Cerca Formule

Inserisci un minimo di 3 caratteri per iniziare con la ricerca delle formule .

Seleziona Filtra

Restringi i risultati della ricerca con l'aiuto di questi filtri.

50 Formule corrispondenti trovate!

Energia cinetica totale del sistema a ingranaggi

La formula dell'Energia cinetica totale di un sistema di ingranaggi è definita come una misura della somma delle energie cinetiche di tutte le parti rotanti in un sistema di ingranaggi, considerando il momento di inerzia e l'accelerazione angolare di ciascun componente, fornendo una comprensione completa del comportamento dinamico del sistema.

KE=MOIαA22

Energia termica data differenza di potenziale elettrico e corrente elettrica

L'Energia termica data la differenza di potenziale elettrico e la formula della corrente elettrica è definita come la quantità di Energia trasferita o convertita quando una corrente elettrica scorre attraverso un circuito con una data differenza di potenziale elettrico ed è un concetto fondamentale per comprendere la relazione tra Energia elettrica e lavoro.

PQ=ΔVITTotal

Energia termica data la differenza di potenziale elettrico e la resistenza

La formula dell'Energia termica data la differenza di potenziale elettrico e la resistenza è definita come la quantità di Energia trasferita come calore quando una corrente elettrica scorre attraverso un conduttore con una data differenza di potenziale elettrico e resistenza, fornendo una misura dell'Energia termica generata in un circuito elettrico.

PQ=(ΔV2R)t

Energia cinetica del sistema dopo urto anelastico

La formula dell'Energia cinetica del sistema dopo una collisione anelastica è definita come una misura dell'Energia cinetica totale posseduta da due oggetti dopo la loro collisione anelastica, con conseguente perdita di Energia cinetica e conversione in altre forme di Energia. È un concetto fondamentale per comprendere la cinetica del movimento e la dinamica delle collisioni.

Ek=(m1+m2)v22

Energia della particella in movimento data la frequenza

La formula dell'Energia della particella in movimento data dalla frequenza è definita come l'Energia consumata dalla particella per spostarsi da un punto all'altro.

Efreq=[hP]ωn

Energia cinetica dell'elettrone

La formula dell'Energia cinetica dell'elettrone è definita come l'Energia cinetica consumata da una particella in movimento quando si sposta da un punto all'altro.

EeV=-2.17810-18(Z)2(nquantum)2

Energia dell'elettrone

Energia dell'elettrone. la formula è definita come l'Energia consumata da una particella nel muoversi da un punto all'altro.

KEphoton=1.08510-18(Z)2(nquantum)2

Energia totale dell'elettrone

La formula Total Energy Of Electron è definita come la somma dell'Energia cinetica e dell'Energia potenziale consumata da una particella in movimento quando si sposta da un punto a un altro.

Etotal=-1.085(Z)2(nquantum)2

Energia della particella mobile data la lunghezza d'onda

L'Energia della particella in movimento data la formula della lunghezza d'onda è definita come l'Energia consumata da una particella in movimento per spostarsi da un punto all'altro.

KEphoton=[hP][c]λ

Energia della particella in movimento data il numero d'onda

L'Energia della particella in movimento data la formula del numero d'onda è definita come l'Energia consumata dalla particella in movimento per spostarsi da una.

Ewaveno.=[hP][c]k

Energia potenziale data Spostamento del corpo

L'Energia potenziale data la formula dello spostamento del corpo è definita come l'Energia che un oggetto possiede a causa della sua posizione o stato, in particolare quando viene spostato dalla sua posizione di equilibrio, ed è un concetto fondamentale per comprendere il comportamento degli oggetti in vari sistemi fisici.

PE=sconstrain(sbody2)2

Energia cinetica massima nella posizione media

La formula dell'Energia cinetica massima in posizione media è definita come l'Energia massima posseduta da un oggetto a causa del suo movimento in una posizione media, un concetto fondamentale per comprendere la dinamica delle vibrazioni longitudinali libere, in particolare nei sistemi meccanici.

KE=Wloadωf2x22

Energia cinetica posseduta dall'elemento

La formula dell'Energia cinetica posseduta dall'elemento è definita come l'Energia associata al movimento di un oggetto in un sistema di vibrazioni torsionali, che è un concetto fondamentale nell'ingegneria meccanica e nella fisica, in particolare nello studio del moto rotatorio e delle oscillazioni.

KE=Ic(ωfx)2δx2l3

Energia cinetica totale del vincolo

La formula dell'Energia cinetica totale di vincolo è definita come l'Energia associata al moto rotatorio di un sistema in vibrazioni torsionali, dove l'inerzia del sistema e la frequenza angolare sono fattori chiave nel determinare questa Energia.

KE=Icωf26

Energia di deformazione totale per unità di volume

La formula dell'Energia di deformazione totale per unità di volume è definita come la somma dell'Energia di deformazione corrispondente alla distorsione senza variazione di volume e dell'Energia di deformazione corrispondente alla variazione di volume senza distorsione.

UTotal=Ud+Uv

Energia di deformazione dovuta alla variazione di volume data la sollecitazione volumetrica

L'Energia di deformazione dovuta alla variazione di volume dato lo stress volumetrico è definita come l'Energia immagazzinata in un corpo a causa della deformazione. Questa Energia è l'Energia immagazzinata quando il volume cambia senza distorsione.

Uv=32σvεv

Energia di deformazione dovuta alla variazione di volume date le sollecitazioni principali

L'Energia di deformazione dovuta alla variazione di volume data la formula delle sollecitazioni principali è definita come l'Energia immagazzinata in un corpo a causa della deformazione. Questa Energia è l'Energia immagazzinata quando il volume cambia senza distorsione.

Uv=(1-2𝛎)6E(σ1+σ2+σ3)2

Energia libera di Gibbs in eccesso utilizzando i coefficienti di attività e le frazioni molari liquide

La formula Excess Gibbs Free Energy using Activity Coefficients and Liquid Mole Fractions è definita come il prodotto della costante universale del gas, della temperatura e della somma del prodotto della frazione molare dell'i-esimo componente e del logaritmo naturale del coefficiente di attività del componente i , dove per il sistema binario i = 2.

GE=([R]TVLE)(x1ln(γ1)+x2ln(γ2))

Energia libera di Gibbs in eccesso utilizzando l'equazione a due parametri di Margules

L'Energia libera in eccesso di Gibbs utilizzando la formula dell'equazione a due parametri di Margules è definita come la funzione dei coefficienti a due parametri di Margules A12 e A21, della temperatura e della frazione molare di entrambi i componenti 1 e 2.

GE=([R]Tactivity coefficentx1x2)(A21x1+A12x2)

Energia cinetica per mole

La formula dell'Energia cinetica per mole è definita come l'Energia associata al movimento delle particelle in un sistema, solitamente misurata in unità di Energia per unità di sostanza, ed è un concetto fondamentale nella teoria cinetica dei gas, che fornisce informazioni sul comportamento dei gas ideali e sulle loro interazioni.

Etrans=32pV

Energia libera di Gibbs data costante di equilibrio

L'Energia libera di Gibbs data la formula della costante di equilibrio è definita come la differenza di Energia libera della reazione quando tutti i reagenti e i prodotti sono nello stato standard e Kc o, Kp è la costante di equilibrio termodinamico della reazione.

G=-2.303[R]Tlog10(Kc)

Energia cinetica per mole utilizzando il volume molare

L'Energia cinetica per mole, utilizzando la formula del volume molare, è definita come l'Energia associata al movimento delle particelle in un gas per mole, che è un concetto fondamentale nella teoria cinetica dei gas, che descrive il comportamento dei gas ideali e le loro interazioni.

Etrans=32pVm

Energia di reazione di Gibbs

L'Energia di Gibbs della formula di reazione è definita come la differenza nell'Energia libera della reazione quando tutti i reagenti e i prodotti si trovano nello stato standard della reazione chimica.

ΔGreaction=ΔGps-ΔGreactants

Energia cinetica per mole utilizzando la temperatura del gas

L'Energia cinetica per mole, utilizzando la formula della temperatura del gas, è definita come l'Energia associata al moto delle particelle in un gas, che è direttamente proporzionale alla temperatura del gas ed è un concetto fondamentale nella teoria cinetica dei gas, che descrive il moto termico delle particelle.

Etrans=32RTg

Energia specifica minima utilizzando la profondità critica

L'Energia specifica minima che utilizza la profondità critica nella formula dei canali aperti è nota in relazione alla profondità critica insieme a un valore costante.

Emin=(32)hc

Energia reticolare usando l'equazione di Born Lande

L'Energia del reticolo che utilizza l'equazione di Born Lande di un solido cristallino è una misura dell'Energia rilasciata quando gli ioni vengono combinati per formare un composto.

U=-[Avaga-no]Mz+z-([Charge-e]2)(1-(1nborn))4π[Permitivity-vacuum]r0

Energia potenziale elettrostatica tra coppie di ioni

L'Energia potenziale elettrostatica tra una coppia di ioni è l'Energia potenziale elettrostatica tra una coppia di ioni di carica uguale e opposta.

EPair=-(q2)([Charge-e]2)4π[Permitivity-vacuum]r0

Energia di legame degli elementi A e B

L'Energia di legame della formula degli elementi A e B è definita come la quantità di Energia richiesta per rompere una mole di molecole nei suoi atomi componenti.

Δkcal=(XA-XB0.208)2

Energia di ionizzazione in KJ mole

L'Energia di ionizzazione nella formula mole KJ è definita come la quantità minima di Energia richiesta per rimuovere l'elettrone più debolmente legato di un atomo o molecola gassosa neutra isolata.

IEKJmole=(EN544)-EAKJmole

Energia erogata per scintilla dal circuito di carica della resistenza

L'Energia erogata per scintilla dal circuito di carica della resistenza è il parametro che definisce la quantità di materiale rimosso e la finitura superficiale prodotta.

P=V02𝜏Rc(12-exp(-t𝜏)+0.5exp(-2t𝜏))

Energia totale in CMOS

La formula dell'Energia totale nella CMOS è definita come la proprietà quantitativa che deve essere trasferita a un oggetto per eseguire un lavoro o per riscaldare l'oggetto nella CMOS.

Et=Es+Eleak

Energia cinetica assorbita dal freno

La formula dell'Energia cinetica assorbita dal freno è definita come la massima differenza tra l'Energia cinetica iniziale e quella finale del sistema.

KE=mu2-v22

Energia cinetica del corpo rotante

La formula dell'Energia cinetica del corpo rotante è definita come la misura del lavoro che un oggetto può compiere in virtù del suo movimento.

KE=Iω12-ω222

Energia potenziale assorbita durante il periodo di frenata

La formula Energia potenziale assorbita durante il periodo di frenata è definita come l'Energia trattenuta da un oggetto a causa della sua posizione rispetto ad altri oggetti, delle sollecitazioni al suo interno, della sua carica elettrica o di altri fattori.

PE=mgΔh

Energia totale assorbita dal freno

La formula Total Energy Absorbed by Brake è definita come l'Energia assorbita dal sistema o dai freni quando vengono applicati dei freni improvvisi attraverso il sistema.

KE=Msθb

Energia totale assorbita dal freno a causa dell'aumento di temperatura del gruppo tamburo del freno

L'Energia totale assorbita dal freno data l'aumento di temperatura del gruppo tamburo del freno è definita come l'Energia che viene applicata dai freni quando vengono applicati i freni.

E=ΔTmc

Energia di attivazione del campo cristallino per la reazione associativa

La formula dell'Energia di attivazione del campo cristallino per la reazione associativa è definita come la differenza dell'Energia di stabilizzazione del campo cristallino dell'intermedio e del reagente.

CFAEAS=CFSEOh-CFSEPBP

Energia di transizione da A2g a T1gF

L'Energia di transizione da A2g a T1gF è l'Energia di transizione da A2g a T1gF nel diagramma dell'orgel. In un atomo, l'Energia di transizione cambia l'Energia potenziale di un elettrone, per cui controlla la posizione attraverso la forza di orientamento. Per complessi ad alto spin è calcolato dal diagramma di Orgel.

ΕA2g to T1gF=(95Δ)-CI

Energia di transizione da A2g a T1gP

L'Energia di transizione da A2g a T1gP è l'Energia di transizione da A2g a T1gP nel diagramma dell'orgel. Può anche essere calcolato dal diagramma di Tanabe Sugano.

EA2g to T1gP=(65Δ)+(15Br)+CI

Energia dell'elettrone Auger

La formula dell'Energia dell'elettrone Auger è definita come l'Energia totale degli elettroni Auger prodotti quando gli atomi eccitati rilasciano l'Energia extra a un elettrone che viene poi emesso come un elettrone Auger.

EA=Eo1-Ei+Eo2

Energia cinetica data Energia di legame

L'Energia cinetica data l'Energia di legame è la differenza tra l'Energia del fotone incidente e la funzione di lavoro del metallo. La funzione di lavoro è l'Energia di legame degli elettroni alla superficie del metallo.

Ekinetic=([hP]v)-Ebinding-Φ

Energia vincolante data la funzione di lavoro

La formula della funzione di lavoro data dall'Energia di legame è definita come la più piccola quantità di Energia richiesta per rimuovere una particella da un sistema di particelle o per disassemblare un sistema di particelle in singole parti.

Ebinding=([hP]v)-Ekinetic-Φ

Energia rilasciata dall'induttore al carico

La formula dell'Energia rilasciata dall'induttore al carico è definita come l'Energia rilasciata dal chopper attraverso il carico quando l'interruttore è in stato OFF.

Woff=(Vo-Vin)(I1+I22)Tc

Energia di rinculo per la rottura del legame

La formula dell'Energia di rinculo per la rottura del legame è definita come l'Energia richiesta per la rottura del legame in un telaio con centro di massa con velocità di rinculo terminale dei frammenti.

E=(12)μ(v2)

Energia senza volume

L'Energia libera dal volume è la differenza di Energia libera tra la fase solida e quella liquida.

𝚫Gv=ΔHfΔTTm

Energia libera critica per la nucleazione (dall'Energia libera dal volume)

L'Energia libera critica per la nucleazione (dall'Energia libera dal volume) è l'Energia libera richiesta per la formazione di un nucleo stabile. Allo stesso modo, può essere considerato una barriera energetica al processo di nucleazione.

ΔG*=16π𝛾33𝚫Gv2

Energia interna molare del gas ideale

L'Energia interna molare del gas ideale è l'Energia del sistema per mole che non dipende dalla quantità di sostanza ma dipende dalla temperatura e dalla pressione.

Umolar=F[R]Tg2

Energia di deformazione dovuta alla torsione nell'albero cavo

La formula dell'Energia di deformazione dovuta alla torsione nell'albero cavo è definita come l'Energia immagazzinata nell'albero cavo quando sottoposto a torsione.

U=𝜏2(douter2+dinner2)V4Gpadouter2

Energia di deformazione in torsione per albero pieno

La formula dell'Energia di deformazione in torsione per alberi pieni è definita come la misura dell'Energia immagazzinata in un albero pieno, quando è sottoposto a torsione entro limiti elastici.

U=𝜏2V4Gpa

Energia della Particella

L'Energia della particella è definita come l'Energia consumata dalla particella per spostarsi da un punto all'altro.

EAO=[hP]f

Come trovare Formule?

Ecco alcuni suggerimenti per risultati di ricerca migliori.
Sii specifico: più specifica è la tua query, migliori saranno i tuoi risultati.
Utilizza più parole chiave: combina più parole chiave parole chiave per restringere i risultati.
Sperimenta con i sinonimi: termini diversi possono produrre risultati diversi.
Ricerca con caratteri jolly: utilizza l'operatore * (asterisco). NOTA che questo operatore funziona solo alla fine di una parola. Esempio: Bio*, Area*, ecc.

In alternativa, puoi navigare tra le sottocategorie all'interno di per individuare le Formule di interesse.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!