Cerca Formule

Inserisci un minimo di 3 caratteri per iniziare con la ricerca delle formule .

Seleziona Filtra

Restringi i risultati della ricerca con l'aiuto di questi filtri.

50 Formule corrispondenti trovate!

Energia libera critica per la nucleazione

L'Energia libera critica per la nucleazione è l'Energia libera richiesta per la formazione di un nucleo stabile. Allo stesso modo, può essere considerato una barriera energetica al processo di nucleazione.

ΔG*=16π𝛾3Tm23ΔHf2ΔT2

Energia del fotone

L'Energia del fotone (luce) è direttamente correlata alla frequenza elettromagnetica del fotone. L'Energia del fotone dipende dalla lunghezza d'onda in modo tale che l'Energia del fotone sia inversamente proporzionale alla lunghezza d'onda. Maggiore è la frequenza dell'Energia del fotone, maggiore è la sua Energia.

E=[hP][c]λ

Energia immagazzinata nel condensatore data capacità e tensione

Energia immagazzinata nel condensatore data la formula di capacità e tensione è definita come l'Energia totale accumulata in un condensatore, che è un dispositivo che immagazzina Energia elettrica, e dipende dalla capacità e dalla tensione del condensatore, fornendo una misura dell'Energia potenziale elettrica immagazzinata .

U=12CVcapacitor2

Energia immagazzinata nel condensatore data la carica e la capacità

L'Energia immagazzinata nel condensatore data la formula di carica e capacità è definita come l'Energia totale accumulata in un condensatore come risultato del trasferimento di carica elettrica, che dipende dalla quantità di carica immagazzinata e dalla capacità del condensatore ed è un parametro critico nella comprensione del comportamento dei circuiti elettrici.

U=Q22C

Energia immagazzinata nel condensatore data la carica e la tensione

Energia immagazzinata nel condensatore data la formula di carica e tensione è definita come l'Energia totale accumulata in un condensatore come risultato del flusso di carica elettrica e della tensione applicata attraverso le sue piastre, fornendo una misura della capacità del condensatore di immagazzinare Energia elettrica.

Ue=12QV

Energia libera di Helmholtz

L'Energia libera di Helmholtz è un concetto termodinamico in cui il potenziale termodinamico viene utilizzato per misurare il lavoro di un sistema chiuso con temperatura e volume costanti.

A=U-TS

Energia di equipartizione

Il teorema dell'Energia di Equipartizione è correlato alla temperatura del sistema e alla sua Energia cinetica e potenziale media. Questo teorema è anche chiamato legge di equipartizione dell'Energia o semplicemente equipartizione.

K=[BoltZ]Tg2

Energia di equipartizione per molecole con n gradi di libertà

L'Energia di equipaggiamento per molecole aventi n gradi di libertà è correlata alla temperatura del sistema e alla sua Energia cinetica e potenziale media. Questo teorema è anche chiamato legge di equipartizione dell'Energia o semplicemente equipartizione.

K=F[BoltZ]Tg2

Energia interna molare del gas ideale data la costante di Boltzmann

L'Energia interna molare del gas ideale data Boltzmann Constant è definita come l'Energia associata al movimento casuale e disordinato delle molecole. È separato in scala dall'Energia ordinata macroscopica associata agli oggetti in movimento.

U=FNmoles[BoltZ]Tg2

Energia di deformazione dovuta al taglio puro

L'Energia di deformazione dovuta al taglio puro è definita come la misura del tipo di Energia potenziale immagazzinata in un elemento strutturale a seguito della deformazione elastica.

U=𝜏𝜏VT2Gpa

Energia di deformazione data il valore del momento di torsione

La formula dell'Energia di deformazione data dal valore del momento di torsione è definita come la misura del valore che è 0,5 volte il rapporto tra il prodotto del carico di torsione e della lunghezza e il prodotto del modulo di taglio e del momento polare di inerzia.

U=T2L2GpaJ

Energia immagazzinata nell'induttore

La formula dell'Energia immagazzinata nell'induttore è definita come il campo magnetico che circonda un induttore e immagazzina Energia mentre la corrente scorre attraverso il campo. L'Energia viene immagazzinata sotto forma di campo magnetico. Se riduciamo lentamente la quantità di corrente, il campo magnetico inizia a collassare e rilascia l'Energia e l'induttore diventa una fonte di corrente.

Uinductor=0.5Lip2

Energia della corrente RMS

La formula dell'Energia della corrente efficace è definita come il prodotto del quadrato della corrente efficace, la resistenza del circuito e il tempo del flusso di corrente. L'unità SI è Joule.

Erms=ip2Rt

Energia dell'elettrone per numero quantico principale

La formula Energia dell'elettrone per numero quantico principale è definita come lo stato di Energia costante in cui gli elettroni esistono nel livello di Energia iniziale o inferiore.

E=nquantum+l

Energia cinetica data il momento angolare

La formula dell'Energia cinetica data il momento angolare è definita come l'Energia immagazzinata nel sistema a causa della sua Energia cinetica rotazionale. Questa Energia è correlata alla velocità angolare e quindi al momento angolare.

KE1=L22I

Energia di rotazione usando la costante di rotazione

L'Energia rotazionale utilizzando la formula della costante rotazionale è definita come Energia di serie di linee nello spettro rotazionale di una molecola biatomica. Le molecole biatomiche sono spesso approssimate come rotori rigidi, il che significa che si presume che la lunghezza del legame sia fissa. Risolvendo l'equazione di Schrödinger per un rotore rigido si ottengono i seguenti livelli di Energia: E = BJ (J 1).

Erot_RC=BJ(J+1)

Energia rotazionale

La formula Energia rotazionale è definita come Energia di serie di linee nello spettro rotazionale di una molecola biatomica. Le molecole biatomiche sono spesso approssimate come rotori rigidi, il che significa che si presume che la lunghezza del legame sia fissa.

Erotational=([h-]2)β2I

Energia vibrazionale utilizzando il numero di onda vibrazionale

L'Energia vibrazionale che utilizza la formula del numero d'onda vibrazionale è definita come l'Energia totale dei rispettivi livelli di rotazione-vibrazione di una molecola biatomica.

Ewn=(v+12)ω'

Energia termica consumata in evaporazione

L'Energia termica utilizzata nella formula di evaporazione è definita come l'Energia utilizzata per trasformare il liquido in vapore, quindi la temperatura non cambia durante questo processo.

He=ρwaterLEL

Energia delle maree

L'Energia delle maree è definita come il rapporto tra il prodotto della densità dell'acqua, la prevalenza, l'area spazzata della pala, la costante 9,81 e il periodo del ciclo delle maree.

Pt=0.5Aρw[g]H2

Energia eolica

La formula dell'Energia eolica è definita come la metà del prodotto dell'area spazzata della pala, qube di velocità del vento, densità dell'aria.

Pwind=0.5ρairAbladeVwind3

Energia interna per il flusso ipersonico

La formula dell'Energia interna per il flusso ipersonico è definita come l'Energia totale di un fluido in movimento a velocità molto elevate, che comprende sia l'Energia cinetica che quella potenziale, il che è fondamentale per comprendere il comportamento dei fluidi nei flussi ipersonici, in particolare nel contesto dei principi fondamentali del flusso viscoso.

U=H+Pρ

Energia di attivazione per reazioni di ordine zero

La formula Energia di attivazione per reazioni di ordine zero è definita come il prodotto della costante universale del gas con la temperatura della reazione e la differenza del logaritmo naturale del fattore di frequenza e della costante di velocità. L'Energia di attivazione è la quantità minima di Energia necessaria per attivare atomi o molecole in una condizione in cui possono subire una trasformazione chimica.

Ea=[R]Tgas(ln(A)-ln(k))

Energia di Attivazione per la Reazione del Primo Ordine

L'Energia di attivazione per la formula di reazione del primo ordine è definita come la moltiplicazione della costante universale dei gas con la temperatura e con il rapporto tra il logaritmo naturale del fattore di frequenza e la costante di velocità. La quantità minima di Energia necessaria per attivare atomi o molecole in una condizione in cui possono subire una trasformazione chimica.

Ea=[R]Tgas(ln(Akfirst))

Energia di attivazione per la reazione del secondo ordine

La formula Energia di attivazione per reazione del secondo ordine è definita come la moltiplicazione della costante universale dei gas con la temperatura e con la differenza dei logaritmi naturali del fattore di frequenza e della costante di velocità. La quantità minima di Energia necessaria per attivare atomi o molecole in una condizione in cui possono subire una trasformazione chimica è chiamata Energia di attivazione.

Ea=[R]TKinetics(ln(Afactor)-ln(Ksecond))

Energia disponibile a causa della riduzione della velocità

L'Energia disponibile a causa della riduzione della velocità è la quantità di Energia quando si verifica una riduzione della velocità del treno che viene misurata in kW -hr.

Eo=0.01072Wev2-u2

Energia disponibile durante la rigenerazione

L'Energia disponibile durante la formula di rigenerazione è definita come la quantità di Energia in wattora/tonnellata disponibile quando si verifica una variazione negativa della velocità del treno che significa una variazione del ritardo.

ER=0.01072(WeW)(v2-u2)

Energia totale per unità di area data Potenza d'onda per unità di larghezza della cresta

L'Energia totale per unità di area data la potenza d'onda per unità di larghezza della cresta è definita come la combinazione di avvezione (trasporto) di Energia potenziale e cinetica più il lavoro svolto dalle pressioni per unità di larghezza.

E=PVg

Energia totale dell'onda in una lunghezza d'onda per unità di larghezza della cresta

La formula dell'Energia totale dell'onda in una lunghezza d'onda per unità di larghezza della cresta è definita come il contenuto energetico di un ciclo d'onda rispetto alla larghezza della sua cresta.

TE=ρ[g]H2λ8

Energia dell'onda totale data l'Energia cinetica e l'Energia potenziale

La formula dell'Energia totale dell'onda data dall'Energia cinetica e dall'Energia potenziale è definita come il trasporto e la cattura di Energia da parte delle onde superficiali dell'oceano e l'Energia catturata viene quindi utilizzata per tutti i diversi tipi di lavoro utile, tra cui la generazione di elettricità, la desalinizzazione dell'acqua e il pompaggio dell'acqua. .

TE=KE+PE

Energia cinetica data l'Energia dell'onda totale

L'Energia cinetica data dall'Energia totale delle onde è definita come la teoria lineare secondo cui parte dell'Energia totale è dovuta alla velocità delle particelle d'acqua associate al movimento delle onde.

KE=TE-PE

Energia potenziale data l'Energia dell'onda totale

La formula dell'Energia potenziale data dall'Energia totale dell'onda è definita come lo spostamento dell'acqua dalla sua posizione di equilibrio, tipicamente proporzionale al quadrato dell'ampiezza dell'onda e influenzato da fattori quali l'accelerazione gravitazionale e la densità dell'acqua.

PE=TE-KE

Energia specifica o densità di Energia data la lunghezza d'onda e l'Energia dell'onda

L'Energia specifica o densità di Energia data la formula Lunghezza d'onda ed Energia dell'onda è definita come l'Energia media totale dell'onda per unità di superficie.

U=TEλ

Energia specifica o densità di Energia data l'altezza dell'onda

La formula dell'Energia specifica o densità di Energia data l'altezza dell'onda è definita come l'Energia media totale delle onde per unità di superficie.

U=ρ[g]H28

Energia totale delle onde per la potenza delle onde delle acque profonde

La formula Total Wave Energy for Wave Power of Deepwater è definita come la somma dei componenti di Energia cinetica e potenziale, che rappresentano l'Energia complessiva trasmessa dalle onde per unità di tempo e lunghezza di cresta unitaria in profondità dell'acqua superiori alla metà della lunghezza d'onda.

E=Pd0.5Co

Energia dell'onda totale data la potenza dell'onda per acque poco profonde

La formula Energia totale delle onde data dalla potenza delle onde per acque poco profonde è definita come la somma dei componenti di Energia cinetica e potenziale, che rappresentano l'Energia complessiva trasmessa dalle onde per unità di tempo e lunghezza di cresta unitaria in profondità dell'acqua superiori alla metà della lunghezza d'onda.

E=PsCs

Energia potenziale molecolare delle molecole

La formula dell'Energia potenziale molecolare delle molecole è definita come l'Energia trattenuta da un oggetto a causa della sua posizione rispetto ad altri oggetti, sollecita all'interno di se stesso. È la somma dei termini energetici delle lunghezze di legame, degli angoli, degli atomi non legati.

E=Ebonds+Edihedral+Eangle+Enon-bonded

Energia potenziale molecolare di coppie di atomi non legati

La formula dell'Energia potenziale molecolare delle coppie di atomi non legate è definita come le interazioni che agiscono tra gli atomi della stessa molecola e quelli di altre molecole. I campi di forza di solito dividono le interazioni non legate in due: interazioni elettrostatiche e interazioni di Van der Waals.

E=Eelectrostatic+Evan der waals

Energia cinetica dopo la collisione di veicoli

La formula dell'Energia cinetica dopo una collisione di veicoli è definita come una misura dell'Energia residua in un veicolo dopo una collisione, tenendo conto delle masse dei veicoli coinvolti e della loro Energia cinetica iniziale, fornendo un parametro cruciale nella ricostruzione degli incidenti e nell'analisi della sicurezza.

Kf=(m1m1+m2)Ki

Energia rilasciata dall'induttore al carico

La formula dell'Energia rilasciata dall'induttore al carico è definita come l'Energia rilasciata dal chopper attraverso il carico quando l'interruttore è in stato OFF.

Woff=(Vo-Vin)(I1+I22)Tc

Energia di rinculo per la rottura del legame

La formula dell'Energia di rinculo per la rottura del legame è definita come l'Energia richiesta per la rottura del legame in un telaio con centro di massa con velocità di rinculo terminale dei frammenti.

E=(12)μ(v2)

Energia potenziale elettrostatica di cariche puntiformi o sistema di cariche

La formula dell'Energia potenziale elettrostatica della carica puntiforme o del sistema di cariche è definita come l'Energia associata all'interazione tra due cariche puntiformi o un sistema di cariche, che dipende dall'entità delle cariche e dalla distanza tra loro, ed è un concetto fondamentale in comprendere le interazioni elettrostatiche.

Ufree=[Coulomb]q1q2r

Energia dello stato stazionario dell'idrogeno

L'Energia dello stato stazionario dell'idrogeno è lo stato di Energia costante in cui esistono gli elettroni.

EV=-([Rydberg])(1nquantum2)

Energia dell'elettrone in orbita iniziale

L'Energia dell'elettrone nell'orbita iniziale è lo stato di Energia costante in cui esistono gli elettroni nel livello di Energia iniziale o inferiore.

Eorbit=(-([Rydberg]ninitial2))

Energia dell'elettrone in orbita finale

L'Energia dell'elettrone nell'orbita finale è lo stato di Energia costante in cui esistono gli elettroni nel livello di Energia finale o più alto.

Eorbit=(-([Rydberg]nf2))

Energia di risonanza ionica covalente

L'Energia di risonanza ionica covalente è l'Energia cinetica prodotta come risultato di un'ampia partecipazione o di orbitali o di miscelazione covalente-ionica.

Δ=EA-B-EA-B(cov)

Energia di legame effettiva data Energia di risonanza ionica covalente

L'Energia di legame effettiva data dall'Energia di risonanza ionica covalente è definita come la quantità di Energia necessaria per rompere una mole di molecole nei suoi atomi componenti.

EA-B=Δ+EA-B(cov)

Energia di risonanza ionica covalente utilizzando le energie di legame

L'Energia di risonanza ionica covalente che utilizza le energie di legame è l'Energia cinetica prodotta come risultato di una grande partecipazione o di orbitali o miscelazione covalente-ionica.

Δ=EA-B-EA-AEB-B

Energia di risonanza ionica covalente utilizzando l'elettronegatività di Pauling

L'Energia di risonanza ionica covalente che utilizza l'elettronegatività di Pauling è l'Energia cinetica prodotta come risultato di una grande partecipazione o di orbitali o miscelazione covalente-ionica.

Δp=XP2

Energia solare totale incidente su un'area unitaria di superficie orizzontale sul suolo

La formula dell'Energia solare totale incidente su un'area unitaria di una superficie orizzontale al suolo è definita come la quantità di radiazione solare che cade su un'area unitaria di una superficie orizzontale al suolo, che è un parametro fondamentale per comprendere il bilancio energetico della Terra e le dinamiche climatiche.

Gsolar=GDcos(i)+Gd

Come trovare Formule?

Ecco alcuni suggerimenti per risultati di ricerca migliori.
Sii specifico: più specifica è la tua query, migliori saranno i tuoi risultati.
Utilizza più parole chiave: combina più parole chiave parole chiave per restringere i risultati.
Sperimenta con i sinonimi: termini diversi possono produrre risultati diversi.
Ricerca con caratteri jolly: utilizza l'operatore * (asterisco). NOTA che questo operatore funziona solo alla fine di una parola. Esempio: Bio*, Area*, ecc.

In alternativa, puoi navigare tra le sottocategorie all'interno di per individuare le Formule di interesse.

Copied!