Cerca Formule

Inserisci un minimo di 3 caratteri per iniziare con la ricerca delle formule .

Seleziona Filtra

Restringi i risultati della ricerca con l'aiuto di questi filtri.

50 Formule corrispondenti trovate!

Energia potenziale data Spostamento del corpo

L'Energia potenziale data la formula dello spostamento del corpo è definita come l'Energia che un oggetto possiede a causa della sua posizione o stato, in particolare quando viene spostato dalla sua posizione di equilibrio, ed è un concetto fondamentale per comprendere il comportamento degli oggetti in vari sistemi fisici.

PE=sconstrain(sbody2)2

Energia cinetica massima nella posizione media

La formula dell'Energia cinetica massima in posizione media è definita come l'Energia massima posseduta da un oggetto a causa del suo movimento in una posizione media, un concetto fondamentale per comprendere la dinamica delle vibrazioni longitudinali libere, in particolare nei sistemi meccanici.

KE=Wloadωf2x22

Energia cinetica posseduta dall'elemento

La formula dell'Energia cinetica posseduta dall'elemento è definita come l'Energia associata al movimento di un oggetto in un sistema di vibrazioni torsionali, che è un concetto fondamentale nell'ingegneria meccanica e nella fisica, in particolare nello studio del moto rotatorio e delle oscillazioni.

KE=Ic(ωfx)2δx2l3

Energia cinetica totale del vincolo

La formula dell'Energia cinetica totale di vincolo è definita come l'Energia associata al moto rotatorio di un sistema in vibrazioni torsionali, dove l'inerzia del sistema e la frequenza angolare sono fattori chiave nel determinare questa Energia.

KE=Icωf26

Energia di deformazione di taglio

La formula di Energia di deformazione di taglio è definita come l'Energia immagazzinata in un corpo a causa della deformazione. L'Energia di deformazione (cioè la quantità di Energia potenziale immagazzinata a causa della deformazione) è uguale al lavoro impiegato per deformare il materiale.

U=(𝜏2)V2G

Energia di deformazione di taglio nell'anello di raggio 'r'

La formula dell'Energia di deformazione di taglio nell'anello di raggio 'r' è definita come l'Energia immagazzinata in un corpo a causa della deformazione.

U=2π(𝜏2)L(rcenter3)δx2G(rshaft2)

Energia Totale del Flusso

La formula dell'Energia totale del flusso è definita come la quantità di Energia generata dal flusso d'acqua nel canale in qualsiasi posizione nel canale.

Et=df+Qf22[g]S2

Energia per scintilla dalla profondità del cratere

La formula Energia per scintilla dalla profondità del cratere è definita come il parametro che definisce la quantità di materiale rimosso e la finitura superficiale prodotta.

Peds=(dma)10.33

Energia di attivazione utilizzando la costante di frequenza a due diverse temperature

La formula dell'Energia di attivazione utilizzando la costante di velocità a due temperature diverse è definita come l'Energia minima richiesta per far sì che una stessa reazione avvenga a due temperature diverse.

Ea2=[R]ln(K2K1)T1T2T2-T1

Energia di attivazione utilizzando la velocità di reazione a due diverse temperature

La formula dell'Energia di attivazione utilizzando la velocità di reazione a due diverse temperature è definita come l'Energia minima richiesta per far sì che una stessa reazione avvenga a due diverse temperature, considerando le rispettive velocità di reazione.

Ea1=[R]ln(r2r1)T1T2T2-T1

Energia di ogni Quanta

L'Energia di ogni formula Quanta è definita come il prodotto della costante di Planck e della frequenza.

Eq=[hP]ν

Energia cinetica dopo la collisione di veicoli

La formula dell'Energia cinetica dopo una collisione di veicoli è definita come una misura dell'Energia residua in un veicolo dopo una collisione, tenendo conto delle masse dei veicoli coinvolti e della loro Energia cinetica iniziale, fornendo un parametro cruciale nella ricostruzione degli incidenti e nell'analisi della sicurezza.

Kf=(m1m1+m2)Ki

Energia interna del sistema monoatomico

La formula dell'Energia interna del sistema monoatomico in equilibrio termico è che ogni grado di libertà ha un'Energia media di 3kT/2, dove T è la temperatura assoluta e k è la costante di Boltzmann.

Upoly=32[BoltZ]Tu

Energia interna del sistema biatomico

La formula dell'Energia interna del sistema biatomico in equilibrio termico è che ogni grado di libertà ha un'Energia media di 5kT/2, dove T è la temperatura assoluta e k è la costante di Boltzmann.

Upoly=52[BoltZ]Tu

Energia interna del sistema non lineare triatomico

L'Energia interna del sistema triatomico non lineare nell'equilibrio termico è che ogni grado di libertà ha un'Energia media di 6kT/2, dove T è la temperatura assoluta e k è la costante di Boltzmann.

Upoly=62[BoltZ]Tu

Energia interna del sistema lineare triatomico

L'Energia interna del sistema lineare triatomico in equilibrio termico è che ogni grado di libertà ha un'Energia media di 7kT/2, dove T è la temperatura assoluta e k è la costante di Boltzmann.

Upoly=72[BoltZ]Tu

Energia dell'elettrone in orbita ellittica

L'Energia dell'elettrone nell'orbita ellittica è definita come l'Energia consumata da una particella/elettrone per muoversi in un'orbita ellittica.

Eeo=(-(Z2)[Mass-e]([Charge-e]4)8([Permitivity-vacuum]2)([hP]2)(nquantum2))

Energia totale dell'elettrone nell'ennesima orbita

L'Energia totale dell'elettrone nell'ennesima orbita è definita come la somma dell'Energia cinetica e dell'Energia potenziale consumata da una particella in movimento quando si sposta da un punto a un altro.

EeV_orbital=(-[Mass-e]([Charge-e]4)(Z2)8([Permitivity-vacuum]2)(nquantum2)([hP]2))

Energia delle transizioni rotazionali tra livelli rotazionali

La formula Energia delle transizioni rotazionali tra livelli rotazionali è definita come l'Energia della radiazione assorbita per subire una transizione energetica quando una molecola viene irradiata con fotoni di luce. Per una molecola biatomica, la differenza di Energia tra i livelli rotazionali (da J a J 1) è l'Energia delle transizioni rotazionali.

ERL=2B(J+1)

Energia interna di un gas perfetto a una data temperatura

L'Energia interna del gas perfetto a una data formula di temperatura è definita come il prodotto del calore specifico a volume e temperatura costanti.

U=CvT

Energia di risonanza ionica covalente

L'Energia di risonanza ionica covalente è l'Energia cinetica prodotta come risultato di un'ampia partecipazione o di orbitali o di miscelazione covalente-ionica.

Δ=EA-B-EA-B(cov)

Energia di legame effettiva data Energia di risonanza ionica covalente

L'Energia di legame effettiva data dall'Energia di risonanza ionica covalente è definita come la quantità di Energia necessaria per rompere una mole di molecole nei suoi atomi componenti.

EA-B=Δ+EA-B(cov)

Energia di risonanza ionica covalente utilizzando le energie di legame

L'Energia di risonanza ionica covalente che utilizza le energie di legame è l'Energia cinetica prodotta come risultato di una grande partecipazione o di orbitali o miscelazione covalente-ionica.

Δ=EA-B-EA-AEB-B

Energia di risonanza ionica covalente utilizzando l'elettronegatività di Pauling

L'Energia di risonanza ionica covalente che utilizza l'elettronegatività di Pauling è l'Energia cinetica prodotta come risultato di una grande partecipazione o di orbitali o miscelazione covalente-ionica.

Δp=XP2

Energia totale di ioni nel reticolo

L'Energia totale dello ione nel reticolo è la somma dell'Energia di Madelung e dell'Energia potenziale repulsiva.

Etotal=EM+ER

Energia totale di ioni date cariche e distanze

L'Energia totale dello ione date le cariche e le distanze nel reticolo è la somma dell'Energia di Madelung e dell'Energia potenziale repulsiva.

Etotal=(-(q2)([Charge-e]2)M4π[Permitivity-vacuum]r0)+(Br0nborn)

Energia potenziale minima di ioni

L'Energia potenziale minima dello ione è un mezzo per calcolare l'Energia del reticolo di un composto ionico cristallino.

Emin=(-(q2)([Charge-e]2)M4π[Permitivity-vacuum]r0)+(Br0nborn)

Energia reticolare usando l'equazione di Born-Mayer

L'Energia reticolare utilizzando l'equazione di Born-Mayer è un'equazione utilizzata per calcolare l'Energia reticolare di un composto ionico cristallino. È un perfezionamento dell'equazione di Born-Lande utilizzando un termine di repulsione migliorato.

U=-[Avaga-no]Mz+z-([Charge-e]2)(1-(ρr0))4π[Permitivity-vacuum]r0

Energia di legame degli elementi A e B

L'Energia di legame della formula degli elementi A e B è definita come la quantità di Energia richiesta per rompere una mole di molecole nei suoi atomi componenti.

Δkcal=(XA-XB0.208)2

Energia di ionizzazione in KJ mole

L'Energia di ionizzazione nella formula mole KJ è definita come la quantità minima di Energia richiesta per rimuovere l'elettrone più debolmente legato di un atomo o molecola gassosa neutra isolata.

IEKJmole=(EN544)-EAKJmole

Energia erogata per scintilla dal circuito di carica della resistenza

L'Energia erogata per scintilla dal circuito di carica della resistenza è il parametro che definisce la quantità di materiale rimosso e la finitura superficiale prodotta.

P=V02𝜏Rc(12-exp(-t𝜏)+0.5exp(-2t𝜏))

Energia totale in CMOS

La formula dell'Energia totale nella CMOS è definita come la proprietà quantitativa che deve essere trasferita a un oggetto per eseguire un lavoro o per riscaldare l'oggetto nella CMOS.

Et=Es+Eleak

Energia cinetica assorbita dal freno

La formula dell'Energia cinetica assorbita dal freno è definita come la massima differenza tra l'Energia cinetica iniziale e quella finale del sistema.

KE=mu2-v22

Energia cinetica del corpo rotante

La formula dell'Energia cinetica del corpo rotante è definita come la misura del lavoro che un oggetto può compiere in virtù del suo movimento.

KE=Iω12-ω222

Energia potenziale assorbita durante il periodo di frenata

La formula Energia potenziale assorbita durante il periodo di frenata è definita come l'Energia trattenuta da un oggetto a causa della sua posizione rispetto ad altri oggetti, delle sollecitazioni al suo interno, della sua carica elettrica o di altri fattori.

PE=mgΔh

Energia totale assorbita dal freno

La formula Total Energy Absorbed by Brake è definita come l'Energia assorbita dal sistema o dai freni quando vengono applicati dei freni improvvisi attraverso il sistema.

KE=Msθb

Energia totale immagazzinata nell'accumulatore idraulico differenziale

La formula dell'Energia totale immagazzinata nell'accumulatore idraulico differenziale è definita come la quantità totale di Energia immagazzinata in un accumulatore idraulico, che è un componente fondamentale nei sistemi idraulici, in quanto fornisce una fonte di alimentazione di riserva durante i periodi di elevata richiesta o di guasto del sistema.

Etotal=WtL

Energia di legame del fotoelettrone

L'Energia di legame del fotoelettrone è definita come la quantità di Energia richiesta per separare un elettrone dal subshell.

Ebinding=([hP]ν)-Ekinetic-Φ

Energia totale irradiata data la temperatura termodinamica

La formula dell'Energia totale irradiata data la temperatura termodinamica è definita come la quantità totale di Energia irradiata per unità di superficie di un corpo nero su tutte le lunghezze d'onda per unità di tempo (nota anche come emittanza radiante del corpo nero) è direttamente proporzionale alla quarta potenza di la temperatura termodinamica del corpo nero.

Eradiated=[Stefan-BoltZ](β)4

Energia centrifuga in collisione

La formula dell'Energia centrifuga in collisione è definita come l'Energia relativa a una particella che si muove su un percorso circolare durante la collisione di due particelle.

Ecentrifugal=ETb2R2

Energia totale prima della collisione

La formula dell'Energia totale prima della collisione è definita come la quantità totale di Energia presente prima della collisione nella particella.

ET=EcentrifugalR2b2

Energia di scissione del campo cristallino per complessi ottaedrici

L'Energia di divisione del campo cristallino per complessi ottaedrici è definita come la separazione di Energia tra l'orbitale T2g ed Eg.

CFSEOh=(Neg0.6)+(-0.4Nt2g)

Energia di scissione del campo cristallino per complessi tetraedrici

L'Energia di divisione del campo cristallino per i complessi tetraedrici è definita come la separazione di Energia tra l'orbitale T2g ed Eg.

CFSETd=((Neg(-0.6))+(0.4Nt2g))(49)

Energia prodotta dalla centrale idroelettrica

La formula dell'Energia prodotta da una centrale idroelettrica è definita come l'Energia elettrica generata dalla forza dell'acqua in caduta che viene imbrigliata dalle turbine e convertita in elettricità attraverso il funzionamento dei generatori.

E=[g]ρwQHηt

Energia prodotta da centrale idroelettrica data potenza

L'Energia prodotta da una centrale idroelettrica data la formula Power è definita come l'Energia elettrica generata dalla forza dell'acqua che cade che viene imbrigliata dalle turbine e convertita in elettricità attraverso il funzionamento dei generatori.

E=Phηt

Energia nel circuito CC

La formula Energy in DC Circuit è definita come il prodotto di potenza e tempo. È anche definita come la potenza consumata in un periodo di tempo.

E=PT

Energia totale immagazzinata nel risonatore

La formula dell'Energia totale immagazzinata nel risonatore è definita come la somma di tutte le forme di Energia contenute nel sistema risonante. Un risonatore è qualsiasi sistema fisico o matematico che presenta risonanza, il che significa che può immagazzinare Energia a particolari frequenze o lunghezze d'onda.

We=((εm2E2)x,x,0,Vr)

Energia potenziale gravitazionale

La formula dell'Energia potenziale gravitazionale è definita come l'Energia che un oggetto possiede a causa della sua posizione all'interno di un campo gravitazionale, che dipende dalla massa dell'oggetto e dal campo gravitazionale in cui si trova, ed è un concetto fondamentale per comprendere il comportamento degli oggetti in l'universo.

U=-[G.]m1m2rc

Energia di deformazione dovuta alla torsione nell'albero cavo

La formula dell'Energia di deformazione dovuta alla torsione nell'albero cavo è definita come l'Energia immagazzinata nell'albero cavo quando sottoposto a torsione.

U=𝜏2(douter2+dinner2)V4Gpadouter2

Energia di deformazione in torsione per albero pieno

La formula dell'Energia di deformazione in torsione per alberi pieni è definita come la misura dell'Energia immagazzinata in un albero pieno, quando è sottoposto a torsione entro limiti elastici.

U=𝜏2V4Gpa

Come trovare Formule?

Ecco alcuni suggerimenti per risultati di ricerca migliori.
Sii specifico: più specifica è la tua query, migliori saranno i tuoi risultati.
Utilizza più parole chiave: combina più parole chiave parole chiave per restringere i risultati.
Sperimenta con i sinonimi: termini diversi possono produrre risultati diversi.
Ricerca con caratteri jolly: utilizza l'operatore * (asterisco). NOTA che questo operatore funziona solo alla fine di una parola. Esempio: Bio*, Area*, ecc.

In alternativa, puoi navigare tra le sottocategorie all'interno di per individuare le Formule di interesse.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!