Cerca Formule

Inserisci un minimo di 3 caratteri per iniziare con la ricerca delle formule .

Seleziona Filtra

Restringi i risultati della ricerca con l'aiuto di questi filtri.

50 Formule corrispondenti trovate!

Energia senza volume

L'Energia libera dal volume è la differenza di Energia libera tra la fase solida e quella liquida.

𝚫Gv=ΔHfΔTTm

Energia libera critica per la nucleazione (dall'Energia libera dal volume)

L'Energia libera critica per la nucleazione (dall'Energia libera dal volume) è l'Energia libera richiesta per la formazione di un nucleo stabile. Allo stesso modo, può essere considerato una barriera energetica al processo di nucleazione.

ΔG*=16π𝛾33𝚫Gv2

Energia della particella in movimento data la frequenza

La formula dell'Energia della particella in movimento data dalla frequenza è definita come l'Energia consumata dalla particella per spostarsi da un punto all'altro.

Efreq=[hP]ωn

Energia cinetica dell'elettrone

La formula dell'Energia cinetica dell'elettrone è definita come l'Energia cinetica consumata da una particella in movimento quando si sposta da un punto all'altro.

EeV=-2.17810-18(Z)2(nquantum)2

Energia dell'elettrone

Energia dell'elettrone. la formula è definita come l'Energia consumata da una particella nel muoversi da un punto all'altro.

KEphoton=1.08510-18(Z)2(nquantum)2

Energia totale dell'elettrone

La formula Total Energy Of Electron è definita come la somma dell'Energia cinetica e dell'Energia potenziale consumata da una particella in movimento quando si sposta da un punto a un altro.

Etotal=-1.085(Z)2(nquantum)2

Energia della particella mobile data la lunghezza d'onda

L'Energia della particella in movimento data la formula della lunghezza d'onda è definita come l'Energia consumata da una particella in movimento per spostarsi da un punto all'altro.

KEphoton=[hP][c]λ

Energia della particella in movimento data il numero d'onda

L'Energia della particella in movimento data la formula del numero d'onda è definita come l'Energia consumata dalla particella in movimento per spostarsi da una.

Ewaveno.=[hP][c]k

Energia della Particella

L'Energia della particella è definita come l'Energia consumata dalla particella per spostarsi da un punto all'altro.

EAO=[hP]f

Energia delle particelle data la lunghezza d'onda di de Broglie

L'Energia della particella data la lunghezza d'onda di de Broglie è definita come l'Energia consumata dalla particella per spostarsi da un punto all'altro.

EDB=[hP][c]λ

Energia cinetica data la lunghezza d'onda di de Broglie

L'Energia cinetica data dalla formula della lunghezza d'onda di de Broglie è associata a una particella/elettrone ed è correlata alla sua massa, m e alla lunghezza d'onda di de Broglie attraverso la costante di Planck, h.

EAO=[hP]22m(λ2)

Energia superficiale data la tensione superficiale

L'Energia superficiale, data la formula della tensione superficiale, è definita come una misura dell'Energia sulla superficie di un liquido che fa sì che esso si comporti come se avesse una pelle elastica, con conseguenti proprietà quali la formazione di goccioline e bolle e la capacità di resistere alle forze esterne.

E=σAs

Energia richiesta dal forno per fondere l'acciaio

L'Energia richiesta dalla fornace per fondere l'acciaio è definita come il prodotto della massa, del calore specifico, della differenza di temperatura con l'aggiunta del prodotto della massa e del calore latente.

E=(mSheat(T2-T1))+(mLheat)

Energia cinetica totale di due corpi dopo l'impatto

L'Energia cinetica totale di due corpi dopo la formula dell'impatto è definita come la metà della somma del prodotto di massa, quadrato della velocità finale del primo corpo e massa, quadrato della velocità finale del secondo corpo.

KEf=(12)((m1(v12))+(m2(v22)))

Energia libera residua di Gibbs utilizzando l'Energia libera di Gibbs del gas reale e ideale

La formula dell'Energia libera di Gibbs residua che utilizza la formula dell'Energia libera di Gibbs del gas effettivo e ideale è definita come la differenza tra l'Energia effettiva di Gibbs e l'Energia di Gibbs del gas ideale.

GR=G-Gig

Energia effettiva di Gibbs utilizzando l'Energia di Gibbs del gas residuo e ideale

La formula dell'Energia di Gibbs effettiva che utilizza la formula dell'Energia di Gibbs del gas residuo e ideale è definita come la somma dell'Energia di Gibbs residua e dell'Energia di Gibbs del gas ideale.

G=GR+Gig

Energia libera di Gibbs del gas ideale utilizzando l'Energia di Gibbs del gas residuo e effettivo

La formula dell'Energia libera di Gibbs del gas ideale utilizzando la formula dell'Energia di Gibbs del gas residuo e quella effettiva è definita come la differenza tra l'Energia effettiva di Gibbs e l'Energia residua di Gibbs.

Gig=G-GR

Energia reale di Gibbs utilizzando l'Energia in eccesso e la soluzione ideale di Gibbs

La formula dell'Energia di Gibbs effettiva che utilizza la formula dell'Energia di Gibbs in eccesso e soluzione ideale è definita come la somma dell'Energia di Gibbs in eccesso e dell'Energia di Gibbs della soluzione ideale.

G=GE+Gid

Energia di ionizzazione dell'elemento usando l'elettronegatività di Pauling

L'Energia di ionizzazione dell'elemento che utilizza l'elettronegatività di Pauling è la quantità minima di Energia richiesta per rimuovere l'elettrone più debolmente legato di un atomo o una molecola gassosa neutra isolata.

IE=((XP+0.2)(20.336))-E.A

Energia di ionizzazione usando l'elettronegatività di Allred Rochow

L'Energia di ionizzazione che utilizza l'elettronegatività di Allred Rochow è la quantità minima di Energia richiesta per rimuovere l'elettrone più debolmente legato di un atomo o molecola gassosa neutra isolata.

IE=((XA.R+0.744+0.2)(20.336))-E.A

Energia di legame degli elementi A e B

L'Energia di legame della formula degli elementi A e B è definita come la quantità di Energia richiesta per rompere una mole di molecole nei suoi atomi componenti.

Δkcal=(XA-XB0.208)2

Energia di ionizzazione in KJ mole

L'Energia di ionizzazione nella formula mole KJ è definita come la quantità minima di Energia richiesta per rimuovere l'elettrone più debolmente legato di un atomo o molecola gassosa neutra isolata.

IEKJmole=(EN544)-EAKJmole

Energia di deformazione immagazzinata nella barra di tensione

La formula Strain Energy Stored in Tension Rod è definita come una misura dell'Energia accumulata in un tirante quando è sottoposto a un carico assiale. Questa Energia è essenziale per comprendere il comportamento del materiale sotto stress e la sua capacità di resistere alla deformazione.

U=(P2)L2AE

Energia di deformazione immagazzinata nell'asta sottoposta a momento flettente

La formula Strain Energy Stored in Rod Subjected to Bending Moment è definita come una rappresentazione dell'Energia accumulata in un'asta quando subisce una flessione. Questa Energia è fondamentale per comprendere il comportamento del materiale sotto stress e per garantire l'integrità strutturale nelle applicazioni ingegneristiche.

U=(Mb2)L2EI

Energia erogata per scintilla dal circuito di carica della resistenza

L'Energia erogata per scintilla dal circuito di carica della resistenza è il parametro che definisce la quantità di materiale rimosso e la finitura superficiale prodotta.

P=V02𝜏Rc(12-exp(-t𝜏)+0.5exp(-2t𝜏))

Energia totale in CMOS

La formula dell'Energia totale nella CMOS è definita come la proprietà quantitativa che deve essere trasferita a un oggetto per eseguire un lavoro o per riscaldare l'oggetto nella CMOS.

Et=Es+Eleak

Energia di attivazione data la pendenza della linea tra LnK e temperatura inversa

L'Energia di attivazione data la pendenza della linea tra LnK e temperatura inversa è definita come quando l'Lnk (costante di velocità) è tracciata rispetto all'inverso della temperatura (kelvin), la pendenza è una linea retta.

Ea=-(mslope[R])

Energia di attivazione data la pendenza della linea tra Log K e Temp Inverse

L'Energia di attivazione data la pendenza della linea tra Log K e Temp Inverse ha definito che il grafico tra LogK e 1/T è una linea retta. Il grafico tra Log K vs 1/T darà pendenza −Ea/2.303R.

Ea=-2.303[R]m

Energia meccanica totale

L'Energia meccanica totale è la somma dell'Energia cinetica e dell'Energia potenziale.

ξ=KE+PE

Energia di attivazione utilizzando la costante di frequenza a due diverse temperature

La formula dell'Energia di attivazione utilizzando la costante di velocità a due temperature diverse è definita come l'Energia minima richiesta per far sì che una stessa reazione avvenga a due temperature diverse.

Ea2=[R]ln(K2K1)T1T2T2-T1

Energia di attivazione utilizzando la velocità di reazione a due diverse temperature

La formula dell'Energia di attivazione utilizzando la velocità di reazione a due diverse temperature è definita come l'Energia minima richiesta per far sì che una stessa reazione avvenga a due diverse temperature, considerando le rispettive velocità di reazione.

Ea1=[R]ln(r2r1)T1T2T2-T1

Energia immagazzinata nel campo magnetico

La formula dell'Energia immagazzinata nel campo magnetico è definita come materiale magnetico o una carica elettrica in movimento in cui agisce la forza del magnetismo. Pertanto, quando un materiale è magnetizzato, assorbe Energia. Questa Energia è immagazzinata nel campo del magnete.

E=Bμ2

Energia cinetica netta dell'elettrone

La formula dell'Energia cinetica netta dell'elettrone è definita come la quantità totale di Energia che un elettrone possiede come risultato del suo movimento. È uguale alla differenza tra l'Energia cinetica dell'elettrone e la sua Energia potenziale.

Qe=Jc(2[BoltZ]Tc[Charge-e])

Energia minima richiesta dall'elettrone per lasciare il catodo

La formula dell'Energia minima richiesta dall'elettrone per lasciare il catodo è definita come l'Energia richiesta per lasciare il catodo.

Q=JcVc

Energia potenziale dell'atomo vibrante

La formula dell'Energia potenziale dell'atomo vibrante è la metà del prodotto della costante di forza per il quadrato dello spostamento degli atomi vibranti.

V=0.5(k(x)2)

Energia interna del sistema

L'Energia interna del sistema è tutta l'Energia all'interno di un dato sistema, inclusa l'Energia cinetica delle molecole e l'Energia immagazzinata in tutti i legami chimici tra le molecole.

UWD=Qd-(WIE)

Energia termica data Energia interna

La formula dell'Energia termica data dall'Energia interna è definita poiché la somma di tutte queste energie termiche è l'Energia totale che la sostanza guadagna o perde.

Qd=UWD+(WIE)

Energia della goccia di liquido nel sistema neutro

La formula dell'Energia della goccia di liquido nel sistema neutro è definita come la somma totale delle energie per unità di volume di un ammasso, superficie piana e curvatura della superficie dell'ammasso.

En,0=avn+as(n23)+ac(n13)

Energia di Coulomb di una particella carica utilizzando il raggio dell'ammasso

La formula dell'Energia di Coulomb delle particelle cariche che utilizza il raggio dell'ammasso è definita come il rapporto del quadrato tra il numero di elettroni rimossi dalla superficie solida e due volte il raggio dell'ammasso.

Ecoul=Q22R0

Energia di Coulomb di una particella carica utilizzando il raggio di Wigner Seitz

L'Energia di Coulomb delle particelle cariche utilizzando la formula del raggio di Wigner Seitz è definita come il prodotto del quadrato del numero di elettroni rimossi dalla superficie e del numero di atomi alla potenza di (1/3), diviso per due volte del Wigner Seitz raggio.

Ecoul=(Q2)n132r0

Energia interna utilizzando l'Energia di equipartizione

Energia interna che usa l'Energia di equipartizione significa che nell'equilibrio termico, qualsiasi grado di libertà (come un componente della posizione o della velocità di una particella) che appare solo quadraticamente nell'Energia ha un'Energia media di 1⁄2kT e quindi contribuisce con 1⁄2k alla capacità termica del sistema.

Uequi=12[BoltZ]Tg

Energia termica data la capacità termica

La formula dell'Energia termica data dalla capacità termica è definita poiché la somma di tutte queste energie termiche è l'Energia totale che la sostanza guadagna o perde. È usato vagamente in vari contesti di fisica e ingegneria, generalmente legati all'Energia cinetica degli atomi vibranti e in collisione in una sostanza. Può riferirsi a diversi concetti fisici ben definiti.

Qd=QcapdT

Energia cinetica totale del sistema a ingranaggi

La formula dell'Energia cinetica totale di un sistema di ingranaggi è definita come una misura della somma delle energie cinetiche di tutte le parti rotanti in un sistema di ingranaggi, considerando il momento di inerzia e l'accelerazione angolare di ciascun componente, fornendo una comprensione completa del comportamento dinamico del sistema.

KE=MOIαA22

Energia termica data differenza di potenziale elettrico e corrente elettrica

L'Energia termica data la differenza di potenziale elettrico e la formula della corrente elettrica è definita come la quantità di Energia trasferita o convertita quando una corrente elettrica scorre attraverso un circuito con una data differenza di potenziale elettrico ed è un concetto fondamentale per comprendere la relazione tra Energia elettrica e lavoro.

PQ=ΔVITTotal

Energia termica data la differenza di potenziale elettrico e la resistenza

La formula dell'Energia termica data la differenza di potenziale elettrico e la resistenza è definita come la quantità di Energia trasferita come calore quando una corrente elettrica scorre attraverso un conduttore con una data differenza di potenziale elettrico e resistenza, fornendo una misura dell'Energia termica generata in un circuito elettrico.

PQ=(ΔV2R)t

Energia cinetica del sistema dopo urto anelastico

La formula dell'Energia cinetica del sistema dopo una collisione anelastica è definita come una misura dell'Energia cinetica totale posseduta da due oggetti dopo la loro collisione anelastica, con conseguente perdita di Energia cinetica e conversione in altre forme di Energia. È un concetto fondamentale per comprendere la cinetica del movimento e la dinamica delle collisioni.

Ek=(m1+m2)v22

Energia libera di Helmholtz

L'Energia libera di Helmholtz è un concetto termodinamico in cui il potenziale termodinamico viene utilizzato per misurare il lavoro di un sistema chiuso con temperatura e volume costanti.

A=U-TS

Energia di equipartizione

Il teorema dell'Energia di Equipartizione è correlato alla temperatura del sistema e alla sua Energia cinetica e potenziale media. Questo teorema è anche chiamato legge di equipartizione dell'Energia o semplicemente equipartizione.

K=[BoltZ]Tg2

Energia di equipartizione per molecole con n gradi di libertà

L'Energia di equipaggiamento per molecole aventi n gradi di libertà è correlata alla temperatura del sistema e alla sua Energia cinetica e potenziale media. Questo teorema è anche chiamato legge di equipartizione dell'Energia o semplicemente equipartizione.

K=F[BoltZ]Tg2

Energia interna molare del gas ideale data la costante di Boltzmann

L'Energia interna molare del gas ideale data Boltzmann Constant è definita come l'Energia associata al movimento casuale e disordinato delle molecole. È separato in scala dall'Energia ordinata macroscopica associata agli oggetti in movimento.

U=FNmoles[BoltZ]Tg2

Come trovare Formule?

Ecco alcuni suggerimenti per risultati di ricerca migliori.
Sii specifico: più specifica è la tua query, migliori saranno i tuoi risultati.
Utilizza più parole chiave: combina più parole chiave parole chiave per restringere i risultati.
Sperimenta con i sinonimi: termini diversi possono produrre risultati diversi.
Ricerca con caratteri jolly: utilizza l'operatore * (asterisco). NOTA che questo operatore funziona solo alla fine di una parola. Esempio: Bio*, Area*, ecc.

In alternativa, puoi navigare tra le sottocategorie all'interno di per individuare le Formule di interesse.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!