del mandrino per applicazioni di lavorazione specifiche. Il monitoraggio e la regolazione continui della Velocità del mandrino durante tutto il processo di lavorazione aiutano a mantenere condizioni di taglio ottimali e a massimizzare le prestazioni di lavorazione.

ωs=(Vref2πRo)((1+n)CtTmax(1-Rw)(1-n)(Cct+Ct)(1-Rw1+nn))n

Velocità quadratica media della molecola di gas dati la pressione e il volume del gas in 1D

La Velocità quadratica media della molecola di gas data la pressione e il volume di gas nella formula 1D è definita come l'intero quadrato del quadrato medio della molecola di gas in 1D.

VRMS=PgasVNmoleculesm

Velocità di taglio di riferimento data per Velocità di taglio per il funzionamento a Velocità di taglio costante

La Velocità di taglio di riferimento data La Velocità di taglio per il funzionamento a Velocità di taglio costante è un metodo per determinare la Velocità di taglio per la condizione di riferimento quando si utilizza in una condizione di Velocità superficiale costante che implica il mantenimento di una Velocità di taglio costante (nota anche come Velocità di taglio) durante tutto il processo di lavorazione. Questo approccio garantisce condizioni di lavorazione stabili e tassi di rimozione del materiale costanti.

Vref=V(TrefLQ)n

Velocità di taglio per il funzionamento a Velocità di taglio costante

La Velocità di taglio per il funzionamento a Velocità di taglio costante si riferisce a un processo di lavorazione in cui la Velocità di taglio rimane costante durante l'intera operazione. Ciò è in contrasto con le operazioni a Velocità di taglio variabile in cui la Velocità di taglio può cambiare durante la lavorazione, come nelle strategie di lavorazione in rampa, profilatura o adattativa.

V=(TrefLQ)nVref

Velocità RMS data pressione e densità in 1D

La Velocità RMS data pressione e densità in 1D è definita come la proporzione diretta della radice quadrata della Velocità media con la radice quadrata della pressione e la proporzione inversa della radice quadrata media con la radice quadrata della massa molare.

CRMS=Pgasρgas

Velocità media del flusso per l'energia totale per unità di peso dell'acqua nella sezione del flusso

La Velocità media del flusso per l'energia totale per unità di peso dell'acqua nella sezione del flusso è definita come la Velocità media nel tubo o nel canale in ogni punto nella direzione del flusso.

Vmean=(Etotal-(df+y))2[g]

Velocità media del flusso data l'energia totale nella sezione del flusso prendendo la pendenza del letto come Datum

La Velocità media del flusso data l'energia totale nella sezione del flusso prendendo la pendenza del letto come formula di riferimento è definita come la Velocità media nel tubo o nel canale in tutti i punti nella direzione del flusso.

Vmean=(Etotal-(df))2[g]

Velocità media del flusso attraverso la sezione considerando la condizione di energia specifica minima

La Velocità media del flusso attraverso la sezione considerando la condizione di energia specifica minima è definita come Velocità media in qualsiasi punto del flusso.

Vmean=[g]dsection

Velocità media del flusso dato il numero di Froude

La Velocità media del flusso dato il numero di Froude è definita come la Velocità media in tutti i punti del percorso del flusso.

VFN=Frdsection[g]

Velocità per la forza esercitata sulla piastra nella direzione del flusso del getto

La Velocità per la forza esercitata sulla piastra nella direzione del flusso del getto è la Velocità di variazione della sua posizione rispetto a un sistema di riferimento ed è una funzione del tempo.

vjet=Fjet[g]γfAJet(1+cos(θt))

Velocità per la forza esercitata dal getto sulla paletta in direzione x

La Velocità della forza esercitata dal getto sulla paletta in direzione x è la Velocità di variazione della sua posizione rispetto a un sistema di riferimento ed è una funzione del tempo.

vjet=FxgγfAJet(cos(θ)+cos(∠D))

Velocità data dalla forza esercitata da Jet su Vane in direzione Y

La Velocità data dalla forza esercitata dal getto sulla banderuola nella direzione Y è definita come la Velocità di cambiamento della sua posizione rispetto a un sistema di riferimento ed è una funzione del tempo.

vjet=FygγfAJet((sin(θ))-sin(∠D))

Velocità delle onde in acque profonde

La Deepwater Wave Celerity è la Velocità con cui una singola onda avanza o “si propaga”. Onda in acque profonde la celerità è direttamente proporzionale al periodo dell'onda, T.

Co=λoT

Come trovare Formule?

Ecco alcuni suggerimenti per risultati di ricerca migliori.
Sii specifico: più specifica è la tua query, migliori saranno i tuoi risultati.
Utilizza più parole chiave: combina più parole chiave parole chiave per restringere i risultati.
Sperimenta con i sinonimi: termini diversi possono produrre risultati diversi.
Ricerca con caratteri jolly: utilizza l'operatore * (asterisco). NOTA che questo operatore funziona solo alla fine di una parola. Esempio: Bio*, Area*, ecc.

In alternativa, puoi navigare tra le sottocategorie all'interno di per individuare le Formule di interesse.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!