Cerca Formule

Inserisci un minimo di 3 caratteri per iniziare con la ricerca delle formule .

Seleziona Filtra

Restringi i risultati della ricerca con l'aiuto di questi filtri.

50 Formule corrispondenti trovate!

Energia di deformazione a taglio data la deformazione a taglio

La formula dell'Energia di deformazione in deformazione di taglio data è definita come l'Energia immagazzinata in un corpo a causa della deformazione.

U=AGTorsion(Δ2)2L

Energia cinetica dell'aria all'ingresso

La formula Energia cinetica dell'aria all'ingresso è definita come la metà del prodotto della portata massica dell'aria per il quadrato della velocità di avanzamento dell'aereo.

KE=12maV2

Energia cinetica dei gas di scarico

La formula dell'Energia cinetica dei gas di scarico è definita come la metà del prodotto della portata massica dell'aria, la somma di uno e il rapporto carburante-aria moltiplicato per il quadrato della velocità del getto dell'aereo.

KE=12mi(1+f)Cideal2

Energia delle Transizioni Vibrazionali

La formula Energia delle transizioni vibrazionali è definita come l'Energia totale dei rispettivi livelli di rotazione-vibrazione a diverse transizioni di una molecola biatomica.

Et=((v+12)-xe((v+12)2))([hP]vvib)

Energia cinetica totale di due corpi prima dell'impatto

La formula dell'Energia cinetica totale di due corpi prima dell'impatto è definita come la metà della somma del prodotto della massa, del quadrato della velocità iniziale del primo corpo e del prodotto della massa e del quadrato della velocità iniziale del secondo corpo.

KEi=(12)((m1(u12))+(m2(u22)))

Energia di radiazione emessa dal corpo nero nell'intervallo di tempo dato il potere emissivo

La formula dell'Energia di radiazione emessa dal corpo nero in un dato intervallo di tempo, data la potenza emissiva, è definita come l'Energia totale irradiata da un corpo nero in un dato intervallo di tempo, in funzione della sua potenza emissiva, della superficie e del numero di intervalli di tempo, fornendo una misura dell'Energia emessa dal corpo nero.

E=EbSAN

Energia totale per unità di area data Potenza d'onda per unità di larghezza della cresta

L'Energia totale per unità di area data la potenza d'onda per unità di larghezza della cresta è definita come la combinazione di avvezione (trasporto) di Energia potenziale e cinetica più il lavoro svolto dalle pressioni per unità di larghezza.

E=PVg

Energia di interazione di Van Der Waals

La formula dell'Energia di interazione di Van Der Waals è definita come l'Energia di interazione di van der Waals per unità di area.

UVWaals=-A12π(h)2

Energia cinetica data la lunghezza d'onda della soglia

L'Energia cinetica data la lunghezza d'onda della soglia è definita come l'Energia di un oggetto quando si sposta dallo stato di riposo al movimento.

KE=[hP][c]λo-λλλo

Energia di attivazione data la pendenza della linea tra LnK e temperatura inversa

L'Energia di attivazione data la pendenza della linea tra LnK e temperatura inversa è definita come quando l'Lnk (costante di velocità) è tracciata rispetto all'inverso della temperatura (kelvin), la pendenza è una linea retta.

Ea=-(mslope[R])

Energia di attivazione data la pendenza della linea tra Log K e Temp Inverse

L'Energia di attivazione data la pendenza della linea tra Log K e Temp Inverse ha definito che il grafico tra LogK e 1/T è una linea retta. Il grafico tra Log K vs 1/T darà pendenza −Ea/2.303R.

Ea=-2.303[R]m

Energia meccanica totale

L'Energia meccanica totale è la somma dell'Energia cinetica e dell'Energia potenziale.

ξ=KE+PE

Energia di attivazione utilizzando la costante di frequenza a due diverse temperature

La formula dell'Energia di attivazione utilizzando la costante di velocità a due temperature diverse è definita come l'Energia minima richiesta per far sì che una stessa reazione avvenga a due temperature diverse.

Ea2=[R]ln(K2K1)T1T2T2-T1

Energia di attivazione utilizzando la velocità di reazione a due diverse temperature

La formula dell'Energia di attivazione utilizzando la velocità di reazione a due diverse temperature è definita come l'Energia minima richiesta per far sì che una stessa reazione avvenga a due diverse temperature, considerando le rispettive velocità di reazione.

Ea1=[R]ln(r2r1)T1T2T2-T1

Energia di ogni Quanta

L'Energia di ogni formula Quanta è definita come il prodotto della costante di Planck e della frequenza.

Eq=[hP]ν

Energia interna del sistema monoatomico

La formula dell'Energia interna del sistema monoatomico in equilibrio termico è che ogni grado di libertà ha un'Energia media di 3kT/2, dove T è la temperatura assoluta e k è la costante di Boltzmann.

Upoly=32[BoltZ]Tu

Energia interna del sistema biatomico

La formula dell'Energia interna del sistema biatomico in equilibrio termico è che ogni grado di libertà ha un'Energia media di 5kT/2, dove T è la temperatura assoluta e k è la costante di Boltzmann.

Upoly=52[BoltZ]Tu

Energia interna del sistema non lineare triatomico

L'Energia interna del sistema triatomico non lineare nell'equilibrio termico è che ogni grado di libertà ha un'Energia media di 6kT/2, dove T è la temperatura assoluta e k è la costante di Boltzmann.

Upoly=62[BoltZ]Tu

Energia interna del sistema lineare triatomico

L'Energia interna del sistema lineare triatomico in equilibrio termico è che ogni grado di libertà ha un'Energia media di 7kT/2, dove T è la temperatura assoluta e k è la costante di Boltzmann.

Upoly=72[BoltZ]Tu

Energia dello stato stazionario dell'idrogeno

L'Energia dello stato stazionario dell'idrogeno è lo stato di Energia costante in cui esistono gli elettroni.

EV=-([Rydberg])(1nquantum2)

Energia dell'elettrone in orbita iniziale

L'Energia dell'elettrone nell'orbita iniziale è lo stato di Energia costante in cui esistono gli elettroni nel livello di Energia iniziale o inferiore.

Eorbit=(-([Rydberg]ninitial2))

Energia dell'elettrone in orbita finale

L'Energia dell'elettrone nell'orbita finale è lo stato di Energia costante in cui esistono gli elettroni nel livello di Energia finale o più alto.

Eorbit=(-([Rydberg]nf2))

Energia per unità di massa di Pelton

L'Energia per unità di massa Pelton è l'Energia cinetica trasferita dal getto d'acqua ai secchi. Dipende dalla velocità del getto d'acqua e dall'efficienza della turbina.

Ep=(Vti-Vw)U

Energia per unità di massa della turbina Pelton

L'Energia per unità di massa della turbina Pelton è l'Energia cinetica trasferita dall'acqua alle pale della turbina. È determinata dalla velocità dei getti d'acqua che colpiscono le pale delle turbine, le quali convertono l'Energia cinetica dell'acqua in Energia meccanica. La relazione coinvolge la velocità iniziale dell'acqua e l'efficienza del processo di trasferimento di Energia.

Em=(Vr1+Vr2cos(β2))U

Energia delle transizioni rotazionali tra livelli rotazionali

La formula Energia delle transizioni rotazionali tra livelli rotazionali è definita come l'Energia della radiazione assorbita per subire una transizione energetica quando una molecola viene irradiata con fotoni di luce. Per una molecola biatomica, la differenza di Energia tra i livelli rotazionali (da J a J 1) è l'Energia delle transizioni rotazionali.

ERL=2B(J+1)

Energia delle maree

L'Energia delle maree è definita come il rapporto tra il prodotto della densità dell'acqua, la prevalenza, l'area spazzata della pala, la costante 9,81 e il periodo del ciclo delle maree.

Pt=0.5Aρw[g]H2

Energia eolica

La formula dell'Energia eolica è definita come la metà del prodotto dell'area spazzata della pala, qube di velocità del vento, densità dell'aria.

Pwind=0.5ρairAbladeVwind3

Energia interna per il flusso ipersonico

La formula dell'Energia interna per il flusso ipersonico è definita come l'Energia totale di un fluido in movimento a velocità molto elevate, che comprende sia l'Energia cinetica che quella potenziale, il che è fondamentale per comprendere il comportamento dei fluidi nei flussi ipersonici, in particolare nel contesto dei principi fondamentali del flusso viscoso.

U=H+Pρ

Energia di attivazione per reazioni di ordine zero

La formula Energia di attivazione per reazioni di ordine zero è definita come il prodotto della costante universale del gas con la temperatura della reazione e la differenza del logaritmo naturale del fattore di frequenza e della costante di velocità. L'Energia di attivazione è la quantità minima di Energia necessaria per attivare atomi o molecole in una condizione in cui possono subire una trasformazione chimica.

Ea=[R]Tgas(ln(A)-ln(k))

Energia di Attivazione per la Reazione del Primo Ordine

L'Energia di attivazione per la formula di reazione del primo ordine è definita come la moltiplicazione della costante universale dei gas con la temperatura e con il rapporto tra il logaritmo naturale del fattore di frequenza e la costante di velocità. La quantità minima di Energia necessaria per attivare atomi o molecole in una condizione in cui possono subire una trasformazione chimica.

Ea=[R]Tgas(ln(Akfirst))

Energia di attivazione per la reazione del secondo ordine

La formula Energia di attivazione per reazione del secondo ordine è definita come la moltiplicazione della costante universale dei gas con la temperatura e con la differenza dei logaritmi naturali del fattore di frequenza e della costante di velocità. La quantità minima di Energia necessaria per attivare atomi o molecole in una condizione in cui possono subire una trasformazione chimica è chiamata Energia di attivazione.

Ea=[R]TKinetics(ln(Afactor)-ln(Ksecond))

Energia libera residua di Gibbs utilizzando l'Energia libera di Gibbs del gas reale e ideale

La formula dell'Energia libera di Gibbs residua che utilizza la formula dell'Energia libera di Gibbs del gas effettivo e ideale è definita come la differenza tra l'Energia effettiva di Gibbs e l'Energia di Gibbs del gas ideale.

GR=G-Gig

Energia effettiva di Gibbs utilizzando l'Energia di Gibbs del gas residuo e ideale

La formula dell'Energia di Gibbs effettiva che utilizza la formula dell'Energia di Gibbs del gas residuo e ideale è definita come la somma dell'Energia di Gibbs residua e dell'Energia di Gibbs del gas ideale.

G=GR+Gig

Energia libera di Gibbs del gas ideale utilizzando l'Energia di Gibbs del gas residuo e effettivo

La formula dell'Energia libera di Gibbs del gas ideale utilizzando la formula dell'Energia di Gibbs del gas residuo e quella effettiva è definita come la differenza tra l'Energia effettiva di Gibbs e l'Energia residua di Gibbs.

Gig=G-GR

Energia reale di Gibbs utilizzando l'Energia in eccesso e la soluzione ideale di Gibbs

La formula dell'Energia di Gibbs effettiva che utilizza la formula dell'Energia di Gibbs in eccesso e soluzione ideale è definita come la somma dell'Energia di Gibbs in eccesso e dell'Energia di Gibbs della soluzione ideale.

G=GE+Gid

Energia di ionizzazione dell'elemento usando l'elettronegatività di Pauling

L'Energia di ionizzazione dell'elemento che utilizza l'elettronegatività di Pauling è la quantità minima di Energia richiesta per rimuovere l'elettrone più debolmente legato di un atomo o una molecola gassosa neutra isolata.

IE=((XP+0.2)(20.336))-E.A

Energia di ionizzazione usando l'elettronegatività di Allred Rochow

L'Energia di ionizzazione che utilizza l'elettronegatività di Allred Rochow è la quantità minima di Energia richiesta per rimuovere l'elettrone più debolmente legato di un atomo o molecola gassosa neutra isolata.

IE=((XA.R+0.744+0.2)(20.336))-E.A

Energia di deformazione immagazzinata nella barra di tensione

La formula Strain Energy Stored in Tension Rod è definita come una misura dell'Energia accumulata in un tirante quando è sottoposto a un carico assiale. Questa Energia è essenziale per comprendere il comportamento del materiale sotto stress e la sua capacità di resistere alla deformazione.

U=(P2)L2AE

Energia di deformazione immagazzinata nell'asta sottoposta a momento flettente

La formula Strain Energy Stored in Rod Subjected to Bending Moment è definita come una rappresentazione dell'Energia accumulata in un'asta quando subisce una flessione. Questa Energia è fondamentale per comprendere il comportamento del materiale sotto stress e per garantire l'integrità strutturale nelle applicazioni ingegneristiche.

U=(Mb2)L2EI

Energia erogata per scintilla dal circuito di carica della resistenza

L'Energia erogata per scintilla dal circuito di carica della resistenza è il parametro che definisce la quantità di materiale rimosso e la finitura superficiale prodotta.

P=V02𝜏Rc(12-exp(-t𝜏)+0.5exp(-2t𝜏))

Energia totale in CMOS

La formula dell'Energia totale nella CMOS è definita come la proprietà quantitativa che deve essere trasferita a un oggetto per eseguire un lavoro o per riscaldare l'oggetto nella CMOS.

Et=Es+Eleak

Energia Interna data Parte Classica ed Elettrica

La formula dell'Energia interna data classica e parte elettrica è definita come la sottomissione della parte classica alla parte elettrica dell'Energia interna.

U=(Uk+Ue)

Energia Interna Classica data Energia Interna Elettrica

La formula dell'Energia interna classica data l'Energia interna elettrica è definita come la sottrazione della parte elettrica dell'Energia interna dall'Energia interna totale del sistema.

Uk=(U-Ue)

Energia interna data l'entropia libera di Gibbs

La formula dell'Energia interna data dall'entropia libera di Gibbs è definita come la relazione dell'Energia interna con la variazione dell'entropia del sistema a una temperatura, pressione e volume particolari.

U=((S-Ξ)T)-(PVT)

Energia totale assorbita dal freno a causa dell'aumento di temperatura del gruppo tamburo del freno

L'Energia totale assorbita dal freno data l'aumento di temperatura del gruppo tamburo del freno è definita come l'Energia che viene applicata dai freni quando vengono applicati i freni.

E=ΔTmc

Energia interna del gas ideale usando la legge dell'Energia di equipartizione

L'Energia interna del gas ideale utilizzando la formula della legge di equipartizione dell'Energia è definita come la divisione uguale dell'Energia di un sistema in equilibrio termico tra diversi gradi di libertà.

UEP=(F2)Nmoles[R]Tg

Energia assorbita dal materiale durante la frantumazione

La formula dell'Energia assorbita dal materiale durante la frantumazione è definita come l'Energia che viene assorbita dalla massa unitaria del mangime mentre le sue dimensioni vengono ridotte in un frantoio.

Wh=es(Ab-Aa)ηc

Energia prodotta dalla centrale idroelettrica

La formula dell'Energia prodotta da una centrale idroelettrica è definita come l'Energia elettrica generata dalla forza dell'acqua in caduta che viene imbrigliata dalle turbine e convertita in elettricità attraverso il funzionamento dei generatori.

E=[g]ρwQHηt

Energia prodotta da centrale idroelettrica data potenza

L'Energia prodotta da una centrale idroelettrica data la formula Power è definita come l'Energia elettrica generata dalla forza dell'acqua che cade che viene imbrigliata dalle turbine e convertita in elettricità attraverso il funzionamento dei generatori.

E=Phηt

Energia nel circuito CC

La formula Energy in DC Circuit è definita come il prodotto di potenza e tempo. È anche definita come la potenza consumata in un periodo di tempo.

E=PT

Come trovare Formule?

Ecco alcuni suggerimenti per risultati di ricerca migliori.
Sii specifico: più specifica è la tua query, migliori saranno i tuoi risultati.
Utilizza più parole chiave: combina più parole chiave parole chiave per restringere i risultati.
Sperimenta con i sinonimi: termini diversi possono produrre risultati diversi.
Ricerca con caratteri jolly: utilizza l'operatore * (asterisco). NOTA che questo operatore funziona solo alla fine di una parola. Esempio: Bio*, Area*, ecc.

In alternativa, puoi navigare tra le sottocategorie all'interno di per individuare le Formule di interesse.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!