Cerca Formule

Inserisci un minimo di 3 caratteri per iniziare con la ricerca delle formule .

Seleziona Filtra

Restringi i risultati della ricerca con l'aiuto di questi filtri.

50 Formule corrispondenti trovate!

Velocità finale del corpo

La formula della Velocità finale del corpo è definita come la Velocità che un oggetto raggiunge dopo un certo periodo di tempo, considerando la sua Velocità iniziale, l'accelerazione e il tempo, il che è essenziale per comprendere la cinematica del moto e descrivere il moto degli oggetti.

vf=u+at

Velocità media del corpo data la Velocità iniziale e finale

La Velocità media di un corpo, data la formula della Velocità iniziale e finale, è definita come una misura della Velocità media di variazione della posizione di un oggetto rispetto al tempo, fornendo una comprensione completa del movimento di un oggetto tra due punti.

vavg=u+vf2

Velocità finale del corpo in caduta libera dall'altezza quando raggiunge il suolo

La formula della Velocità finale di un corpo in caduta libera dall'alto quando raggiunge il suolo è definita come la Velocità alla quale un oggetto cade da una certa altezza e raggiunge il suolo, influenzata dall'accelerazione dovuta alla gravità e dall'altezza iniziale dell'oggetto.

V=2gv

Velocità angolare finale data Velocità angolare iniziale Accelerazione angolare e tempo

Velocità angolare finale data la Velocità angolare iniziale. La formula dell'accelerazione angolare e del tempo è definita come una misura della Velocità di rotazione di un oggetto in un punto specifico nel tempo, tenendo conto della sua Velocità angolare iniziale, dell'accelerazione angolare e del tempo trascorso, fornendo una comprensione completa del moto rotatorio di un oggetto.

ω1=ωo+αt

Velocità angolare data Velocità tangenziale

La Velocità angolare data la formula della Velocità tangenziale è definita come una misura della Velocità di variazione dello spostamento angolare di un oggetto che si muove lungo un percorso circolare, fornendo un concetto fondamentale per comprendere il moto rotatorio e le sue applicazioni in vari campi della fisica e dell'ingegneria.

ω=vtRc

Velocità spaziale del reattore

La Velocità spaziale del reattore ci fornisce il numero di volumi del reattore che possono essere trattati per unità di tempo.

sReactor=voVreactor

Velocità terminale

La Velocità terminale è la Velocità massima raggiungibile da un oggetto mentre cade attraverso un fluido (l'aria è l'esempio più comune).

Vterminal=29r2(𝜌1-ρ2)gμviscosity

Velocità di taglio data la Velocità angolare

Velocità di taglio data La Velocità angolare è definita come la Velocità con cui il lavoro si muove rispetto all'utensile (normalmente misurata in piedi al minuto).

Vcutting=πdω

Velocità media in RPM

La Velocità media in RPM è definita come la Velocità di rotazione media di un volano o di un albero rotante in un sistema meccanico, solitamente misurata in giri al minuto, che è un parametro fondamentale nell'analisi dei diagrammi del momento torcente e delle prestazioni del volano.

N=N1+N22

Velocità dell'onda progressiva

La formula della Velocità dell'onda progressiva è definita come una misura della Velocità con cui un'onda si propaga attraverso un mezzo, descrivendo la Velocità di trasmissione dei disturbi in un sistema fisico ed è un concetto fondamentale per comprendere la dinamica delle onde e le loro applicazioni in vari campi della fisica .

Vw=λTW

Velocità del motore data efficienza nel motore a induzione

La Velocità del motore data dall'efficienza nel motore a induzione è la Velocità alla quale ruota il rotore e la Velocità sincrona è la Velocità del campo magnetico dello statore nel motore a induzione trifase.

Nm=ηNs

Velocità sincrona del motore a induzione data efficienza

La Velocità sincrona del motore a induzione data Efficienza è la Velocità del campo magnetico dello statore nel motore a induzione trifase e la Velocità del motore è la Velocità alla quale ruota il rotore.

Ns=Nmη

Velocità dell'onda progressiva usando la frequenza

La Velocità dell'onda progressiva utilizzando la formula della frequenza è definita come una misura della Velocità con cui un'onda si propaga attraverso un mezzo, che è essenziale per comprendere vari fenomeni fisici, come le onde sonore, le onde luminose e le onde sismiche, ed è cruciale nei campi come fisica, ingegneria e geologia.

Vw=λfw

Velocità dell'onda progressiva data la frequenza angolare

La Velocità dell'onda progressiva data la formula della frequenza angolare è definita come una misura della Velocità di un'onda che si muove in una direzione specifica, influenzata dalla frequenza angolare, ed è essenziale per comprendere il comportamento delle onde in vari sistemi fisici, inclusi il suono e la luce onde.

Vw=λωf2π

Velocità dell'onda data il numero d'onda

La formula della Velocità dell'onda data il numero d'onda è definita come una misura della Velocità con cui un'onda si propaga attraverso un mezzo, fornendo informazioni sulla frequenza e la lunghezza d'onda dell'onda ed è essenziale per comprendere vari fenomeni fisici, come le onde sonore e luminose, in applicazioni di fisica e ingegneria.

Vw=ωfk

Velocità del cedente per la camma tangente del cedente a rulli se il contatto è con fianchi diritti

La formula della Velocità del follower per camma tangente a rulli se il contatto è con fianchi dritti è definita come una misura della Velocità del follower in un sistema camma-follower in cui il contatto è con fianchi dritti, fornendo informazioni sulla cinematica del sistema e consentendo la progettazione di sistemi meccanici efficienti.

v=ω(r1+rroller)sin(θ)(cos(θ))2

Velocità massima del cedente per camma tangente con cedente a rullo

La formula della Velocità massima del follower per camma tangente con follower a rulli è definita come la Velocità massima alla quale il follower si muove in una camma tangente con un follower a rulli, il che è fondamentale nella progettazione e nell'ottimizzazione dei sistemi camma-follower per prestazioni meccaniche efficienti.

Vm=ω(r1+rr)sin(φ)cos(φ)2

Velocità assoluta di Pelton Jet

La Velocità assoluta del getto Pelton è la Velocità con cui l'acqua esce dall'ugello e colpisce le pale della turbina Pelton. Questa Velocità è fondamentale poiché influenza direttamente l'energia cinetica trasferita alle pale della turbina ed è tipicamente determinata dall'altezza e dalla pressione della fonte d'acqua che alimenta la turbina.

V1=Cv2[g]H

Velocità del cedente della camma tangente del cedente del rullo per il contatto con il naso

La formula della Velocità del follower della camma tangente del follower a rulli per il contatto con la punta è definita come la Velocità del follower in un sistema a camma e follower, che è un parametro critico per determinare le prestazioni e l'efficienza del sistema, in particolare quando il follower è a contatto con la punta della camma.

v=ωr(sin(θ1)+rsin(2θ1)2L2-r2(sin(θ1))2)

Velocità sincrona del motore sincrono data la potenza meccanica

La formula della Velocità sincrona del motore sincrono data la potenza meccanica è definita come una Velocità definita per una macchina a corrente alternata che dipende dalla frequenza del circuito di alimentazione perché l'elemento rotante supera una coppia di poli per ogni alternanza della corrente alternata.

Ns=Pmτg

Velocità di taglio

La Velocità di taglio, nota anche come Velocità superficiale o Velocità di taglio, è un parametro critico nei processi di taglio dei metalli. Si riferisce alla Velocità con cui l'utensile da taglio si muove rispetto al materiale del pezzo da tagliare. La Velocità di taglio viene generalmente misurata in metri al minuto (m/min) o piedi al minuto (ft/min).

Vc=πdiN

Velocità dietro lo shock normale

La Velocità dietro lo shock normale calcola la Velocità di un fluido a valle di un'onda d'urto normale. Questa formula incorpora parametri come la Velocità a monte dell'ammortizzatore, il rapporto dei calori specifici del fluido e il numero di Mach del flusso. Fornisce preziose informazioni sul cambiamento di Velocità derivante dal passaggio dell'onda d'urto.

V2=V1γ+1(γ-1)+2M2

Velocità di movimento attraverso la falda acquifera e il letto confinante

La formula Velocità di movimento attraverso la falda acquifera e il letto confinante è definita come la Velocità con cui l'acqua sotterranea si muove attraverso i pori o le fratture in un materiale sotterraneo, come il suolo o la roccia.

v=(Kη)dhds

Velocità della sfera nel metodo di resistenza della sfera che cade

La formula del metodo di resistenza alla Velocità della sfera nella caduta della sfera è nota considerando la viscosità del fluido o dell'olio, il diametro della sfera e la forza di trascinamento.

U=FD3πμd

Velocità di virata per un dato carico alare

La Velocità di virata per un determinato carico alare si riferisce alla Velocità con cui un aereo può cambiare direzione o virare, generalmente viene misurata in gradi al secondo o radianti al secondo; combinando questi fattori, la formula si avvicina alla Velocità di virata, offrendo informazioni sulle capacità di manovra dell'aereo.

ω=[g](ρCLn2WS)

Velocità tangenziale per un flusso senza sollevamento su un cilindro circolare

La Velocità tangenziale per il flusso senza sollevamento sulla formula del cilindro circolare è una funzione della coordinata radiale, della Velocità del flusso libero, del raggio del cilindro e dell'angolo polare.

Vθ=-(1+(Rr)2)Vsin(θ)

Velocità radiale per flusso senza sollevamento su cilindro circolare

La formula della Velocità radiale per flusso senza sollevamento su un cilindro circolare è definita come la funzione della Velocità radiale, la distanza radiale dall'origine, l'angolo polare e la Velocità del flusso libero.

Vr=(1-(Rr)2)Vcos(θ)

Velocità tangenziale per flusso a vortice 2-D

La formula della Velocità tangenziale per il flusso del vortice 2-D è definita come la funzione della forza del flusso del vortice e della distanza radiale del punto dall'origine, rappresenta la componente di Velocità nella direzione circonferenziale attorno al centro del vortice.

Vθ=-γ2πr

Velocità radiale per il flusso di sollevamento su un cilindro circolare

La formula della Velocità radiale per il sollevamento del flusso su un cilindro circolare è definita come la funzione della forza del vortice, della distanza radiale, dell'angolo polare e del raggio del cilindro.

Vr=(1-(Rr)2)Vcos(θ)

Velocità tangenziale per il flusso di sollevamento su un cilindro circolare

La formula della Velocità tangenziale per il sollevamento del flusso su un cilindro circolare è una funzione della coordinata radiale, della Velocità del flusso libero, del raggio del cilindro, della forza del vortice e dell'angolo polare.

Vθ=-(1+(Rr)2)Vsin(θ)-Γ2πr

Velocità di pianificazione

La formula Schedule Speed è definita come il rapporto tra la distanza percorsa tra due fermate e il tempo totale della corsa compreso il tempo per la fermata (orario programmato).

Vs=DTrun+Tstop

Velocità del flusso nella posizione dello strumento

La formula della Velocità del flusso nella posizione dello strumento è definita come la Velocità dell'acqua nel corso d'acqua, ed è maggiore nel mezzo del corso d'acqua vicino alla superficie ed è più lenta lungo il letto del corso d'acqua e le sponde a causa dell'attrito.

v=aNs+b

Velocità Freestream per il coefficiente di sollevamento nel cilindro rotante con circolazione

La Velocità di Freestream per il coefficiente di portanza nel cilindro rotante con formula di circolazione è nota considerando il rapporto tra la circolazione e il raggio del cilindro e il coefficiente di portanza.

V=ΓcRC'

Velocità di avanzamento dell'aereo per una data componente normale della Velocità laterale

La Velocità in avanti dell'aereo per una data componente normale della Velocità laterale è una misura della Velocità di un aereo in volo in avanti, calcolata in base alla componente normale della Velocità laterale e alla variazione locale dell'angolo di attacco.

V=VnΔα

Velocità di scivolamento laterale dell'aereo per un dato angolo diedro

La Velocità di deriva dell'aereo per un dato angolo diedro è una misura della Velocità del movimento laterale di un aereo, calcolata dividendo la componente normale della Velocità laterale per il seno dell'angolo diedro dell'ala, fornendo informazioni sulla stabilità e sul controllo dell'aereo durante il volo.

Vβ=Vnsin(Γ)

Velocità di dosaggio data la Velocità di rotazione

La Velocità di dosaggio data dalla Velocità di rotazione è definita come la Velocità alla quale una sostanza o un materiale viene erogato o somministrato, determinata dalla Velocità di rotazione di un meccanismo di dosaggio.

DR=1.6QTNn

Velocità in qualsiasi punto nell'elemento cilindrico

La Velocità in qualsiasi punto della formula dell'elemento cilindrico è definita come la Velocità con cui il fluido entra nel tubo formando un profilo parabolico.

vFluid=-(14μ)dp|dr((R2)-(dradial2))

Velocità all'uscita dell'ugello per la massima portata del fluido

La Velocità all'uscita dell'ugello per la portata massima del fluido è fondamentale per determinare l'efficienza e le prestazioni dei sistemi fluidodinamici. È direttamente correlato al rapporto di pressione sull'ugello, alla densità del fluido e alle caratteristiche di progettazione dell'ugello, influenzando la portata e l'efficienza di propulsione in applicazioni come motori a razzo e sistemi di spruzzatura industriali. Comprendere e ottimizzare questa Velocità è essenziale per ottenere i risultati operativi desiderati nelle applicazioni ingegneristiche e tecnologiche.

Vf=2yP1(y+1)ρa

Velocità massima di scarica dalla curva a S

La formula del tasso massimo di scarico dalla curva a S è definita come la più alta concentrazione di deflusso dall'area del bacino ottenuta dall'idrografo a S.

Qs=2.778ADr

Velocità di raffreddamento per piastre relativamente spesse

La formula della Velocità di raffreddamento per piastre relativamente spesse è definita come la variazione della temperatura di saldatura per unità di tempo.

R=2πk((Tc-ta)2)Hnet

Velocità di raffreddamento per piastre relativamente sottili

La formula della Velocità di raffreddamento per piastre relativamente sottili è definita come la Velocità con cui il calore viene perso nell'ambiente circostante dalla saldatura.

Rc=2πkρQc((tHnet)2)((Tc-ta)3)

Velocità di flusso di Chezy's Formula

La Velocità di flusso secondo la formula di Chezy è definita come la Velocità del flusso dell'acqua in un canale aperto, calcolata utilizzando la costante di Chezy e la pendenza idraulica.

Vc=CScm

Velocità di flusso secondo la formula di Manning

La Velocità di flusso, secondo la formula di Manning, è definita come la Velocità alla quale il fluido si muove attraverso un canale o una conduttura, solitamente misurata in metri al secondo (m/s) o piedi al secondo (ft/s).

Vm=(1n)(m)23s

Velocità del flusso di Crimp e Burge's Formula

La Velocità di flusso, secondo la formula di Crimp e Burge, è definita come la Velocità alla quale il fluido si muove attraverso un canale o una tubazione, solitamente misurata in metri al secondo (m/s) o piedi al secondo (ft/s).

Vcb=83.5(m)23s

Velocità di flusso dalla Formula di William Hazen

La Velocità di flusso, secondo la formula di William Hazen, è definita come la Velocità alla quale il fluido si muove attraverso un canale o una conduttura, solitamente misurata in metri al secondo (m/s) o piedi al secondo (ft/s).

Vwh=0.85CH(m)0.63(s)0.54

Velocità apparente di infiltrazione

La formula della Velocità apparente di infiltrazione è definita come la portata dell'acqua attraverso un mezzo poroso. È definita dalla legge di Darcy ed è calcolata come la portata volumetrica per unità di superficie del mezzo. La progettazione di strutture idrauliche come dighe, argini e strutture di ricarica delle acque sotterranee richiede la conoscenza delle Velocità di infiltrazione per garantire stabilità e prevenire guasti dovuti a infiltrazioni o tubazioni incontrollate.

V=K''dhds

Velocità apparente di infiltrazione quando si considerano la portata e l'area della sezione trasversale

La formula della Velocità apparente di infiltrazione quando si considerano la portata e l'area della sezione trasversale è definita come la Velocità con cui le acque sotterranee sembrano muoversi attraverso una data area della sezione trasversale del terreno o della roccia. Comprendere le Velocità di infiltrazione è fondamentale nella progettazione di dighe, argini e altre strutture idrauliche per garantire stabilità e prevenire cedimenti dovuti a infiltrazioni eccessive.

V=Q'A

Velocità apparente di infiltrazione data Reynolds Number of Value Unity

La Velocità apparente di infiltrazione data la formula del numero di unità di valore di Reynolds è definita come la portata volumetrica del fluido per unità di area attraverso un mezzo poroso. È una Velocità concettuale che presuppone che il fluido si muova uniformemente attraverso l'intera area della sezione trasversale del mezzo poroso.

V=Reνstokesda

Velocità di taglio istantanea con avanzamento

La Velocità di taglio istantanea fornita dall'avanzamento è un parametro critico nella lavorazione dei metalli poiché influenza direttamente vari aspetti del processo di lavorazione, tra cui i tassi di rimozione del materiale, i tassi di usura dell'utensile, le forze di taglio e la qualità della finitura superficiale. Gli operatori regolano le Velocità di taglio in base a fattori quali il materiale da lavorare, il materiale e la geometria dell'utensile, i parametri di taglio e i risultati di lavorazione desiderati per ottenere prestazioni ed efficienza ottimali.

V=2πωs(Ro-ωsft)

Velocità di generazione ottica

La formula del tasso di generazione ottica è definita come il numero di elettroni generati in ogni punto del dispositivo a causa dell'assorbimento di fotoni.

gop=δnτn

Come trovare Formule?

Ecco alcuni suggerimenti per risultati di ricerca migliori.
Sii specifico: più specifica è la tua query, migliori saranno i tuoi risultati.
Utilizza più parole chiave: combina più parole chiave parole chiave per restringere i risultati.
Sperimenta con i sinonimi: termini diversi possono produrre risultati diversi.
Ricerca con caratteri jolly: utilizza l'operatore * (asterisco). NOTA che questo operatore funziona solo alla fine di una parola. Esempio: Bio*, Area*, ecc.

In alternativa, puoi navigare tra le sottocategorie all'interno di per individuare le Formule di interesse.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!