Cerca Formule

Inserisci un minimo di 3 caratteri per iniziare con la ricerca delle formule .

Seleziona Filtra

Restringi i risultati della ricerca con l'aiuto di questi filtri.

50 Formule corrispondenti trovate!

Velocità angolare data la Velocità in RPM

La Velocità angolare espressa in RPM è definita come una misura della Velocità di variazione dello spostamento angolare rispetto al tempo, descrivendo il moto rotatorio di un oggetto, particolarmente utile nel contesto della cinetica del moto.

ω=2πNA60

Velocità della puleggia di guida

La formula della Velocità della puleggia guida è definita come una misura della Velocità di rotazione della puleggia guida in un sistema meccanico, che è fondamentale per determinare il moto del sistema, in particolare nel contesto della cinetica del moto, dove la Velocità della puleggia guida influisce sulle prestazioni e l'efficienza complessive del sistema.

NP=NDdd1

Velocità finale dei corpi A e B dopo l'urto anelastico

La formula della Velocità finale dei corpi A e B dopo una collisione anelastica è definita come la Velocità di due o più oggetti dopo la collisione e la fusione in un unico oggetto, dove la quantità di moto totale prima della collisione è uguale alla quantità di moto totale dopo la collisione.

v=m1u1+m2u2m1+m2

Velocità dell'oggetto in movimento circolare

La formula della Velocità dell'oggetto nel movimento circolare è definita come la Velocità con cui un oggetto si muove lungo un percorso circolare, influenzato dal raggio del cerchio e dalla frequenza di rotazione, fornendo un concetto fondamentale per comprendere il movimento circolare e le sue applicazioni in fisica e ingegneria .

V=2πrf

Velocità massima dell'inseguitore durante la corsa di ritorno per un'accelerazione uniforme

La formula della Velocità massima del follower durante la corsa di ritorno per un'accelerazione uniforme è definita come la Velocità più elevata raggiunta dal follower durante la sua corsa di ritorno in un sistema meccanico con accelerazione uniforme, dove il follower si muove lungo un percorso circolare e la sua Velocità varia con lo spostamento angolare.

Vm=2SωθR

Velocità angolare della macchina DC utilizzando Kf

La Velocità angolare della macchina DC utilizzando la formula Kf è definita come il tasso di variazione dello spostamento angolare della macchina DC.

ωs=VaKfΦIa

Velocità angolare del generatore CC in serie data la coppia

La Velocità angolare del generatore CC in serie data la formula della coppia è definita come la Velocità angolare del generatore CC in serie quando viene fornita la potenza in ingresso.

ωs=Pinτ

Velocità media data la Velocità di attrito

La formula della Velocità media data dalla Velocità di attrito è definita come un metodo per mettere in relazione la Velocità media di un getto di liquido con la sua Velocità di attrito, fornendo informazioni sul comportamento e le prestazioni del fluido in varie applicazioni meccaniche. Questa relazione è fondamentale per ottimizzare la dinamica dei fluidi nei sistemi di ingegneria.

V=Vff8

Velocità critica o vorticosa in RPS

La Velocità critica o di rotazione nella formula RPS è definita come la Velocità alla quale un albero rotante inizia a vibrare violentemente a causa dello squilibrio dell'albero, che può portarne al guasto, ed è un parametro importante nella progettazione e nel funzionamento delle macchine rotanti.

ωc=0.4985δ

Velocità critica o vorticosa data la deflessione statica

La Velocità critica o di rotazione data la formula della deflessione statica è definita come la Velocità alla quale un albero rotante inizia a vibrare violentemente a causa del suo peso, facendolo girare o vibrare, ed è un parametro critico nella progettazione di macchine rotanti.

ωc=gδ

Velocità critica o vorticosa data la rigidità dell'albero

La formula della Velocità critica o di rotazione data la rigidità dell'albero è definita come una misura della Velocità di rotazione alla quale un albero inizia a vibrare violentemente, il che può portarne alla rottura, e dipende dalla rigidità dell'albero e dalla massa dell'elemento rotante.

ωc=Ssm

Velocità nel volo accelerato

La Velocità nel volo accelerato si riferisce alla Velocità dell'aereo mentre subisce cambiamenti di Velocità o direzione per raggiungere obiettivi di volo specifici. Viene generalmente misurata come Velocità dell'aereo, che è la Velocità dell'aereo rispetto all'aria circostante.

v=(Rcurvaturem(FL+Tsin(σT)-m[g]cos(γ)))12

Velocità di scarico ideale data la caduta di entalpia

La Velocità di scarico ideale data la formula della caduta entalpica è definita come la Velocità dei gas che si espandono perfettamente nell'ugello.

Cideal=2Δhnozzle

Velocità del getto data la caduta di temperatura

La Velocità del getto data la formula della caduta di temperatura è definita come la radice quadrata di 2 volte il prodotto del calore specifico a pressione e caduta di temperatura costanti.

Cideal=2CpΔT

Velocità del flusso libero data la forza di trascinamento totale

La Velocità del flusso libero data dalla forza di trascinamento totale rappresenta la Velocità del fluido a monte di un oggetto o all'interno di un campo di flusso indisturbato, è uguale al rapporto tra la potenza richiesta e la forza di trascinamento totale di un aereo.

V=PFD

Velocità a qualsiasi raggio dato il raggio del tubo e Velocità massima

Velocità a qualsiasi raggio dato il raggio del tubo e la Velocità massima è correlata alla Velocità massima e al raggio del tubo. La distribuzione della Velocità varia tipicamente con il raggio, spesso seguendo un profilo specifico a seconda delle condizioni del flusso.

V=Vm(1-(rpdo2)2)

Velocità massima su qualsiasi raggio utilizzando Velocity

Velocità massima a qualsiasi raggio utilizzando la Velocità a qualsiasi raggio in un sistema rotante si verifica quando la forza centripeta è bilanciata dalla forza massima che può essere applicata.

Vm=V1-(rpdo2)2

Velocità periferica della lama all'uscita corrispondente al diametro

La Velocità periferica della lama all'uscita corrispondente alla formula del diametro è definita come π per il prodotto della Velocità del rotore e del diametro, diviso per 60.

u2=πDeN60

Velocità periferica della lama all'ingresso corrispondente al diametro

La Velocità periferica della lama all'ingresso corrispondente alla formula del diametro è definita come π per il prodotto della Velocità del rotore e del diametro, diviso per 60.

u1=πDiN60

Velocità delle vibrazioni causate dall'esplosione

La Velocità delle vibrazioni causate dall'esplosione è definita come la Velocità di variazione dello spostamento nel lavoro di vibrazione.

V=(λvf)

Velocità delle particelle disturbate dalle vibrazioni

La formula Velocità delle particelle disturbate dalle vibrazioni è definita come la Velocità delle particelle influenzate dalle vibrazioni, che esprime la Velocità e la direzione del loro movimento in risposta al disturbo.

v=(2πfA)

Velocità della particella uno a distanza dall'esplosione

La Velocità della particella uno a distanza dall'esplosione è definita come la Velocità di una particella dal punto dell'esplosione a una distanza specifica.

v1=v2(D2D1)1.5

Velocità della particella due a distanza dall'esplosione

La Velocità della particella due a distanza dall'esplosione è definita come la Velocità di variazione dello spostamento della particella.

v2=v1(D1D2)1.5

Velocità tangenziale per un flusso senza sollevamento su un cilindro circolare

La Velocità tangenziale per il flusso senza sollevamento sulla formula del cilindro circolare è una funzione della coordinata radiale, della Velocità del flusso libero, del raggio del cilindro e dell'angolo polare.

Vθ=-(1+(Rr)2)Vsin(θ)

Velocità radiale per flusso senza sollevamento su cilindro circolare

La formula della Velocità radiale per flusso senza sollevamento su un cilindro circolare è definita come la funzione della Velocità radiale, la distanza radiale dall'origine, l'angolo polare e la Velocità del flusso libero.

Vr=(1-(Rr)2)Vcos(θ)

Velocità tangenziale per flusso a vortice 2-D

La formula della Velocità tangenziale per il flusso del vortice 2-D è definita come la funzione della forza del flusso del vortice e della distanza radiale del punto dall'origine, rappresenta la componente di Velocità nella direzione circonferenziale attorno al centro del vortice.

Vθ=-γ2πr

Velocità radiale per il flusso di sollevamento su un cilindro circolare

La formula della Velocità radiale per il sollevamento del flusso su un cilindro circolare è definita come la funzione della forza del vortice, della distanza radiale, dell'angolo polare e del raggio del cilindro.

Vr=(1-(Rr)2)Vcos(θ)

Velocità tangenziale per il flusso di sollevamento su un cilindro circolare

La formula della Velocità tangenziale per il sollevamento del flusso su un cilindro circolare è una funzione della coordinata radiale, della Velocità del flusso libero, del raggio del cilindro, della forza del vortice e dell'angolo polare.

Vθ=-(1+(Rr)2)Vsin(θ)-Γ2πr

Velocità di pianificazione

La formula Schedule Speed è definita come il rapporto tra la distanza percorsa tra due fermate e il tempo totale della corsa compreso il tempo per la fermata (orario programmato).

Vs=DTrun+Tstop

Velocità del flusso nella posizione dello strumento

La formula della Velocità del flusso nella posizione dello strumento è definita come la Velocità dell'acqua nel corso d'acqua, ed è maggiore nel mezzo del corso d'acqua vicino alla superficie ed è più lenta lungo il letto del corso d'acqua e le sponde a causa dell'attrito.

v=aNs+b

Velocità di dosaggio data la Velocità di rotazione

La Velocità di dosaggio data dalla Velocità di rotazione è definita come la Velocità alla quale una sostanza o un materiale viene erogato o somministrato, determinata dalla Velocità di rotazione di un meccanismo di dosaggio.

DR=1.6QTNn

Velocità in qualsiasi punto nell'elemento cilindrico

La Velocità in qualsiasi punto della formula dell'elemento cilindrico è definita come la Velocità con cui il fluido entra nel tubo formando un profilo parabolico.

vFluid=-(14μ)dp|dr((R2)-(dradial2))

Velocità all'uscita dell'ugello per la massima portata del fluido

La Velocità all'uscita dell'ugello per la portata massima del fluido è fondamentale per determinare l'efficienza e le prestazioni dei sistemi fluidodinamici. È direttamente correlato al rapporto di pressione sull'ugello, alla densità del fluido e alle caratteristiche di progettazione dell'ugello, influenzando la portata e l'efficienza di propulsione in applicazioni come motori a razzo e sistemi di spruzzatura industriali. Comprendere e ottimizzare questa Velocità è essenziale per ottenere i risultati operativi desiderati nelle applicazioni ingegneristiche e tecnologiche.

Vf=2yP1(y+1)ρa

Velocità di scarico in base al tempo di flusso del canale

La formula della Velocità dello scarico in base al tempo di flusso del canale è definita come la Velocità dell'acqua che scorre attraverso lo scarico.

V=LTm/f

Velocità del flusso libero dato il coefficiente di attrito locale

La Velocità del flusso libero, data la formula del coefficiente di attrito locale, è definita come la Velocità di un fluido quando si trova lontano da un confine o da una parete, senza essere influenzata dalla presenza della parete, ed è un parametro fondamentale per comprendere il comportamento del flusso di fluido su una piastra piana.

u=2τwρCfx

Velocità più probabile del gas data la temperatura

La formula della Velocità più probabile del gas data la temperatura è definita come il rapporto tra la radice quadrata della temperatura e la massa molare.

CT=2[R]TgMmolar

Velocità più probabile del gas dati pressione e volume

La Velocità più probabile del gas data la pressione e la formula del volume è definita come il rapporto tra la radice quadrata della pressione e del volume e la massa molare del particolare gas.

CP_V=2PgasVMmolar

Velocità più probabile del gas data la pressione e la densità

La Velocità più probabile del gas data la pressione e la formula della densità è definita come il rapporto tra la radice quadrata della pressione e la densità del rispettivo gas.

CP_D=2Pgasρgas

Velocità più probabile del gas data la Velocità RMS

La Velocità più probabile del gas data la formula della Velocità RMS è definita come il prodotto della Velocità quadratica media del gas con 0,8166.

Cmp_RMS=(0.8166CRMS)

Velocità RMS data la Velocità più probabile

La formula RMS Velocity data Most Probable Velocity è definita come il rapporto tra la Velocità più probabile della molecola gassosa e la costante numerica di 0,8166.

CRMS=(Cmp0.8166)

Velocità assoluta per la massa del piatto d'urto del fluido

La Velocità assoluta per la massa del piatto d'impatto del fluido può essere definita come Velocità lineare uniforme comune di vari componenti di un sistema fisico, relativa allo spazio assoluto.

Vabsolute=(mfGγfAJet)+v

Velocità assoluta per la spinta dinamica esercitata dal getto sulla piastra

La Velocità assoluta per la spinta dinamica esercitata dal getto sulla piastra può essere definita come la comune Velocità lineare uniforme dei vari componenti di un sistema fisico, relativa allo spazio assoluto.

Vabsolute=(mfGγfAJet(∠D(180π)))+v

Velocità del getto per la spinta dinamica esercitata dal getto sulla piastra

La Velocità del getto per la spinta dinamica esercitata dal getto sulla piastra è data è la Velocità di variazione della sua posizione rispetto a un sistema di riferimento ed è una funzione del tempo.

v=-(mfGγfAJet(∠D(180π))-Vabsolute)

Velocità all'ingresso data dalla coppia del fluido

La Velocità all'ingresso data la coppia del fluido è la Velocità di variazione della sua posizione rispetto a un sistema di riferimento ed è una funzione del tempo all'ingresso di qualsiasi oggetto.

vf=(τGwf)+(vr)rO

Velocità all'uscita data dalla coppia del fluido

La Velocità all'uscita data la coppia del fluido è la Velocità di variazione della sua posizione rispetto a un sistema di riferimento ed è una funzione del tempo all'uscita di qualsiasi oggetto.

v=(τGwf)-(vfr)rO

Velocità angolare per il lavoro svolto su ruota al secondo

La Velocità angolare per il lavoro svolto su ruota al secondo è la quantità di variazione dello spostamento angolare della particella in un dato periodo di tempo.

ω=wGwf(vfr+vrO)

Velocità all'ingresso dato il lavoro svolto sulla ruota

La Velocità all'ingresso dato il lavoro svolto sulla ruota è la Velocità di variazione della sua posizione rispetto a un sistema di riferimento ed è una funzione del tempo all'ingresso di qualsiasi oggetto.

vf=(wGwfω)-vrOr

Velocità all'uscita dato il lavoro svolto sulla ruota

La Velocità allo sbocco dato il lavoro svolto sulla ruota è il tasso di variazione della sua posizione rispetto a un sistema di riferimento ed è una funzione del tempo all'uscita di qualsiasi oggetto.

v=(wGwfω)-(vfr)rO

Velocità delle onde in acque profonde

La Deepwater Wave Celerity è la Velocità con cui una singola onda avanza o “si propaga”. Onda in acque profonde la celerità è direttamente proporzionale al periodo dell'onda, T.

Co=λoT

Velocità in acque profonde data unità di piedi e secondi

La Velocità in acque profonde in unità di piedi e secondi è la Velocità alla quale un'onda individuale avanza o si "propaga", nota come Velocità dell'onda. Per un'onda di acque profonde, la celerità è direttamente proporzionale al periodo dell'onda, T.

Cf=5.12T

Come trovare Formule?

Ecco alcuni suggerimenti per risultati di ricerca migliori.
Sii specifico: più specifica è la tua query, migliori saranno i tuoi risultati.
Utilizza più parole chiave: combina più parole chiave parole chiave per restringere i risultati.
Sperimenta con i sinonimi: termini diversi possono produrre risultati diversi.
Ricerca con caratteri jolly: utilizza l'operatore * (asterisco). NOTA che questo operatore funziona solo alla fine di una parola. Esempio: Bio*, Area*, ecc.

In alternativa, puoi navigare tra le sottocategorie all'interno di per individuare le Formule di interesse.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!