Cerca Formule

Inserisci un minimo di 3 caratteri per iniziare con la ricerca delle formule .

Seleziona Filtra

Restringi i risultati della ricerca con l'aiuto di questi filtri.

50 Formule corrispondenti trovate!

Energia cinetica totale del sistema a ingranaggi

La formula dell'Energia cinetica totale di un sistema di ingranaggi è definita come una misura della somma delle energie cinetiche di tutte le parti rotanti in un sistema di ingranaggi, considerando il momento di inerzia e l'accelerazione angolare di ciascun componente, fornendo una comprensione completa del comportamento dinamico del sistema.

KE=MOIαA22

Energia termica data differenza di potenziale elettrico e corrente elettrica

L'Energia termica data la differenza di potenziale elettrico e la formula della corrente elettrica è definita come la quantità di Energia trasferita o convertita quando una corrente elettrica scorre attraverso un circuito con una data differenza di potenziale elettrico ed è un concetto fondamentale per comprendere la relazione tra Energia elettrica e lavoro.

PQ=ΔVITTotal

Energia termica data la differenza di potenziale elettrico e la resistenza

La formula dell'Energia termica data la differenza di potenziale elettrico e la resistenza è definita come la quantità di Energia trasferita come calore quando una corrente elettrica scorre attraverso un conduttore con una data differenza di potenziale elettrico e resistenza, fornendo una misura dell'Energia termica generata in un circuito elettrico.

PQ=(ΔV2R)t

Energia cinetica del sistema dopo urto anelastico

La formula dell'Energia cinetica del sistema dopo una collisione anelastica è definita come una misura dell'Energia cinetica totale posseduta da due oggetti dopo la loro collisione anelastica, con conseguente perdita di Energia cinetica e conversione in altre forme di Energia. È un concetto fondamentale per comprendere la cinetica del movimento e la dinamica delle collisioni.

Ek=(m1+m2)v22

Energia dello stato stazionario dell'idrogeno

L'Energia dello stato stazionario dell'idrogeno è lo stato di Energia costante in cui esistono gli elettroni.

EV=-([Rydberg])(1nquantum2)

Energia dell'elettrone in orbita iniziale

L'Energia dell'elettrone nell'orbita iniziale è lo stato di Energia costante in cui esistono gli elettroni nel livello di Energia iniziale o inferiore.

Eorbit=(-([Rydberg]ninitial2))

Energia dell'elettrone in orbita finale

L'Energia dell'elettrone nell'orbita finale è lo stato di Energia costante in cui esistono gli elettroni nel livello di Energia finale o più alto.

Eorbit=(-([Rydberg]nf2))

Energia cinetica dell'acqua

L'Energia cinetica dell'acqua è definita come la quantità di Energia fornita dall'elica al motore.

KE=WWaterVf22[g]

Energia cinetica del gas 1 se è presente una miscela di gas

La formula dell'Energia cinetica del gas 1 se è presente una miscela di gas è definita come prodotto del numero di moli di gas e della temperatura con l'Energia cinetica del secondo gas.

KE1=KE2(n1n2)(T1T2)

Energia cinetica del gas 2 se è presente una miscela di due gas

La formula dell'Energia cinetica del gas 2 se è presente una miscela di due gas è definita come prodotto del numero di moli di gas e della temperatura con l'Energia cinetica del primo gas.

KE2=KE1(n2n1)(T2T1)

Energia interna usando entalpia, pressione e volume

L'Energia interna che utilizza la formula di entalpia, pressione e volume è definita come la differenza di entalpia e il prodotto di pressione e volume.

U=H-PVT

Energia libera di Helmholtz che utilizza l'Energia interna, la temperatura e l'entropia

L'Energia libera di Helmholtz che utilizza la formula di Energia interna, temperatura ed entropia è definita come la differenza di Energia interna e il prodotto di temperatura ed entropia.

A=U-TS

Energia interna usando l'Energia libera, la temperatura e l'entropia di Helmholtz

L'Energia interna che utilizza la formula dell'Energia libera, della temperatura e dell'entropia di Helmholtz è definita come la somma dell'Energia di Helmholtz e il prodotto della temperatura e dell'entropia.

U=A+TS

Energia di deformazione totale immagazzinata nell'albero

La formula Total Strain Energy Stored in Shaft è definita come l'Energia immagazzinata in un corpo a causa della deformazione.

U=(𝜏2)LJshaft2G(rshaft2)

Energia di deformazione totale nell'albero a causa della torsione

L'Energia di deformazione totale nell'albero dovuta alla formula di torsione è definita come l'Energia immagazzinata in un corpo a causa della deformazione.

U=(𝜏2)V4G

Energia di deformazione totale nell'albero cavo dovuta alla torsione

L'Energia di deformazione totale nell'albero cavo dovuta alla formula di torsione è definita come l'Energia immagazzinata in un corpo a causa della deformazione. L'Energia di deformazione per unità di volume è nota come densità di Energia di deformazione e l'area sotto la curva sforzo-deformazione verso il punto di deformazione.

U=(𝜏2)((douter2)+(dinner2))V4G(douter2)

Energia per posto vacante

L'Energia per posto vacante è l'Energia richiesta per creare un punto reticolo vacante in un reticolo cristallino.

ΔEvacancy=-ln(fvacancy)[R]T

Energia di rinculo per la rottura del legame

La formula dell'Energia di rinculo per la rottura del legame è definita come l'Energia richiesta per la rottura del legame in un telaio con centro di massa con velocità di rinculo terminale dei frammenti.

E=(12)μ(v2)

Energia potenziale

La formula dell'Energia potenziale è definita come l'Energia che un oggetto possiede a causa della sua posizione o stato, che può essere convertita in Energia cinetica quando l'oggetto viene rilasciato o spostato ed è un concetto fondamentale per comprendere il comportamento degli oggetti nel mondo fisico.

PE=Mgh

Energia cinetica

La formula dell'Energia cinetica è definita come la misura dell'Energia di movimento di un oggetto, ovvero la capacità di compiere lavoro grazie al suo movimento ed è un concetto fondamentale in fisica che aiuta a descrivere la relazione tra la massa e la velocità di un oggetto.

KE=Mv22

Energia senza volume

L'Energia libera dal volume è la differenza di Energia libera tra la fase solida e quella liquida.

𝚫Gv=ΔHfΔTTm

Energia libera critica per la nucleazione (dall'Energia libera dal volume)

L'Energia libera critica per la nucleazione (dall'Energia libera dal volume) è l'Energia libera richiesta per la formazione di un nucleo stabile. Allo stesso modo, può essere considerato una barriera energetica al processo di nucleazione.

ΔG*=16π𝛾33𝚫Gv2

Energia interna molare del gas ideale

L'Energia interna molare del gas ideale è l'Energia del sistema per mole che non dipende dalla quantità di sostanza ma dipende dalla temperatura e dalla pressione.

Umolar=F[R]Tg2

Energia dell'elettrone in orbita ellittica

L'Energia dell'elettrone nell'orbita ellittica è definita come l'Energia consumata da una particella/elettrone per muoversi in un'orbita ellittica.

Eeo=(-(Z2)[Mass-e]([Charge-e]4)8([Permitivity-vacuum]2)([hP]2)(nquantum2))

Energia totale dell'elettrone nell'ennesima orbita

L'Energia totale dell'elettrone nell'ennesima orbita è definita come la somma dell'Energia cinetica e dell'Energia potenziale consumata da una particella in movimento quando si sposta da un punto a un altro.

EeV_orbital=(-[Mass-e]([Charge-e]4)(Z2)8([Permitivity-vacuum]2)(nquantum2)([hP]2))

Energia cinetica data il momento angolare

La formula dell'Energia cinetica data il momento angolare è definita come l'Energia immagazzinata nel sistema a causa della sua Energia cinetica rotazionale. Questa Energia è correlata alla velocità angolare e quindi al momento angolare.

KE1=L22I

Energia di rotazione usando la costante di rotazione

L'Energia rotazionale utilizzando la formula della costante rotazionale è definita come Energia di serie di linee nello spettro rotazionale di una molecola biatomica. Le molecole biatomiche sono spesso approssimate come rotori rigidi, il che significa che si presume che la lunghezza del legame sia fissa. Risolvendo l'equazione di Schrödinger per un rotore rigido si ottengono i seguenti livelli di Energia: E = BJ (J 1).

Erot_RC=BJ(J+1)

Energia rotazionale

La formula Energia rotazionale è definita come Energia di serie di linee nello spettro rotazionale di una molecola biatomica. Le molecole biatomiche sono spesso approssimate come rotori rigidi, il che significa che si presume che la lunghezza del legame sia fissa.

Erotational=([h-]2)β2I

Energia termica consumata in evaporazione

L'Energia termica utilizzata nella formula di evaporazione è definita come l'Energia utilizzata per trasformare il liquido in vapore, quindi la temperatura non cambia durante questo processo.

He=ρwaterLEL

Energia idroelettrica

La formula dell'Energia Idroelettrica è definita la conversione dell'Energia cinetica dell'acqua che cade o scorre in Energia elettrica per mezzo di una turbina collegata ad un generatore.

Ph=[g]ρwQH

Energia delle Transizioni Vibrazionali

La formula Energia delle transizioni vibrazionali è definita come l'Energia totale dei rispettivi livelli di rotazione-vibrazione a diverse transizioni di una molecola biatomica.

Et=((v+12)-xe((v+12)2))([hP]vvib)

Energia libera di Gibbs utilizzando l'Energia libera ideale di Gibbs e il coefficiente di fugacità

L'Energia libera di Gibbs che utilizza la formula dell'Energia libera ideale di Gibbs e del coefficiente di fugacità è definita come la somma dell'Energia libera di Gibbs ideale e il prodotto della costante universale del gas, della temperatura e del logaritmo naturale del coefficiente di fugacità.

G=Gig+[R]Tln(ϕ)

Energia libera residua di Gibbs utilizzando il coefficiente di fugacità

L'Energia libera residua di Gibbs utilizzando la formula del coefficiente di fugacità è definita come il prodotto della costante universale del gas, della temperatura e del logaritmo naturale del coefficiente di fugacità.

GR=[R]Tln(ϕ)

Energia libera residua di Gibbs utilizzando la fugacità e la pressione

L'Energia libera residua di Gibbs utilizzando la formula della fugacità e della pressione è definita come il prodotto della costante universale del gas, della temperatura e del logaritmo naturale del rapporto tra la fugacità e la pressione.

GR=[R]Tln(fP)

Energia cinetica data n Mole di Gas

L'Energia cinetica data la formula n mole di gas è definita come il numero del prodotto di moli di gas e costante di gas alla particolare temperatura.

KE=(32)NT[R]Tg

Energia cinetica data la pressione e il volume del gas

La formula dell'Energia cinetica data la pressione e il volume del gas è definita come il prodotto della pressione e del volume del gas.

KE=(32)PgasV

Energia Madelung utilizzando l'Energia totale degli ioni data la distanza

L'Energia di Madelung che utilizza l'Energia totale degli ioni data la distanza per un semplice reticolo costituito da ioni con carica uguale e opposta in un rapporto 1:1 è la somma delle interazioni tra uno ione e tutti gli altri ioni del reticolo.

EM=Etot-(BMr0nborn)

Energia di legame degli elementi A e B

L'Energia di legame della formula degli elementi A e B è definita come la quantità di Energia richiesta per rompere una mole di molecole nei suoi atomi componenti.

Δkcal=(XA-XB0.208)2

Energia di ionizzazione in KJ mole

L'Energia di ionizzazione nella formula mole KJ è definita come la quantità minima di Energia richiesta per rimuovere l'elettrone più debolmente legato di un atomo o molecola gassosa neutra isolata.

IEKJmole=(EN544)-EAKJmole

Energia di deformazione immagazzinata nella barra di tensione

La formula Strain Energy Stored in Tension Rod è definita come una misura dell'Energia accumulata in un tirante quando è sottoposto a un carico assiale. Questa Energia è essenziale per comprendere il comportamento del materiale sotto stress e la sua capacità di resistere alla deformazione.

U=(P2)L2AE

Energia di deformazione immagazzinata nell'asta sottoposta a momento flettente

La formula Strain Energy Stored in Rod Subjected to Bending Moment è definita come una rappresentazione dell'Energia accumulata in un'asta quando subisce una flessione. Questa Energia è fondamentale per comprendere il comportamento del materiale sotto stress e per garantire l'integrità strutturale nelle applicazioni ingegneristiche.

U=(Mb2)L2EI

Energia potenziale dovuta alla deformazione della superficie libera

La formula dell'Energia potenziale dovuta alla deformazione della superficie libera è definita come l'Energia potenziale associata alla deformazione di una superficie libera, come un'onda oceanica, che può essere calcolata utilizzando il principio dei lavori virtuali. Quando si forma una cresta d'onda, rappresenta un aumento di Energia potenziale rispetto alla superficie piana. Questa Energia potenziale è il risultato del lavoro svolto per deformare la superficie e creare la cresta dell'onda.

Ep=ρ[g]η2λ2

Energia potenziale per unità di larghezza in un'onda

La formula Energia potenziale per unità di larghezza in un'onda è definita come la lunghezza d'onda dell'onda che è uguale all'Energia cinetica associata a una lunghezza d'onda. L'Energia totale associata ad una lunghezza d'onda è la somma dell'Energia potenziale e dell'Energia cinetica.

PE=(116)ρ[g](H2)λ

Energia cinetica dovuta al movimento delle particelle

La formula dell'Energia cinetica dovuta al movimento delle particelle è definita come l'Energia posseduta dalle particelle a causa del movimento. Le particelle di un solido non possono muoversi perché sono fitte e quindi hanno la minima Energia cinetica.

KE=(116)ρ[g](H2)λ

Energia totale del sistema

L'Energia totale della formula del sistema è definita come somma di Energia cinetica, Energia potenziale ed Energia interna. Gli oggetti con Energia totale inferiore a zero sono vincolati; quelli con zero o maggiore sono illimitati.

Esystem=PE+KE+U

Energia potenziale elastica della molla

L'Energia potenziale elastica della molla definita come Energia immagazzinata come risultato dell'applicazione di una forza per deformare un oggetto elastico. L'Energia viene immagazzinata fino a quando la forza non viene rimossa.

U=12kx2

Energia libera di Gibbs data la superficie

La formula di Gibbs Free Energy Given Surface Area è definita come l'Energia libera di Gibbs di una superficie curva che è direttamente proporzionale all'area della superficie.

G=γA

Energia di attivazione data la pendenza della linea tra LnK e temperatura inversa

L'Energia di attivazione data la pendenza della linea tra LnK e temperatura inversa è definita come quando l'Lnk (costante di velocità) è tracciata rispetto all'inverso della temperatura (kelvin), la pendenza è una linea retta.

Ea=-(mslope[R])

Energia di attivazione data la pendenza della linea tra Log K e Temp Inverse

L'Energia di attivazione data la pendenza della linea tra Log K e Temp Inverse ha definito che il grafico tra LogK e 1/T è una linea retta. Il grafico tra Log K vs 1/T darà pendenza −Ea/2.303R.

Ea=-2.303[R]m

Energia meccanica totale

L'Energia meccanica totale è la somma dell'Energia cinetica e dell'Energia potenziale.

ξ=KE+PE

Come trovare Formule?

Ecco alcuni suggerimenti per risultati di ricerca migliori.
Sii specifico: più specifica è la tua query, migliori saranno i tuoi risultati.
Utilizza più parole chiave: combina più parole chiave parole chiave per restringere i risultati.
Sperimenta con i sinonimi: termini diversi possono produrre risultati diversi.
Ricerca con caratteri jolly: utilizza l'operatore * (asterisco). NOTA che questo operatore funziona solo alla fine di una parola. Esempio: Bio*, Area*, ecc.

In alternativa, puoi navigare tra le sottocategorie all'interno di per individuare le Formule di interesse.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!