Cerca Formule

Inserisci un minimo di 3 caratteri per iniziare con la ricerca delle formule .

Seleziona Filtra

Restringi i risultati della ricerca con l'aiuto di questi filtri.

50 Formule corrispondenti trovate!

Energia cinetica in elettronvolt

La formula dell'Energia cinetica in elettronvolt è definita come l'Energia cinetica consumata dalla particella che viene misurata in elettroni volt.

Eatom_eV=-(13.66.2415063630941018)(Z)2(nquantum)2

Energia in elettronvolt

La formula dell'Energia in elettronvolt è definita come l'Energia potenziale consumata dalla particella misurata in elettronvolt.

KEphoton=(6.86.2415063630941018)(Z)2(nquantum)2

Energia totale in elettronvolt

La formula dell'Energia totale in elettronvolt è definita come la somma dell'Energia cinetica e dell'Energia potenziale consumata dal corpo mentre si sposta da un punto all'altro.

KEphoton=(6.86.2415063630941018)(Z)2(nquantum)2

Energia del fotone usando l'approccio di Einstein

L'Energia del fotone utilizzando l'approccio di Einstein è l'Energia trasportata da un singolo fotone. È indicato dal simbolo, E.

Efreq=[hP]νphoton

Energia di 1 Mole di Fotoni

L'Energia di 1 mole di fotoni è l'Energia che viene trasportata da un singolo fotone. È indicato dal simbolo, E.

Ephoton=[Avaga-no][hP]νphoton

Energia cinetica dei fotoelettroni

L'Energia cinetica dei fotoelettroni è definita come l'Energia cinetica consumata da una particella in movimento quando si sposta da un punto a un altro.

KEphoton=[hP](νphoton-v0)

Energia del fotone nell'effetto fotoelettrico

L'Energia del fotone nell'effetto fotoelettrico è l'Energia di soglia totale o funzione di lavoro e l'Energia cinetica dei fotoni.

Ephoton_EEF=W+KE

Energia cinetica dell'elettrone dato il numero atomico

L'Energia cinetica dell'elettrone dato il numero atomico è definita come l'Energia cinetica consumata da una particella in movimento quando si sposta da un punto all'altro.

Efreq=Z([Charge-e]2)2rorbit

Energia potenziale dell'elettrone data il numero atomico

L'Energia potenziale dell'elettrone dato il numero atomico è l'Energia immagazzinata in un elettrone a causa della sua posizione rispetto a una posizione zero.

PE=(-Z([Charge-e]2)rorbit)

Energia totale dell'elettrone data il numero atomico

L'Energia totale dell'elettrone dato il numero atomico è definita come la somma dell'Energia cinetica e dell'Energia potenziale consumata da una particella in movimento quando si sposta da un punto all'altro.

EeV_AN=-Z([Charge-e]2)2rorbit

Energia cinetica totale di vincolo per vibrazioni trasversali

La formula dell'Energia cinetica totale del vincolo per le vibrazioni trasversali è definita come una misura dell'Energia associata alle vibrazioni trasversali di un sistema vincolato, tenendo conto dell'inerzia del vincolo, e viene utilizzata per analizzare gli effetti delle vibrazioni longitudinali e trasversali in vari sistemi meccanici.

KE=33mcVtraverse2280

Energia 1 di Livello Vibrazionale

La formula Energia 1 del livello vibrazionale è definita come sottrazione dell'Energia del fotone di transizione dall'Energia della materia a un livello superiore. La materia allo stato fondamentale assorbe la radiazione e raggiunge lo stato eccitato.

E1=E2-(f1,2[hP])

Energia 2 di Livello Vibrazionale

La formula Energia 2 del livello vibrazionale è definita come la somma dell'Energia della materia allo stato fondamentale con l'Energia del fotone di transizione. La materia raggiunge lo stato energetico superiore quando la materia assorbe Energia nello stato fondamentale.

E2=E1+(f1,2[hP])

Energia cinetica del sistema

L'Energia cinetica del sistema, KE, è la somma dell'Energia cinetica per ciascuna massa. L'Energia cinetica di un oggetto è l'Energia che possiede a causa del suo movimento. È definito come il lavoro necessario per accelerare un corpo di una data massa da fermo alla sua velocità dichiarata.

KE=(m1(v12))+(m2(v22))2

Energia di deformazione totale per unità di volume

La formula dell'Energia di deformazione totale per unità di volume è definita come la somma dell'Energia di deformazione corrispondente alla distorsione senza variazione di volume e dell'Energia di deformazione corrispondente alla variazione di volume senza distorsione.

UTotal=Ud+Uv

Energia di deformazione dovuta alla variazione di volume data la sollecitazione volumetrica

L'Energia di deformazione dovuta alla variazione di volume dato lo stress volumetrico è definita come l'Energia immagazzinata in un corpo a causa della deformazione. Questa Energia è l'Energia immagazzinata quando il volume cambia senza distorsione.

Uv=32σvεv

Energia di deformazione dovuta alla variazione di volume date le sollecitazioni principali

L'Energia di deformazione dovuta alla variazione di volume data la formula delle sollecitazioni principali è definita come l'Energia immagazzinata in un corpo a causa della deformazione. Questa Energia è l'Energia immagazzinata quando il volume cambia senza distorsione.

Uv=(1-2𝛎)6E(σ1+σ2+σ3)2

Energia interna di un gas perfetto a una data temperatura

L'Energia interna del gas perfetto a una data formula di temperatura è definita come il prodotto del calore specifico a volume e temperatura costanti.

U=CvT

Energia cinetica totale di due corpi dopo l'impatto

L'Energia cinetica totale di due corpi dopo la formula dell'impatto è definita come la metà della somma del prodotto di massa, quadrato della velocità finale del primo corpo e massa, quadrato della velocità finale del secondo corpo.

KEf=(12)((m1(v12))+(m2(v22)))

Energia cinetica per mole

La formula dell'Energia cinetica per mole è definita come l'Energia associata al movimento delle particelle in un sistema, solitamente misurata in unità di Energia per unità di sostanza, ed è un concetto fondamentale nella teoria cinetica dei gas, che fornisce informazioni sul comportamento dei gas ideali e sulle loro interazioni.

Etrans=32pV

Energia libera di Gibbs data costante di equilibrio

L'Energia libera di Gibbs data la formula della costante di equilibrio è definita come la differenza di Energia libera della reazione quando tutti i reagenti e i prodotti sono nello stato standard e Kc o, Kp è la costante di equilibrio termodinamico della reazione.

G=-2.303[R]Tlog10(Kc)

Energia cinetica per mole utilizzando il volume molare

L'Energia cinetica per mole, utilizzando la formula del volume molare, è definita come l'Energia associata al movimento delle particelle in un gas per mole, che è un concetto fondamentale nella teoria cinetica dei gas, che descrive il comportamento dei gas ideali e le loro interazioni.

Etrans=32pVm

Energia di reazione di Gibbs

L'Energia di Gibbs della formula di reazione è definita come la differenza nell'Energia libera della reazione quando tutti i reagenti e i prodotti si trovano nello stato standard della reazione chimica.

ΔGreaction=ΔGps-ΔGreactants

Energia cinetica per mole utilizzando la temperatura del gas

L'Energia cinetica per mole, utilizzando la formula della temperatura del gas, è definita come l'Energia associata al moto delle particelle in un gas, che è direttamente proporzionale alla temperatura del gas ed è un concetto fondamentale nella teoria cinetica dei gas, che descrive il moto termico delle particelle.

Etrans=32RTg

Energia specifica minima utilizzando la profondità critica

L'Energia specifica minima che utilizza la profondità critica nella formula dei canali aperti è nota in relazione alla profondità critica insieme a un valore costante.

Emin=(32)hc

Energia totale di ioni nel reticolo

L'Energia totale dello ione nel reticolo è la somma dell'Energia di Madelung e dell'Energia potenziale repulsiva.

Etotal=EM+ER

Energia totale di ioni date cariche e distanze

L'Energia totale dello ione date le cariche e le distanze nel reticolo è la somma dell'Energia di Madelung e dell'Energia potenziale repulsiva.

Etotal=(-(q2)([Charge-e]2)M4π[Permitivity-vacuum]r0)+(Br0nborn)

Energia potenziale minima di ioni

L'Energia potenziale minima dello ione è un mezzo per calcolare l'Energia del reticolo di un composto ionico cristallino.

Emin=(-(q2)([Charge-e]2)M4π[Permitivity-vacuum]r0)+(Br0nborn)

Energia reticolare usando l'equazione di Born-Mayer

L'Energia reticolare utilizzando l'equazione di Born-Mayer è un'equazione utilizzata per calcolare l'Energia reticolare di un composto ionico cristallino. È un perfezionamento dell'equazione di Born-Lande utilizzando un termine di repulsione migliorato.

U=-[Avaga-no]Mz+z-([Charge-e]2)(1-(ρr0))4π[Permitivity-vacuum]r0

Energia totale del sistema

L'Energia totale della formula del sistema è definita come somma di Energia cinetica, Energia potenziale ed Energia interna. Gli oggetti con Energia totale inferiore a zero sono vincolati; quelli con zero o maggiore sono illimitati.

Esystem=PE+KE+U

Energia potenziale elastica della molla

L'Energia potenziale elastica della molla definita come Energia immagazzinata come risultato dell'applicazione di una forza per deformare un oggetto elastico. L'Energia viene immagazzinata fino a quando la forza non viene rimossa.

U=12kx2

Energia libera di Gibbs data la superficie

La formula di Gibbs Free Energy Given Surface Area è definita come l'Energia libera di Gibbs di una superficie curva che è direttamente proporzionale all'area della superficie.

G=γA

Energia interna del gas ideale usando la legge dell'Energia di equipartizione

L'Energia interna del gas ideale utilizzando la formula della legge di equipartizione dell'Energia è definita come la divisione uguale dell'Energia di un sistema in equilibrio termico tra diversi gradi di libertà.

UEP=(F2)Nmoles[R]Tg

Energia assorbita dal materiale durante la frantumazione

La formula dell'Energia assorbita dal materiale durante la frantumazione è definita come l'Energia che viene assorbita dalla massa unitaria del mangime mentre le sue dimensioni vengono ridotte in un frantoio.

Wh=es(Ab-Aa)ηc

Energia prodotta dalla centrale idroelettrica

La formula dell'Energia prodotta da una centrale idroelettrica è definita come l'Energia elettrica generata dalla forza dell'acqua in caduta che viene imbrigliata dalle turbine e convertita in elettricità attraverso il funzionamento dei generatori.

E=[g]ρwQHηt

Energia prodotta da centrale idroelettrica data potenza

L'Energia prodotta da una centrale idroelettrica data la formula Power è definita come l'Energia elettrica generata dalla forza dell'acqua che cade che viene imbrigliata dalle turbine e convertita in elettricità attraverso il funzionamento dei generatori.

E=Phηt

Energia nel circuito CC

La formula Energy in DC Circuit è definita come il prodotto di potenza e tempo. È anche definita come la potenza consumata in un periodo di tempo.

E=PT

Energia senza volume

L'Energia libera dal volume è la differenza di Energia libera tra la fase solida e quella liquida.

𝚫Gv=ΔHfΔTTm

Energia libera critica per la nucleazione (dall'Energia libera dal volume)

L'Energia libera critica per la nucleazione (dall'Energia libera dal volume) è l'Energia libera richiesta per la formazione di un nucleo stabile. Allo stesso modo, può essere considerato una barriera energetica al processo di nucleazione.

ΔG*=16π𝛾33𝚫Gv2

Energia interna molare del gas ideale

L'Energia interna molare del gas ideale è l'Energia del sistema per mole che non dipende dalla quantità di sostanza ma dipende dalla temperatura e dalla pressione.

Umolar=F[R]Tg2

Energia della Particella

L'Energia della particella è definita come l'Energia consumata dalla particella per spostarsi da un punto all'altro.

EAO=[hP]f

Energia delle particelle data la lunghezza d'onda di de Broglie

L'Energia della particella data la lunghezza d'onda di de Broglie è definita come l'Energia consumata dalla particella per spostarsi da un punto all'altro.

EDB=[hP][c]λ

Energia cinetica data la lunghezza d'onda di de Broglie

L'Energia cinetica data dalla formula della lunghezza d'onda di de Broglie è associata a una particella/elettrone ed è correlata alla sua massa, m e alla lunghezza d'onda di de Broglie attraverso la costante di Planck, h.

EAO=[hP]22m(λ2)

Energia superficiale data la tensione superficiale

L'Energia superficiale, data la formula della tensione superficiale, è definita come una misura dell'Energia sulla superficie di un liquido che fa sì che esso si comporti come se avesse una pelle elastica, con conseguenti proprietà quali la formazione di goccioline e bolle e la capacità di resistere alle forze esterne.

E=σAs

Energia elettrica della cella elettrochimica

La formula dell'Energia Elettrica della Cella Elettrochimica è espressa matematicamente come il prodotto della fem della cella e la carica elettrica trasferita attraverso il circuito esterno.

E=E°Ctran

Energia delle transizioni rotazionali tra livelli rotazionali

La formula Energia delle transizioni rotazionali tra livelli rotazionali è definita come l'Energia della radiazione assorbita per subire una transizione energetica quando una molecola viene irradiata con fotoni di luce. Per una molecola biatomica, la differenza di Energia tra i livelli rotazionali (da J a J 1) è l'Energia delle transizioni rotazionali.

ERL=2B(J+1)

Energia cinetica dell'aria all'ingresso

La formula Energia cinetica dell'aria all'ingresso è definita come la metà del prodotto della portata massica dell'aria per il quadrato della velocità di avanzamento dell'aereo.

KE=12maV2

Energia cinetica dei gas di scarico

La formula dell'Energia cinetica dei gas di scarico è definita come la metà del prodotto della portata massica dell'aria, la somma di uno e il rapporto carburante-aria moltiplicato per il quadrato della velocità del getto dell'aereo.

KE=12mi(1+f)Cideal2

Energia idroelettrica

La formula dell'Energia Idroelettrica è definita la conversione dell'Energia cinetica dell'acqua che cade o scorre in Energia elettrica per mezzo di una turbina collegata ad un generatore.

Ph=[g]ρwQH

Energia Madelung utilizzando l'Energia totale degli ioni data la distanza

L'Energia di Madelung che utilizza l'Energia totale degli ioni data la distanza per un semplice reticolo costituito da ioni con carica uguale e opposta in un rapporto 1:1 è la somma delle interazioni tra uno ione e tutti gli altri ioni del reticolo.

EM=Etot-(BMr0nborn)

Come trovare Formule?

Ecco alcuni suggerimenti per risultati di ricerca migliori.
Sii specifico: più specifica è la tua query, migliori saranno i tuoi risultati.
Utilizza più parole chiave: combina più parole chiave parole chiave per restringere i risultati.
Sperimenta con i sinonimi: termini diversi possono produrre risultati diversi.
Ricerca con caratteri jolly: utilizza l'operatore * (asterisco). NOTA che questo operatore funziona solo alla fine di una parola. Esempio: Bio*, Area*, ecc.

In alternativa, puoi navigare tra le sottocategorie all'interno di per individuare le Formule di interesse.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!