Cerca Formule

Inserisci un minimo di 3 caratteri per iniziare con la ricerca delle formule .

Seleziona Filtra

Restringi i risultati della ricerca con l'aiuto di questi filtri.

50 Formule corrispondenti trovate!

Energia potenziale massima nella posizione media

La formula dell'Energia potenziale massima in posizione media è definita come la massima Energia che un oggetto può immagazzinare nella sua posizione media, solitamente osservata nei sistemi oscillanti, dove l'Energia viene convertita tra forma cinetica e potenziale, ed è un concetto cruciale per comprendere la dinamica del moto vibrazionale.

PEmax=sconstrainx22

Energia interna utilizzando l'Energia libera di Helmholtz

L'Energia interna che utilizza la formula dell'Energia libera di Helmholtz è definita come l'Energia necessaria per creare o preparare il sistema in un dato stato interno.

U=A+TS

Energia cinetica dei fotoelettroni data l'Energia di soglia

L'Energia cinetica dei fotoelettroni data l'Energia di soglia è definita come l'Energia cinetica consumata da una particella in movimento quando si sposta da un punto all'altro.

KE=Ephoton-W

Energia Cinetica Totale del Vincolo nella Vibrazione Longitudinale

La formula Total Kinetic Energy of Constraint in Longitudinal Vibration è definita come l'Energia associata al movimento di un vincolo in una vibrazione longitudinale, che è influenzata dall'inerzia del vincolo e dalla sua velocità. È un concetto cruciale per comprendere la dinamica delle vibrazioni longitudinali e i loro effetti sui sistemi meccanici.

KE=mcVlongitudinal26

Energia 1 di Livello Vibrazionale

La formula Energia 1 del livello vibrazionale è definita come sottrazione dell'Energia del fotone di transizione dall'Energia della materia a un livello superiore. La materia allo stato fondamentale assorbe la radiazione e raggiunge lo stato eccitato.

E1=E2-(f1,2[hP])

Energia 2 di Livello Vibrazionale

La formula Energia 2 del livello vibrazionale è definita come la somma dell'Energia della materia allo stato fondamentale con l'Energia del fotone di transizione. La materia raggiunge lo stato energetico superiore quando la materia assorbe Energia nello stato fondamentale.

E2=E1+(f1,2[hP])

Energia cinetica del sistema

L'Energia cinetica del sistema, KE, è la somma dell'Energia cinetica per ciascuna massa. L'Energia cinetica di un oggetto è l'Energia che possiede a causa del suo movimento. È definito come il lavoro necessario per accelerare un corpo di una data massa da fermo alla sua velocità dichiarata.

KE=(m1(v12))+(m2(v22))2

Energia modificata per un'onda d'urto cilindrica

La formula dell'Energia modificata per l'onda d'urto cilindrica è definita come una misura dell'Energia rilasciata durante un'onda d'urto cilindrica, che è un concetto fondamentale nel principio di equivalenza ipersonica e nella teoria delle onde d'urto, utilizzato per descrivere la distribuzione di Energia nelle esplosioni ad alta velocità.

E=0.5ρV2dCD

Energia per unità di rimozione del materiale data l'efficienza del sistema di azionamento del motore

L'Energia per unità di rimozione del materiale data l'efficienza del sistema di azionamento del motore è un metodo per determinare l'Energia media richiesta per rimuovere un'unità di volume di materiale dal pezzo, quando è nota l'efficienza complessiva della macchina utensile.

Ps=PeηmZw

Energia Madelung utilizzando l'Energia totale degli ioni data la distanza

L'Energia di Madelung che utilizza l'Energia totale degli ioni data la distanza per un semplice reticolo costituito da ioni con carica uguale e opposta in un rapporto 1:1 è la somma delle interazioni tra uno ione e tutti gli altri ioni del reticolo.

EM=Etot-(BMr0nborn)

Energia totale immagazzinata nell'accumulatore idraulico differenziale

La formula dell'Energia totale immagazzinata nell'accumulatore idraulico differenziale è definita come la quantità totale di Energia immagazzinata in un accumulatore idraulico, che è un componente fondamentale nei sistemi idraulici, in quanto fornisce una fonte di alimentazione di riserva durante i periodi di elevata richiesta o di guasto del sistema.

Etotal=WtL

Energia di legame del fotoelettrone

L'Energia di legame del fotoelettrone è definita come la quantità di Energia richiesta per separare un elettrone dal subshell.

Ebinding=([hP]ν)-Ekinetic-Φ

Energia totale irradiata data la temperatura termodinamica

La formula dell'Energia totale irradiata data la temperatura termodinamica è definita come la quantità totale di Energia irradiata per unità di superficie di un corpo nero su tutte le lunghezze d'onda per unità di tempo (nota anche come emittanza radiante del corpo nero) è direttamente proporzionale alla quarta potenza di la temperatura termodinamica del corpo nero.

Eradiated=[Stefan-BoltZ](β)4

Energia centrifuga in collisione

La formula dell'Energia centrifuga in collisione è definita come l'Energia relativa a una particella che si muove su un percorso circolare durante la collisione di due particelle.

Ecentrifugal=ETb2R2

Energia totale prima della collisione

La formula dell'Energia totale prima della collisione è definita come la quantità totale di Energia presente prima della collisione nella particella.

ET=EcentrifugalR2b2

Energia di scissione del campo cristallino per complessi ottaedrici

L'Energia di divisione del campo cristallino per complessi ottaedrici è definita come la separazione di Energia tra l'orbitale T2g ed Eg.

CFSEOh=(Neg0.6)+(-0.4Nt2g)

Energia di scissione del campo cristallino per complessi tetraedrici

L'Energia di divisione del campo cristallino per i complessi tetraedrici è definita come la separazione di Energia tra l'orbitale T2g ed Eg.

CFSETd=((Neg(-0.6))+(0.4Nt2g))(49)

Energia rilasciata dall'induttore al carico

La formula dell'Energia rilasciata dall'induttore al carico è definita come l'Energia rilasciata dal chopper attraverso il carico quando l'interruttore è in stato OFF.

Woff=(Vo-Vin)(I1+I22)Tc

Energia interna del sistema monoatomico

La formula dell'Energia interna del sistema monoatomico in equilibrio termico è che ogni grado di libertà ha un'Energia media di 3kT/2, dove T è la temperatura assoluta e k è la costante di Boltzmann.

Upoly=32[BoltZ]Tu

Energia interna del sistema biatomico

La formula dell'Energia interna del sistema biatomico in equilibrio termico è che ogni grado di libertà ha un'Energia media di 5kT/2, dove T è la temperatura assoluta e k è la costante di Boltzmann.

Upoly=52[BoltZ]Tu

Energia interna del sistema non lineare triatomico

L'Energia interna del sistema triatomico non lineare nell'equilibrio termico è che ogni grado di libertà ha un'Energia media di 6kT/2, dove T è la temperatura assoluta e k è la costante di Boltzmann.

Upoly=62[BoltZ]Tu

Energia interna del sistema lineare triatomico

L'Energia interna del sistema lineare triatomico in equilibrio termico è che ogni grado di libertà ha un'Energia media di 7kT/2, dove T è la temperatura assoluta e k è la costante di Boltzmann.

Upoly=72[BoltZ]Tu

Energia potenziale elettrostatica di cariche puntiformi o sistema di cariche

La formula dell'Energia potenziale elettrostatica della carica puntiforme o del sistema di cariche è definita come l'Energia associata all'interazione tra due cariche puntiformi o un sistema di cariche, che dipende dall'entità delle cariche e dalla distanza tra loro, ed è un concetto fondamentale in comprendere le interazioni elettrostatiche.

Ufree=[Coulomb]q1q2r

Energia per unità di massa di Pelton

L'Energia per unità di massa Pelton è l'Energia cinetica trasferita dal getto d'acqua ai secchi. Dipende dalla velocità del getto d'acqua e dall'efficienza della turbina.

Ep=(Vti-Vw)U

Energia per unità di massa della turbina Pelton

L'Energia per unità di massa della turbina Pelton è l'Energia cinetica trasferita dall'acqua alle pale della turbina. È determinata dalla velocità dei getti d'acqua che colpiscono le pale delle turbine, le quali convertono l'Energia cinetica dell'acqua in Energia meccanica. La relazione coinvolge la velocità iniziale dell'acqua e l'efficienza del processo di trasferimento di Energia.

Em=(Vr1+Vr2cos(β2))U

Energia cinetica data il momento angolare

La formula dell'Energia cinetica data il momento angolare è definita come l'Energia immagazzinata nel sistema a causa della sua Energia cinetica rotazionale. Questa Energia è correlata alla velocità angolare e quindi al momento angolare.

KE1=L22I

Energia di rotazione usando la costante di rotazione

L'Energia rotazionale utilizzando la formula della costante rotazionale è definita come Energia di serie di linee nello spettro rotazionale di una molecola biatomica. Le molecole biatomiche sono spesso approssimate come rotori rigidi, il che significa che si presume che la lunghezza del legame sia fissa. Risolvendo l'equazione di Schrödinger per un rotore rigido si ottengono i seguenti livelli di Energia: E = BJ (J 1).

Erot_RC=BJ(J+1)

Energia rotazionale

La formula Energia rotazionale è definita come Energia di serie di linee nello spettro rotazionale di una molecola biatomica. Le molecole biatomiche sono spesso approssimate come rotori rigidi, il che significa che si presume che la lunghezza del legame sia fissa.

Erotational=([h-]2)β2I

Energia delle maree

L'Energia delle maree è definita come il rapporto tra il prodotto della densità dell'acqua, la prevalenza, l'area spazzata della pala, la costante 9,81 e il periodo del ciclo delle maree.

Pt=0.5Aρw[g]H2

Energia eolica

La formula dell'Energia eolica è definita come la metà del prodotto dell'area spazzata della pala, qube di velocità del vento, densità dell'aria.

Pwind=0.5ρairAbladeVwind3

Energia interna per il flusso ipersonico

La formula dell'Energia interna per il flusso ipersonico è definita come l'Energia totale di un fluido in movimento a velocità molto elevate, che comprende sia l'Energia cinetica che quella potenziale, il che è fondamentale per comprendere il comportamento dei fluidi nei flussi ipersonici, in particolare nel contesto dei principi fondamentali del flusso viscoso.

U=H+Pρ

Energia di attivazione per reazioni di ordine zero

La formula Energia di attivazione per reazioni di ordine zero è definita come il prodotto della costante universale del gas con la temperatura della reazione e la differenza del logaritmo naturale del fattore di frequenza e della costante di velocità. L'Energia di attivazione è la quantità minima di Energia necessaria per attivare atomi o molecole in una condizione in cui possono subire una trasformazione chimica.

Ea=[R]Tgas(ln(A)-ln(k))

Energia di Attivazione per la Reazione del Primo Ordine

L'Energia di attivazione per la formula di reazione del primo ordine è definita come la moltiplicazione della costante universale dei gas con la temperatura e con il rapporto tra il logaritmo naturale del fattore di frequenza e la costante di velocità. La quantità minima di Energia necessaria per attivare atomi o molecole in una condizione in cui possono subire una trasformazione chimica.

Ea=[R]Tgas(ln(Akfirst))

Energia di attivazione per la reazione del secondo ordine

La formula Energia di attivazione per reazione del secondo ordine è definita come la moltiplicazione della costante universale dei gas con la temperatura e con la differenza dei logaritmi naturali del fattore di frequenza e della costante di velocità. La quantità minima di Energia necessaria per attivare atomi o molecole in una condizione in cui possono subire una trasformazione chimica è chiamata Energia di attivazione.

Ea=[R]TKinetics(ln(Afactor)-ln(Ksecond))

Energia libera residua di Gibbs utilizzando l'Energia libera di Gibbs del gas reale e ideale

La formula dell'Energia libera di Gibbs residua che utilizza la formula dell'Energia libera di Gibbs del gas effettivo e ideale è definita come la differenza tra l'Energia effettiva di Gibbs e l'Energia di Gibbs del gas ideale.

GR=G-Gig

Energia effettiva di Gibbs utilizzando l'Energia di Gibbs del gas residuo e ideale

La formula dell'Energia di Gibbs effettiva che utilizza la formula dell'Energia di Gibbs del gas residuo e ideale è definita come la somma dell'Energia di Gibbs residua e dell'Energia di Gibbs del gas ideale.

G=GR+Gig

Energia libera di Gibbs del gas ideale utilizzando l'Energia di Gibbs del gas residuo e effettivo

La formula dell'Energia libera di Gibbs del gas ideale utilizzando la formula dell'Energia di Gibbs del gas residuo e quella effettiva è definita come la differenza tra l'Energia effettiva di Gibbs e l'Energia residua di Gibbs.

Gig=G-GR

Energia reale di Gibbs utilizzando l'Energia in eccesso e la soluzione ideale di Gibbs

La formula dell'Energia di Gibbs effettiva che utilizza la formula dell'Energia di Gibbs in eccesso e soluzione ideale è definita come la somma dell'Energia di Gibbs in eccesso e dell'Energia di Gibbs della soluzione ideale.

G=GE+Gid

Energia di ionizzazione dell'elemento usando l'elettronegatività di Pauling

L'Energia di ionizzazione dell'elemento che utilizza l'elettronegatività di Pauling è la quantità minima di Energia richiesta per rimuovere l'elettrone più debolmente legato di un atomo o una molecola gassosa neutra isolata.

IE=((XP+0.2)(20.336))-E.A

Energia di ionizzazione usando l'elettronegatività di Allred Rochow

L'Energia di ionizzazione che utilizza l'elettronegatività di Allred Rochow è la quantità minima di Energia richiesta per rimuovere l'elettrone più debolmente legato di un atomo o molecola gassosa neutra isolata.

IE=((XA.R+0.744+0.2)(20.336))-E.A

Energia di deformazione immagazzinata nella barra di tensione

La formula Strain Energy Stored in Tension Rod è definita come una misura dell'Energia accumulata in un tirante quando è sottoposto a un carico assiale. Questa Energia è essenziale per comprendere il comportamento del materiale sotto stress e la sua capacità di resistere alla deformazione.

U=(P2)L2AE

Energia di deformazione immagazzinata nell'asta sottoposta a momento flettente

La formula Strain Energy Stored in Rod Subjected to Bending Moment è definita come una rappresentazione dell'Energia accumulata in un'asta quando subisce una flessione. Questa Energia è fondamentale per comprendere il comportamento del materiale sotto stress e per garantire l'integrità strutturale nelle applicazioni ingegneristiche.

U=(Mb2)L2EI

Energia totale per unità di peso dell'acqua nella sezione di flusso

L'Energia totale per unità di peso dell'acqua nella sezione di flusso è definita come la somma dell'Energia cinetica e potenziale immagazzinata nell'acqua che scorre nel canale.

Etotal=(Vmean22[g])+df+y

Energia totale per unità di peso dell'acqua nella sezione di flusso considerando la pendenza del letto come dato

L'Energia totale per unità di peso dell'acqua nella sezione di flusso considerando la pendenza del letto come dato è definita come la somma dell'Energia cinetica e potenziale immagazzinata nell'acqua che scorre nel canale.

Etotal=(VFN22[g])+df

Energia totale per unità di peso dell'acqua nel flusso Sezione data Scarico

L'Energia totale per unità di peso dell'acqua nella sezione di flusso data portata è definita come l'Energia posseduta dal liquido che scorre nel canale.

Etotal=df+((QAcs)22[g])

Energia termica media della molecola di gas poliatomico lineare

L'Energia termica media della molecola di gas poliatomica lineare viene prodotta quando un aumento della temperatura fa sì che atomi e molecole si muovano più velocemente e entrino in collisione tra loro.

Qin=((32)[BoltZ]T)+((0.5Iy(ωy2))+(0.5Iz(ωz2)))+((3N)-5)([BoltZ]T)

Energia termica media della molecola di gas poliatomico non lineare data l'atomicità

L'Energia termica media della molecola di gas poliatomico non lineare data l'atomicità viene prodotta quando un aumento della temperatura fa sì che atomi e molecole si muovano più velocemente e si scontrino tra loro.

Qatomicity=((6N)-6)(0.5[BoltZ]T)

Energia vibrazionale molare della molecola lineare

La formula Molare Vibrational Energy of Linear Molecule è definita come l'Energia cinetica che un oggetto possiede a causa del suo movimento vibratorio.

Eviv=((3N)-5)([R]T)

Energia vibrazionale molare della molecola non lineare

La formula dell'Energia Vibrazionale Molare della Molecola Non Lineare è definita come l'Energia cinetica che un oggetto possiede a causa del suo movimento vibratorio.

Eviv=((3N)-6)([R]T)

Energia critica per canale rettangolare

L'Energia critica per il canale rettangolare è definita come l'Energia minima richiesta per mantenere un flusso costante senza un salto di superficie libera, prevenendo la deposizione di sedimenti e garantendo la stabilità del flusso.

Er=1.5hr

Come trovare Formule?

Ecco alcuni suggerimenti per risultati di ricerca migliori.
Sii specifico: più specifica è la tua query, migliori saranno i tuoi risultati.
Utilizza più parole chiave: combina più parole chiave parole chiave per restringere i risultati.
Sperimenta con i sinonimi: termini diversi possono produrre risultati diversi.
Ricerca con caratteri jolly: utilizza l'operatore * (asterisco). NOTA che questo operatore funziona solo alla fine di una parola. Esempio: Bio*, Area*, ecc.

In alternativa, puoi navigare tra le sottocategorie all'interno di per individuare le Formule di interesse.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!