Cerca Formule

Inserisci un minimo di 3 caratteri per iniziare con la ricerca delle formule .

Seleziona Filtra

Restringi i risultati della ricerca con l'aiuto di questi filtri.

50 Formule corrispondenti trovate!

Energia dello stato stazionario dell'idrogeno

L'Energia dello stato stazionario dell'idrogeno è lo stato di Energia costante in cui esistono gli elettroni.

EV=-([Rydberg])(1nquantum2)

Energia dell'elettrone in orbita iniziale

L'Energia dell'elettrone nell'orbita iniziale è lo stato di Energia costante in cui esistono gli elettroni nel livello di Energia iniziale o inferiore.

Eorbit=(-([Rydberg]ninitial2))

Energia dell'elettrone in orbita finale

L'Energia dell'elettrone nell'orbita finale è lo stato di Energia costante in cui esistono gli elettroni nel livello di Energia finale o più alto.

Eorbit=(-([Rydberg]nf2))

Energia di attivazione per reazione all'indietro

L'Energia di attivazione per la formula di reazione all'indietro è definita come la quantità minima di Energia richiesta per attivare atomi o molecole in una condizione in cui possono subire una trasformazione chimica per una reazione all'indietro.

Eab=Eaf-ΔH

Energia interna utilizzando il primo principio della termodinamica

La formula dell'Energia interna che utilizza la prima legge della termodinamica è definita come la somma del calore e del lavoro nel sistema. L'Energia interna di un sistema termodinamico è l'Energia contenuta al suo interno. È l'Energia necessaria per creare o preparare il sistema in un dato stato interno.

ΔU=Q+W

Energia per l'onda d'urto

La formula dell'Energia per l'onda d'urto è definita come una misura dell'Energia rilasciata da un'onda d'urto, che è un'onda ad alta pressione che si propaga attraverso un mezzo, solitamente l'aria, ed è caratterizzata dalla sua velocità, densità e pressione.

E=0.5ρV2CDA

Energia di vaporizzazione del materiale

La formula dell'Energia di vaporizzazione del materiale è definita come l'Energia richiesta per unità di volume del materiale per convertirlo allo stato di vapore.

E=A0PoutVcAbeamt

Energia potenziale del volume d'acqua nella produzione di Energia idroelettrica

La formula dell'Energia potenziale del volume d'acqua nella generazione di Energia idroelettrica è definita come l'Energia immagazzinata nell'acqua che cade da un'altezza.

PE=γwh

Energia fornita dal pistone idraulico

La formula dell'Energia fornita dall'ariete idraulico è definita come la quantità di Energia trasferita da un ariete idraulico, che è un dispositivo meccanico che utilizza la pressione per generare forza ed è comunemente utilizzato negli attuatori e nei motori idraulici per convertire la pressione del fluido in Energia meccanica.

Ed=wrHr

Energia fornita dal serbatoio di alimentazione al pistone idraulico

La formula dell'Energia fornita dal serbatoio di alimentazione al cilindro idraulico è definita come l'Energia totale fornita dal serbatoio di alimentazione al cilindro idraulico, che è un componente fondamentale nei sistemi di azionamento idraulico, che consente la trasmissione efficiente di potenza e movimento in varie applicazioni industriali e mobili.

Es=Wh

Energia rilasciata dall'induttore al carico

La formula dell'Energia rilasciata dall'induttore al carico è definita come l'Energia rilasciata dal chopper attraverso il carico quando l'interruttore è in stato OFF.

Woff=(Vo-Vin)(I1+I22)Tc

Energia di propagazione utilizzando l'Energia superficiale specifica

L'Energia di Propagazione mediante la formula dell'Energia Superficie Specifica è definita come la barriera energetica che entra in gioco nel meccanismo di propagazione dopo la nucleazione, dove la superficie della parete aumenta fino a raggiungere il valore massimo πR2.

Ep=γπR2

Energia per unità di volume del cluster

La formula Energia per unità di volume del cluster è definita come la quantità di Energia immagazzinata in un dato sistema o regione di spazio per unità di volume.

Ev=avn

Energia cinetica del rotore

L'Energia cinetica del rotore nella stabilità del sistema di alimentazione è definita come l'Energia proporzionale alla metà del momento di inerzia del rotore e al quadrato della velocità sincrona.

KE=(12)Jωs210-6

Energia di deformazione a taglio data la deformazione a taglio

La formula dell'Energia di deformazione in deformazione di taglio data è definita come l'Energia immagazzinata in un corpo a causa della deformazione.

U=AGTorsion(Δ2)2L

Energia per unità di massa di Pelton

L'Energia per unità di massa Pelton è l'Energia cinetica trasferita dal getto d'acqua ai secchi. Dipende dalla velocità del getto d'acqua e dall'efficienza della turbina.

Ep=(Vti-Vw)U

Energia per unità di massa della turbina Pelton

L'Energia per unità di massa della turbina Pelton è l'Energia cinetica trasferita dall'acqua alle pale della turbina. È determinata dalla velocità dei getti d'acqua che colpiscono le pale delle turbine, le quali convertono l'Energia cinetica dell'acqua in Energia meccanica. La relazione coinvolge la velocità iniziale dell'acqua e l'efficienza del processo di trasferimento di Energia.

Em=(Vr1+Vr2cos(β2))U

Energia cinetica data il momento angolare

La formula dell'Energia cinetica data il momento angolare è definita come l'Energia immagazzinata nel sistema a causa della sua Energia cinetica rotazionale. Questa Energia è correlata alla velocità angolare e quindi al momento angolare.

KE1=L22I

Energia di rotazione usando la costante di rotazione

L'Energia rotazionale utilizzando la formula della costante rotazionale è definita come Energia di serie di linee nello spettro rotazionale di una molecola biatomica. Le molecole biatomiche sono spesso approssimate come rotori rigidi, il che significa che si presume che la lunghezza del legame sia fissa. Risolvendo l'equazione di Schrödinger per un rotore rigido si ottengono i seguenti livelli di Energia: E = BJ (J 1).

Erot_RC=BJ(J+1)

Energia rotazionale

La formula Energia rotazionale è definita come Energia di serie di linee nello spettro rotazionale di una molecola biatomica. Le molecole biatomiche sono spesso approssimate come rotori rigidi, il che significa che si presume che la lunghezza del legame sia fissa.

Erotational=([h-]2)β2I

Energia termica consumata in evaporazione

L'Energia termica utilizzata nella formula di evaporazione è definita come l'Energia utilizzata per trasformare il liquido in vapore, quindi la temperatura non cambia durante questo processo.

He=ρwaterLEL

Energia di taglio specifica nella lavorazione

L'Energia di taglio specifica nella lavorazione è l'Energia consumata per rimuovere un volume unitario di materiale, che viene calcolata come il rapporto tra l'Energia di taglio E e il volume di rimozione del materiale V.

ps=PmZw

Energia reticolare usando l'equazione di Born Lande

L'Energia del reticolo che utilizza l'equazione di Born Lande di un solido cristallino è una misura dell'Energia rilasciata quando gli ioni vengono combinati per formare un composto.

U=-[Avaga-no]Mz+z-([Charge-e]2)(1-(1nborn))4π[Permitivity-vacuum]r0

Energia potenziale elettrostatica tra coppie di ioni

L'Energia potenziale elettrostatica tra una coppia di ioni è l'Energia potenziale elettrostatica tra una coppia di ioni di carica uguale e opposta.

EPair=-(q2)([Charge-e]2)4π[Permitivity-vacuum]r0

Energia solare totale incidente su un'area unitaria di superficie orizzontale sul suolo

La formula dell'Energia solare totale incidente su un'area unitaria di una superficie orizzontale al suolo è definita come la quantità di radiazione solare che cade su un'area unitaria di una superficie orizzontale al suolo, che è un parametro fondamentale per comprendere il bilancio energetico della Terra e le dinamiche climatiche.

Gsolar=GDcos(i)+Gd

Energia molare interna della molecola non lineare

L'Energia molare interna di una molecola non lineare di un sistema termodinamico è l'Energia contenuta al suo interno. È l'Energia necessaria per creare o preparare il sistema in un dato stato interno.

Umolar=((32)[R]T)+((0.5Iy(ωy2))+(0.5Iz(ωz2))+(0.5Ix(ωx2)))+((3N)-6)([R]T)

Energia termica media della molecola di gas poliatomico non lineare

L'Energia termica media della molecola di gas poliatomica non lineare viene prodotta quando un aumento della temperatura fa sì che atomi e molecole si muovano più velocemente e entrino in collisione tra loro.

Qin=((32)[BoltZ]T)+((0.5Iy(ωy2))+(0.5Iz(ωz2)))+((3N)-6)([BoltZ]T)

Energia vibrazionale della molecola lineare

L'Energia vibrazionale della molecola lineare è definita come l'Energia cinetica di un oggetto a causa del suo movimento vibratorio.

Evf=((3N)-5)([BoltZ]T)

Energia vibrazionale della molecola non lineare

L'Energia vibrazionale della molecola non lineare è definita come l'Energia cinetica che un oggetto possiede a causa del suo movimento vibratorio.

Evf=((3N)-6)([BoltZ]T)

Energia di deformazione immagazzinata in primavera

La formula dell'Energia di deformazione immagazzinata nella molla è definita come l'Energia immagazzinata in una molla quando viene compressa o allungata, che è una misura del lavoro svolto per deformare la molla ed è un parametro fondamentale per comprendere il comportamento delle molle sottoposte a vari carichi.

Uh=.5Pδ

Energia media erogata per scintilla

La formula Energia media erogata per scintilla è definita come la potenza media contenuta in ciascuna scintilla in una lavorazione non convenzionale che utilizza la tecnica EDM.

Pavg=Vav2𝜏avRavτp(12-exp(-τp𝜏av)+0.5exp(-2τp𝜏av))

Energia cinetica del getto al secondo

L'Energia cinetica del getto al secondo è una proprietà di un oggetto o particella in movimento e dipende non solo dal suo movimento ma anche dalla sua massa.

KE=AJetvjet32

Energia potenziale dovuta alla deformazione della superficie libera

La formula dell'Energia potenziale dovuta alla deformazione della superficie libera è definita come l'Energia potenziale associata alla deformazione di una superficie libera, come un'onda oceanica, che può essere calcolata utilizzando il principio dei lavori virtuali. Quando si forma una cresta d'onda, rappresenta un aumento di Energia potenziale rispetto alla superficie piana. Questa Energia potenziale è il risultato del lavoro svolto per deformare la superficie e creare la cresta dell'onda.

Ep=ρ[g]η2λ2

Energia potenziale per unità di larghezza in un'onda

La formula Energia potenziale per unità di larghezza in un'onda è definita come la lunghezza d'onda dell'onda che è uguale all'Energia cinetica associata a una lunghezza d'onda. L'Energia totale associata ad una lunghezza d'onda è la somma dell'Energia potenziale e dell'Energia cinetica.

PE=(116)ρ[g](H2)λ

Energia cinetica dovuta al movimento delle particelle

La formula dell'Energia cinetica dovuta al movimento delle particelle è definita come l'Energia posseduta dalle particelle a causa del movimento. Le particelle di un solido non possono muoversi perché sono fitte e quindi hanno la minima Energia cinetica.

KE=(116)ρ[g](H2)λ

Energia totale dell'onda in una lunghezza d'onda per unità di larghezza della cresta

La formula dell'Energia totale dell'onda in una lunghezza d'onda per unità di larghezza della cresta è definita come il contenuto energetico di un ciclo d'onda rispetto alla larghezza della sua cresta.

TE=ρ[g]H2λ8

Energia dell'onda totale data l'Energia cinetica e l'Energia potenziale

La formula dell'Energia totale dell'onda data dall'Energia cinetica e dall'Energia potenziale è definita come il trasporto e la cattura di Energia da parte delle onde superficiali dell'oceano e l'Energia catturata viene quindi utilizzata per tutti i diversi tipi di lavoro utile, tra cui la generazione di elettricità, la desalinizzazione dell'acqua e il pompaggio dell'acqua. .

TE=KE+PE

Energia cinetica data l'Energia dell'onda totale

L'Energia cinetica data dall'Energia totale delle onde è definita come la teoria lineare secondo cui parte dell'Energia totale è dovuta alla velocità delle particelle d'acqua associate al movimento delle onde.

KE=TE-PE

Energia potenziale data l'Energia dell'onda totale

La formula dell'Energia potenziale data dall'Energia totale dell'onda è definita come lo spostamento dell'acqua dalla sua posizione di equilibrio, tipicamente proporzionale al quadrato dell'ampiezza dell'onda e influenzato da fattori quali l'accelerazione gravitazionale e la densità dell'acqua.

PE=TE-KE

Energia specifica o densità di Energia data la lunghezza d'onda e l'Energia dell'onda

L'Energia specifica o densità di Energia data la formula Lunghezza d'onda ed Energia dell'onda è definita come l'Energia media totale dell'onda per unità di superficie.

U=TEλ

Energia specifica o densità di Energia data l'altezza dell'onda

La formula dell'Energia specifica o densità di Energia data l'altezza dell'onda è definita come l'Energia media totale delle onde per unità di superficie.

U=ρ[g]H28

Energia totale delle onde per la potenza delle onde delle acque profonde

La formula Total Wave Energy for Wave Power of Deepwater è definita come la somma dei componenti di Energia cinetica e potenziale, che rappresentano l'Energia complessiva trasmessa dalle onde per unità di tempo e lunghezza di cresta unitaria in profondità dell'acqua superiori alla metà della lunghezza d'onda.

E=Pd0.5Co

Energia dell'onda totale data la potenza dell'onda per acque poco profonde

La formula Energia totale delle onde data dalla potenza delle onde per acque poco profonde è definita come la somma dei componenti di Energia cinetica e potenziale, che rappresentano l'Energia complessiva trasmessa dalle onde per unità di tempo e lunghezza di cresta unitaria in profondità dell'acqua superiori alla metà della lunghezza d'onda.

E=PsCs

Energia totale immagazzinata nell'accumulatore idraulico differenziale

La formula dell'Energia totale immagazzinata nell'accumulatore idraulico differenziale è definita come la quantità totale di Energia immagazzinata in un accumulatore idraulico, che è un componente fondamentale nei sistemi idraulici, in quanto fornisce una fonte di alimentazione di riserva durante i periodi di elevata richiesta o di guasto del sistema.

Etotal=WtL

Energia di legame del fotoelettrone

L'Energia di legame del fotoelettrone è definita come la quantità di Energia richiesta per separare un elettrone dal subshell.

Ebinding=([hP]ν)-Ekinetic-Φ

Energia totale irradiata data la temperatura termodinamica

La formula dell'Energia totale irradiata data la temperatura termodinamica è definita come la quantità totale di Energia irradiata per unità di superficie di un corpo nero su tutte le lunghezze d'onda per unità di tempo (nota anche come emittanza radiante del corpo nero) è direttamente proporzionale alla quarta potenza di la temperatura termodinamica del corpo nero.

Eradiated=[Stefan-BoltZ](β)4

Energia centrifuga in collisione

La formula dell'Energia centrifuga in collisione è definita come l'Energia relativa a una particella che si muove su un percorso circolare durante la collisione di due particelle.

Ecentrifugal=ETb2R2

Energia totale prima della collisione

La formula dell'Energia totale prima della collisione è definita come la quantità totale di Energia presente prima della collisione nella particella.

ET=EcentrifugalR2b2

Energia di scissione del campo cristallino per complessi ottaedrici

L'Energia di divisione del campo cristallino per complessi ottaedrici è definita come la separazione di Energia tra l'orbitale T2g ed Eg.

CFSEOh=(Neg0.6)+(-0.4Nt2g)

Energia di scissione del campo cristallino per complessi tetraedrici

L'Energia di divisione del campo cristallino per i complessi tetraedrici è definita come la separazione di Energia tra l'orbitale T2g ed Eg.

CFSETd=((Neg(-0.6))+(0.4Nt2g))(49)

Come trovare Formule?

Ecco alcuni suggerimenti per risultati di ricerca migliori.
Sii specifico: più specifica è la tua query, migliori saranno i tuoi risultati.
Utilizza più parole chiave: combina più parole chiave parole chiave per restringere i risultati.
Sperimenta con i sinonimi: termini diversi possono produrre risultati diversi.
Ricerca con caratteri jolly: utilizza l'operatore * (asterisco). NOTA che questo operatore funziona solo alla fine di una parola. Esempio: Bio*, Area*, ecc.

In alternativa, puoi navigare tra le sottocategorie all'interno di per individuare le Formule di interesse.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!