Cerca Formule

Inserisci un minimo di 3 caratteri per iniziare con la ricerca delle formule .

Seleziona Filtra

Restringi i risultati della ricerca con l'aiuto di questi filtri.

50 Formule corrispondenti trovate!

Energia libera critica per la nucleazione

L'Energia libera critica per la nucleazione è l'Energia libera richiesta per la formazione di un nucleo stabile. Allo stesso modo, può essere considerato una barriera energetica al processo di nucleazione.

ΔG*=16π𝛾3Tm23ΔHf2ΔT2

Energia del fotone

L'Energia del fotone (luce) è direttamente correlata alla frequenza elettromagnetica del fotone. L'Energia del fotone dipende dalla lunghezza d'onda in modo tale che l'Energia del fotone sia inversamente proporzionale alla lunghezza d'onda. Maggiore è la frequenza dell'Energia del fotone, maggiore è la sua Energia.

E=[hP][c]λ

Energia immagazzinata nel condensatore data capacità e tensione

Energia immagazzinata nel condensatore data la formula di capacità e tensione è definita come l'Energia totale accumulata in un condensatore, che è un dispositivo che immagazzina Energia elettrica, e dipende dalla capacità e dalla tensione del condensatore, fornendo una misura dell'Energia potenziale elettrica immagazzinata .

U=12CVcapacitor2

Energia immagazzinata nel condensatore data la carica e la capacità

L'Energia immagazzinata nel condensatore data la formula di carica e capacità è definita come l'Energia totale accumulata in un condensatore come risultato del trasferimento di carica elettrica, che dipende dalla quantità di carica immagazzinata e dalla capacità del condensatore ed è un parametro critico nella comprensione del comportamento dei circuiti elettrici.

U=Q22C

Energia immagazzinata nel condensatore data la carica e la tensione

Energia immagazzinata nel condensatore data la formula di carica e tensione è definita come l'Energia totale accumulata in un condensatore come risultato del flusso di carica elettrica e della tensione applicata attraverso le sue piastre, fornendo una misura della capacità del condensatore di immagazzinare Energia elettrica.

Ue=12QV

Energia cinetica totale di vincolo per vibrazioni trasversali

La formula dell'Energia cinetica totale del vincolo per le vibrazioni trasversali è definita come una misura dell'Energia associata alle vibrazioni trasversali di un sistema vincolato, tenendo conto dell'inerzia del vincolo, e viene utilizzata per analizzare gli effetti delle vibrazioni longitudinali e trasversali in vari sistemi meccanici.

KE=33mcVtraverse2280

Energia cinetica posseduta dall'elemento

La formula dell'Energia cinetica posseduta dall'elemento è definita come l'Energia associata al movimento di un oggetto in un sistema di vibrazioni torsionali, che è un concetto fondamentale nell'ingegneria meccanica e nella fisica, in particolare nello studio del moto rotatorio e delle oscillazioni.

KE=Ic(ωfx)2δx2l3

Energia cinetica totale del vincolo

La formula dell'Energia cinetica totale di vincolo è definita come l'Energia associata al moto rotatorio di un sistema in vibrazioni torsionali, dove l'inerzia del sistema e la frequenza angolare sono fattori chiave nel determinare questa Energia.

KE=Icωf26

Energia di dissociazione del potenziale

L'Energia di dissociazione della formula potenziale è definita come l'Energia misurata dal fondo del potenziale per una molecola biatomica.

Dae=Evfvmax

Energia vibrazionale usando l'Energia di dissociazione

L'Energia vibrazionale che utilizza la formula dell'Energia di dissociazione è definita come l'Energia totale dei rispettivi livelli di rotazione-vibrazione di una molecola biatomica.

EDE=Devmax

Energia di dissociazione data il numero d'onda vibrazionale

La formula del numero d'onda vibrazionale data dall'Energia di dissociazione è definita come l'Energia che viene misurata dal fondo del potenziale dei livelli di Energia vibrazionale per una molecola biatomica.

De=ω'24xeω'

Energia vibrazionale utilizzando la costante di anarmonicità

L'Energia vibrazionale utilizzando la formula della costante di anarmonicità è definita come l'Energia totale dei rispettivi livelli di rotazione-vibrazione di una molecola biatomica.

Exe=(ω')24xeω'vmax

Energia di dissociazione del punto zero

La formula dell'Energia di dissociazione del punto zero è definita come l'Energia di dissociazione che viene misurata al punto zero dei livelli di Energia vibrazionale delle molecole biatomiche.

D0=De-E0

Energia di punto zero data l'Energia di dissociazione

L'Energia del punto zero data la formula dell'Energia di dissociazione è definita come l'Energia di vibrazione dei livelli energetici di una molecola biatomica.

E0=De-D0

Energia Punto Zero

La formula di Energia del punto zero è definita come l'Energia di una vibrazione dei livelli di Energia di una molecola biatomica.

E0=(12ω')-(14xeω')

Energia di dissociazione del potenziale utilizzando l'Energia di punto zero

L'Energia di dissociazione del potenziale usando la formula dell'Energia del punto zero è definita come l'Energia che viene misurata dal fondo del potenziale dei livelli di Energia vibrazionale per una molecola biatomica.

De=D0+E0

Energia libera di Gibbs in eccesso utilizzando i coefficienti di attività e le frazioni molari liquide

La formula Excess Gibbs Free Energy using Activity Coefficients and Liquid Mole Fractions è definita come il prodotto della costante universale del gas, della temperatura e della somma del prodotto della frazione molare dell'i-esimo componente e del logaritmo naturale del coefficiente di attività del componente i , dove per il sistema binario i = 2.

GE=([R]TVLE)(x1ln(γ1)+x2ln(γ2))

Energia libera di Gibbs in eccesso utilizzando l'equazione a due parametri di Margules

L'Energia libera in eccesso di Gibbs utilizzando la formula dell'equazione a due parametri di Margules è definita come la funzione dei coefficienti a due parametri di Margules A12 e A21, della temperatura e della frazione molare di entrambi i componenti 1 e 2.

GE=([R]Tactivity coefficentx1x2)(A21x1+A12x2)

Energia di deformazione di taglio

La formula di Energia di deformazione di taglio è definita come l'Energia immagazzinata in un corpo a causa della deformazione. L'Energia di deformazione (cioè la quantità di Energia potenziale immagazzinata a causa della deformazione) è uguale al lavoro impiegato per deformare il materiale.

U=(𝜏2)V2G

Energia di deformazione di taglio nell'anello di raggio 'r'

La formula dell'Energia di deformazione di taglio nell'anello di raggio 'r' è definita come l'Energia immagazzinata in un corpo a causa della deformazione.

U=2π(𝜏2)L(rcenter3)δx2G(rshaft2)

Energia della banda di conduzione

Conduction Band Energy è la banda di Energia in un materiale in cui gli elettroni sono liberi di muoversi e partecipare alla conduzione elettrica. Al contrario, la banda di valenza è la banda di Energia in cui gli elettroni sono strettamente legati agli atomi e sono coinvolti nel legame chimico.

Ec=Eg+Ev

Energia della banda di valenza

La formula dell'Energia della banda di valenza è definita come situazioni in cui gli elettroni (o lacune) vengono trasportati attraverso la parte superiore della banda di valenza come in un semiconduttore di tipo p.

Ev=Ec-Eg

Energia cinetica della tempesta data l'unità dell'indice di erosione delle precipitazioni

La formula dell'Energia cinetica della tempesta data l'unità dell'indice di erosione delle precipitazioni è definita come la valutazione del potenziale distruttivo combinato delle mareggiate e delle onde assegnato in base all'Energia cinetica integrata fornita dai venti superiori alla forza della tempesta tropicale.

KE=EI30100I30

Energia potenziale nel limite di avvicinamento più vicino

L'Energia potenziale nel limite della formula di avvicinamento più vicino è definita come l'Energia che è immagazzinata in un oggetto in virtù della sua posizione.

PE Limit=-AR1R2(R1+R2)6r

Energia totale nei fluidi comprimibili

L'Energia totale nei fluidi comprimibili in qualsiasi sezione in un fluido in movimento è costituita dalla somma delle energie statiche, di velocità e potenziali interne in quella sezione.

E(Total)=KE+PE+Ep+Em

Energia cinetica data Energia totale nei fluidi comprimibili

L'Energia cinetica data l'Energia totale nei fluidi comprimibili è definita come Energia dell'oggetto quando si muove dallo stato di quiete al movimento. L'unità SI dell'Energia cinetica è il Joule.

KE=E(Total)-(PE+Ep+Em)

Energia potenziale data Energia totale nei fluidi comprimibili

L'Energia potenziale data dall'Energia totale nei fluidi comprimibili è l'Energia immagazzinata nell'oggetto a causa della sua posizione rispetto a una posizione zero.

PE=E(Total)-(KE+Ep+Em)

Energia di pressione data Energia totale nei fluidi comprimibili

L'Energia di pressione data dall'Energia totale nei fluidi comprimibili è l'Energia del fluido dovuta alla pressione applicata (forza per area).

Ep=E(Total)-(KE+PE+Em)

Energia molecolare data Energia totale nei fluidi comprimibili

L'Energia molecolare data dall'Energia totale nei fluidi comprimibili è definita come l'Energia in cui le molecole immagazzinano e trasportano Energia.

Em=E(Total)-(KE+PE+Ep)

Energia di attivazione del campo cristallino per la reazione dissociativa

La formula dell'Energia di attivazione del campo cristallino per la reazione dissociativa è definita come la differenza dell'Energia di stabilizzazione del campo cristallino dell'intermedio e del reagente.

CFAEDS=CFSEOh-CFSESqPy

Energia dell'elettrone Auger

La formula dell'Energia dell'elettrone Auger è definita come l'Energia totale degli elettroni Auger prodotti quando gli atomi eccitati rilasciano l'Energia extra a un elettrone che viene poi emesso come un elettrone Auger.

EA=Eo1-Ei+Eo2

Energia cinetica data Energia di legame

L'Energia cinetica data l'Energia di legame è la differenza tra l'Energia del fotone incidente e la funzione di lavoro del metallo. La funzione di lavoro è l'Energia di legame degli elettroni alla superficie del metallo.

Ekinetic=([hP]v)-Ebinding-Φ

Energia vincolante data la funzione di lavoro

La formula della funzione di lavoro data dall'Energia di legame è definita come la più piccola quantità di Energia richiesta per rimuovere una particella da un sistema di particelle o per disassemblare un sistema di particelle in singole parti.

Ebinding=([hP]v)-Ekinetic-Φ

Energia totale specifica

La formula dell'Energia totale specifica è definita come l'Energia totale per unità di massa. A volte è anche chiamata densità di Energia gravimetrica, che non deve essere confusa con densità di Energia, che è definita come Energia per unità di volume. Viene utilizzato per quantificare, ad esempio, il calore immagazzinato e altre proprietà termodinamiche di sostanze come l'Energia interna specifica, l'entalpia specifica, l'Energia libera specifica di Gibbs e l'Energia libera specifica di Helmholtz. Può anche essere usato per l'Energia cinetica o l'Energia potenziale di un corpo. L'Energia specifica è una proprietà intensiva, mentre l'Energia e la massa sono proprietà estensive.

e=Em

Energia interna del sistema monoatomico

La formula dell'Energia interna del sistema monoatomico in equilibrio termico è che ogni grado di libertà ha un'Energia media di 3kT/2, dove T è la temperatura assoluta e k è la costante di Boltzmann.

Upoly=32[BoltZ]Tu

Energia interna del sistema biatomico

La formula dell'Energia interna del sistema biatomico in equilibrio termico è che ogni grado di libertà ha un'Energia media di 5kT/2, dove T è la temperatura assoluta e k è la costante di Boltzmann.

Upoly=52[BoltZ]Tu

Energia interna del sistema non lineare triatomico

L'Energia interna del sistema triatomico non lineare nell'equilibrio termico è che ogni grado di libertà ha un'Energia media di 6kT/2, dove T è la temperatura assoluta e k è la costante di Boltzmann.

Upoly=62[BoltZ]Tu

Energia interna del sistema lineare triatomico

L'Energia interna del sistema lineare triatomico in equilibrio termico è che ogni grado di libertà ha un'Energia media di 7kT/2, dove T è la temperatura assoluta e k è la costante di Boltzmann.

Upoly=72[BoltZ]Tu

Energia potenziale massima nella posizione media

La formula dell'Energia potenziale massima in posizione media è definita come la massima Energia che un oggetto può immagazzinare nella sua posizione media, solitamente osservata nei sistemi oscillanti, dove l'Energia viene convertita tra forma cinetica e potenziale, ed è un concetto cruciale per comprendere la dinamica del moto vibrazionale.

PEmax=sconstrainx22

Energia interna utilizzando l'Energia libera di Helmholtz

L'Energia interna che utilizza la formula dell'Energia libera di Helmholtz è definita come l'Energia necessaria per creare o preparare il sistema in un dato stato interno.

U=A+TS

Energia cinetica dei fotoelettroni data l'Energia di soglia

L'Energia cinetica dei fotoelettroni data l'Energia di soglia è definita come l'Energia cinetica consumata da una particella in movimento quando si sposta da un punto all'altro.

KE=Ephoton-W

Energia Cinetica Totale del Vincolo nella Vibrazione Longitudinale

La formula Total Kinetic Energy of Constraint in Longitudinal Vibration è definita come l'Energia associata al movimento di un vincolo in una vibrazione longitudinale, che è influenzata dall'inerzia del vincolo e dalla sua velocità. È un concetto cruciale per comprendere la dinamica delle vibrazioni longitudinali e i loro effetti sui sistemi meccanici.

KE=mcVlongitudinal26

Energia cinetica totale di due corpi prima dell'impatto

La formula dell'Energia cinetica totale di due corpi prima dell'impatto è definita come la metà della somma del prodotto della massa, del quadrato della velocità iniziale del primo corpo e del prodotto della massa e del quadrato della velocità iniziale del secondo corpo.

KEi=(12)((m1(u12))+(m2(u22)))

Energia cinetica dell'acqua

L'Energia cinetica dell'acqua è definita come la quantità di Energia fornita dall'elica al motore.

KE=WWaterVf22[g]

Energia cinetica del gas 1 se è presente una miscela di gas

La formula dell'Energia cinetica del gas 1 se è presente una miscela di gas è definita come prodotto del numero di moli di gas e della temperatura con l'Energia cinetica del secondo gas.

KE1=KE2(n1n2)(T1T2)

Energia cinetica del gas 2 se è presente una miscela di due gas

La formula dell'Energia cinetica del gas 2 se è presente una miscela di due gas è definita come prodotto del numero di moli di gas e della temperatura con l'Energia cinetica del primo gas.

KE2=KE1(n2n1)(T2T1)

Energia interna usando entalpia, pressione e volume

L'Energia interna che utilizza la formula di entalpia, pressione e volume è definita come la differenza di entalpia e il prodotto di pressione e volume.

U=H-PVT

Energia libera di Helmholtz che utilizza l'Energia interna, la temperatura e l'entropia

L'Energia libera di Helmholtz che utilizza la formula di Energia interna, temperatura ed entropia è definita come la differenza di Energia interna e il prodotto di temperatura ed entropia.

A=U-TS

Energia interna usando l'Energia libera, la temperatura e l'entropia di Helmholtz

L'Energia interna che utilizza la formula dell'Energia libera, della temperatura e dell'entropia di Helmholtz è definita come la somma dell'Energia di Helmholtz e il prodotto della temperatura e dell'entropia.

U=A+TS

Energia Interna data Parte Classica ed Elettrica

La formula dell'Energia interna data classica e parte elettrica è definita come la sottomissione della parte classica alla parte elettrica dell'Energia interna.

U=(Uk+Ue)

Come trovare Formule?

Ecco alcuni suggerimenti per risultati di ricerca migliori.
Sii specifico: più specifica è la tua query, migliori saranno i tuoi risultati.
Utilizza più parole chiave: combina più parole chiave parole chiave per restringere i risultati.
Sperimenta con i sinonimi: termini diversi possono produrre risultati diversi.
Ricerca con caratteri jolly: utilizza l'operatore * (asterisco). NOTA che questo operatore funziona solo alla fine di una parola. Esempio: Bio*, Area*, ecc.

In alternativa, puoi navigare tra le sottocategorie all'interno di per individuare le Formule di interesse.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!