Cerca Formule

Inserisci un minimo di 3 caratteri per iniziare con la ricerca delle formule .

Seleziona Filtra

Restringi i risultati della ricerca con l'aiuto di questi filtri.

50 Formule corrispondenti trovate!

Energia cinetica totale del sistema a ingranaggi

La formula dell'Energia cinetica totale di un sistema di ingranaggi è definita come una misura della somma delle energie cinetiche di tutte le parti rotanti in un sistema di ingranaggi, considerando il momento di inerzia e l'accelerazione angolare di ciascun componente, fornendo una comprensione completa del comportamento dinamico del sistema.

KE=MOIαA22

Energia termica data differenza di potenziale elettrico e corrente elettrica

L'Energia termica data la differenza di potenziale elettrico e la formula della corrente elettrica è definita come la quantità di Energia trasferita o convertita quando una corrente elettrica scorre attraverso un circuito con una data differenza di potenziale elettrico ed è un concetto fondamentale per comprendere la relazione tra Energia elettrica e lavoro.

PQ=ΔVITTotal

Energia termica data la differenza di potenziale elettrico e la resistenza

La formula dell'Energia termica data la differenza di potenziale elettrico e la resistenza è definita come la quantità di Energia trasferita come calore quando una corrente elettrica scorre attraverso un conduttore con una data differenza di potenziale elettrico e resistenza, fornendo una misura dell'Energia termica generata in un circuito elettrico.

PQ=(ΔV2R)t

Energia cinetica del sistema dopo urto anelastico

La formula dell'Energia cinetica del sistema dopo una collisione anelastica è definita come una misura dell'Energia cinetica totale posseduta da due oggetti dopo la loro collisione anelastica, con conseguente perdita di Energia cinetica e conversione in altre forme di Energia. È un concetto fondamentale per comprendere la cinetica del movimento e la dinamica delle collisioni.

Ek=(m1+m2)v22

Energia cinetica massima del fotoelettrone espulso

La formula dell'Energia cinetica massima del fotoelettrone espulso è definita come l'Energia massima raggiunta da un elettrone quando viene espulso da una superficie metallica a causa dell'assorbimento di un fotone, concetto fondamentale per comprendere l'effetto fotoelettrico e le sue applicazioni in vari ambiti. campi della fisica.

Kmax=[hP]vphoton-ϕ

Energia nell'orbita di Bohr all'ennesima potenza

Energia nell'ennesima formula dell'orbita di Bohr è definita come l'Energia di un elettrone nell'ennesimo livello energetico di un atomo di idrogeno, che è un concetto fondamentale nella fisica atomica, che descrive lo stato energetico di un elettrone in un'orbita specifica attorno al nucleo.

En=-13.6(Z2)nlevel2

Energia fotonica nella transizione di stato

La formula dell'Energia fotonica nella transizione di stato è definita come l'Energia associata a un fotone durante una transizione da uno stato energetico a un altro, che è un concetto fondamentale nella meccanica quantistica, che descrive lo scambio di Energia tra luce e materia.

Eγ=hvphoton

Energia di legame

La formula dell'Energia di legame è definita come l'Energia richiesta per separare un nucleo atomico nelle sue parti costituenti, in particolare protoni e neutroni, che è una misura della forza della forza nucleare che tiene insieme il nucleo, fornendo informazioni sulla stabilità di un atomo .

E=(Zmp+(A-Z)mn-matom)[c]2

Energia rilasciata in reazione nucleare

La formula dell'Energia rilasciata nella reazione nucleare è definita come la quantità di Energia liberata quando una certa quantità di massa viene convertita in Energia durante una reazione nucleare, che è un concetto fondamentale nella fisica nucleare e viene utilizzato per calcolare la resa energetica di vari processi nucleari.

E=∆m[c]2

Energia dell'elettrone in orbita ellittica

L'Energia dell'elettrone nell'orbita ellittica è definita come l'Energia consumata da una particella/elettrone per muoversi in un'orbita ellittica.

Eeo=(-(Z2)[Mass-e]([Charge-e]4)8([Permitivity-vacuum]2)([hP]2)(nquantum2))

Energia totale dell'elettrone nell'ennesima orbita

L'Energia totale dell'elettrone nell'ennesima orbita è definita come la somma dell'Energia cinetica e dell'Energia potenziale consumata da una particella in movimento quando si sposta da un punto a un altro.

EeV_orbital=(-[Mass-e]([Charge-e]4)(Z2)8([Permitivity-vacuum]2)(nquantum2)([hP]2))

Energia elettrica della cella elettrochimica

La formula dell'Energia Elettrica della Cella Elettrochimica è espressa matematicamente come il prodotto della fem della cella e la carica elettrica trasferita attraverso il circuito esterno.

E=E°Ctran

Energia di attivazione per reazione all'indietro

L'Energia di attivazione per la formula di reazione all'indietro è definita come la quantità minima di Energia richiesta per attivare atomi o molecole in una condizione in cui possono subire una trasformazione chimica per una reazione all'indietro.

Eab=Eaf-ΔH

Energia di dissociazione del potenziale

L'Energia di dissociazione della formula potenziale è definita come l'Energia misurata dal fondo del potenziale per una molecola biatomica.

Dae=Evfvmax

Energia vibrazionale usando l'Energia di dissociazione

L'Energia vibrazionale che utilizza la formula dell'Energia di dissociazione è definita come l'Energia totale dei rispettivi livelli di rotazione-vibrazione di una molecola biatomica.

EDE=Devmax

Energia di dissociazione data il numero d'onda vibrazionale

La formula del numero d'onda vibrazionale data dall'Energia di dissociazione è definita come l'Energia che viene misurata dal fondo del potenziale dei livelli di Energia vibrazionale per una molecola biatomica.

De=ω'24xeω'

Energia vibrazionale utilizzando la costante di anarmonicità

L'Energia vibrazionale utilizzando la formula della costante di anarmonicità è definita come l'Energia totale dei rispettivi livelli di rotazione-vibrazione di una molecola biatomica.

Exe=(ω')24xeω'vmax

Energia di dissociazione del punto zero

La formula dell'Energia di dissociazione del punto zero è definita come l'Energia di dissociazione che viene misurata al punto zero dei livelli di Energia vibrazionale delle molecole biatomiche.

D0=De-E0

Energia di punto zero data l'Energia di dissociazione

L'Energia del punto zero data la formula dell'Energia di dissociazione è definita come l'Energia di vibrazione dei livelli energetici di una molecola biatomica.

E0=De-D0

Energia Punto Zero

La formula di Energia del punto zero è definita come l'Energia di una vibrazione dei livelli di Energia di una molecola biatomica.

E0=(12ω')-(14xeω')

Energia di dissociazione del potenziale utilizzando l'Energia di punto zero

L'Energia di dissociazione del potenziale usando la formula dell'Energia del punto zero è definita come l'Energia che viene misurata dal fondo del potenziale dei livelli di Energia vibrazionale per una molecola biatomica.

De=D0+E0

Energia interna di un gas perfetto a una data temperatura

L'Energia interna del gas perfetto a una data formula di temperatura è definita come il prodotto del calore specifico a volume e temperatura costanti.

U=CvT

Energia libera di Gibbs in eccesso utilizzando i coefficienti di attività e le frazioni molari liquide

La formula Excess Gibbs Free Energy using Activity Coefficients and Liquid Mole Fractions è definita come il prodotto della costante universale del gas, della temperatura e della somma del prodotto della frazione molare dell'i-esimo componente e del logaritmo naturale del coefficiente di attività del componente i , dove per il sistema binario i = 2.

GE=([R]TVLE)(x1ln(γ1)+x2ln(γ2))

Energia libera di Gibbs in eccesso utilizzando l'equazione a due parametri di Margules

L'Energia libera in eccesso di Gibbs utilizzando la formula dell'equazione a due parametri di Margules è definita come la funzione dei coefficienti a due parametri di Margules A12 e A21, della temperatura e della frazione molare di entrambi i componenti 1 e 2.

GE=([R]Tactivity coefficentx1x2)(A21x1+A12x2)

Energia libera di Gibbs di gas ideale utilizzando il modello di miscela di gas ideale nel sistema binario

L'Energia libera di Gibbs del gas ideale che utilizza la formula del modello di miscela di gas ideale nella formula del sistema binario è definita come la funzione dell'Energia di Gibbs del gas ideale di entrambi i componenti e della frazione molare di entrambi i componenti in fase vapore nel sistema binario.

Gig=modu̲s((y1G1ig+y2G2ig)+[R]T(y1ln(y1)+y2ln(y2)))

Energia totale nel punto critico

La formula Energia Totale al Punto Critico è definita come la misura del valore dell'Energia totale presente in un sistema in uno stato o condizione critica.

Ec=(dc+((Vc)22g)+hf)

Energia critica totale

La formula dell'Energia critica totale è definita come l'Energia specifica del flusso quando si trova alla profondità critica. È l'Energia specifica minima alla quale può verificarsi un dato flusso.

Ec=(dc+((Vc)22g)+(0.1((Vc)22g)))

Energia fotoelettronica

L'Energia del fotoelettrone è contenuta in unità discrete piuttosto che in una distribuzione continua di energie. Le unità quantizzate di Energia luminosa possono essere considerate come pacchetti localizzati di Energia, detti fotoni, sono multipli interi di assi costanti e frequenza angolare.

Ephoto=[hP]f

Energia totale per unità di peso dell'acqua nella sezione di flusso

L'Energia totale per unità di peso dell'acqua nella sezione di flusso è definita come la somma dell'Energia cinetica e potenziale immagazzinata nell'acqua che scorre nel canale.

Etotal=(Vmean22[g])+df+y

Energia totale per unità di peso dell'acqua nella sezione di flusso considerando la pendenza del letto come dato

L'Energia totale per unità di peso dell'acqua nella sezione di flusso considerando la pendenza del letto come dato è definita come la somma dell'Energia cinetica e potenziale immagazzinata nell'acqua che scorre nel canale.

Etotal=(VFN22[g])+df

Energia totale per unità di peso dell'acqua nel flusso Sezione data Scarico

L'Energia totale per unità di peso dell'acqua nella sezione di flusso data portata è definita come l'Energia posseduta dal liquido che scorre nel canale.

Etotal=df+((QAcs)22[g])

Energia termica media della molecola di gas poliatomico lineare

L'Energia termica media della molecola di gas poliatomica lineare viene prodotta quando un aumento della temperatura fa sì che atomi e molecole si muovano più velocemente e entrino in collisione tra loro.

Qin=((32)[BoltZ]T)+((0.5Iy(ωy2))+(0.5Iz(ωz2)))+((3N)-5)([BoltZ]T)

Energia termica media della molecola di gas poliatomico non lineare data l'atomicità

L'Energia termica media della molecola di gas poliatomico non lineare data l'atomicità viene prodotta quando un aumento della temperatura fa sì che atomi e molecole si muovano più velocemente e si scontrino tra loro.

Qatomicity=((6N)-6)(0.5[BoltZ]T)

Energia vibrazionale molare della molecola lineare

La formula Molare Vibrational Energy of Linear Molecule è definita come l'Energia cinetica che un oggetto possiede a causa del suo movimento vibratorio.

Eviv=((3N)-5)([R]T)

Energia vibrazionale molare della molecola non lineare

La formula dell'Energia Vibrazionale Molare della Molecola Non Lineare è definita come l'Energia cinetica che un oggetto possiede a causa del suo movimento vibratorio.

Eviv=((3N)-6)([R]T)

Energia di taglio specifica data Peso iniziale del pezzo

L'Energia di taglio specifica data Il peso iniziale del pezzo è l'Energia consumata per rimuovere un volume unitario di materiale, che viene calcolato come il rapporto tra l'Energia di taglio E e il volume di materiale asportato V.

ps=tpρaV0W1-b

Energia totale per unità di area data Potenza d'onda per unità di larghezza della cresta

L'Energia totale per unità di area data la potenza d'onda per unità di larghezza della cresta è definita come la combinazione di avvezione (trasporto) di Energia potenziale e cinetica più il lavoro svolto dalle pressioni per unità di larghezza.

E=PVg

Energia totale assorbita dal freno a causa dell'aumento di temperatura del gruppo tamburo del freno

L'Energia totale assorbita dal freno data l'aumento di temperatura del gruppo tamburo del freno è definita come l'Energia che viene applicata dai freni quando vengono applicati i freni.

E=ΔTmc

Energia specifica dell'orbita circolare

La formula dell'Energia specifica dell'orbita circolare è definita come l'Energia totale per unità di massa necessaria per mantenere un satellite in un'orbita circolare attorno alla Terra, che è un parametro fondamentale nella progettazione delle missioni spaziali e nella determinazione dell'orbita.

ε=-[GM.Earth]22hc2

Energia specifica dell'orbita circolare dato il raggio orbitale

La formula dell'Energia specifica di un'orbita circolare dato il raggio orbitale è definita come una misura dell'Energia totale per unità di massa necessaria per mantenere un satellite in un'orbita circolare attorno alla Terra, considerando l'attrazione gravitazionale tra il satellite e la Terra.

ε=-[GM.Earth]2r

Energia libera complessiva in eccesso per il corpo cristallino sferico

La formula dell'Energia libera in eccesso complessiva per il corpo cristallino sferico è definita come la differenza di Energia totale tra lo stato iniziale di un sistema (tipicamente una soluzione) e lo stato finale del sistema (un solido cristallino) quando avviene il processo di cristallizzazione.

ΔG=4π(rcrystal2)σ+(4π3)(rcrystal3)ΔGv

Energia interna del sistema

L'Energia interna del sistema è tutta l'Energia all'interno di un dato sistema, inclusa l'Energia cinetica delle molecole e l'Energia immagazzinata in tutti i legami chimici tra le molecole.

UWD=Qd-(WIE)

Energia termica data Energia interna

La formula dell'Energia termica data dall'Energia interna è definita poiché la somma di tutte queste energie termiche è l'Energia totale che la sostanza guadagna o perde.

Qd=UWD+(WIE)

Energia della goccia di liquido nel sistema neutro

La formula dell'Energia della goccia di liquido nel sistema neutro è definita come la somma totale delle energie per unità di volume di un ammasso, superficie piana e curvatura della superficie dell'ammasso.

En,0=avn+as(n23)+ac(n13)

Energia di Coulomb di una particella carica utilizzando il raggio dell'ammasso

La formula dell'Energia di Coulomb delle particelle cariche che utilizza il raggio dell'ammasso è definita come il rapporto del quadrato tra il numero di elettroni rimossi dalla superficie solida e due volte il raggio dell'ammasso.

Ecoul=Q22R0

Energia di Coulomb di una particella carica utilizzando il raggio di Wigner Seitz

L'Energia di Coulomb delle particelle cariche utilizzando la formula del raggio di Wigner Seitz è definita come il prodotto del quadrato del numero di elettroni rimossi dalla superficie e del numero di atomi alla potenza di (1/3), diviso per due volte del Wigner Seitz raggio.

Ecoul=(Q2)n132r0

Energia interna utilizzando l'Energia di equipartizione

Energia interna che usa l'Energia di equipartizione significa che nell'equilibrio termico, qualsiasi grado di libertà (come un componente della posizione o della velocità di una particella) che appare solo quadraticamente nell'Energia ha un'Energia media di 1⁄2kT e quindi contribuisce con 1⁄2k alla capacità termica del sistema.

Uequi=12[BoltZ]Tg

Energia termica data la capacità termica

La formula dell'Energia termica data dalla capacità termica è definita poiché la somma di tutte queste energie termiche è l'Energia totale che la sostanza guadagna o perde. È usato vagamente in vari contesti di fisica e ingegneria, generalmente legati all'Energia cinetica degli atomi vibranti e in collisione in una sostanza. Può riferirsi a diversi concetti fisici ben definiti.

Qd=QcapdT

Energia interna molare del gas ideale

L'Energia interna molare del gas ideale è l'Energia del sistema per mole che non dipende dalla quantità di sostanza ma dipende dalla temperatura e dalla pressione.

Umolar=F[R]Tg2

Energia cinetica in elettronvolt

La formula dell'Energia cinetica in elettronvolt è definita come l'Energia cinetica consumata dalla particella che viene misurata in elettroni volt.

Eatom_eV=-(13.66.2415063630941018)(Z)2(nquantum)2

Come trovare Formule?

Ecco alcuni suggerimenti per risultati di ricerca migliori.
Sii specifico: più specifica è la tua query, migliori saranno i tuoi risultati.
Utilizza più parole chiave: combina più parole chiave parole chiave per restringere i risultati.
Sperimenta con i sinonimi: termini diversi possono produrre risultati diversi.
Ricerca con caratteri jolly: utilizza l'operatore * (asterisco). NOTA che questo operatore funziona solo alla fine di una parola. Esempio: Bio*, Area*, ecc.

In alternativa, puoi navigare tra le sottocategorie all'interno di per individuare le Formule di interesse.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!