Cerca Formule

Inserisci un minimo di 3 caratteri per iniziare con la ricerca delle formule .

Seleziona Filtra

Restringi i risultati della ricerca con l'aiuto di questi filtri.

50 Formule corrispondenti trovate!

Energia potenziale elettrostatica di cariche puntiformi o sistema di cariche

La formula dell'Energia potenziale elettrostatica della carica puntiforme o del sistema di cariche è definita come l'Energia associata all'interazione tra due cariche puntiformi o un sistema di cariche, che dipende dall'entità delle cariche e dalla distanza tra loro, ed è un concetto fondamentale in comprendere le interazioni elettrostatiche.

Ufree=[Coulomb]q1q2r

Energia libera di Helmholtz

L'Energia libera di Helmholtz è un concetto termodinamico in cui il potenziale termodinamico viene utilizzato per misurare il lavoro di un sistema chiuso con temperatura e volume costanti.

A=U-TS

Energia di equipartizione

Il teorema dell'Energia di Equipartizione è correlato alla temperatura del sistema e alla sua Energia cinetica e potenziale media. Questo teorema è anche chiamato legge di equipartizione dell'Energia o semplicemente equipartizione.

K=[BoltZ]Tg2

Energia di equipartizione per molecole con n gradi di libertà

L'Energia di equipaggiamento per molecole aventi n gradi di libertà è correlata alla temperatura del sistema e alla sua Energia cinetica e potenziale media. Questo teorema è anche chiamato legge di equipartizione dell'Energia o semplicemente equipartizione.

K=F[BoltZ]Tg2

Energia interna molare del gas ideale data la costante di Boltzmann

L'Energia interna molare del gas ideale data Boltzmann Constant è definita come l'Energia associata al movimento casuale e disordinato delle molecole. È separato in scala dall'Energia ordinata macroscopica associata agli oggetti in movimento.

U=FNmoles[BoltZ]Tg2

Energia di deformazione dovuta al taglio puro

L'Energia di deformazione dovuta al taglio puro è definita come la misura del tipo di Energia potenziale immagazzinata in un elemento strutturale a seguito della deformazione elastica.

U=𝜏𝜏VT2Gpa

Energia di deformazione data il valore del momento di torsione

La formula dell'Energia di deformazione data dal valore del momento di torsione è definita come la misura del valore che è 0,5 volte il rapporto tra il prodotto del carico di torsione e della lunghezza e il prodotto del modulo di taglio e del momento polare di inerzia.

U=T2L2GpaJ

Energia cinetica massima del fotoelettrone espulso

La formula dell'Energia cinetica massima del fotoelettrone espulso è definita come l'Energia massima raggiunta da un elettrone quando viene espulso da una superficie metallica a causa dell'assorbimento di un fotone, concetto fondamentale per comprendere l'effetto fotoelettrico e le sue applicazioni in vari ambiti. campi della fisica.

Kmax=[hP]vphoton-ϕ

Energia nell'orbita di Bohr all'ennesima potenza

Energia nell'ennesima formula dell'orbita di Bohr è definita come l'Energia di un elettrone nell'ennesimo livello energetico di un atomo di idrogeno, che è un concetto fondamentale nella fisica atomica, che descrive lo stato energetico di un elettrone in un'orbita specifica attorno al nucleo.

En=-13.6(Z2)nlevel2

Energia fotonica nella transizione di stato

La formula dell'Energia fotonica nella transizione di stato è definita come l'Energia associata a un fotone durante una transizione da uno stato energetico a un altro, che è un concetto fondamentale nella meccanica quantistica, che descrive lo scambio di Energia tra luce e materia.

Eγ=hvphoton

Energia di legame

La formula dell'Energia di legame è definita come l'Energia richiesta per separare un nucleo atomico nelle sue parti costituenti, in particolare protoni e neutroni, che è una misura della forza della forza nucleare che tiene insieme il nucleo, fornendo informazioni sulla stabilità di un atomo .

E=(Zmp+(A-Z)mn-matom)[c]2

Energia rilasciata in reazione nucleare

La formula dell'Energia rilasciata nella reazione nucleare è definita come la quantità di Energia liberata quando una certa quantità di massa viene convertita in Energia durante una reazione nucleare, che è un concetto fondamentale nella fisica nucleare e viene utilizzato per calcolare la resa energetica di vari processi nucleari.

E=∆m[c]2

Energia dell'elettrone in orbita ellittica

L'Energia dell'elettrone nell'orbita ellittica è definita come l'Energia consumata da una particella/elettrone per muoversi in un'orbita ellittica.

Eeo=(-(Z2)[Mass-e]([Charge-e]4)8([Permitivity-vacuum]2)([hP]2)(nquantum2))

Energia totale dell'elettrone nell'ennesima orbita

L'Energia totale dell'elettrone nell'ennesima orbita è definita come la somma dell'Energia cinetica e dell'Energia potenziale consumata da una particella in movimento quando si sposta da un punto a un altro.

EeV_orbital=(-[Mass-e]([Charge-e]4)(Z2)8([Permitivity-vacuum]2)(nquantum2)([hP]2))

Energia delle transizioni rotazionali tra livelli rotazionali

La formula Energia delle transizioni rotazionali tra livelli rotazionali è definita come l'Energia della radiazione assorbita per subire una transizione energetica quando una molecola viene irradiata con fotoni di luce. Per una molecola biatomica, la differenza di Energia tra i livelli rotazionali (da J a J 1) è l'Energia delle transizioni rotazionali.

ERL=2B(J+1)

Energia cinetica dell'aria all'ingresso

La formula Energia cinetica dell'aria all'ingresso è definita come la metà del prodotto della portata massica dell'aria per il quadrato della velocità di avanzamento dell'aereo.

KE=12maV2

Energia cinetica dei gas di scarico

La formula dell'Energia cinetica dei gas di scarico è definita come la metà del prodotto della portata massica dell'aria, la somma di uno e il rapporto carburante-aria moltiplicato per il quadrato della velocità del getto dell'aereo.

KE=12mi(1+f)Cideal2

Energia cinetica totale di due corpi dopo l'impatto

L'Energia cinetica totale di due corpi dopo la formula dell'impatto è definita come la metà della somma del prodotto di massa, quadrato della velocità finale del primo corpo e massa, quadrato della velocità finale del secondo corpo.

KEf=(12)((m1(v12))+(m2(v22)))

Energia di deformazione totale immagazzinata nell'albero

La formula Total Strain Energy Stored in Shaft è definita come l'Energia immagazzinata in un corpo a causa della deformazione.

U=(𝜏2)LJshaft2G(rshaft2)

Energia di deformazione totale nell'albero a causa della torsione

L'Energia di deformazione totale nell'albero dovuta alla formula di torsione è definita come l'Energia immagazzinata in un corpo a causa della deformazione.

U=(𝜏2)V4G

Energia di deformazione totale nell'albero cavo dovuta alla torsione

L'Energia di deformazione totale nell'albero cavo dovuta alla formula di torsione è definita come l'Energia immagazzinata in un corpo a causa della deformazione. L'Energia di deformazione per unità di volume è nota come densità di Energia di deformazione e l'area sotto la curva sforzo-deformazione verso il punto di deformazione.

U=(𝜏2)((douter2)+(dinner2))V4G(douter2)

Energia effettivamente prodotta dato il fattore vegetale

L'Energia effettivamente prodotta dato il fattore di impianto è definita come il processo di generazione di Energia elettrica da fonti di Energia primaria.

E=pw

Energia massima prodotta utilizzando il fattore impianto

Il Maximum Energy Produced using Plant Factor è definito come il processo di generazione della massima potenza elettrica da fonti di Energia primaria.

w=Ep

Energia tramite Turbine Idrauliche

L'Energia attraverso Turbine Idrauliche è definita come l'Energia che disponibile ovunque un corso d'acqua può essere raccolta ad una certa quota e l'acqua restituita ad un livello inferiore.

ETurbines=(9.81qflow(HWater-hlocation)ηTw)

Energia data alla prevalenza tramite turbine idrauliche

L'Energia di prevalenza fornita attraverso le turbine idrauliche è definita come una misura specifica della pressione del liquido al di sopra del dato verticale. Di solito è misurato come elevazione della superficie liquida.

HWater=(ETurbines9.81qflowηTw)+hlocation

Energia potenziale per unità Lunghezza della cresta d'onda

La formula dell'Energia potenziale per unità di lunghezza della cresta d'onda è definita come l'Energia potenziale immagazzinata in un'onda a causa dell'elevazione della superficie dell'acqua al di sopra del livello medio del mare. È una misura dell’Energia disponibile nell’onda che può essere utilizzata per varie applicazioni di ingegneria costiera e oceanica, come la generazione di Energia del moto ondoso e la protezione delle coste.

PE=(116)ρ[g]H2λ

Energia cinetica per unità Lunghezza della cresta d'onda

La formula dell'Energia cinetica per unità di lunghezza della cresta d'onda è definita come la quantità di Energia cinetica associata ad un'unità di lunghezza di un fronte d'onda, perpendicolare alla direzione di propagazione dell'onda. Nell’ingegneria costiera e oceanica, questa metrica è fondamentale per comprendere la dinamica energetica delle onde oceaniche, in particolare quando si valuta l’impatto delle onde sulle strutture costiere e sugli ambienti sotterranei.

KE=(116)ρ[g]H2λ

Energia delle onde per potenza per unità di lunghezza della cresta

La formula Energia dell'onda per potenza per unità di lunghezza della cresta è definita come la quantità di Energia che può essere sfruttata dalle onde dell'oceano lungo una lunghezza specifica di costa o cresta di struttura. Nell’ingegneria costiera, questa metrica è fondamentale per valutare il potenziale dei sistemi di conversione dell’Energia del moto ondoso per generare elettricità rinnovabile.

E=PCG

Energia di transizione da T1g a T2g

L'Energia di transizione da T1g a T2g è la transizione di Energia da T1g a T2g. Questo è determinato dal diagramma dell'orgel. I diagrammi di Orgel sono utili per mostrare i livelli di Energia degli ioni di metalli di transizione ottaedrici e tetraedrici ad alto spin. Mostrano solo le transizioni consentite per lo spin.

ET1gtoT2gP=(45Δ)+CI

Energia di transizione da T1g ad A2g

La formula dell'Energia di transizione da T1g ad A2g è definita come l'Energia di transizione da T1g ad A2g nel diagramma dell'orgel. I diagrammi di Orgel sono utili per mostrare i livelli di Energia degli ioni di metalli di transizione ottaedrici e tetraedrici ad alto spin.

ET1g to A2g=(95Δ)+CI

Energia di transizione da T1g a T1gP

La formula dell'Energia di transizione da T1g a T1gP è definita come l'Energia di transizione da T1g a T1gP nel diagramma dell'orgel. Può anche essere calcolato dal diagramma di Tanabe Sugano.

ET1g to T1gP=(35Δ)+(15Br)+(2CI)

Energia del punto zero delle particelle in 3D SHO

L'Energia del punto zero delle particelle nella formula 3D SHO è definita come l'Energia più bassa possibile che un sistema quantomeccanico può avere.

Z.P.E=1.5[h-]ω

Energia cinetica del veicolo alla velocità di progetto

La formula dell'Energia cinetica del veicolo alla velocità di progetto è definita come l'Energia posseduta da un veicolo a causa del suo movimento a una specifica velocità di progetto, che è un parametro fondamentale per determinare la distanza di visibilità necessaria per un arresto sicuro.

K.E=Wvvehicle22[g]

Energia di propagazione utilizzando l'Energia superficiale specifica

L'Energia di Propagazione mediante la formula dell'Energia Superficie Specifica è definita come la barriera energetica che entra in gioco nel meccanismo di propagazione dopo la nucleazione, dove la superficie della parete aumenta fino a raggiungere il valore massimo πR2.

Ep=γπR2

Energia per unità di volume del cluster

La formula Energia per unità di volume del cluster è definita come la quantità di Energia immagazzinata in un dato sistema o regione di spazio per unità di volume.

Ev=avn

Energia senza volume

L'Energia libera dal volume è la differenza di Energia libera tra la fase solida e quella liquida.

𝚫Gv=ΔHfΔTTm

Energia libera critica per la nucleazione (dall'Energia libera dal volume)

L'Energia libera critica per la nucleazione (dall'Energia libera dal volume) è l'Energia libera richiesta per la formazione di un nucleo stabile. Allo stesso modo, può essere considerato una barriera energetica al processo di nucleazione.

ΔG*=16π𝛾33𝚫Gv2

Energia cinetica in elettronvolt

La formula dell'Energia cinetica in elettronvolt è definita come l'Energia cinetica consumata dalla particella che viene misurata in elettroni volt.

Eatom_eV=-(13.66.2415063630941018)(Z)2(nquantum)2

Energia in elettronvolt

La formula dell'Energia in elettronvolt è definita come l'Energia potenziale consumata dalla particella misurata in elettronvolt.

KEphoton=(6.86.2415063630941018)(Z)2(nquantum)2

Energia totale in elettronvolt

La formula dell'Energia totale in elettronvolt è definita come la somma dell'Energia cinetica e dell'Energia potenziale consumata dal corpo mentre si sposta da un punto all'altro.

KEphoton=(6.86.2415063630941018)(Z)2(nquantum)2

Energia del fotone usando l'approccio di Einstein

L'Energia del fotone utilizzando l'approccio di Einstein è l'Energia trasportata da un singolo fotone. È indicato dal simbolo, E.

Efreq=[hP]νphoton

Energia di 1 Mole di Fotoni

L'Energia di 1 mole di fotoni è l'Energia che viene trasportata da un singolo fotone. È indicato dal simbolo, E.

Ephoton=[Avaga-no][hP]νphoton

Energia cinetica dei fotoelettroni

L'Energia cinetica dei fotoelettroni è definita come l'Energia cinetica consumata da una particella in movimento quando si sposta da un punto a un altro.

KEphoton=[hP](νphoton-v0)

Energia del fotone nell'effetto fotoelettrico

L'Energia del fotone nell'effetto fotoelettrico è l'Energia di soglia totale o funzione di lavoro e l'Energia cinetica dei fotoni.

Ephoton_EEF=W+KE

Energia cinetica dell'elettrone dato il numero atomico

L'Energia cinetica dell'elettrone dato il numero atomico è definita come l'Energia cinetica consumata da una particella in movimento quando si sposta da un punto all'altro.

Efreq=Z([Charge-e]2)2rorbit

Energia potenziale dell'elettrone data il numero atomico

L'Energia potenziale dell'elettrone dato il numero atomico è l'Energia immagazzinata in un elettrone a causa della sua posizione rispetto a una posizione zero.

PE=(-Z([Charge-e]2)rorbit)

Energia totale dell'elettrone data il numero atomico

L'Energia totale dell'elettrone dato il numero atomico è definita come la somma dell'Energia cinetica e dell'Energia potenziale consumata da una particella in movimento quando si sposta da un punto all'altro.

EeV_AN=-Z([Charge-e]2)2rorbit

Energia cinetica totale di vincolo per vibrazioni trasversali

La formula dell'Energia cinetica totale del vincolo per le vibrazioni trasversali è definita come una misura dell'Energia associata alle vibrazioni trasversali di un sistema vincolato, tenendo conto dell'inerzia del vincolo, e viene utilizzata per analizzare gli effetti delle vibrazioni longitudinali e trasversali in vari sistemi meccanici.

KE=33mcVtraverse2280

Energia cinetica posseduta dall'elemento

La formula dell'Energia cinetica posseduta dall'elemento è definita come l'Energia associata al movimento di un oggetto in un sistema di vibrazioni torsionali, che è un concetto fondamentale nell'ingegneria meccanica e nella fisica, in particolare nello studio del moto rotatorio e delle oscillazioni.

KE=Ic(ωfx)2δx2l3

Energia cinetica totale del vincolo

La formula dell'Energia cinetica totale di vincolo è definita come l'Energia associata al moto rotatorio di un sistema in vibrazioni torsionali, dove l'inerzia del sistema e la frequenza angolare sono fattori chiave nel determinare questa Energia.

KE=Icωf26

Come trovare Formule?

Ecco alcuni suggerimenti per risultati di ricerca migliori.
Sii specifico: più specifica è la tua query, migliori saranno i tuoi risultati.
Utilizza più parole chiave: combina più parole chiave parole chiave per restringere i risultati.
Sperimenta con i sinonimi: termini diversi possono produrre risultati diversi.
Ricerca con caratteri jolly: utilizza l'operatore * (asterisco). NOTA che questo operatore funziona solo alla fine di una parola. Esempio: Bio*, Area*, ecc.

In alternativa, puoi navigare tra le sottocategorie all'interno di per individuare le Formule di interesse.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!