Cerca Formule

Inserisci un minimo di 3 caratteri per iniziare con la ricerca delle formule .

Seleziona Filtra

Restringi i risultati della ricerca con l'aiuto di questi filtri.

50 Formule corrispondenti trovate!

Velocità angolare

La formula della Velocità angolare è definita come una misura della Velocità con cui un oggetto ruota o ruota rispetto a un altro punto, tipicamente misurata in radianti al secondo, ed è un concetto fondamentale in fisica e ingegneria, utilizzato per descrivere il movimento rotatorio di oggetti, come le ruote , ingranaggi e corpi celesti.

ω=θttotal

Velocità media

La formula della Velocità media è definita come una misura della distanza totale percorsa da un oggetto in un dato periodo di tempo, fornendo una comprensione completa del movimento e della Velocità di un oggetto, è un concetto fondamentale in fisica, ampiamente utilizzato per calcolare la Velocità degli oggetti in vari campi, tra cui trasporti, sport e ingegneria.

vavg=Dttotal

Velocità spaziale del reattore

La Velocità spaziale del reattore ci fornisce il numero di volumi del reattore che possono essere trattati per unità di tempo.

sReactor=voVreactor

Velocità terminale

La Velocità terminale è la Velocità massima raggiungibile da un oggetto mentre cade attraverso un fluido (l'aria è l'esempio più comune).

Vterminal=29r2(𝜌1-ρ2)gμviscosity

Velocità di taglio data la Velocità angolare

Velocità di taglio data La Velocità angolare è definita come la Velocità con cui il lavoro si muove rispetto all'utensile (normalmente misurata in piedi al minuto).

Vcutting=πdω

Velocità periferica di proiezione del punto P sul diametro per SHM del follower

La Velocità periferica della proiezione del punto P sul diametro per la formula SHM del follower è definita come la Velocità alla quale il punto P si muove lungo il diametro del cerchio nel moto armonico semplice del follower in un sistema a camma e follower, che è fondamentale per comprendere la cinematica del meccanismo.

Ps=πS2to

Velocità periferica di proiezione del punto P' (proiezione del punto P su Dia) per SHM del follower

La Velocità periferica della proiezione del punto P' (proiezione del punto P sul diametro) per la formula SHM del follower è definita come la Velocità alla quale la proiezione di un punto sul diametro di una camma si muove durante il moto armonico semplice del follower in un sistema di camma e follower.

Ps=πSω2θo

Velocità massima dell'inseguitore durante la corsa in uscita quando l'inseguitore si muove con SHM

La Velocità massima del follower in uscita quando il follower si muove con la formula SHM è definita come la Velocità più elevata raggiunta dal follower durante il suo movimento verso l'esterno, che è un parametro critico nella valutazione delle prestazioni di un sistema meccanico che coinvolge il moto armonico semplice.

Vm=πSω2θo

Velocità massima del follower nella corsa in uscita dato il tempo della corsa

Velocità massima del follower in fase di uscita dato il tempo La formula della corsa è definita come la Velocità più elevata raggiunta dal follower durante la fase di uscita di un sistema camma-follower, che è un parametro critico nella progettazione e nell'ottimizzazione dei sistemi meccanici, in particolare nelle applicazioni di ingegneria automobilistica e aerospaziale.

Vm=πS2to

Velocità massima dell'inseguitore nella corsa di ritorno quando l'inseguitore si muove con SHM

La Velocità massima del follower nella corsa di ritorno quando il follower si muove con la formula SHM è definita come la Velocità più elevata raggiunta dal follower durante la sua corsa di ritorno mentre si muove con moto armonico semplice, che è un parametro critico nella progettazione e nell'ottimizzazione dei sistemi meccanici.

Vm=πSω2θR

Velocità della particella 1 data l'energia cinetica

La formula della Velocità della particella 1 data l'energia cinetica è un metodo per calcolare la Velocità di una particella quando conosciamo la Velocità di altre particelle e l'energia cinetica totale del sistema. Poiché l'energia cinetica totale è la somma dell'energia cinetica individuale di entrambe le particelle, ci rimane solo una variabile e risolvendo l'equazione otteniamo la Velocità richiesta.

v1=(2KE)-(m2v22)m1

Velocità della particella 2 data l'energia cinetica

La formula della Velocità della particella 2 data dall'energia cinetica è un metodo per calcolare la Velocità di una particella quando conosciamo la Velocità di un'altra particella e l'energia cinetica totale del sistema. L'energia cinetica è il lavoro necessario per accelerare un corpo di una data massa da fermo alla sua Velocità dichiarata. Poiché l'energia cinetica, KE, è una somma dell'energia cinetica per ciascuna massa, quindi abbiamo lasciato con una sola variabile e risolvendo l'equazione otteniamo la Velocità richiesta.

v2=(2KE)-(m1v12)m2

Velocità della particella 1

La formula della Velocità della particella 1 è definita per mettere in relazione la Velocità con la frequenza di rotazione e il raggio. La Velocità lineare è il raggio moltiplicato per la Velocità angolare e inoltre la relazione della Velocità angolare con la frequenza (Velocità angolare = 2 * pi * frequenza). Quindi, secondo queste equazioni, la Velocità è 2 * pi volte il prodotto del raggio e della frequenza di rotazione.

vp1=2πR1νrot

Velocità della particella 2

La formula della Velocità della particella 2 è definita per mettere in relazione la Velocità con la frequenza di rotazione e il raggio. La Velocità lineare è il raggio moltiplicato per la Velocità angolare e ulteriormente la relazione della Velocità angolare con la frequenza (Velocità angolare = 2*pi* frequenza). Quindi, in base a queste equazioni, la Velocità è 2 * pi per il prodotto del raggio e della frequenza di rotazione.

v2=2πR2νrot

Velocità di flusso o scarico

La formula della Velocità di flusso o di scarico è definita come la quantità di fluido che scorre al secondo attraverso una sezione di tubo o un canale.

Q=Acsvavg

Velocità davanti allo shock normale secondo l'equazione del momento dello shock normale

L'equazione della Velocità in anticipo rispetto allo shock normale in base al momento dello shock normale calcola la Velocità di un fluido prima di un'onda d'urto normale utilizzando l'equazione del momento dello shock normale. Questa formula considera parametri quali le pressioni statiche davanti e dietro l'urto, la densità dietro l'urto e la Velocità a valle dell'urto. Fornisce informazioni cruciali sulla Velocità del fluido prima di incontrare l'onda d'urto, aiutando nell'analisi del comportamento del flusso comprimibile.

V1=P2-P1+ρ2V22ρ1

Velocità a monte utilizzando la relazione Prandtl

La Velocità a monte utilizzando la relazione Prandtl calcola la Velocità di un fluido a monte di un'onda d'urto normale in base alla relazione Prandtl. Questa formula utilizza la Velocità critica del suono e la Velocità a valle del fluido per determinare la Velocità a monte. Fornisce informazioni sulle condizioni del flusso a monte dell'onda d'urto, aiutando nell'analisi dei fenomeni di flusso comprimibile.

V1=acr2V2

Velocità critica del suono dalla relazione Prandtl

La Velocità critica del suono dalla formula della relazione di Prandtl è definita come la radice quadrata del prodotto delle Velocità a monte e a valle attraverso lo shock normale.

acr=V2V1

Velocità del pistone durante l'estensione

La formula della Velocità del pistone durante l'estensione è definita come la Velocità di movimento di un pistone in un attuatore o motore idraulico, che è un parametro fondamentale per determinare le prestazioni e l'efficienza del sistema ed è influenzato dalla portata e dall'area del pistone.

vpiston=QextAp

Velocità del pistone durante la retrazione

La formula della Velocità del pistone durante la retrazione è definita come la Velocità di movimento di un pistone durante la fase di retrazione in un sistema idraulico, che è fondamentale per determinare le prestazioni e l'efficienza complessive degli attuatori e dei motori idraulici.

vpiston=QretAp-Ar

Velocità specifica della pompa

La formula della Velocità specifica della pompa è definita come una grandezza adimensionale che caratterizza le prestazioni di una pompa, fornendo un modo per classificare e confrontare diverse pompe in base alle loro caratteristiche operative, come Velocità di rotazione, portata e prevalenza, consentendo una progettazione e una selezione efficienti delle pompe per varie applicazioni.

Ns=ωQHm34

Velocità specifica della turbina

La formula della Velocità specifica della turbina è definita come un indice utilizzato per prevedere le prestazioni desiderate della pompa o della turbina. cioè prevede la forma generale della girante di una pompa.

Ns=NPHeff54

Velocità unitaria della turbomacchina

La Velocità unitaria della turbomacchina è la Velocità alla quale la macchina funziona quando il flusso, la prevalenza e la potenza vengono ridotti ai corrispondenti valori unitari adimensionali, tipicamente utilizzati per confrontare macchine diverse indipendentemente dalle dimensioni. Aiuta a normalizzare le caratteristiche prestazionali ed è fondamentale nelle leggi di similarità e nei modelli di scala per le turbomacchine.

Nu=NHeff

Velocità di touchdown

La Touchdown Velocity è la Velocità alla quale un aereo atterra. Questa formula calcola la Velocità di atterraggio in base al peso dell'aereo, alla densità del flusso libero, all'area di riferimento e al coefficiente di portanza massimo. Comprendere e applicare questa formula è essenziale per piloti e ingegneri per garantire atterraggi sicuri e controllati, ottimizzando le prestazioni di avvicinamento e atterraggio.

VT=1.3(2WρSCL,max)

Velocità angolare data la Velocità specifica della pompa

La formula della Velocità angolare data la Velocità specifica della pompa è definita come una misura della Velocità di rotazione di una pompa, che è un parametro critico nella progettazione e nel funzionamento della pompa, che caratterizza la capacità della pompa di trasferire energia al fluido pompato.

ω=Ns(Hm34)Q

Velocità di touchdown per una data Velocità di stallo

Velocità di touchdown per una determinata Velocità di stallo è una misura della Velocità massima che un aereo può avere durante l'atterraggio, calcolata moltiplicando la Velocità di stallo per un fattore di sicurezza di 1,3 per garantire un touchdown stabile e controllato.

VT=1.3Vstall

Velocità angolare della turbina data la Velocità specifica

La Velocità angolare della turbina data la formula della Velocità specifica è definita come la Velocità di variazione dello spostamento angolare della turbina.

N=NsHeff54P

Velocità di stallo per una data Velocità di touchdown

La Velocità di stallo per una data Velocità di touchdown è la Velocità alla quale l'aereo non è più in grado di mantenere la portanza ed entrerà in una condizione di stallo, questa equazione che hai fornito sembra stimare la Velocità di stallo di un aereo durante l'atterraggio dividendo la Velocità di touchdown per un fattore di 1.3.

Vstall=VT1.3

Velocità nella sezione 1-1 per ingrandimento improvviso

La formula della Velocità nella sezione 1-1 per l'allargamento improvviso è nota considerando la Velocità del flusso nella sezione 2-2 dopo l'allargamento e la perdita di carico dovuta all'attrito per un liquido che scorre attraverso il tubo.

V1'=V2'+he2[g]

Velocità nella sezione 2-2 per l'allargamento improvviso

La Velocità nella sezione 2-2 per la formula dell'allargamento improvviso è nota mentre si considera la Velocità del flusso nella sezione 1-1 prima dell'allargamento e la perdita di carico dovuta all'attrito per un liquido che scorre attraverso il tubo.

V2'=V1'-he2[g]

Velocità nella sezione 2-2 per contrazione improvvisa

La Velocità nella sezione 2-2 per la formula della contrazione improvvisa è nota considerando la perdita di testa dovuta alla contrazione improvvisa e il coefficiente di contrazione a cc.

V2'=hc2[g](1Cc)-1

Velocità teorica alla sezione 2 in Orifice Meter

La Velocità teorica nella Sezione 2 della formula del misuratore dell'orifizio è definita come la Velocità calcolata del flusso del fluido mentre passa attraverso l'orifizio stretto, determinata utilizzando l'equazione di Bernoulli e il principio di conservazione dell'energia.

Vp2=2[g]hventuri+V12

Velocità teorica alla sezione 1 in Orifice Meter

La Velocità teorica nella Sezione 1 della formula del misuratore di portata è definita come la Velocità calcolata del flusso del fluido appena prima che entri nella piastra dell'orifizio, determinata in base alle proprietà del fluido e alla differenza di pressione attraverso l'orifizio e utilizzata per calcolare la portata attraverso il misuratore.

V1=(Vp22)-(2[g]hventuri)

Velocità effettiva data la Velocità teorica nella sezione 2

La Velocità effettiva data la Velocità teorica nella formula della Sezione 2 è definita come Velocità misurata per il valore effettivo.

v=CvVp2

Velocità di taglio utilizzando il tasso di consumo energetico durante la lavorazione

La Velocità di taglio utilizzando il consumo di energia durante la lavorazione è definita come la Velocità alla quale il pezzo si muove rispetto all'utensile (normalmente misurata in piedi al minuto).

Vcut=PmFc

Velocità effettiva nella sezione 2 dato il coefficiente di contrazione

La Velocità effettiva alla Sezione 2, data la formula del coefficiente di contrazione, è definita come Velocità misurata attraverso un misuratore ad orifizio.

v=Cv2[g]hventuri+(Vp2CcaoAi)2

Velocità di avanzamento per l'operazione di tornitura in base al tempo di lavorazione

La Velocità di avanzamento per l'operazione di tornitura in base al tempo di lavorazione è assente per determinare l'avanzamento massimo che può essere fornito su un pezzo in modo da completare un'operazione di tornitura in un determinato tempo.

fr=Lcuttmω

Velocità nel punto del profilo alare per un dato coefficiente di pressione e Velocità di flusso libero

La Velocità in un punto sul profilo alare per un dato coefficiente di pressione e la formula della Velocità del flusso libero è il prodotto della Velocità del flusso libero nella radice quadrata di uno meno il coefficiente di pressione nel flusso incomprimibile.

V=u2(1-Cp)

Velocità radiale per flusso di sorgenti incomprimibili 2-D

La formula della Velocità radiale per il flusso della sorgente incomprimibile 2-D afferma che la Velocità radiale in qualsiasi punto del campo di flusso è direttamente proporzionale all'intensità della sorgente e inversamente proporzionale alla distanza radiale dal punto della sorgente, ciò significa che la Velocità diminuisce man mano che si allontanarsi dalla fonte e la sua grandezza dipende dalla forza della fonte. Questa formula deriva dalla teoria del flusso potenziale, che è un modello semplificato utilizzato per descrivere il comportamento dei fluidi non viscosi e incomprimibili.

Vr=Λ2πr

Velocità dell'onda sonora dato Bulk Modulus

La Velocità dell'onda sonora, dato il modulo di massa del mezzo, fornisce informazioni sulla Velocità con cui il suono viaggia attraverso quel materiale. Comprendere questa relazione è fondamentale nelle applicazioni di acustica, scienza dei materiali e ingegneria in cui la propagazione del suono e le proprietà meccaniche dei materiali sono considerazioni importanti.

C=Kρa

Velocità dell'onda sonora utilizzando il processo isotermico

La Velocità delle onde sonore utilizzando il processo isotermico fornisce informazioni su come la temperatura e le proprietà fisiche dei gas influiscono sulla Velocità con cui viaggia il suono, consentendo calcoli precisi e decisioni progettuali informate in acustica, aerodinamica e varie applicazioni tecnologiche.

C=Rc

Velocità dell'onda sonora utilizzando il processo adiabatico

La Velocità dell'onda sonora utilizzando il processo adiabatico dipende dall'indice adiabatico (rapporto tra i calori specifici), dalla costante universale del gas, dalla temperatura assoluta del gas e dalla massa molare del gas.

C=yRc

Velocità dell'onda sonora dato il numero di Mach per il flusso di fluido comprimibile

La Velocità dell'onda sonora, dato il numero di Mach per il flusso di fluido comprimibile, indica la Velocità con cui il suono si propaga attraverso il mezzo rispetto alla Velocità del suono in quel mezzo. Questa relazione è fondamentale in aerodinamica, ingegneria aerospaziale e acustica, dove il numero di Mach caratterizza il regime del flusso e influenza il comportamento delle onde d'urto e la trasmissione del suono.

C=VM

Velocità media del flusso del fluido

La Velocità media del flusso del fluido è definita come la Velocità media del flusso che scorre nel tubo misurata per l'intera lunghezza.

Vmean=(18μ)dp|drR2

Velocità media del flusso data la Velocità massima sull'asse dell'elemento cilindrico

La Velocità media del flusso, data la Velocità massima sull'asse dell'elemento cilindrico, è definita come la Velocità media del fluido che scorre attraverso una data area della sezione trasversale in un periodo di tempo specifico.

Vmean=0.5Vmax

Velocità massima all'asse dell'elemento cilindrico data la Velocità media del flusso

La Velocità massima sull'asse dell'elemento cilindrico, data la formula della Velocità media del flusso, è definita come flusso laminare attraverso un tubo circolare, il profilo di Velocità è parabolico e la Velocità massima al centro del tubo è il doppio della Velocità media.

Vmax=2Vmean

Velocità media del flusso data la caduta di pressione sulla lunghezza del tubo

La Velocità media del flusso data la caduta di pressione sulla lunghezza del tubo è definita come Velocità media del flusso nel tubo.

Vmean=ΔP32μLpDpipe2

Velocità finale in caduta libera sotto gravità dati la Velocità iniziale e il tempo

La formula della Velocità finale in caduta libera sotto l'azione della gravità, dati la Velocità iniziale e il tempo, è definita come la Velocità che un oggetto raggiunge sotto la sola influenza della gravità, considerando la Velocità iniziale e il tempo di caduta, fornendo un concetto fondamentale per comprendere il moto di caduta libera.

vf=u+[g]t

Velocità finale in caduta libera sotto gravità dati la Velocità iniziale e lo spostamento

Velocità finale in caduta libera sotto l'azione della gravità, dati la Velocità iniziale e la formula dello spostamento, è definita come una misura della Velocità raggiunta da un oggetto mentre cade liberamente sotto la sola influenza della gravità, considerando la Velocità iniziale e lo spostamento dell'oggetto dalla sua posizione iniziale.

vf=u2+2[g]d

Velocità media del flusso data la perdita di carico sulla lunghezza del tubo

La Velocità media del flusso data la perdita di carico sulla lunghezza del tubo è definita come Velocità media del flusso nel tubo.

Vmean=h32μLpγfDpipe2

Come trovare Formule?

Ecco alcuni suggerimenti per risultati di ricerca migliori.
Sii specifico: più specifica è la tua query, migliori saranno i tuoi risultati.
Utilizza più parole chiave: combina più parole chiave parole chiave per restringere i risultati.
Sperimenta con i sinonimi: termini diversi possono produrre risultati diversi.
Ricerca con caratteri jolly: utilizza l'operatore * (asterisco). NOTA che questo operatore funziona solo alla fine di una parola. Esempio: Bio*, Area*, ecc.

In alternativa, puoi navigare tra le sottocategorie all'interno di per individuare le Formule di interesse.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!