Cerca Formule

Inserisci un minimo di 3 caratteri per iniziare con la ricerca delle formule .

Seleziona Filtra

Restringi i risultati della ricerca con l'aiuto di questi filtri.

50 Formule corrispondenti trovate!

Velocità lineare media

La formula della Velocità lineare media è definita come la Velocità media di un oggetto sottoposto a moto circolare e fornisce una misura della sua Velocità di rotazione, essenziale per analizzare i diagrammi del momento torcente e i sistemi a volani.

v=v1+v22

Velocità angolare media

La formula della Velocità angolare media è definita come la media di due Velocità angolari, fornendo un singolo valore che rappresenta il moto rotatorio complessivo di un oggetto o sistema, comunemente utilizzato nell'analisi dei diagrammi del momento torcente e dei sistemi a volani.

ω=ω1+ω22

Velocità angolare delle particelle nel campo magnetico

La Velocità angolare della particella nel campo magnetico viene calcolata quando una particella di massa m e carica q si muove in un campo magnetico costante B.

ωp=qpHmp

Velocità dell'elettrone in orbita data la Velocità angolare

La Velocità dell'elettrone in orbita data la Velocità angolare è una quantità vettoriale (ha sia grandezza che direzione) ed è la Velocità di cambiamento di posizione (di una particella).

ve_AV=ωrorbit

Velocità dell'elettrone dato il periodo di tempo dell'elettrone

La Velocità dell'elettrone dato il periodo di tempo dell'elettrone è una quantità vettoriale (ha sia grandezza che direzione) ed è la Velocità di cambiamento di posizione (di una particella).

velectron=2πrorbitT

Velocità di un piccolo elemento per la vibrazione longitudinale

La formula della Velocità di un piccolo elemento per la vibrazione longitudinale è definita come una misura della Velocità di un piccolo elemento in una vibrazione longitudinale, che è influenzata dall'inerzia del vincolo, e viene utilizzata per analizzare le vibrazioni in vari sistemi meccanici.

vs=xVlongitudinall

Velocità della particella 1 data l'energia cinetica

La formula della Velocità della particella 1 data l'energia cinetica è un metodo per calcolare la Velocità di una particella quando conosciamo la Velocità di altre particelle e l'energia cinetica totale del sistema. Poiché l'energia cinetica totale è la somma dell'energia cinetica individuale di entrambe le particelle, ci rimane solo una variabile e risolvendo l'equazione otteniamo la Velocità richiesta.

v1=(2KE)-(m2v22)m1

Velocità della particella 2 data l'energia cinetica

La formula della Velocità della particella 2 data dall'energia cinetica è un metodo per calcolare la Velocità di una particella quando conosciamo la Velocità di un'altra particella e l'energia cinetica totale del sistema. L'energia cinetica è il lavoro necessario per accelerare un corpo di una data massa da fermo alla sua Velocità dichiarata. Poiché l'energia cinetica, KE, è una somma dell'energia cinetica per ciascuna massa, quindi abbiamo lasciato con una sola variabile e risolvendo l'equazione otteniamo la Velocità richiesta.

v2=(2KE)-(m1v12)m2

Velocità della particella 1

La formula della Velocità della particella 1 è definita per mettere in relazione la Velocità con la frequenza di rotazione e il raggio. La Velocità lineare è il raggio moltiplicato per la Velocità angolare e inoltre la relazione della Velocità angolare con la frequenza (Velocità angolare = 2 * pi * frequenza). Quindi, secondo queste equazioni, la Velocità è 2 * pi volte il prodotto del raggio e della frequenza di rotazione.

vp1=2πR1νrot

Velocità della particella 2

La formula della Velocità della particella 2 è definita per mettere in relazione la Velocità con la frequenza di rotazione e il raggio. La Velocità lineare è il raggio moltiplicato per la Velocità angolare e ulteriormente la relazione della Velocità angolare con la frequenza (Velocità angolare = 2*pi* frequenza). Quindi, in base a queste equazioni, la Velocità è 2 * pi per il prodotto del raggio e della frequenza di rotazione.

v2=2πR2νrot

Velocità radiale a qualsiasi raggio

La Velocità radiale a qualsiasi raggio in un campo di flusso descrive la Velocità con cui il fluido si muove verso o lontano dal centro, fornendo un'immagine chiara del flusso senza fare affidamento su equazioni specifiche.

Vr=q2πr1

Velocità data il raggio di manovra di pull-down

La Velocità data al raggio di manovra di abbattimento è la Velocità richiesta a un aereo per mantenere uno specifico raggio di virata durante una manovra di abbattimento. Questa formula calcola la Velocità in base al raggio di sterzata, all'accelerazione gravitazionale e al fattore di carico. Comprendere e applicare questa formula è fondamentale per piloti e ingegneri per garantire manovre di pull-down sicure e controllate.

Vpull-down=R[g](n+1)

Velocità per una determinata Velocità di manovra di abbassamento

La Velocità per un determinato tasso di manovra di discesa dipende dal fattore di carico e dalla Velocità di virata dell'aereo, questa formula fornisce un'approssimazione semplificata della Velocità necessaria per mantenere la Velocità di discesa desiderata durante la manovra di discesa.

Vpull-down=[g]1+nωpull-down

Velocità alla sezione 1 per flusso costante

La formula della Velocità nella sezione 1 per flusso costante è definita come la Velocità del flusso in un punto particolare del flusso.

u01=QAcsρ1

Velocità alla Sezione 2 data Flusso alla Sezione 1 per Flusso Stazionario

La formula Velocity at Section 2 data Flow at Section 1 for Steady Flow è definita come la Velocità del flusso in un particolare punto del flusso.

u02=QAcsρ2

Velocità alla sezione per lo scarico attraverso la sezione per fluido incomprimibile stazionario

La Velocità alla sezione per lo scarico attraverso la sezione per fluido incomprimibile stazionario è definita come Velocità del flusso nell'area della sezione trasversale.

uFluid=QAcs

Velocità di flusso all'ingresso dato volume di liquido

La Velocità di flusso all'ingresso di un dato volume di liquido è definita come la Velocità alla quale un liquido scorre in una pompa centrifuga, che è un parametro critico per determinare le prestazioni e l'efficienza della pompa ed è influenzata dal volume del liquido pompato e dai parametri geometrici della pompa.

Vf1=QπD1B1

Velocità del flusso all'uscita dato volume di liquido

La formula della Velocità di flusso in uscita, dato il volume di liquido, è definita come la Velocità alla quale un liquido esce da una pompa centrifuga, ed è influenzata dai parametri geometrici e di flusso della pompa, fornendo informazioni preziose sulle prestazioni e l'efficienza della pompa.

Vf2=QπD2B2

Velocità radiale

La formula Radial Velocity è definita rispetto ad un dato punto è la Velocità di variazione della distanza tra l'oggetto e il punto.

vr=fdλ2

Velocità di taglio media

La Velocità di taglio media viene utilizzata per determinare la media temporale della Velocità di taglio con cui il materiale viene rimosso dal pezzo. Ci fornisce informazioni utili sul tempo stimato necessario per completare l'operazione di lavorazione.

Vt=nπdw+dm2

Velocità delle particelle nella scatola 3D

La Velocità della particella nella formula della scatola 3D è definita come un rapporto del doppio della lunghezza della scatola rettangolare e del tempo tra la collisione.

u3D=2Lt

Velocità della molecola di gas data la forza

La Velocità della molecola di gas data la formula della forza è definita come la radice quadrata del prodotto della lunghezza della scatola rettangolare e della forza per massa della particella.

uF=FLm

Velocità della molecola di gas in 1D data la pressione

La Velocità della molecola del gas in 1D data la formula della pressione è definita come sotto la radice del rapporto tra la pressione del gas moltiplicata per il volume con la massa della particella.

up=PgasVboxm

Velocità quadratica media della molecola di gas dati la pressione e il volume del gas

La Velocità quadratica media della molecola di gas data la pressione e il volume della formula del gas è definita come la radice quadrata del rapporto tra tre volte la pressione e il volume del gas rispetto alla massa di ciascuna molecola di gas.

CRMS=3PgasVNmoleculesm

Velocità del corpo dato lo slancio

La formula della Velocità di un corpo dato lo slancio è definita come una misura della Velocità di un oggetto in una direzione specifica, calcolata dividendo lo slancio dell'oggetto per la sua massa, fornendo un concetto fondamentale per comprendere il movimento di un oggetto e la sua relazione con la forza.

v=pmo

Velocità del proiettile del cono di Mach nel flusso di fluido comprimibile

La Velocità del proiettile del cono di Mach nel flusso di fluido comprimibile descrive la Velocità alla quale viaggia il proiettile quando raggiunge o supera la Velocità del suono nel mezzo circostante. Comprendere questa Velocità è fondamentale negli studi aerodinamici e balistici, poiché indica l'insorgenza di onde d'urto e le sfide aerodinamiche associate al volo supersonico e ipersonico.

V=Csin(μ)

Velocità dell'onda sonora considerando l'angolo di Mach nel flusso di fluido comprimibile

La Velocità dell'onda sonora considerando l'angolo di Mach nel flusso di un fluido comprimibile è importante per comprendere come il suono si propaga attraverso un mezzo quando la Velocità del fluido si avvicina o supera la Velocità del suono. Questa relazione aiuta a prevedere il comportamento delle onde d'urto e la trasmissione del suono in vari ambienti, essenziale nell'ingegneria aerospaziale, nell'acustica e nello studio della fluidodinamica ad alta Velocità.

C=Vsin(μ)

Velocità di taglio utilizzando la durata e l'intercettazione dell'utensile di Taylor

La Velocità di taglio utilizzando la durata e l'intercettazione dell'utensile di Taylor è un metodo per trovare la Velocità di taglio massima con cui il pezzo può essere lavorato quando l'intervallo di tempo di affilatura dell'utensile è fisso.

V'cut=XTvx

Velocità di diffusione della massa attraverso il cilindro cavo con confine solido

La Velocità di diffusione della massa attraverso il cilindro cavo con confine solido è definita come la quantità di particelle che si diffondono attraverso il cilindro cavo con confine solido per unità di tempo.

mr=2πDabl(ρa1-ρa2)ln(r2r1)

Velocità di diffusione della massa attraverso la piastra di confine solida

La Velocità di diffusione della massa attraverso la piastra di confine solida è definita come la quantità di particelle che si diffondono attraverso la piastra di confine solida per unità di tempo.

mr=Dab(ρa1-ρa2)Atp

Velocità proporzionata dato l'angolo centrale

La Velocità proporzionale dato l'angolo al centro è definita come il rapporto tra la Velocità del fluido in un tubo parzialmente riempito e la Velocità quando il tubo è completamente riempito.

Pv=(1-(360π180)sin(central)2πcentral)23

Velocità proporzionale quando il coefficiente di rugosità non varia con la profondità

La Velocità proporzionale quando il coefficiente di rugosità non varia con la profondità calcola la Velocità proporzionale quando abbiamo informazioni preliminari su altri parametri

Pv=(rpfRrf)23

Velocità durante la corsa parzialmente completa data la scarica

La Velocità durante il funzionamento a scarico parzialmente pieno è definita come la Velocità del flusso quando la fognatura non è completamente piena, influenzata dalla profondità e dalla pendenza.

Vs=qa

Velocità durante la corsa completa data la scarica

La Velocità durante il funzionamento a piena portata è definita come la Velocità del fluido che si muove attraverso un tubo o un canale completamente riempito, in genere alla massima capacità.

V=QA

Velocità durante la corsa parzialmente completa data la scarica proporzionata

La Velocità durante il funzionamento a pieno parziale con una portata proporzionale è definita come la Velocità del flusso quando la fognatura non è completamente piena, influenzata dalla profondità e dalla pendenza.

Vs=PqVAa

Velocità durante la corsa completa data una scarica proporzionata

La Velocità a pieno carico con portata proporzionale è definita come la Velocità del flusso del fluido in un tubo quando è completamente pieno, influenzata dalla pendenza e dalla rugosità del tubo.

V=VsaPqA

Velocità di sedimentazione data la gravità specifica della particella

La Velocità di sedimentazione, data la formula del peso specifico della particella, è definita come la Velocità raggiunta dalla particella mentre cade attraverso un fluido, in base alla sua dimensione e forma, nonché alla differenza tra il suo peso specifico e quello del mezzo di sedimentazione.

Vsg=(43)g(G-1)DpCD

Velocità media del gas data pressione e densità in 2D

La Velocità media del gas data pressione e densità in 2D è la media aritmetica delle Velocità di diverse molecole di un gas a una data temperatura in 2 dimensioni.

vavg_P_D=πPgas2ρgas

Velocità media del gas data la Velocità quadratica media radice in 2D

La Velocità media del gas data la Velocità quadratica media in 2D è la media aritmetica delle Velocità di diverse molecole di un gas a una data temperatura in 2 dimensioni.

vavg_RMS=(0.8862CRMS_speed)

Velocità media del gas data pressione e volume in 2D

La Velocità media del gas data la pressione e il volume in 2D è la media aritmetica delle Velocità di diverse molecole di un gas a una data temperatura in 2 dimensioni.

vavg_P_V=πPgasV2Mmolar

Velocità media del gas data la temperatura in 2D

La Velocità media del gas data la temperatura in 2D è la media aritmetica delle Velocità di diverse molecole di un gas a una data temperatura in 2 dimensioni.

vavg_T=π[R]Tg2Mmolar

Velocità quadratica media della molecola di gas data la pressione e il volume del gas in 2D

La Velocità quadratica media della molecola di gas data la pressione e il volume di gas nella formula 2D è definita come l'intero quadrato del quadrato medio della molecola di gas in 2D.

CRMS_2D=2PgasVNmoleculesm

Velocità più probabile del gas data pressione e densità in 2D

La Velocità più probabile del gas data la pressione e la densità nella formula 2D è definita come il rapporto tra la radice quadrata della pressione e la densità del rispettivo gas.

CP_D=Pgasρgas

Velocità più probabile del gas data pressione e volume in 2D

La Velocità più probabile del gas data la pressione e il volume nella formula 2D è definita come il rapporto tra la radice quadrata della pressione e del volume e la massa molare del particolare gas.

CP_V=PgasVMmolar

Velocità ottimale del mandrino

La Velocità ottimale del mandrino è fondamentale per ottenere processi efficienti di lavorazione dei metalli. I macchinisti spesso si affidano all'esperienza, ai dati empirici, alle raccomandazioni del produttore e alle simulazioni di lavorazione per determinare la Velocità ottimale del mandrino per applicazioni di lavorazione specifiche. Il monitoraggio e la regolazione continui della Velocità del mandrino durante tutto il processo di lavorazione aiutano a mantenere condizioni di taglio ottimali e a massimizzare le prestazioni di lavorazione.

ωs=(Vs2πRo)((1+n)CtTref(1-Rw)(1-n)(Cttc+Ct)(1-Rw1+nn))n

Velocità di taglio di riferimento data la Velocità ottimale del mandrino

La Velocità di taglio di riferimento data alla Velocità ottimale del mandrino si riferisce alla Velocità lineare desiderata in un punto specifico sul tagliente dell'utensile mentre si impegna con il pezzo durante la lavorazione. Questa Velocità di riferimento viene scelta in base a fattori quali proprietà del materiale, utensili e condizioni di lavorazione e funge da obiettivo per ottenere prestazioni di lavorazione ottimali.

Vs=ωs2πRo((1-n)(Cttc+Ct)(1-Rw1+nn)(1+n)CtTref(1-Rw))n

Velocità di avanzamento dell'utensile data la Velocità di asportazione volumetrica del materiale

La Velocità di avanzamento dell'utensile data la Velocità di rimozione del materiale volumetrico è un metodo per determinare la Velocità massima con cui l'utensile può rimuovere il materiale quando viene fornita la Velocità di rimozione del volume totale.

Vf=ZrA

Velocità di avanzamento utensile data la corrente fornita

La Velocità di avanzamento dell'utensile fornita dalla corrente fornita è un metodo per determinare la Velocità massima raggiungibile del movimento dell'utensile quando vengono fornite le condizioni di alimentazione e di lavoro.

Vf=ηeeIρA

Velocità di avanzamento utensile data la distanza tra utensile e superficie di lavoro

La Velocità di avanzamento dell'utensile data la distanza tra l'utensile e la superficie di lavoro è un metodo per determinare la Velocità massima raggiungibile del movimento dell'utensile quando la distanza tra l'utensile e la superficie di lavoro è fissa.

Vf=ηeVsereρh

Velocità in curva

La Velocità in virata è definita come la Velocità dell'aeromobile in virata o in curva ed è funzione del raggio di curva.

VTurning Speed=4.1120RTaxiway0.5

Come trovare Formule?

Ecco alcuni suggerimenti per risultati di ricerca migliori.
Sii specifico: più specifica è la tua query, migliori saranno i tuoi risultati.
Utilizza più parole chiave: combina più parole chiave parole chiave per restringere i risultati.
Sperimenta con i sinonimi: termini diversi possono produrre risultati diversi.
Ricerca con caratteri jolly: utilizza l'operatore * (asterisco). NOTA che questo operatore funziona solo alla fine di una parola. Esempio: Bio*, Area*, ecc.

In alternativa, puoi navigare tra le sottocategorie all'interno di per individuare le Formule di interesse.

Copied!