Cerca Formule

Inserisci un minimo di 3 caratteri per iniziare con la ricerca delle formule .

Seleziona Filtra

Restringi i risultati della ricerca con l'aiuto di questi filtri.

50 Formule corrispondenti trovate!

Energia di deformazione dovuta alla torsione nell'albero cavo

La formula dell'Energia di deformazione dovuta alla torsione nell'albero cavo è definita come l'Energia immagazzinata nell'albero cavo quando sottoposto a torsione.

U=𝜏2(douter2+dinner2)V4Gpadouter2

Energia di deformazione in torsione per albero pieno

La formula dell'Energia di deformazione in torsione per alberi pieni è definita come la misura dell'Energia immagazzinata in un albero pieno, quando è sottoposto a torsione entro limiti elastici.

U=𝜏2V4Gpa

Energia dell'elettrone per numero quantico principale

La formula Energia dell'elettrone per numero quantico principale è definita come lo stato di Energia costante in cui gli elettroni esistono nel livello di Energia iniziale o inferiore.

E=nquantum+l

Energia modificata per un'onda d'urto cilindrica

La formula dell'Energia modificata per l'onda d'urto cilindrica è definita come una misura dell'Energia rilasciata durante un'onda d'urto cilindrica, che è un concetto fondamentale nel principio di equivalenza ipersonica e nella teoria delle onde d'urto, utilizzato per descrivere la distribuzione di Energia nelle esplosioni ad alta velocità.

E=0.5ρV2dCD

Energia libera di Gibbs in eccesso utilizzando i coefficienti di attività e le frazioni molari liquide

La formula Excess Gibbs Free Energy using Activity Coefficients and Liquid Mole Fractions è definita come il prodotto della costante universale del gas, della temperatura e della somma del prodotto della frazione molare dell'i-esimo componente e del logaritmo naturale del coefficiente di attività del componente i , dove per il sistema binario i = 2.

GE=([R]TVLE)(x1ln(γ1)+x2ln(γ2))

Energia libera di Gibbs in eccesso utilizzando l'equazione a due parametri di Margules

L'Energia libera in eccesso di Gibbs utilizzando la formula dell'equazione a due parametri di Margules è definita come la funzione dei coefficienti a due parametri di Margules A12 e A21, della temperatura e della frazione molare di entrambi i componenti 1 e 2.

GE=([R]Tactivity coefficentx1x2)(A21x1+A12x2)

Energia cinetica del gas 1 se è presente una miscela di gas

La formula dell'Energia cinetica del gas 1 se è presente una miscela di gas è definita come prodotto del numero di moli di gas e della temperatura con l'Energia cinetica del secondo gas.

KE1=KE2(n1n2)(T1T2)

Energia cinetica del gas 2 se è presente una miscela di due gas

La formula dell'Energia cinetica del gas 2 se è presente una miscela di due gas è definita come prodotto del numero di moli di gas e della temperatura con l'Energia cinetica del primo gas.

KE2=KE1(n2n1)(T2T1)

Energia interna usando entalpia, pressione e volume

L'Energia interna che utilizza la formula di entalpia, pressione e volume è definita come la differenza di entalpia e il prodotto di pressione e volume.

U=H-PVT

Energia libera di Helmholtz che utilizza l'Energia interna, la temperatura e l'entropia

L'Energia libera di Helmholtz che utilizza la formula di Energia interna, temperatura ed entropia è definita come la differenza di Energia interna e il prodotto di temperatura ed entropia.

A=U-TS

Energia interna usando l'Energia libera, la temperatura e l'entropia di Helmholtz

L'Energia interna che utilizza la formula dell'Energia libera, della temperatura e dell'entropia di Helmholtz è definita come la somma dell'Energia di Helmholtz e il prodotto della temperatura e dell'entropia.

U=A+TS

Energia di ionizzazione data l'elettronegatività

L'Energia di ionizzazione data la formula dell'elettronegatività è definita come la quantità minima di Energia richiesta per rimuovere l'elettrone più debolmente legato di un atomo o molecola gassosa neutro isolato.

IE=(EN5.6)-E.A

Energia per impurità

L'Energia per impurità è l'Energia necessaria affinché un'impurità occupi un punto del reticolo in un reticolo cristallino.

ΔE=-ln(f)[R]T

Energia media erogata per scintilla

La formula Energia media erogata per scintilla è definita come la potenza media contenuta in ciascuna scintilla in una lavorazione non convenzionale che utilizza la tecnica EDM.

Pavg=Vav2𝜏avRavτp(12-exp(-τp𝜏av)+0.5exp(-2τp𝜏av))

Energia cinetica del getto al secondo

L'Energia cinetica del getto al secondo è una proprietà di un oggetto o particella in movimento e dipende non solo dal suo movimento ma anche dalla sua massa.

KE=AJetvjet32

Energia potenziale per unità Lunghezza della cresta d'onda

La formula dell'Energia potenziale per unità di lunghezza della cresta d'onda è definita come l'Energia potenziale immagazzinata in un'onda a causa dell'elevazione della superficie dell'acqua al di sopra del livello medio del mare. È una misura dell’Energia disponibile nell’onda che può essere utilizzata per varie applicazioni di ingegneria costiera e oceanica, come la generazione di Energia del moto ondoso e la protezione delle coste.

PE=(116)ρ[g]H2λ

Energia cinetica per unità Lunghezza della cresta d'onda

La formula dell'Energia cinetica per unità di lunghezza della cresta d'onda è definita come la quantità di Energia cinetica associata ad un'unità di lunghezza di un fronte d'onda, perpendicolare alla direzione di propagazione dell'onda. Nell’ingegneria costiera e oceanica, questa metrica è fondamentale per comprendere la dinamica energetica delle onde oceaniche, in particolare quando si valuta l’impatto delle onde sulle strutture costiere e sugli ambienti sotterranei.

KE=(116)ρ[g]H2λ

Energia interna del gas ideale usando la legge dell'Energia di equipartizione

L'Energia interna del gas ideale utilizzando la formula della legge di equipartizione dell'Energia è definita come la divisione uguale dell'Energia di un sistema in equilibrio termico tra diversi gradi di libertà.

UEP=(F2)Nmoles[R]Tg

Energia assorbita dal materiale durante la frantumazione

La formula dell'Energia assorbita dal materiale durante la frantumazione è definita come l'Energia che viene assorbita dalla massa unitaria del mangime mentre le sue dimensioni vengono ridotte in un frantoio.

Wh=es(Ab-Aa)ηc

Energia prodotta dalla centrale idroelettrica

La formula dell'Energia prodotta da una centrale idroelettrica è definita come l'Energia elettrica generata dalla forza dell'acqua in caduta che viene imbrigliata dalle turbine e convertita in elettricità attraverso il funzionamento dei generatori.

E=[g]ρwQHηt

Energia prodotta da centrale idroelettrica data potenza

L'Energia prodotta da una centrale idroelettrica data la formula Power è definita come l'Energia elettrica generata dalla forza dell'acqua che cade che viene imbrigliata dalle turbine e convertita in elettricità attraverso il funzionamento dei generatori.

E=Phηt

Energia interna del sistema monoatomico

La formula dell'Energia interna del sistema monoatomico in equilibrio termico è che ogni grado di libertà ha un'Energia media di 3kT/2, dove T è la temperatura assoluta e k è la costante di Boltzmann.

Upoly=32[BoltZ]Tu

Energia interna del sistema biatomico

La formula dell'Energia interna del sistema biatomico in equilibrio termico è che ogni grado di libertà ha un'Energia media di 5kT/2, dove T è la temperatura assoluta e k è la costante di Boltzmann.

Upoly=52[BoltZ]Tu

Energia interna del sistema non lineare triatomico

L'Energia interna del sistema triatomico non lineare nell'equilibrio termico è che ogni grado di libertà ha un'Energia media di 6kT/2, dove T è la temperatura assoluta e k è la costante di Boltzmann.

Upoly=62[BoltZ]Tu

Energia interna del sistema lineare triatomico

L'Energia interna del sistema lineare triatomico in equilibrio termico è che ogni grado di libertà ha un'Energia media di 7kT/2, dove T è la temperatura assoluta e k è la costante di Boltzmann.

Upoly=72[BoltZ]Tu

Energia potenziale elettrostatica di cariche puntiformi o sistema di cariche

La formula dell'Energia potenziale elettrostatica della carica puntiforme o del sistema di cariche è definita come l'Energia associata all'interazione tra due cariche puntiformi o un sistema di cariche, che dipende dall'entità delle cariche e dalla distanza tra loro, ed è un concetto fondamentale in comprendere le interazioni elettrostatiche.

Ufree=[Coulomb]q1q2r

Energia dello stato stazionario dell'idrogeno

L'Energia dello stato stazionario dell'idrogeno è lo stato di Energia costante in cui esistono gli elettroni.

EV=-([Rydberg])(1nquantum2)

Energia dell'elettrone in orbita iniziale

L'Energia dell'elettrone nell'orbita iniziale è lo stato di Energia costante in cui esistono gli elettroni nel livello di Energia iniziale o inferiore.

Eorbit=(-([Rydberg]ninitial2))

Energia dell'elettrone in orbita finale

L'Energia dell'elettrone nell'orbita finale è lo stato di Energia costante in cui esistono gli elettroni nel livello di Energia finale o più alto.

Eorbit=(-([Rydberg]nf2))

Energia di taglio specifica nella lavorazione

L'Energia di taglio specifica nella lavorazione è l'Energia consumata per rimuovere un volume unitario di materiale, che viene calcolata come il rapporto tra l'Energia di taglio E e il volume di rimozione del materiale V.

ps=PmZw

Energia totale del sistema

L'Energia totale della formula del sistema è definita come somma di Energia cinetica, Energia potenziale ed Energia interna. Gli oggetti con Energia totale inferiore a zero sono vincolati; quelli con zero o maggiore sono illimitati.

Esystem=PE+KE+U

Energia potenziale elastica della molla

L'Energia potenziale elastica della molla definita come Energia immagazzinata come risultato dell'applicazione di una forza per deformare un oggetto elastico. L'Energia viene immagazzinata fino a quando la forza non viene rimossa.

U=12kx2

Energia libera di Gibbs data la superficie

La formula di Gibbs Free Energy Given Surface Area è definita come l'Energia libera di Gibbs di una superficie curva che è direttamente proporzionale all'area della superficie.

G=γA

Energia di attivazione data la pendenza della linea tra LnK e temperatura inversa

L'Energia di attivazione data la pendenza della linea tra LnK e temperatura inversa è definita come quando l'Lnk (costante di velocità) è tracciata rispetto all'inverso della temperatura (kelvin), la pendenza è una linea retta.

Ea=-(mslope[R])

Energia di attivazione data la pendenza della linea tra Log K e Temp Inverse

L'Energia di attivazione data la pendenza della linea tra Log K e Temp Inverse ha definito che il grafico tra LogK e 1/T è una linea retta. Il grafico tra Log K vs 1/T darà pendenza −Ea/2.303R.

Ea=-2.303[R]m

Energia meccanica totale

L'Energia meccanica totale è la somma dell'Energia cinetica e dell'Energia potenziale.

ξ=KE+PE

Energia di attivazione utilizzando la costante di frequenza a due diverse temperature

La formula dell'Energia di attivazione utilizzando la costante di velocità a due temperature diverse è definita come l'Energia minima richiesta per far sì che una stessa reazione avvenga a due temperature diverse.

Ea2=[R]ln(K2K1)T1T2T2-T1

Energia di attivazione utilizzando la velocità di reazione a due diverse temperature

La formula dell'Energia di attivazione utilizzando la velocità di reazione a due diverse temperature è definita come l'Energia minima richiesta per far sì che una stessa reazione avvenga a due diverse temperature, considerando le rispettive velocità di reazione.

Ea1=[R]ln(r2r1)T1T2T2-T1

Energia di ogni Quanta

L'Energia di ogni formula Quanta è definita come il prodotto della costante di Planck e della frequenza.

Eq=[hP]ν

Energia nel circuito CC

La formula Energy in DC Circuit è definita come il prodotto di potenza e tempo. È anche definita come la potenza consumata in un periodo di tempo.

E=PT

Energia totale immagazzinata nel risonatore

La formula dell'Energia totale immagazzinata nel risonatore è definita come la somma di tutte le forme di Energia contenute nel sistema risonante. Un risonatore è qualsiasi sistema fisico o matematico che presenta risonanza, il che significa che può immagazzinare Energia a particolari frequenze o lunghezze d'onda.

We=((εm2E2)x,x,0,Vr)

Energia cinetica in elettronvolt

La formula dell'Energia cinetica in elettronvolt è definita come l'Energia cinetica consumata dalla particella che viene misurata in elettroni volt.

Eatom_eV=-(13.66.2415063630941018)(Z)2(nquantum)2

Energia in elettronvolt

La formula dell'Energia in elettronvolt è definita come l'Energia potenziale consumata dalla particella misurata in elettronvolt.

KEphoton=(6.86.2415063630941018)(Z)2(nquantum)2

Energia totale in elettronvolt

La formula dell'Energia totale in elettronvolt è definita come la somma dell'Energia cinetica e dell'Energia potenziale consumata dal corpo mentre si sposta da un punto all'altro.

KEphoton=(6.86.2415063630941018)(Z)2(nquantum)2

Energia del fotone usando l'approccio di Einstein

L'Energia del fotone utilizzando l'approccio di Einstein è l'Energia trasportata da un singolo fotone. È indicato dal simbolo, E.

Efreq=[hP]νphoton

Energia di 1 Mole di Fotoni

L'Energia di 1 mole di fotoni è l'Energia che viene trasportata da un singolo fotone. È indicato dal simbolo, E.

Ephoton=[Avaga-no][hP]νphoton

Energia cinetica dei fotoelettroni

L'Energia cinetica dei fotoelettroni è definita come l'Energia cinetica consumata da una particella in movimento quando si sposta da un punto a un altro.

KEphoton=[hP](νphoton-v0)

Energia del fotone nell'effetto fotoelettrico

L'Energia del fotone nell'effetto fotoelettrico è l'Energia di soglia totale o funzione di lavoro e l'Energia cinetica dei fotoni.

Ephoton_EEF=W+KE

Energia cinetica dell'elettrone dato il numero atomico

L'Energia cinetica dell'elettrone dato il numero atomico è definita come l'Energia cinetica consumata da una particella in movimento quando si sposta da un punto all'altro.

Efreq=Z([Charge-e]2)2rorbit

Energia potenziale dell'elettrone data il numero atomico

L'Energia potenziale dell'elettrone dato il numero atomico è l'Energia immagazzinata in un elettrone a causa della sua posizione rispetto a una posizione zero.

PE=(-Z([Charge-e]2)rorbit)

Come trovare Formule?

Ecco alcuni suggerimenti per risultati di ricerca migliori.
Sii specifico: più specifica è la tua query, migliori saranno i tuoi risultati.
Utilizza più parole chiave: combina più parole chiave parole chiave per restringere i risultati.
Sperimenta con i sinonimi: termini diversi possono produrre risultati diversi.
Ricerca con caratteri jolly: utilizza l'operatore * (asterisco). NOTA che questo operatore funziona solo alla fine di una parola. Esempio: Bio*, Area*, ecc.

In alternativa, puoi navigare tra le sottocategorie all'interno di per individuare le Formule di interesse.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!