Cerca Formule

Inserisci un minimo di 3 caratteri per iniziare con la ricerca delle formule .

Seleziona Filtra

Restringi i risultati della ricerca con l'aiuto di questi filtri.

50 Formule corrispondenti trovate!

Energia dell'elettrone per numero quantico principale

La formula Energia dell'elettrone per numero quantico principale è definita come lo stato di Energia costante in cui gli elettroni esistono nel livello di Energia iniziale o inferiore.

E=nquantum+l

Energia delle transizioni rotazionali tra livelli rotazionali

La formula Energia delle transizioni rotazionali tra livelli rotazionali è definita come l'Energia della radiazione assorbita per subire una transizione energetica quando una molecola viene irradiata con fotoni di luce. Per una molecola biatomica, la differenza di Energia tra i livelli rotazionali (da J a J 1) è l'Energia delle transizioni rotazionali.

ERL=2B(J+1)

Energia interna di un gas perfetto a una data temperatura

L'Energia interna del gas perfetto a una data formula di temperatura è definita come il prodotto del calore specifico a volume e temperatura costanti.

U=CvT

Energia di risonanza ionica covalente

L'Energia di risonanza ionica covalente è l'Energia cinetica prodotta come risultato di un'ampia partecipazione o di orbitali o di miscelazione covalente-ionica.

Δ=EA-B-EA-B(cov)

Energia di legame effettiva data Energia di risonanza ionica covalente

L'Energia di legame effettiva data dall'Energia di risonanza ionica covalente è definita come la quantità di Energia necessaria per rompere una mole di molecole nei suoi atomi componenti.

EA-B=Δ+EA-B(cov)

Energia di risonanza ionica covalente utilizzando le energie di legame

L'Energia di risonanza ionica covalente che utilizza le energie di legame è l'Energia cinetica prodotta come risultato di una grande partecipazione o di orbitali o miscelazione covalente-ionica.

Δ=EA-B-EA-AEB-B

Energia di risonanza ionica covalente utilizzando l'elettronegatività di Pauling

L'Energia di risonanza ionica covalente che utilizza l'elettronegatività di Pauling è l'Energia cinetica prodotta come risultato di una grande partecipazione o di orbitali o miscelazione covalente-ionica.

Δp=XP2

Energia totale di ioni nel reticolo

L'Energia totale dello ione nel reticolo è la somma dell'Energia di Madelung e dell'Energia potenziale repulsiva.

Etotal=EM+ER

Energia totale di ioni date cariche e distanze

L'Energia totale dello ione date le cariche e le distanze nel reticolo è la somma dell'Energia di Madelung e dell'Energia potenziale repulsiva.

Etotal=(-(q2)([Charge-e]2)M4π[Permitivity-vacuum]r0)+(Br0nborn)

Energia potenziale minima di ioni

L'Energia potenziale minima dello ione è un mezzo per calcolare l'Energia del reticolo di un composto ionico cristallino.

Emin=(-(q2)([Charge-e]2)M4π[Permitivity-vacuum]r0)+(Br0nborn)

Energia reticolare usando l'equazione di Born-Mayer

L'Energia reticolare utilizzando l'equazione di Born-Mayer è un'equazione utilizzata per calcolare l'Energia reticolare di un composto ionico cristallino. È un perfezionamento dell'equazione di Born-Lande utilizzando un termine di repulsione migliorato.

U=-[Avaga-no]Mz+z-([Charge-e]2)(1-(ρr0))4π[Permitivity-vacuum]r0

Energia di legame degli elementi A e B

L'Energia di legame della formula degli elementi A e B è definita come la quantità di Energia richiesta per rompere una mole di molecole nei suoi atomi componenti.

Δkcal=(XA-XB0.208)2

Energia di ionizzazione in KJ mole

L'Energia di ionizzazione nella formula mole KJ è definita come la quantità minima di Energia richiesta per rimuovere l'elettrone più debolmente legato di un atomo o molecola gassosa neutra isolata.

IEKJmole=(EN544)-EAKJmole

Energia traslazionale

L'Energia Traslazionale si riferisce allo spostamento delle molecole in uno spazio in funzione dei normali moti termici della materia.

ET=(px22Massflight path)+(py22Massflight path)+(pz22Massflight path)

Energia di rotazione della molecola lineare

L'Energia rotazionale della molecola lineare nota anche come Energia cinetica angolare è definita come l'Energia cinetica dovuta alla rotazione di un oggetto e fa parte della sua Energia cinetica totale.

Erot=(0.5Iy(ωy2))+(0.5Iz(ωz2))

Energia di rotazione della molecola non lineare

L'Energia rotazionale della molecola non lineare, nota anche come Energia cinetica angolare, è definita come l'Energia cinetica dovuta alla rotazione di un oggetto e fa parte della sua Energia cinetica totale.

Erot=(0.5Iyωy2)+(0.5Izωz2)+(0.5Ixωx2)

Energia vibrazionale modellata come oscillatore armonico

L'Energia vibrazionale modellata come oscillatore armonico è l'Energia cinetica che un oggetto possiede a causa del suo movimento vibratorio.

Evf=(p22Massflight path)+(0.5Kspring(Δx2))

Energia cinetica totale

La formula dell'Energia Cinetica Totale è definita come la somma dell'Energia cinetica traslazionale, rotazionale e vibrazionale.

Etotal=ET+Erot+Evf

Energia molare interna della molecola lineare data l'atomicità

L'Energia molare interna della molecola lineare data l'atomicità di un sistema termodinamico è l'Energia contenuta al suo interno. È l'Energia necessaria per creare o preparare il sistema in un dato stato interno.

Umolar=((6N)-5)(0.5[R]T)

Energia termica media della molecola di gas poliatomico lineare data l'atomicità

L'Energia termica media della molecola di gas poliatomico lineare data l'atomicità viene prodotta quando un aumento della temperatura fa sì che atomi e molecole si muovano più velocemente e si scontrino tra loro.

Qatomicity=((6N)-5)(0.5[BoltZ]T)

Energia di vaporizzazione del materiale

La formula dell'Energia di vaporizzazione del materiale è definita come l'Energia richiesta per unità di volume del materiale per convertirlo allo stato di vapore.

E=A0PoutVcAbeamt

Energia prodotta dalla centrale idroelettrica

La formula dell'Energia prodotta da una centrale idroelettrica è definita come l'Energia elettrica generata dalla forza dell'acqua in caduta che viene imbrigliata dalle turbine e convertita in elettricità attraverso il funzionamento dei generatori.

E=[g]ρwQHηt

Energia prodotta da centrale idroelettrica data potenza

L'Energia prodotta da una centrale idroelettrica data la formula Power è definita come l'Energia elettrica generata dalla forza dell'acqua che cade che viene imbrigliata dalle turbine e convertita in elettricità attraverso il funzionamento dei generatori.

E=Phηt

Energia nel circuito CC

La formula Energy in DC Circuit è definita come il prodotto di potenza e tempo. È anche definita come la potenza consumata in un periodo di tempo.

E=PT

Energia interna molare del gas ideale

L'Energia interna molare del gas ideale è l'Energia del sistema per mole che non dipende dalla quantità di sostanza ma dipende dalla temperatura e dalla pressione.

Umolar=F[R]Tg2

Energia della particella in movimento data la frequenza

La formula dell'Energia della particella in movimento data dalla frequenza è definita come l'Energia consumata dalla particella per spostarsi da un punto all'altro.

Efreq=[hP]ωn

Energia cinetica dell'elettrone

La formula dell'Energia cinetica dell'elettrone è definita come l'Energia cinetica consumata da una particella in movimento quando si sposta da un punto all'altro.

EeV=-2.17810-18(Z)2(nquantum)2

Energia dell'elettrone

Energia dell'elettrone. la formula è definita come l'Energia consumata da una particella nel muoversi da un punto all'altro.

KEphoton=1.08510-18(Z)2(nquantum)2

Energia totale dell'elettrone

La formula Total Energy Of Electron è definita come la somma dell'Energia cinetica e dell'Energia potenziale consumata da una particella in movimento quando si sposta da un punto a un altro.

Etotal=-1.085(Z)2(nquantum)2

Energia della particella mobile data la lunghezza d'onda

L'Energia della particella in movimento data la formula della lunghezza d'onda è definita come l'Energia consumata da una particella in movimento per spostarsi da un punto all'altro.

KEphoton=[hP][c]λ

Energia della particella in movimento data il numero d'onda

L'Energia della particella in movimento data la formula del numero d'onda è definita come l'Energia consumata dalla particella in movimento per spostarsi da una.

Ewaveno.=[hP][c]k

Energia cinetica totale di vincolo per vibrazioni trasversali

La formula dell'Energia cinetica totale del vincolo per le vibrazioni trasversali è definita come una misura dell'Energia associata alle vibrazioni trasversali di un sistema vincolato, tenendo conto dell'inerzia del vincolo, e viene utilizzata per analizzare gli effetti delle vibrazioni longitudinali e trasversali in vari sistemi meccanici.

KE=33mcVtraverse2280

Energia cinetica dell'acqua

L'Energia cinetica dell'acqua è definita come la quantità di Energia fornita dall'elica al motore.

KE=WWaterVf22[g]

Energia cinetica del gas 1 se è presente una miscela di gas

La formula dell'Energia cinetica del gas 1 se è presente una miscela di gas è definita come prodotto del numero di moli di gas e della temperatura con l'Energia cinetica del secondo gas.

KE1=KE2(n1n2)(T1T2)

Energia cinetica del gas 2 se è presente una miscela di due gas

La formula dell'Energia cinetica del gas 2 se è presente una miscela di due gas è definita come prodotto del numero di moli di gas e della temperatura con l'Energia cinetica del primo gas.

KE2=KE1(n2n1)(T2T1)

Energia interna usando entalpia, pressione e volume

L'Energia interna che utilizza la formula di entalpia, pressione e volume è definita come la differenza di entalpia e il prodotto di pressione e volume.

U=H-PVT

Energia libera di Helmholtz che utilizza l'Energia interna, la temperatura e l'entropia

L'Energia libera di Helmholtz che utilizza la formula di Energia interna, temperatura ed entropia è definita come la differenza di Energia interna e il prodotto di temperatura ed entropia.

A=U-TS

Energia interna usando l'Energia libera, la temperatura e l'entropia di Helmholtz

L'Energia interna che utilizza la formula dell'Energia libera, della temperatura e dell'entropia di Helmholtz è definita come la somma dell'Energia di Helmholtz e il prodotto della temperatura e dell'entropia.

U=A+TS

Energia di radiazione emessa dal corpo nero nell'intervallo di tempo dato il potere emissivo

La formula dell'Energia di radiazione emessa dal corpo nero in un dato intervallo di tempo, data la potenza emissiva, è definita come l'Energia totale irradiata da un corpo nero in un dato intervallo di tempo, in funzione della sua potenza emissiva, della superficie e del numero di intervalli di tempo, fornendo una misura dell'Energia emessa dal corpo nero.

E=EbSAN

Energia totale dell'onda in una lunghezza d'onda per unità di larghezza della cresta

La formula dell'Energia totale dell'onda in una lunghezza d'onda per unità di larghezza della cresta è definita come il contenuto energetico di un ciclo d'onda rispetto alla larghezza della sua cresta.

TE=ρ[g]H2λ8

Energia dell'onda totale data l'Energia cinetica e l'Energia potenziale

La formula dell'Energia totale dell'onda data dall'Energia cinetica e dall'Energia potenziale è definita come il trasporto e la cattura di Energia da parte delle onde superficiali dell'oceano e l'Energia catturata viene quindi utilizzata per tutti i diversi tipi di lavoro utile, tra cui la generazione di elettricità, la desalinizzazione dell'acqua e il pompaggio dell'acqua. .

TE=KE+PE

Energia cinetica data l'Energia dell'onda totale

L'Energia cinetica data dall'Energia totale delle onde è definita come la teoria lineare secondo cui parte dell'Energia totale è dovuta alla velocità delle particelle d'acqua associate al movimento delle onde.

KE=TE-PE

Energia potenziale data l'Energia dell'onda totale

La formula dell'Energia potenziale data dall'Energia totale dell'onda è definita come lo spostamento dell'acqua dalla sua posizione di equilibrio, tipicamente proporzionale al quadrato dell'ampiezza dell'onda e influenzato da fattori quali l'accelerazione gravitazionale e la densità dell'acqua.

PE=TE-KE

Energia specifica o densità di Energia data la lunghezza d'onda e l'Energia dell'onda

L'Energia specifica o densità di Energia data la formula Lunghezza d'onda ed Energia dell'onda è definita come l'Energia media totale dell'onda per unità di superficie.

U=TEλ

Energia specifica o densità di Energia data l'altezza dell'onda

La formula dell'Energia specifica o densità di Energia data l'altezza dell'onda è definita come l'Energia media totale delle onde per unità di superficie.

U=ρ[g]H28

Energia totale delle onde per la potenza delle onde delle acque profonde

La formula Total Wave Energy for Wave Power of Deepwater è definita come la somma dei componenti di Energia cinetica e potenziale, che rappresentano l'Energia complessiva trasmessa dalle onde per unità di tempo e lunghezza di cresta unitaria in profondità dell'acqua superiori alla metà della lunghezza d'onda.

E=Pd0.5Co

Energia dell'onda totale data la potenza dell'onda per acque poco profonde

La formula Energia totale delle onde data dalla potenza delle onde per acque poco profonde è definita come la somma dei componenti di Energia cinetica e potenziale, che rappresentano l'Energia complessiva trasmessa dalle onde per unità di tempo e lunghezza di cresta unitaria in profondità dell'acqua superiori alla metà della lunghezza d'onda.

E=PsCs

Energia delle onde per potenza per unità di lunghezza della cresta

La formula Energia dell'onda per potenza per unità di lunghezza della cresta è definita come la quantità di Energia che può essere sfruttata dalle onde dell'oceano lungo una lunghezza specifica di costa o cresta di struttura. Nell’ingegneria costiera, questa metrica è fondamentale per valutare il potenziale dei sistemi di conversione dell’Energia del moto ondoso per generare elettricità rinnovabile.

E=PCG

Energia potenziale molecolare delle molecole

La formula dell'Energia potenziale molecolare delle molecole è definita come l'Energia trattenuta da un oggetto a causa della sua posizione rispetto ad altri oggetti, sollecita all'interno di se stesso. È la somma dei termini energetici delle lunghezze di legame, degli angoli, degli atomi non legati.

E=Ebonds+Edihedral+Eangle+Enon-bonded

Energia potenziale molecolare di coppie di atomi non legati

La formula dell'Energia potenziale molecolare delle coppie di atomi non legate è definita come le interazioni che agiscono tra gli atomi della stessa molecola e quelli di altre molecole. I campi di forza di solito dividono le interazioni non legate in due: interazioni elettrostatiche e interazioni di Van der Waals.

E=Eelectrostatic+Evan der waals

Come trovare Formule?

Ecco alcuni suggerimenti per risultati di ricerca migliori.
Sii specifico: più specifica è la tua query, migliori saranno i tuoi risultati.
Utilizza più parole chiave: combina più parole chiave parole chiave per restringere i risultati.
Sperimenta con i sinonimi: termini diversi possono produrre risultati diversi.
Ricerca con caratteri jolly: utilizza l'operatore * (asterisco). NOTA che questo operatore funziona solo alla fine di una parola. Esempio: Bio*, Area*, ecc.

In alternativa, puoi navigare tra le sottocategorie all'interno di per individuare le Formule di interesse.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!