Cerca Formule

Inserisci un minimo di 3 caratteri per iniziare con la ricerca delle formule .

Seleziona Filtra

Restringi i risultati della ricerca con l'aiuto di questi filtri.

50 Formule corrispondenti trovate!

Energia potenziale gravitazionale

La formula dell'Energia potenziale gravitazionale è definita come l'Energia che un oggetto possiede a causa della sua posizione all'interno di un campo gravitazionale, che dipende dalla massa dell'oggetto e dal campo gravitazionale in cui si trova, ed è un concetto fondamentale per comprendere il comportamento degli oggetti in l'universo.

U=-[G.]m1m2rc

Energia di deformazione totale per unità di volume

La formula dell'Energia di deformazione totale per unità di volume è definita come la somma dell'Energia di deformazione corrispondente alla distorsione senza variazione di volume e dell'Energia di deformazione corrispondente alla variazione di volume senza distorsione.

UTotal=Ud+Uv

Energia di deformazione dovuta alla variazione di volume data la sollecitazione volumetrica

L'Energia di deformazione dovuta alla variazione di volume dato lo stress volumetrico è definita come l'Energia immagazzinata in un corpo a causa della deformazione. Questa Energia è l'Energia immagazzinata quando il volume cambia senza distorsione.

Uv=32σvεv

Energia di deformazione dovuta alla variazione di volume date le sollecitazioni principali

L'Energia di deformazione dovuta alla variazione di volume data la formula delle sollecitazioni principali è definita come l'Energia immagazzinata in un corpo a causa della deformazione. Questa Energia è l'Energia immagazzinata quando il volume cambia senza distorsione.

Uv=(1-2𝛎)6E(σ1+σ2+σ3)2

Energia di attivazione per reazioni di ordine zero

La formula Energia di attivazione per reazioni di ordine zero è definita come il prodotto della costante universale del gas con la temperatura della reazione e la differenza del logaritmo naturale del fattore di frequenza e della costante di velocità. L'Energia di attivazione è la quantità minima di Energia necessaria per attivare atomi o molecole in una condizione in cui possono subire una trasformazione chimica.

Ea=[R]Tgas(ln(A)-ln(k))

Energia di Attivazione per la Reazione del Primo Ordine

L'Energia di attivazione per la formula di reazione del primo ordine è definita come la moltiplicazione della costante universale dei gas con la temperatura e con il rapporto tra il logaritmo naturale del fattore di frequenza e la costante di velocità. La quantità minima di Energia necessaria per attivare atomi o molecole in una condizione in cui possono subire una trasformazione chimica.

Ea=[R]Tgas(ln(Akfirst))

Energia di attivazione per la reazione del secondo ordine

La formula Energia di attivazione per reazione del secondo ordine è definita come la moltiplicazione della costante universale dei gas con la temperatura e con la differenza dei logaritmi naturali del fattore di frequenza e della costante di velocità. La quantità minima di Energia necessaria per attivare atomi o molecole in una condizione in cui possono subire una trasformazione chimica è chiamata Energia di attivazione.

Ea=[R]TKinetics(ln(Afactor)-ln(Ksecond))

Energia di risonanza ionica covalente

L'Energia di risonanza ionica covalente è l'Energia cinetica prodotta come risultato di un'ampia partecipazione o di orbitali o di miscelazione covalente-ionica.

Δ=EA-B-EA-B(cov)

Energia di legame effettiva data Energia di risonanza ionica covalente

L'Energia di legame effettiva data dall'Energia di risonanza ionica covalente è definita come la quantità di Energia necessaria per rompere una mole di molecole nei suoi atomi componenti.

EA-B=Δ+EA-B(cov)

Energia di risonanza ionica covalente utilizzando le energie di legame

L'Energia di risonanza ionica covalente che utilizza le energie di legame è l'Energia cinetica prodotta come risultato di una grande partecipazione o di orbitali o miscelazione covalente-ionica.

Δ=EA-B-EA-AEB-B

Energia di risonanza ionica covalente utilizzando l'elettronegatività di Pauling

L'Energia di risonanza ionica covalente che utilizza l'elettronegatività di Pauling è l'Energia cinetica prodotta come risultato di una grande partecipazione o di orbitali o miscelazione covalente-ionica.

Δp=XP2

Energia libera di Gibbs di gas ideale utilizzando il modello di miscela di gas ideale nel sistema binario

L'Energia libera di Gibbs del gas ideale che utilizza la formula del modello di miscela di gas ideale nella formula del sistema binario è definita come la funzione dell'Energia di Gibbs del gas ideale di entrambi i componenti e della frazione molare di entrambi i componenti in fase vapore nel sistema binario.

Gig=modu̲s((y1G1ig+y2G2ig)+[R]T(y1ln(y1)+y2ln(y2)))

Energia reticolare usando l'equazione di Born Lande

L'Energia del reticolo che utilizza l'equazione di Born Lande di un solido cristallino è una misura dell'Energia rilasciata quando gli ioni vengono combinati per formare un composto.

U=-[Avaga-no]Mz+z-([Charge-e]2)(1-(1nborn))4π[Permitivity-vacuum]r0

Energia potenziale elettrostatica tra coppie di ioni

L'Energia potenziale elettrostatica tra una coppia di ioni è l'Energia potenziale elettrostatica tra una coppia di ioni di carica uguale e opposta.

EPair=-(q2)([Charge-e]2)4π[Permitivity-vacuum]r0

Energia di legame degli elementi A e B

L'Energia di legame della formula degli elementi A e B è definita come la quantità di Energia richiesta per rompere una mole di molecole nei suoi atomi componenti.

Δkcal=(XA-XB0.208)2

Energia di ionizzazione in KJ mole

L'Energia di ionizzazione nella formula mole KJ è definita come la quantità minima di Energia richiesta per rimuovere l'elettrone più debolmente legato di un atomo o molecola gassosa neutra isolata.

IEKJmole=(EN544)-EAKJmole

Energia fotoelettronica

L'Energia del fotoelettrone è contenuta in unità discrete piuttosto che in una distribuzione continua di energie. Le unità quantizzate di Energia luminosa possono essere considerate come pacchetti localizzati di Energia, detti fotoni, sono multipli interi di assi costanti e frequenza angolare.

Ephoto=[hP]f

Energia traslazionale

L'Energia Traslazionale si riferisce allo spostamento delle molecole in uno spazio in funzione dei normali moti termici della materia.

ET=(px22Massflight path)+(py22Massflight path)+(pz22Massflight path)

Energia di rotazione della molecola lineare

L'Energia rotazionale della molecola lineare nota anche come Energia cinetica angolare è definita come l'Energia cinetica dovuta alla rotazione di un oggetto e fa parte della sua Energia cinetica totale.

Erot=(0.5Iy(ωy2))+(0.5Iz(ωz2))

Energia di rotazione della molecola non lineare

L'Energia rotazionale della molecola non lineare, nota anche come Energia cinetica angolare, è definita come l'Energia cinetica dovuta alla rotazione di un oggetto e fa parte della sua Energia cinetica totale.

Erot=(0.5Iyωy2)+(0.5Izωz2)+(0.5Ixωx2)

Energia vibrazionale modellata come oscillatore armonico

L'Energia vibrazionale modellata come oscillatore armonico è l'Energia cinetica che un oggetto possiede a causa del suo movimento vibratorio.

Evf=(p22Massflight path)+(0.5Kspring(Δx2))

Energia cinetica totale

La formula dell'Energia Cinetica Totale è definita come la somma dell'Energia cinetica traslazionale, rotazionale e vibrazionale.

Etotal=ET+Erot+Evf

Energia molare interna della molecola lineare data l'atomicità

L'Energia molare interna della molecola lineare data l'atomicità di un sistema termodinamico è l'Energia contenuta al suo interno. È l'Energia necessaria per creare o preparare il sistema in un dato stato interno.

Umolar=((6N)-5)(0.5[R]T)

Energia termica media della molecola di gas poliatomico lineare data l'atomicità

L'Energia termica media della molecola di gas poliatomico lineare data l'atomicità viene prodotta quando un aumento della temperatura fa sì che atomi e molecole si muovano più velocemente e si scontrino tra loro.

Qatomicity=((6N)-5)(0.5[BoltZ]T)

Energia media erogata per scintilla

La formula Energia media erogata per scintilla è definita come la potenza media contenuta in ciascuna scintilla in una lavorazione non convenzionale che utilizza la tecnica EDM.

Pavg=Vav2𝜏avRavτp(12-exp(-τp𝜏av)+0.5exp(-2τp𝜏av))

Energia cinetica del getto al secondo

L'Energia cinetica del getto al secondo è una proprietà di un oggetto o particella in movimento e dipende non solo dal suo movimento ma anche dalla sua massa.

KE=AJetvjet32

Energia di vaporizzazione del materiale

La formula dell'Energia di vaporizzazione del materiale è definita come l'Energia richiesta per unità di volume del materiale per convertirlo allo stato di vapore.

E=A0PoutVcAbeamt

Energia di interazione di Van Der Waals

La formula dell'Energia di interazione di Van Der Waals è definita come l'Energia di interazione di van der Waals per unità di area.

UVWaals=-A12π(h)2

Energia cinetica data la lunghezza d'onda della soglia

L'Energia cinetica data la lunghezza d'onda della soglia è definita come l'Energia di un oggetto quando si sposta dallo stato di riposo al movimento.

KE=[hP][c]λo-λλλo

Energia dello stato di rotazione negativo

L'Energia dello stato di spin negativo è l'Energia dello stato con (-1/2) come spin magnetico che si ottiene grazie all'interazione iperfine.

E-1/2=-(12(gjμB))

Energia prodotta dalla centrale idroelettrica

La formula dell'Energia prodotta da una centrale idroelettrica è definita come l'Energia elettrica generata dalla forza dell'acqua in caduta che viene imbrigliata dalle turbine e convertita in elettricità attraverso il funzionamento dei generatori.

E=[g]ρwQHηt

Energia prodotta da centrale idroelettrica data potenza

L'Energia prodotta da una centrale idroelettrica data la formula Power è definita come l'Energia elettrica generata dalla forza dell'acqua che cade che viene imbrigliata dalle turbine e convertita in elettricità attraverso il funzionamento dei generatori.

E=Phηt

Energia specifica dell'orbita circolare

La formula dell'Energia specifica dell'orbita circolare è definita come l'Energia totale per unità di massa necessaria per mantenere un satellite in un'orbita circolare attorno alla Terra, che è un parametro fondamentale nella progettazione delle missioni spaziali e nella determinazione dell'orbita.

ε=-[GM.Earth]22hc2

Energia specifica dell'orbita circolare dato il raggio orbitale

La formula dell'Energia specifica di un'orbita circolare dato il raggio orbitale è definita come una misura dell'Energia totale per unità di massa necessaria per mantenere un satellite in un'orbita circolare attorno alla Terra, considerando l'attrazione gravitazionale tra il satellite e la Terra.

ε=-[GM.Earth]2r

Energia libera complessiva in eccesso per il corpo cristallino sferico

La formula dell'Energia libera in eccesso complessiva per il corpo cristallino sferico è definita come la differenza di Energia totale tra lo stato iniziale di un sistema (tipicamente una soluzione) e lo stato finale del sistema (un solido cristallino) quando avviene il processo di cristallizzazione.

ΔG=4π(rcrystal2)σ+(4π3)(rcrystal3)ΔGv

Energia di rinculo per la rottura del legame

La formula dell'Energia di rinculo per la rottura del legame è definita come l'Energia richiesta per la rottura del legame in un telaio con centro di massa con velocità di rinculo terminale dei frammenti.

E=(12)μ(v2)

Energia dell'elettrone in orbita ellittica

L'Energia dell'elettrone nell'orbita ellittica è definita come l'Energia consumata da una particella/elettrone per muoversi in un'orbita ellittica.

Eeo=(-(Z2)[Mass-e]([Charge-e]4)8([Permitivity-vacuum]2)([hP]2)(nquantum2))

Energia totale dell'elettrone nell'ennesima orbita

L'Energia totale dell'elettrone nell'ennesima orbita è definita come la somma dell'Energia cinetica e dell'Energia potenziale consumata da una particella in movimento quando si sposta da un punto a un altro.

EeV_orbital=(-[Mass-e]([Charge-e]4)(Z2)8([Permitivity-vacuum]2)(nquantum2)([hP]2))

Energia elettrica della cella elettrochimica

La formula dell'Energia Elettrica della Cella Elettrochimica è espressa matematicamente come il prodotto della fem della cella e la carica elettrica trasferita attraverso il circuito esterno.

E=E°Ctran

Energia delle transizioni rotazionali tra livelli rotazionali

La formula Energia delle transizioni rotazionali tra livelli rotazionali è definita come l'Energia della radiazione assorbita per subire una transizione energetica quando una molecola viene irradiata con fotoni di luce. Per una molecola biatomica, la differenza di Energia tra i livelli rotazionali (da J a J 1) è l'Energia delle transizioni rotazionali.

ERL=2B(J+1)

Energia interna di un gas perfetto a una data temperatura

L'Energia interna del gas perfetto a una data formula di temperatura è definita come il prodotto del calore specifico a volume e temperatura costanti.

U=CvT

Energia libera di Gibbs in eccesso utilizzando i coefficienti di attività e le frazioni molari liquide

La formula Excess Gibbs Free Energy using Activity Coefficients and Liquid Mole Fractions è definita come il prodotto della costante universale del gas, della temperatura e della somma del prodotto della frazione molare dell'i-esimo componente e del logaritmo naturale del coefficiente di attività del componente i , dove per il sistema binario i = 2.

GE=([R]TVLE)(x1ln(γ1)+x2ln(γ2))

Energia libera di Gibbs in eccesso utilizzando l'equazione a due parametri di Margules

L'Energia libera in eccesso di Gibbs utilizzando la formula dell'equazione a due parametri di Margules è definita come la funzione dei coefficienti a due parametri di Margules A12 e A21, della temperatura e della frazione molare di entrambi i componenti 1 e 2.

GE=([R]Tactivity coefficentx1x2)(A21x1+A12x2)

Energia libera di Gibbs utilizzando l'Energia libera ideale di Gibbs e il coefficiente di fugacità

L'Energia libera di Gibbs che utilizza la formula dell'Energia libera ideale di Gibbs e del coefficiente di fugacità è definita come la somma dell'Energia libera di Gibbs ideale e il prodotto della costante universale del gas, della temperatura e del logaritmo naturale del coefficiente di fugacità.

G=Gig+[R]Tln(ϕ)

Energia libera residua di Gibbs utilizzando il coefficiente di fugacità

L'Energia libera residua di Gibbs utilizzando la formula del coefficiente di fugacità è definita come il prodotto della costante universale del gas, della temperatura e del logaritmo naturale del coefficiente di fugacità.

GR=[R]Tln(ϕ)

Energia libera residua di Gibbs utilizzando la fugacità e la pressione

L'Energia libera residua di Gibbs utilizzando la formula della fugacità e della pressione è definita come il prodotto della costante universale del gas, della temperatura e del logaritmo naturale del rapporto tra la fugacità e la pressione.

GR=[R]Tln(fP)

Energia cinetica data n Mole di Gas

L'Energia cinetica data la formula n mole di gas è definita come il numero del prodotto di moli di gas e costante di gas alla particolare temperatura.

KE=(32)NT[R]Tg

Energia cinetica data la pressione e il volume del gas

La formula dell'Energia cinetica data la pressione e il volume del gas è definita come il prodotto della pressione e del volume del gas.

KE=(32)PgasV

Energia totale di ioni nel reticolo

L'Energia totale dello ione nel reticolo è la somma dell'Energia di Madelung e dell'Energia potenziale repulsiva.

Etotal=EM+ER

Energia totale di ioni date cariche e distanze

L'Energia totale dello ione date le cariche e le distanze nel reticolo è la somma dell'Energia di Madelung e dell'Energia potenziale repulsiva.

Etotal=(-(q2)([Charge-e]2)M4π[Permitivity-vacuum]r0)+(Br0nborn)

Come trovare Formule?

Ecco alcuni suggerimenti per risultati di ricerca migliori.
Sii specifico: più specifica è la tua query, migliori saranno i tuoi risultati.
Utilizza più parole chiave: combina più parole chiave parole chiave per restringere i risultati.
Sperimenta con i sinonimi: termini diversi possono produrre risultati diversi.
Ricerca con caratteri jolly: utilizza l'operatore * (asterisco). NOTA che questo operatore funziona solo alla fine di una parola. Esempio: Bio*, Area*, ecc.

In alternativa, puoi navigare tra le sottocategorie all'interno di per individuare le Formule di interesse.

Copied!