Cerca Formule

Inserisci un minimo di 3 caratteri per iniziare con la ricerca delle formule .

Seleziona Filtra

Restringi i risultati della ricerca con l'aiuto di questi filtri.

50 Formule corrispondenti trovate!

Energia di deformazione data il carico di tensione applicato

La formula dell'Energia di deformazione data dal carico di tensione applicato è definita come la misura della metà del rapporto tra il prodotto della lunghezza e del carico di tensione al quadrato e il prodotto dell'area dell'elemento e del modulo di Young.

U=W2L2ABaseE

Energia di deformazione a taglio data la deformazione a taglio

La formula dell'Energia di deformazione in deformazione di taglio data è definita come l'Energia immagazzinata in un corpo a causa della deformazione.

U=AGTorsion(Δ2)2L

Energia termica consumata in evaporazione

L'Energia termica utilizzata nella formula di evaporazione è definita come l'Energia utilizzata per trasformare il liquido in vapore, quindi la temperatura non cambia durante questo processo.

He=ρwaterLEL

Energia delle maree

L'Energia delle maree è definita come il rapporto tra il prodotto della densità dell'acqua, la prevalenza, l'area spazzata della pala, la costante 9,81 e il periodo del ciclo delle maree.

Pt=0.5Aρw[g]H2

Energia eolica

La formula dell'Energia eolica è definita come la metà del prodotto dell'area spazzata della pala, qube di velocità del vento, densità dell'aria.

Pwind=0.5ρairAbladeVwind3

Energia interna per il flusso ipersonico

La formula dell'Energia interna per il flusso ipersonico è definita come l'Energia totale di un fluido in movimento a velocità molto elevate, che comprende sia l'Energia cinetica che quella potenziale, il che è fondamentale per comprendere il comportamento dei fluidi nei flussi ipersonici, in particolare nel contesto dei principi fondamentali del flusso viscoso.

U=H+Pρ

Energia di attivazione per reazioni di ordine zero

La formula Energia di attivazione per reazioni di ordine zero è definita come il prodotto della costante universale del gas con la temperatura della reazione e la differenza del logaritmo naturale del fattore di frequenza e della costante di velocità. L'Energia di attivazione è la quantità minima di Energia necessaria per attivare atomi o molecole in una condizione in cui possono subire una trasformazione chimica.

Ea=[R]Tgas(ln(A)-ln(k))

Energia di Attivazione per la Reazione del Primo Ordine

L'Energia di attivazione per la formula di reazione del primo ordine è definita come la moltiplicazione della costante universale dei gas con la temperatura e con il rapporto tra il logaritmo naturale del fattore di frequenza e la costante di velocità. La quantità minima di Energia necessaria per attivare atomi o molecole in una condizione in cui possono subire una trasformazione chimica.

Ea=[R]Tgas(ln(Akfirst))

Energia di attivazione per la reazione del secondo ordine

La formula Energia di attivazione per reazione del secondo ordine è definita come la moltiplicazione della costante universale dei gas con la temperatura e con la differenza dei logaritmi naturali del fattore di frequenza e della costante di velocità. La quantità minima di Energia necessaria per attivare atomi o molecole in una condizione in cui possono subire una trasformazione chimica è chiamata Energia di attivazione.

Ea=[R]TKinetics(ln(Afactor)-ln(Ksecond))

Energia libera residua di Gibbs utilizzando l'Energia libera di Gibbs del gas reale e ideale

La formula dell'Energia libera di Gibbs residua che utilizza la formula dell'Energia libera di Gibbs del gas effettivo e ideale è definita come la differenza tra l'Energia effettiva di Gibbs e l'Energia di Gibbs del gas ideale.

GR=G-Gig

Energia effettiva di Gibbs utilizzando l'Energia di Gibbs del gas residuo e ideale

La formula dell'Energia di Gibbs effettiva che utilizza la formula dell'Energia di Gibbs del gas residuo e ideale è definita come la somma dell'Energia di Gibbs residua e dell'Energia di Gibbs del gas ideale.

G=GR+Gig

Energia libera di Gibbs del gas ideale utilizzando l'Energia di Gibbs del gas residuo e effettivo

La formula dell'Energia libera di Gibbs del gas ideale utilizzando la formula dell'Energia di Gibbs del gas residuo e quella effettiva è definita come la differenza tra l'Energia effettiva di Gibbs e l'Energia residua di Gibbs.

Gig=G-GR

Energia reale di Gibbs utilizzando l'Energia in eccesso e la soluzione ideale di Gibbs

La formula dell'Energia di Gibbs effettiva che utilizza la formula dell'Energia di Gibbs in eccesso e soluzione ideale è definita come la somma dell'Energia di Gibbs in eccesso e dell'Energia di Gibbs della soluzione ideale.

G=GE+Gid

Energia di ionizzazione dell'elemento usando l'elettronegatività di Pauling

L'Energia di ionizzazione dell'elemento che utilizza l'elettronegatività di Pauling è la quantità minima di Energia richiesta per rimuovere l'elettrone più debolmente legato di un atomo o una molecola gassosa neutra isolata.

IE=((XP+0.2)(20.336))-E.A

Energia di ionizzazione usando l'elettronegatività di Allred Rochow

L'Energia di ionizzazione che utilizza l'elettronegatività di Allred Rochow è la quantità minima di Energia richiesta per rimuovere l'elettrone più debolmente legato di un atomo o molecola gassosa neutra isolata.

IE=((XA.R+0.744+0.2)(20.336))-E.A

Energia di deformazione immagazzinata nella barra di tensione

La formula Strain Energy Stored in Tension Rod è definita come una misura dell'Energia accumulata in un tirante quando è sottoposto a un carico assiale. Questa Energia è essenziale per comprendere il comportamento del materiale sotto stress e la sua capacità di resistere alla deformazione.

U=(P2)L2AE

Energia di deformazione immagazzinata nell'asta sottoposta a momento flettente

La formula Strain Energy Stored in Rod Subjected to Bending Moment è definita come una rappresentazione dell'Energia accumulata in un'asta quando subisce una flessione. Questa Energia è fondamentale per comprendere il comportamento del materiale sotto stress e per garantire l'integrità strutturale nelle applicazioni ingegneristiche.

U=(Mb2)L2EI

Energia totale per unità di peso dell'acqua nella sezione di flusso

L'Energia totale per unità di peso dell'acqua nella sezione di flusso è definita come la somma dell'Energia cinetica e potenziale immagazzinata nell'acqua che scorre nel canale.

Etotal=(Vmean22[g])+df+y

Energia totale per unità di peso dell'acqua nella sezione di flusso considerando la pendenza del letto come dato

L'Energia totale per unità di peso dell'acqua nella sezione di flusso considerando la pendenza del letto come dato è definita come la somma dell'Energia cinetica e potenziale immagazzinata nell'acqua che scorre nel canale.

Etotal=(VFN22[g])+df

Energia totale per unità di peso dell'acqua nel flusso Sezione data Scarico

L'Energia totale per unità di peso dell'acqua nella sezione di flusso data portata è definita come l'Energia posseduta dal liquido che scorre nel canale.

Etotal=df+((QAcs)22[g])

Energia termica media della molecola di gas poliatomico lineare

L'Energia termica media della molecola di gas poliatomica lineare viene prodotta quando un aumento della temperatura fa sì che atomi e molecole si muovano più velocemente e entrino in collisione tra loro.

Qin=((32)[BoltZ]T)+((0.5Iy(ωy2))+(0.5Iz(ωz2)))+((3N)-5)([BoltZ]T)

Energia termica media della molecola di gas poliatomico non lineare data l'atomicità

L'Energia termica media della molecola di gas poliatomico non lineare data l'atomicità viene prodotta quando un aumento della temperatura fa sì che atomi e molecole si muovano più velocemente e si scontrino tra loro.

Qatomicity=((6N)-6)(0.5[BoltZ]T)

Energia vibrazionale molare della molecola lineare

La formula Molare Vibrational Energy of Linear Molecule è definita come l'Energia cinetica che un oggetto possiede a causa del suo movimento vibratorio.

Eviv=((3N)-5)([R]T)

Energia vibrazionale molare della molecola non lineare

La formula dell'Energia Vibrazionale Molare della Molecola Non Lineare è definita come l'Energia cinetica che un oggetto possiede a causa del suo movimento vibratorio.

Eviv=((3N)-6)([R]T)

Energia critica per canale rettangolare

L'Energia critica per il canale rettangolare è definita come l'Energia minima richiesta per mantenere un flusso costante senza un salto di superficie libera, prevenendo la deposizione di sedimenti e garantendo la stabilità del flusso.

Er=1.5hr

Energia critica per il canale triangolare

L'Energia critica per il canale triangolare è definita come l'Energia generata o richiesta dalla profondità critica del canale.

Et=ht1.25

Energia critica per il canale parabolico

L'Energia critica per il canale parabolico è definita come l'Energia di flusso minima richiesta per mantenere il trasporto dei sedimenti, prevenendo la deposizione o l'erosione, cruciale per un trasporto idraulico stabile.

Ec=(43)hp

Energia erogata per scintilla

La formula Energia erogata per scintilla è definita come il parametro che definisce la quantità di materiale rimosso e la finitura superficiale prodotta.

Peds=0.5CedsVeds2

Energia cinetica assorbita dal freno

La formula dell'Energia cinetica assorbita dal freno è definita come la massima differenza tra l'Energia cinetica iniziale e quella finale del sistema.

KE=mu2-v22

Energia cinetica del corpo rotante

La formula dell'Energia cinetica del corpo rotante è definita come la misura del lavoro che un oggetto può compiere in virtù del suo movimento.

KE=Iω12-ω222

Energia potenziale assorbita durante il periodo di frenata

La formula Energia potenziale assorbita durante il periodo di frenata è definita come l'Energia trattenuta da un oggetto a causa della sua posizione rispetto ad altri oggetti, delle sollecitazioni al suo interno, della sua carica elettrica o di altri fattori.

PE=mgΔh

Energia totale assorbita dal freno

La formula Total Energy Absorbed by Brake è definita come l'Energia assorbita dal sistema o dai freni quando vengono applicati dei freni improvvisi attraverso il sistema.

KE=Msθb

Energia totale dell'onda per unità di larghezza della cresta dell'onda solitaria

L'Energia totale dell'onda per unità di larghezza della cresta dell'onda solitaria è definita come la quantità di Energia trasportata dalle onde dell'oceano lungo una lunghezza unitaria della cresta dell'onda. È una misura dell’Energia disponibile nelle onde che possono avere un impatto sulle strutture costiere, sui litorali e sulle operazioni marine.

E=(833)ρs[g]Hw32Dw32

Energia di deformazione immagazzinata per unità di volume

La formula dell'Energia di deformazione immagazzinata per unità di volume è definita come l'Energia acquisita dal materiale per unità di volume quando l'elemento è soggetto a una trazione di una determinata sollecitazione.

Udensity=σ22E

Energia di interazione di Van Der Waals

La formula dell'Energia di interazione di Van Der Waals è definita come l'Energia di interazione di van der Waals per unità di area.

UVWaals=-A12π(h)2

Energia cinetica data la lunghezza d'onda della soglia

L'Energia cinetica data la lunghezza d'onda della soglia è definita come l'Energia di un oggetto quando si sposta dallo stato di riposo al movimento.

KE=[hP][c]λo-λλλo

Energia libera di Gibbs data la superficie

La formula di Gibbs Free Energy Given Surface Area è definita come l'Energia libera di Gibbs di una superficie curva che è direttamente proporzionale all'area della superficie.

G=γA

Energia di attivazione data la pendenza della linea tra LnK e temperatura inversa

L'Energia di attivazione data la pendenza della linea tra LnK e temperatura inversa è definita come quando l'Lnk (costante di velocità) è tracciata rispetto all'inverso della temperatura (kelvin), la pendenza è una linea retta.

Ea=-(mslope[R])

Energia di attivazione data la pendenza della linea tra Log K e Temp Inverse

L'Energia di attivazione data la pendenza della linea tra Log K e Temp Inverse ha definito che il grafico tra LogK e 1/T è una linea retta. Il grafico tra Log K vs 1/T darà pendenza −Ea/2.303R.

Ea=-2.303[R]m

Energia meccanica totale

L'Energia meccanica totale è la somma dell'Energia cinetica e dell'Energia potenziale.

ξ=KE+PE

Energia interna del sistema monoatomico

La formula dell'Energia interna del sistema monoatomico in equilibrio termico è che ogni grado di libertà ha un'Energia media di 3kT/2, dove T è la temperatura assoluta e k è la costante di Boltzmann.

Upoly=32[BoltZ]Tu

Energia interna del sistema biatomico

La formula dell'Energia interna del sistema biatomico in equilibrio termico è che ogni grado di libertà ha un'Energia media di 5kT/2, dove T è la temperatura assoluta e k è la costante di Boltzmann.

Upoly=52[BoltZ]Tu

Energia interna del sistema non lineare triatomico

L'Energia interna del sistema triatomico non lineare nell'equilibrio termico è che ogni grado di libertà ha un'Energia media di 6kT/2, dove T è la temperatura assoluta e k è la costante di Boltzmann.

Upoly=62[BoltZ]Tu

Energia interna del sistema lineare triatomico

L'Energia interna del sistema lineare triatomico in equilibrio termico è che ogni grado di libertà ha un'Energia media di 7kT/2, dove T è la temperatura assoluta e k è la costante di Boltzmann.

Upoly=72[BoltZ]Tu

Energia potenziale gravitazionale

La formula dell'Energia potenziale gravitazionale è definita come l'Energia che un oggetto possiede a causa della sua posizione all'interno di un campo gravitazionale, che dipende dalla massa dell'oggetto e dal campo gravitazionale in cui si trova, ed è un concetto fondamentale per comprendere il comportamento degli oggetti in l'universo.

U=-[G.]m1m2rc

Energia della particella in movimento data la frequenza

La formula dell'Energia della particella in movimento data dalla frequenza è definita come l'Energia consumata dalla particella per spostarsi da un punto all'altro.

Efreq=[hP]ωn

Energia cinetica dell'elettrone

La formula dell'Energia cinetica dell'elettrone è definita come l'Energia cinetica consumata da una particella in movimento quando si sposta da un punto all'altro.

EeV=-2.17810-18(Z)2(nquantum)2

Energia dell'elettrone

Energia dell'elettrone. la formula è definita come l'Energia consumata da una particella nel muoversi da un punto all'altro.

KEphoton=1.08510-18(Z)2(nquantum)2

Energia totale dell'elettrone

La formula Total Energy Of Electron è definita come la somma dell'Energia cinetica e dell'Energia potenziale consumata da una particella in movimento quando si sposta da un punto a un altro.

Etotal=-1.085(Z)2(nquantum)2

Energia della particella mobile data la lunghezza d'onda

L'Energia della particella in movimento data la formula della lunghezza d'onda è definita come l'Energia consumata da una particella in movimento per spostarsi da un punto all'altro.

KEphoton=[hP][c]λ

Come trovare Formule?

Ecco alcuni suggerimenti per risultati di ricerca migliori.
Sii specifico: più specifica è la tua query, migliori saranno i tuoi risultati.
Utilizza più parole chiave: combina più parole chiave parole chiave per restringere i risultati.
Sperimenta con i sinonimi: termini diversi possono produrre risultati diversi.
Ricerca con caratteri jolly: utilizza l'operatore * (asterisco). NOTA che questo operatore funziona solo alla fine di una parola. Esempio: Bio*, Area*, ecc.

In alternativa, puoi navigare tra le sottocategorie all'interno di per individuare le Formule di interesse.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!