Cerca Formule

Inserisci un minimo di 3 caratteri per iniziare con la ricerca delle formule .

Seleziona Filtra

Restringi i risultati della ricerca con l'aiuto di questi filtri.

50 Formule corrispondenti trovate!

Energia dello stato stazionario dell'idrogeno

L'Energia dello stato stazionario dell'idrogeno è lo stato di Energia costante in cui esistono gli elettroni.

EV=-([Rydberg])(1nquantum2)

Energia dell'elettrone in orbita iniziale

L'Energia dell'elettrone nell'orbita iniziale è lo stato di Energia costante in cui esistono gli elettroni nel livello di Energia iniziale o inferiore.

Eorbit=(-([Rydberg]ninitial2))

Energia dell'elettrone in orbita finale

L'Energia dell'elettrone nell'orbita finale è lo stato di Energia costante in cui esistono gli elettroni nel livello di Energia finale o più alto.

Eorbit=(-([Rydberg]nf2))

Energia per unità di massa di Pelton

L'Energia per unità di massa Pelton è l'Energia cinetica trasferita dal getto d'acqua ai secchi. Dipende dalla velocità del getto d'acqua e dall'efficienza della turbina.

Ep=(Vti-Vw)U

Energia per unità di massa della turbina Pelton

L'Energia per unità di massa della turbina Pelton è l'Energia cinetica trasferita dall'acqua alle pale della turbina. È determinata dalla velocità dei getti d'acqua che colpiscono le pale delle turbine, le quali convertono l'Energia cinetica dell'acqua in Energia meccanica. La relazione coinvolge la velocità iniziale dell'acqua e l'efficienza del processo di trasferimento di Energia.

Em=(Vr1+Vr2cos(β2))U

Energia vibrazionale utilizzando il numero di onda vibrazionale

L'Energia vibrazionale che utilizza la formula del numero d'onda vibrazionale è definita come l'Energia totale dei rispettivi livelli di rotazione-vibrazione di una molecola biatomica.

Ewn=(v+12)ω'

Energia termica consumata in evaporazione

L'Energia termica utilizzata nella formula di evaporazione è definita come l'Energia utilizzata per trasformare il liquido in vapore, quindi la temperatura non cambia durante questo processo.

He=ρwaterLEL

Energia delle maree

L'Energia delle maree è definita come il rapporto tra il prodotto della densità dell'acqua, la prevalenza, l'area spazzata della pala, la costante 9,81 e il periodo del ciclo delle maree.

Pt=0.5Aρw[g]H2

Energia eolica

La formula dell'Energia eolica è definita come la metà del prodotto dell'area spazzata della pala, qube di velocità del vento, densità dell'aria.

Pwind=0.5ρairAbladeVwind3

Energia interna per il flusso ipersonico

La formula dell'Energia interna per il flusso ipersonico è definita come l'Energia totale di un fluido in movimento a velocità molto elevate, che comprende sia l'Energia cinetica che quella potenziale, il che è fondamentale per comprendere il comportamento dei fluidi nei flussi ipersonici, in particolare nel contesto dei principi fondamentali del flusso viscoso.

U=H+Pρ

Energia di attivazione per reazioni di ordine zero

La formula Energia di attivazione per reazioni di ordine zero è definita come il prodotto della costante universale del gas con la temperatura della reazione e la differenza del logaritmo naturale del fattore di frequenza e della costante di velocità. L'Energia di attivazione è la quantità minima di Energia necessaria per attivare atomi o molecole in una condizione in cui possono subire una trasformazione chimica.

Ea=[R]Tgas(ln(A)-ln(k))

Energia di Attivazione per la Reazione del Primo Ordine

L'Energia di attivazione per la formula di reazione del primo ordine è definita come la moltiplicazione della costante universale dei gas con la temperatura e con il rapporto tra il logaritmo naturale del fattore di frequenza e la costante di velocità. La quantità minima di Energia necessaria per attivare atomi o molecole in una condizione in cui possono subire una trasformazione chimica.

Ea=[R]Tgas(ln(Akfirst))

Energia di attivazione per la reazione del secondo ordine

La formula Energia di attivazione per reazione del secondo ordine è definita come la moltiplicazione della costante universale dei gas con la temperatura e con la differenza dei logaritmi naturali del fattore di frequenza e della costante di velocità. La quantità minima di Energia necessaria per attivare atomi o molecole in una condizione in cui possono subire una trasformazione chimica è chiamata Energia di attivazione.

Ea=[R]TKinetics(ln(Afactor)-ln(Ksecond))

Energia libera residua di Gibbs utilizzando l'Energia libera di Gibbs del gas reale e ideale

La formula dell'Energia libera di Gibbs residua che utilizza la formula dell'Energia libera di Gibbs del gas effettivo e ideale è definita come la differenza tra l'Energia effettiva di Gibbs e l'Energia di Gibbs del gas ideale.

GR=G-Gig

Energia effettiva di Gibbs utilizzando l'Energia di Gibbs del gas residuo e ideale

La formula dell'Energia di Gibbs effettiva che utilizza la formula dell'Energia di Gibbs del gas residuo e ideale è definita come la somma dell'Energia di Gibbs residua e dell'Energia di Gibbs del gas ideale.

G=GR+Gig

Energia libera di Gibbs del gas ideale utilizzando l'Energia di Gibbs del gas residuo e effettivo

La formula dell'Energia libera di Gibbs del gas ideale utilizzando la formula dell'Energia di Gibbs del gas residuo e quella effettiva è definita come la differenza tra l'Energia effettiva di Gibbs e l'Energia residua di Gibbs.

Gig=G-GR

Energia reale di Gibbs utilizzando l'Energia in eccesso e la soluzione ideale di Gibbs

La formula dell'Energia di Gibbs effettiva che utilizza la formula dell'Energia di Gibbs in eccesso e soluzione ideale è definita come la somma dell'Energia di Gibbs in eccesso e dell'Energia di Gibbs della soluzione ideale.

G=GE+Gid

Energia di ionizzazione dell'elemento usando l'elettronegatività di Pauling

L'Energia di ionizzazione dell'elemento che utilizza l'elettronegatività di Pauling è la quantità minima di Energia richiesta per rimuovere l'elettrone più debolmente legato di un atomo o una molecola gassosa neutra isolata.

IE=((XP+0.2)(20.336))-E.A

Energia di ionizzazione usando l'elettronegatività di Allred Rochow

L'Energia di ionizzazione che utilizza l'elettronegatività di Allred Rochow è la quantità minima di Energia richiesta per rimuovere l'elettrone più debolmente legato di un atomo o molecola gassosa neutra isolata.

IE=((XA.R+0.744+0.2)(20.336))-E.A

Energia di deformazione immagazzinata nella barra di tensione

La formula Strain Energy Stored in Tension Rod è definita come una misura dell'Energia accumulata in un tirante quando è sottoposto a un carico assiale. Questa Energia è essenziale per comprendere il comportamento del materiale sotto stress e la sua capacità di resistere alla deformazione.

U=(P2)L2AE

Energia di deformazione immagazzinata nell'asta sottoposta a momento flettente

La formula Strain Energy Stored in Rod Subjected to Bending Moment è definita come una rappresentazione dell'Energia accumulata in un'asta quando subisce una flessione. Questa Energia è fondamentale per comprendere il comportamento del materiale sotto stress e per garantire l'integrità strutturale nelle applicazioni ingegneristiche.

U=(Mb2)L2EI

Energia totale per unità di peso dell'acqua nella sezione di flusso

L'Energia totale per unità di peso dell'acqua nella sezione di flusso è definita come la somma dell'Energia cinetica e potenziale immagazzinata nell'acqua che scorre nel canale.

Etotal=(Vmean22[g])+df+y

Energia totale per unità di peso dell'acqua nella sezione di flusso considerando la pendenza del letto come dato

L'Energia totale per unità di peso dell'acqua nella sezione di flusso considerando la pendenza del letto come dato è definita come la somma dell'Energia cinetica e potenziale immagazzinata nell'acqua che scorre nel canale.

Etotal=(VFN22[g])+df

Energia totale per unità di peso dell'acqua nel flusso Sezione data Scarico

L'Energia totale per unità di peso dell'acqua nella sezione di flusso data portata è definita come l'Energia posseduta dal liquido che scorre nel canale.

Etotal=df+((QAcs)22[g])

Energia termica media della molecola di gas poliatomico lineare

L'Energia termica media della molecola di gas poliatomica lineare viene prodotta quando un aumento della temperatura fa sì che atomi e molecole si muovano più velocemente e entrino in collisione tra loro.

Qin=((32)[BoltZ]T)+((0.5Iy(ωy2))+(0.5Iz(ωz2)))+((3N)-5)([BoltZ]T)

Energia termica media della molecola di gas poliatomico non lineare data l'atomicità

L'Energia termica media della molecola di gas poliatomico non lineare data l'atomicità viene prodotta quando un aumento della temperatura fa sì che atomi e molecole si muovano più velocemente e si scontrino tra loro.

Qatomicity=((6N)-6)(0.5[BoltZ]T)

Energia vibrazionale molare della molecola lineare

La formula Molare Vibrational Energy of Linear Molecule è definita come l'Energia cinetica che un oggetto possiede a causa del suo movimento vibratorio.

Eviv=((3N)-5)([R]T)

Energia vibrazionale molare della molecola non lineare

La formula dell'Energia Vibrazionale Molare della Molecola Non Lineare è definita come l'Energia cinetica che un oggetto possiede a causa del suo movimento vibratorio.

Eviv=((3N)-6)([R]T)

Energia critica per canale rettangolare

L'Energia critica per il canale rettangolare è definita come l'Energia minima richiesta per mantenere un flusso costante senza un salto di superficie libera, prevenendo la deposizione di sedimenti e garantendo la stabilità del flusso.

Er=1.5hr

Energia critica per il canale triangolare

L'Energia critica per il canale triangolare è definita come l'Energia generata o richiesta dalla profondità critica del canale.

Et=ht1.25

Energia critica per il canale parabolico

L'Energia critica per il canale parabolico è definita come l'Energia di flusso minima richiesta per mantenere il trasporto dei sedimenti, prevenendo la deposizione o l'erosione, cruciale per un trasporto idraulico stabile.

Ec=(43)hp

Energia erogata per scintilla

La formula Energia erogata per scintilla è definita come il parametro che definisce la quantità di materiale rimosso e la finitura superficiale prodotta.

Peds=0.5CedsVeds2

Energia di taglio specifica data Peso iniziale del pezzo

L'Energia di taglio specifica data Il peso iniziale del pezzo è l'Energia consumata per rimuovere un volume unitario di materiale, che viene calcolato come il rapporto tra l'Energia di taglio E e il volume di materiale asportato V.

ps=tpρaV0W1-b

Energia totale per unità di area data Potenza d'onda per unità di larghezza della cresta

L'Energia totale per unità di area data la potenza d'onda per unità di larghezza della cresta è definita come la combinazione di avvezione (trasporto) di Energia potenziale e cinetica più il lavoro svolto dalle pressioni per unità di larghezza.

E=PVg

Energia totale del sistema

L'Energia totale della formula del sistema è definita come somma di Energia cinetica, Energia potenziale ed Energia interna. Gli oggetti con Energia totale inferiore a zero sono vincolati; quelli con zero o maggiore sono illimitati.

Esystem=PE+KE+U

Energia potenziale elastica della molla

L'Energia potenziale elastica della molla definita come Energia immagazzinata come risultato dell'applicazione di una forza per deformare un oggetto elastico. L'Energia viene immagazzinata fino a quando la forza non viene rimossa.

U=12kx2

Energia di legame per nucleone

L'Energia di legame per nucleone nella fisica sperimentale è l'Energia minima necessaria per disassemblare il nucleo di un atomo nei suoi protoni e neutroni costituenti, noti collettivamente come nucleoni.

B.E per nucleon=∆m931.5A

Energia interna del sistema monoatomico

La formula dell'Energia interna del sistema monoatomico in equilibrio termico è che ogni grado di libertà ha un'Energia media di 3kT/2, dove T è la temperatura assoluta e k è la costante di Boltzmann.

Upoly=32[BoltZ]Tu

Energia interna del sistema biatomico

La formula dell'Energia interna del sistema biatomico in equilibrio termico è che ogni grado di libertà ha un'Energia media di 5kT/2, dove T è la temperatura assoluta e k è la costante di Boltzmann.

Upoly=52[BoltZ]Tu

Energia interna del sistema non lineare triatomico

L'Energia interna del sistema triatomico non lineare nell'equilibrio termico è che ogni grado di libertà ha un'Energia media di 6kT/2, dove T è la temperatura assoluta e k è la costante di Boltzmann.

Upoly=62[BoltZ]Tu

Energia interna del sistema lineare triatomico

L'Energia interna del sistema lineare triatomico in equilibrio termico è che ogni grado di libertà ha un'Energia media di 7kT/2, dove T è la temperatura assoluta e k è la costante di Boltzmann.

Upoly=72[BoltZ]Tu

Energia cinetica data la velocità angolare

La formula dell'Energia cinetica data la velocità angolare è definita come la somma dell'Energia cinetica per ciascuna massa. La velocità lineare(v) è il raggio(r) moltiplicato per la velocità angolare (ω). Quindi la formula dell'Energia cinetica può essere modificata sostituendo v con r*ω. Quindi otteniamo l'Energia cinetica totale in termini di velocità angolare(ω).

KE1=((m1(R12))+(m2(R22)))ω22

Energia cinetica data inerzia e velocità angolare

La formula dell'Energia cinetica data l'inerzia e la velocità angolare è definita come l'Energia cinetica dovuta alla rotazione di un oggetto e fa parte della sua Energia cinetica totale. L'Energia cinetica di rotazione è direttamente proporzionale all'inerzia rotazionale e al quadrato dell'ampiezza della velocità angolare. L'Energia cinetica di un oggetto rotante può essere espressa come metà del prodotto della velocità angolare dell'oggetto e del momento di inerzia attorno all'asse di rotazione.

KE2=Iω22

Energia delle Transizioni Vibrazionali

La formula Energia delle transizioni vibrazionali è definita come l'Energia totale dei rispettivi livelli di rotazione-vibrazione a diverse transizioni di una molecola biatomica.

Et=((v+12)-xe((v+12)2))([hP]vvib)

Energia cinetica totale di due corpi prima dell'impatto

La formula dell'Energia cinetica totale di due corpi prima dell'impatto è definita come la metà della somma del prodotto della massa, del quadrato della velocità iniziale del primo corpo e del prodotto della massa e del quadrato della velocità iniziale del secondo corpo.

KEi=(12)((m1(u12))+(m2(u22)))

Energia di ionizzazione data l'elettronegatività

L'Energia di ionizzazione data la formula dell'elettronegatività è definita come la quantità minima di Energia richiesta per rimuovere l'elettrone più debolmente legato di un atomo o molecola gassosa neutro isolato.

IE=(EN5.6)-E.A

Energia effettivamente prodotta dato il fattore vegetale

L'Energia effettivamente prodotta dato il fattore di impianto è definita come il processo di generazione di Energia elettrica da fonti di Energia primaria.

E=pw

Energia massima prodotta utilizzando il fattore impianto

Il Maximum Energy Produced using Plant Factor è definito come il processo di generazione della massima potenza elettrica da fonti di Energia primaria.

w=Ep

Energia tramite Turbine Idrauliche

L'Energia attraverso Turbine Idrauliche è definita come l'Energia che disponibile ovunque un corso d'acqua può essere raccolta ad una certa quota e l'acqua restituita ad un livello inferiore.

ETurbines=(9.81qflow(HWater-hlocation)ηTw)

Energia data alla prevalenza tramite turbine idrauliche

L'Energia di prevalenza fornita attraverso le turbine idrauliche è definita come una misura specifica della pressione del liquido al di sopra del dato verticale. Di solito è misurato come elevazione della superficie liquida.

HWater=(ETurbines9.81qflowηTw)+hlocation

Come trovare Formule?

Ecco alcuni suggerimenti per risultati di ricerca migliori.
Sii specifico: più specifica è la tua query, migliori saranno i tuoi risultati.
Utilizza più parole chiave: combina più parole chiave parole chiave per restringere i risultati.
Sperimenta con i sinonimi: termini diversi possono produrre risultati diversi.
Ricerca con caratteri jolly: utilizza l'operatore * (asterisco). NOTA che questo operatore funziona solo alla fine di una parola. Esempio: Bio*, Area*, ecc.

In alternativa, puoi navigare tra le sottocategorie all'interno di per individuare le Formule di interesse.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!