Cerca Formule

Inserisci un minimo di 3 caratteri per iniziare con la ricerca delle formule .

Seleziona Filtra

Restringi i risultati della ricerca con l'aiuto di questi filtri.

50 Formule corrispondenti trovate!

Energia potenziale

La formula dell'Energia potenziale è definita come l'Energia che un oggetto possiede a causa della sua posizione o stato, che può essere convertita in Energia cinetica quando l'oggetto viene rilasciato o spostato ed è un concetto fondamentale per comprendere il comportamento degli oggetti nel mondo fisico.

PE=Mgh

Energia cinetica

La formula dell'Energia cinetica è definita come la misura dell'Energia di movimento di un oggetto, ovvero la capacità di compiere lavoro grazie al suo movimento ed è un concetto fondamentale in fisica che aiuta a descrivere la relazione tra la massa e la velocità di un oggetto.

KE=Mv22

Energia dello stato stazionario dell'idrogeno

L'Energia dello stato stazionario dell'idrogeno è lo stato di Energia costante in cui esistono gli elettroni.

EV=-([Rydberg])(1nquantum2)

Energia dell'elettrone in orbita iniziale

L'Energia dell'elettrone nell'orbita iniziale è lo stato di Energia costante in cui esistono gli elettroni nel livello di Energia iniziale o inferiore.

Eorbit=(-([Rydberg]ninitial2))

Energia dell'elettrone in orbita finale

L'Energia dell'elettrone nell'orbita finale è lo stato di Energia costante in cui esistono gli elettroni nel livello di Energia finale o più alto.

Eorbit=(-([Rydberg]nf2))

Energia dell'elettrone per numero quantico principale

La formula Energia dell'elettrone per numero quantico principale è definita come lo stato di Energia costante in cui gli elettroni esistono nel livello di Energia iniziale o inferiore.

E=nquantum+l

Energia cinetica data il momento angolare

La formula dell'Energia cinetica data il momento angolare è definita come l'Energia immagazzinata nel sistema a causa della sua Energia cinetica rotazionale. Questa Energia è correlata alla velocità angolare e quindi al momento angolare.

KE1=L22I

Energia di rotazione usando la costante di rotazione

L'Energia rotazionale utilizzando la formula della costante rotazionale è definita come Energia di serie di linee nello spettro rotazionale di una molecola biatomica. Le molecole biatomiche sono spesso approssimate come rotori rigidi, il che significa che si presume che la lunghezza del legame sia fissa. Risolvendo l'equazione di Schrödinger per un rotore rigido si ottengono i seguenti livelli di Energia: E = BJ (J 1).

Erot_RC=BJ(J+1)

Energia rotazionale

La formula Energia rotazionale è definita come Energia di serie di linee nello spettro rotazionale di una molecola biatomica. Le molecole biatomiche sono spesso approssimate come rotori rigidi, il che significa che si presume che la lunghezza del legame sia fissa.

Erotational=([h-]2)β2I

Energia delle Transizioni Vibrazionali

La formula Energia delle transizioni vibrazionali è definita come l'Energia totale dei rispettivi livelli di rotazione-vibrazione a diverse transizioni di una molecola biatomica.

Et=((v+12)-xe((v+12)2))([hP]vvib)

Energia cinetica dell'acqua

L'Energia cinetica dell'acqua è definita come la quantità di Energia fornita dall'elica al motore.

KE=WWaterVf22[g]

Energia fotoelettronica

L'Energia del fotoelettrone è contenuta in unità discrete piuttosto che in una distribuzione continua di energie. Le unità quantizzate di Energia luminosa possono essere considerate come pacchetti localizzati di Energia, detti fotoni, sono multipli interi di assi costanti e frequenza angolare.

Ephoto=[hP]f

Energia erogata per scintilla dal circuito di carica della resistenza

L'Energia erogata per scintilla dal circuito di carica della resistenza è il parametro che definisce la quantità di materiale rimosso e la finitura superficiale prodotta.

P=V02𝜏Rc(12-exp(-t𝜏)+0.5exp(-2t𝜏))

Energia critica per canale rettangolare

L'Energia critica per il canale rettangolare è definita come l'Energia minima richiesta per mantenere un flusso costante senza un salto di superficie libera, prevenendo la deposizione di sedimenti e garantendo la stabilità del flusso.

Er=1.5hr

Energia critica per il canale triangolare

L'Energia critica per il canale triangolare è definita come l'Energia generata o richiesta dalla profondità critica del canale.

Et=ht1.25

Energia critica per il canale parabolico

L'Energia critica per il canale parabolico è definita come l'Energia di flusso minima richiesta per mantenere il trasporto dei sedimenti, prevenendo la deposizione o l'erosione, cruciale per un trasporto idraulico stabile.

Ec=(43)hp

Energia erogata per scintilla

La formula Energia erogata per scintilla è definita come il parametro che definisce la quantità di materiale rimosso e la finitura superficiale prodotta.

Peds=0.5CedsVeds2

Energia potenziale dovuta alla deformazione della superficie libera

La formula dell'Energia potenziale dovuta alla deformazione della superficie libera è definita come l'Energia potenziale associata alla deformazione di una superficie libera, come un'onda oceanica, che può essere calcolata utilizzando il principio dei lavori virtuali. Quando si forma una cresta d'onda, rappresenta un aumento di Energia potenziale rispetto alla superficie piana. Questa Energia potenziale è il risultato del lavoro svolto per deformare la superficie e creare la cresta dell'onda.

Ep=ρ[g]η2λ2

Energia potenziale per unità di larghezza in un'onda

La formula Energia potenziale per unità di larghezza in un'onda è definita come la lunghezza d'onda dell'onda che è uguale all'Energia cinetica associata a una lunghezza d'onda. L'Energia totale associata ad una lunghezza d'onda è la somma dell'Energia potenziale e dell'Energia cinetica.

PE=(116)ρ[g](H2)λ

Energia cinetica dovuta al movimento delle particelle

La formula dell'Energia cinetica dovuta al movimento delle particelle è definita come l'Energia posseduta dalle particelle a causa del movimento. Le particelle di un solido non possono muoversi perché sono fitte e quindi hanno la minima Energia cinetica.

KE=(116)ρ[g](H2)λ

Energia degli Stati stazionari

La formula dell'Energia degli stati stazionari è definita come l'Energia di uno stato quantistico con tutte le osservabili indipendenti dal tempo. Lo stato stazionario è anche chiamato autovettore di Energia, autostato di Energia, autofunzione di Energia o autovettore di Energia.

En=[Rydberg](Z2nquantum2)

Energia di transizione da T1g a T2g

L'Energia di transizione da T1g a T2g è la transizione di Energia da T1g a T2g. Questo è determinato dal diagramma dell'orgel. I diagrammi di Orgel sono utili per mostrare i livelli di Energia degli ioni di metalli di transizione ottaedrici e tetraedrici ad alto spin. Mostrano solo le transizioni consentite per lo spin.

ET1gtoT2gP=(45Δ)+CI

Energia di transizione da T1g ad A2g

La formula dell'Energia di transizione da T1g ad A2g è definita come l'Energia di transizione da T1g ad A2g nel diagramma dell'orgel. I diagrammi di Orgel sono utili per mostrare i livelli di Energia degli ioni di metalli di transizione ottaedrici e tetraedrici ad alto spin.

ET1g to A2g=(95Δ)+CI

Energia di transizione da T1g a T1gP

La formula dell'Energia di transizione da T1g a T1gP è definita come l'Energia di transizione da T1g a T1gP nel diagramma dell'orgel. Può anche essere calcolato dal diagramma di Tanabe Sugano.

ET1g to T1gP=(35Δ)+(15Br)+(2CI)

Energia interna del sistema monoatomico

La formula dell'Energia interna del sistema monoatomico in equilibrio termico è che ogni grado di libertà ha un'Energia media di 3kT/2, dove T è la temperatura assoluta e k è la costante di Boltzmann.

Upoly=32[BoltZ]Tu

Energia interna del sistema biatomico

La formula dell'Energia interna del sistema biatomico in equilibrio termico è che ogni grado di libertà ha un'Energia media di 5kT/2, dove T è la temperatura assoluta e k è la costante di Boltzmann.

Upoly=52[BoltZ]Tu

Energia interna del sistema non lineare triatomico

L'Energia interna del sistema triatomico non lineare nell'equilibrio termico è che ogni grado di libertà ha un'Energia media di 6kT/2, dove T è la temperatura assoluta e k è la costante di Boltzmann.

Upoly=62[BoltZ]Tu

Energia interna del sistema lineare triatomico

L'Energia interna del sistema lineare triatomico in equilibrio termico è che ogni grado di libertà ha un'Energia media di 7kT/2, dove T è la temperatura assoluta e k è la costante di Boltzmann.

Upoly=72[BoltZ]Tu

Energia interna molare del gas ideale

L'Energia interna molare del gas ideale è l'Energia del sistema per mole che non dipende dalla quantità di sostanza ma dipende dalla temperatura e dalla pressione.

Umolar=F[R]Tg2

Energia di deformazione di taglio

La formula di Energia di deformazione di taglio è definita come l'Energia immagazzinata in un corpo a causa della deformazione. L'Energia di deformazione (cioè la quantità di Energia potenziale immagazzinata a causa della deformazione) è uguale al lavoro impiegato per deformare il materiale.

U=(𝜏2)V2G

Energia di deformazione di taglio nell'anello di raggio 'r'

La formula dell'Energia di deformazione di taglio nell'anello di raggio 'r' è definita come l'Energia immagazzinata in un corpo a causa della deformazione.

U=2π(𝜏2)L(rcenter3)δx2G(rshaft2)

Energia per posto vacante

L'Energia per posto vacante è l'Energia richiesta per creare un punto reticolo vacante in un reticolo cristallino.

ΔEvacancy=-ln(fvacancy)[R]T

Energia effettivamente prodotta dato il fattore vegetale

L'Energia effettivamente prodotta dato il fattore di impianto è definita come il processo di generazione di Energia elettrica da fonti di Energia primaria.

E=pw

Energia massima prodotta utilizzando il fattore impianto

Il Maximum Energy Produced using Plant Factor è definito come il processo di generazione della massima potenza elettrica da fonti di Energia primaria.

w=Ep

Energia tramite Turbine Idrauliche

L'Energia attraverso Turbine Idrauliche è definita come l'Energia che disponibile ovunque un corso d'acqua può essere raccolta ad una certa quota e l'acqua restituita ad un livello inferiore.

ETurbines=(9.81qflow(HWater-hlocation)ηTw)

Energia data alla prevalenza tramite turbine idrauliche

L'Energia di prevalenza fornita attraverso le turbine idrauliche è definita come una misura specifica della pressione del liquido al di sopra del dato verticale. Di solito è misurato come elevazione della superficie liquida.

HWater=(ETurbines9.81qflowηTw)+hlocation

Energia di taglio specifica data Peso iniziale del pezzo

L'Energia di taglio specifica data Il peso iniziale del pezzo è l'Energia consumata per rimuovere un volume unitario di materiale, che viene calcolato come il rapporto tra l'Energia di taglio E e il volume di materiale asportato V.

ps=tpρaV0W1-b

Energia cinetica assorbita dal freno

La formula dell'Energia cinetica assorbita dal freno è definita come la massima differenza tra l'Energia cinetica iniziale e quella finale del sistema.

KE=mu2-v22

Energia cinetica del corpo rotante

La formula dell'Energia cinetica del corpo rotante è definita come la misura del lavoro che un oggetto può compiere in virtù del suo movimento.

KE=Iω12-ω222

Energia potenziale assorbita durante il periodo di frenata

La formula Energia potenziale assorbita durante il periodo di frenata è definita come l'Energia trattenuta da un oggetto a causa della sua posizione rispetto ad altri oggetti, delle sollecitazioni al suo interno, della sua carica elettrica o di altri fattori.

PE=mgΔh

Energia totale assorbita dal freno

La formula Total Energy Absorbed by Brake è definita come l'Energia assorbita dal sistema o dai freni quando vengono applicati dei freni improvvisi attraverso il sistema.

KE=Msθb

Energia delle onde per potenza per unità di lunghezza della cresta

La formula Energia dell'onda per potenza per unità di lunghezza della cresta è definita come la quantità di Energia che può essere sfruttata dalle onde dell'oceano lungo una lunghezza specifica di costa o cresta di struttura. Nell’ingegneria costiera, questa metrica è fondamentale per valutare il potenziale dei sistemi di conversione dell’Energia del moto ondoso per generare elettricità rinnovabile.

E=PCG

Energia di interazione di Van Der Waals

La formula dell'Energia di interazione di Van Der Waals è definita come l'Energia di interazione di van der Waals per unità di area.

UVWaals=-A12π(h)2

Energia cinetica data la lunghezza d'onda della soglia

L'Energia cinetica data la lunghezza d'onda della soglia è definita come l'Energia di un oggetto quando si sposta dallo stato di riposo al movimento.

KE=[hP][c]λo-λλλo

Energia libera di Gibbs data la superficie

La formula di Gibbs Free Energy Given Surface Area è definita come l'Energia libera di Gibbs di una superficie curva che è direttamente proporzionale all'area della superficie.

G=γA

Energia di scissione del campo cristallino per complessi ottaedrici

L'Energia di divisione del campo cristallino per complessi ottaedrici è definita come la separazione di Energia tra l'orbitale T2g ed Eg.

CFSEOh=(Neg0.6)+(-0.4Nt2g)

Energia di scissione del campo cristallino per complessi tetraedrici

L'Energia di divisione del campo cristallino per i complessi tetraedrici è definita come la separazione di Energia tra l'orbitale T2g ed Eg.

CFSETd=((Neg(-0.6))+(0.4Nt2g))(49)

Energia prodotta dalla centrale idroelettrica

La formula dell'Energia prodotta da una centrale idroelettrica è definita come l'Energia elettrica generata dalla forza dell'acqua in caduta che viene imbrigliata dalle turbine e convertita in elettricità attraverso il funzionamento dei generatori.

E=[g]ρwQHηt

Energia prodotta da centrale idroelettrica data potenza

L'Energia prodotta da una centrale idroelettrica data la formula Power è definita come l'Energia elettrica generata dalla forza dell'acqua che cade che viene imbrigliata dalle turbine e convertita in elettricità attraverso il funzionamento dei generatori.

E=Phηt

Energia nel circuito CC

La formula Energy in DC Circuit è definita come il prodotto di potenza e tempo. È anche definita come la potenza consumata in un periodo di tempo.

E=PT

Come trovare Formule?

Ecco alcuni suggerimenti per risultati di ricerca migliori.
Sii specifico: più specifica è la tua query, migliori saranno i tuoi risultati.
Utilizza più parole chiave: combina più parole chiave parole chiave per restringere i risultati.
Sperimenta con i sinonimi: termini diversi possono produrre risultati diversi.
Ricerca con caratteri jolly: utilizza l'operatore * (asterisco). NOTA che questo operatore funziona solo alla fine di una parola. Esempio: Bio*, Area*, ecc.

In alternativa, puoi navigare tra le sottocategorie all'interno di per individuare le Formule di interesse.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!