Cerca Formule

Inserisci un minimo di 3 caratteri per iniziare con la ricerca delle formule .

Seleziona Filtra

Restringi i risultati della ricerca con l'aiuto di questi filtri.

50 Formule corrispondenti trovate!

Energia potenziale

La formula dell'Energia potenziale è definita come l'Energia che un oggetto possiede a causa della sua posizione o stato, che può essere convertita in Energia cinetica quando l'oggetto viene rilasciato o spostato ed è un concetto fondamentale per comprendere il comportamento degli oggetti nel mondo fisico.

PE=Mgh

Energia cinetica

La formula dell'Energia cinetica è definita come la misura dell'Energia di movimento di un oggetto, ovvero la capacità di compiere lavoro grazie al suo movimento ed è un concetto fondamentale in fisica che aiuta a descrivere la relazione tra la massa e la velocità di un oggetto.

KE=Mv22

Energia senza volume

L'Energia libera dal volume è la differenza di Energia libera tra la fase solida e quella liquida.

𝚫Gv=ΔHfΔTTm

Energia libera critica per la nucleazione (dall'Energia libera dal volume)

L'Energia libera critica per la nucleazione (dall'Energia libera dal volume) è l'Energia libera richiesta per la formazione di un nucleo stabile. Allo stesso modo, può essere considerato una barriera energetica al processo di nucleazione.

ΔG*=16π𝛾33𝚫Gv2

Energia interna molare del gas ideale

L'Energia interna molare del gas ideale è l'Energia del sistema per mole che non dipende dalla quantità di sostanza ma dipende dalla temperatura e dalla pressione.

Umolar=F[R]Tg2

Energia potenziale data Spostamento del corpo

L'Energia potenziale data la formula dello spostamento del corpo è definita come l'Energia che un oggetto possiede a causa della sua posizione o stato, in particolare quando viene spostato dalla sua posizione di equilibrio, ed è un concetto fondamentale per comprendere il comportamento degli oggetti in vari sistemi fisici.

PE=sconstrain(sbody2)2

Energia cinetica massima nella posizione media

La formula dell'Energia cinetica massima in posizione media è definita come l'Energia massima posseduta da un oggetto a causa del suo movimento in una posizione media, un concetto fondamentale per comprendere la dinamica delle vibrazioni longitudinali libere, in particolare nei sistemi meccanici.

KE=Wloadωf2x22

Energia di attivazione per reazione all'indietro

L'Energia di attivazione per la formula di reazione all'indietro è definita come la quantità minima di Energia richiesta per attivare atomi o molecole in una condizione in cui possono subire una trasformazione chimica per una reazione all'indietro.

Eab=Eaf-ΔH

Energia di deformazione totale per unità di volume

La formula dell'Energia di deformazione totale per unità di volume è definita come la somma dell'Energia di deformazione corrispondente alla distorsione senza variazione di volume e dell'Energia di deformazione corrispondente alla variazione di volume senza distorsione.

UTotal=Ud+Uv

Energia di deformazione dovuta alla variazione di volume data la sollecitazione volumetrica

L'Energia di deformazione dovuta alla variazione di volume dato lo stress volumetrico è definita come l'Energia immagazzinata in un corpo a causa della deformazione. Questa Energia è l'Energia immagazzinata quando il volume cambia senza distorsione.

Uv=32σvεv

Energia di deformazione dovuta alla variazione di volume date le sollecitazioni principali

L'Energia di deformazione dovuta alla variazione di volume data la formula delle sollecitazioni principali è definita come l'Energia immagazzinata in un corpo a causa della deformazione. Questa Energia è l'Energia immagazzinata quando il volume cambia senza distorsione.

Uv=(1-2𝛎)6E(σ1+σ2+σ3)2

Energia di attivazione per reazioni di ordine zero

La formula Energia di attivazione per reazioni di ordine zero è definita come il prodotto della costante universale del gas con la temperatura della reazione e la differenza del logaritmo naturale del fattore di frequenza e della costante di velocità. L'Energia di attivazione è la quantità minima di Energia necessaria per attivare atomi o molecole in una condizione in cui possono subire una trasformazione chimica.

Ea=[R]Tgas(ln(A)-ln(k))

Energia di Attivazione per la Reazione del Primo Ordine

L'Energia di attivazione per la formula di reazione del primo ordine è definita come la moltiplicazione della costante universale dei gas con la temperatura e con il rapporto tra il logaritmo naturale del fattore di frequenza e la costante di velocità. La quantità minima di Energia necessaria per attivare atomi o molecole in una condizione in cui possono subire una trasformazione chimica.

Ea=[R]Tgas(ln(Akfirst))

Energia di attivazione per la reazione del secondo ordine

La formula Energia di attivazione per reazione del secondo ordine è definita come la moltiplicazione della costante universale dei gas con la temperatura e con la differenza dei logaritmi naturali del fattore di frequenza e della costante di velocità. La quantità minima di Energia necessaria per attivare atomi o molecole in una condizione in cui possono subire una trasformazione chimica è chiamata Energia di attivazione.

Ea=[R]TKinetics(ln(Afactor)-ln(Ksecond))

Energia disponibile a causa della riduzione della velocità

L'Energia disponibile a causa della riduzione della velocità è la quantità di Energia quando si verifica una riduzione della velocità del treno che viene misurata in kW -hr.

Eo=0.01072Wev2-u2

Energia disponibile durante la rigenerazione

L'Energia disponibile durante la formula di rigenerazione è definita come la quantità di Energia in wattora/tonnellata disponibile quando si verifica una variazione negativa della velocità del treno che significa una variazione del ritardo.

ER=0.01072(WeW)(v2-u2)

Energia di radiazione emessa dal corpo nero nell'intervallo di tempo data la temperatura

La formula dell'Energia di radiazione emessa dal corpo nero in un dato intervallo di tempo a una data temperatura è definita come l'Energia totale emessa da un corpo nero in un dato intervallo di tempo a una temperatura specifica, che è un concetto fondamentale nella termodinamica e nella fisica delle radiazioni, che descrive il processo di emissione di Energia di un assorbitore perfetto idealizzato di radiazione elettromagnetica.

E=[Stefan-BoltZ]T4SATotalΔt

Energia di taglio specifica per unità di forza di taglio dalla temperatura dell'utensile

L'Energia di taglio specifica per unità di forza di taglio dalla formula della temperatura dell'utensile è definita come l'Energia di taglio specifica per unità di forza di taglio richiesta per eseguire l'operazione di taglio in determinate condizioni.

Us=θc0.56k0.44C0V0.44A0.22

Energia cinetica di una molecola di gas data la costante di Boltzmann

L'Energia cinetica di una molecola di gas data la formula della costante di Boltzmann è definita come il prodotto della temperatura di un particolare gas per la costante di Boltzmann.

KE=(32)[BoltZ]Tg

Energia di deformazione immagazzinata nella barra di tensione

La formula Strain Energy Stored in Tension Rod è definita come una misura dell'Energia accumulata in un tirante quando è sottoposto a un carico assiale. Questa Energia è essenziale per comprendere il comportamento del materiale sotto stress e la sua capacità di resistere alla deformazione.

U=(P2)L2AE

Energia di deformazione immagazzinata nell'asta sottoposta a momento flettente

La formula Strain Energy Stored in Rod Subjected to Bending Moment è definita come una rappresentazione dell'Energia accumulata in un'asta quando subisce una flessione. Questa Energia è fondamentale per comprendere il comportamento del materiale sotto stress e per garantire l'integrità strutturale nelle applicazioni ingegneristiche.

U=(Mb2)L2EI

Energia totale per unità di peso dell'acqua nella sezione di flusso

L'Energia totale per unità di peso dell'acqua nella sezione di flusso è definita come la somma dell'Energia cinetica e potenziale immagazzinata nell'acqua che scorre nel canale.

Etotal=(Vmean22[g])+df+y

Energia totale per unità di peso dell'acqua nella sezione di flusso considerando la pendenza del letto come dato

L'Energia totale per unità di peso dell'acqua nella sezione di flusso considerando la pendenza del letto come dato è definita come la somma dell'Energia cinetica e potenziale immagazzinata nell'acqua che scorre nel canale.

Etotal=(VFN22[g])+df

Energia totale per unità di peso dell'acqua nel flusso Sezione data Scarico

L'Energia totale per unità di peso dell'acqua nella sezione di flusso data portata è definita come l'Energia posseduta dal liquido che scorre nel canale.

Etotal=df+((QAcs)22[g])

Energia termica media della molecola di gas poliatomico lineare

L'Energia termica media della molecola di gas poliatomica lineare viene prodotta quando un aumento della temperatura fa sì che atomi e molecole si muovano più velocemente e entrino in collisione tra loro.

Qin=((32)[BoltZ]T)+((0.5Iy(ωy2))+(0.5Iz(ωz2)))+((3N)-5)([BoltZ]T)

Energia termica media della molecola di gas poliatomico non lineare data l'atomicità

L'Energia termica media della molecola di gas poliatomico non lineare data l'atomicità viene prodotta quando un aumento della temperatura fa sì che atomi e molecole si muovano più velocemente e si scontrino tra loro.

Qatomicity=((6N)-6)(0.5[BoltZ]T)

Energia vibrazionale molare della molecola lineare

La formula Molare Vibrational Energy of Linear Molecule è definita come l'Energia cinetica che un oggetto possiede a causa del suo movimento vibratorio.

Eviv=((3N)-5)([R]T)

Energia vibrazionale molare della molecola non lineare

La formula dell'Energia Vibrazionale Molare della Molecola Non Lineare è definita come l'Energia cinetica che un oggetto possiede a causa del suo movimento vibratorio.

Eviv=((3N)-6)([R]T)

Energia critica per canale rettangolare

L'Energia critica per il canale rettangolare è definita come l'Energia minima richiesta per mantenere un flusso costante senza un salto di superficie libera, prevenendo la deposizione di sedimenti e garantendo la stabilità del flusso.

Er=1.5hr

Energia critica per il canale triangolare

L'Energia critica per il canale triangolare è definita come l'Energia generata o richiesta dalla profondità critica del canale.

Et=ht1.25

Energia critica per il canale parabolico

L'Energia critica per il canale parabolico è definita come l'Energia di flusso minima richiesta per mantenere il trasporto dei sedimenti, prevenendo la deposizione o l'erosione, cruciale per un trasporto idraulico stabile.

Ec=(43)hp

Energia erogata per scintilla

La formula Energia erogata per scintilla è definita come il parametro che definisce la quantità di materiale rimosso e la finitura superficiale prodotta.

Peds=0.5CedsVeds2

Energia totale per unità di area data Potenza d'onda per unità di larghezza della cresta

L'Energia totale per unità di area data la potenza d'onda per unità di larghezza della cresta è definita come la combinazione di avvezione (trasporto) di Energia potenziale e cinetica più il lavoro svolto dalle pressioni per unità di larghezza.

E=PVg

Energia totale del sistema

L'Energia totale della formula del sistema è definita come somma di Energia cinetica, Energia potenziale ed Energia interna. Gli oggetti con Energia totale inferiore a zero sono vincolati; quelli con zero o maggiore sono illimitati.

Esystem=PE+KE+U

Energia potenziale elastica della molla

L'Energia potenziale elastica della molla definita come Energia immagazzinata come risultato dell'applicazione di una forza per deformare un oggetto elastico. L'Energia viene immagazzinata fino a quando la forza non viene rimossa.

U=12kx2

Energia libera di Gibbs data la superficie

La formula di Gibbs Free Energy Given Surface Area è definita come l'Energia libera di Gibbs di una superficie curva che è direttamente proporzionale all'area della superficie.

G=γA

Energia di attivazione data la pendenza della linea tra LnK e temperatura inversa

L'Energia di attivazione data la pendenza della linea tra LnK e temperatura inversa è definita come quando l'Lnk (costante di velocità) è tracciata rispetto all'inverso della temperatura (kelvin), la pendenza è una linea retta.

Ea=-(mslope[R])

Energia di attivazione data la pendenza della linea tra Log K e Temp Inverse

L'Energia di attivazione data la pendenza della linea tra Log K e Temp Inverse ha definito che il grafico tra LogK e 1/T è una linea retta. Il grafico tra Log K vs 1/T darà pendenza −Ea/2.303R.

Ea=-2.303[R]m

Energia meccanica totale

L'Energia meccanica totale è la somma dell'Energia cinetica e dell'Energia potenziale.

ξ=KE+PE

Energia di attivazione utilizzando la costante di frequenza a due diverse temperature

La formula dell'Energia di attivazione utilizzando la costante di velocità a due temperature diverse è definita come l'Energia minima richiesta per far sì che una stessa reazione avvenga a due temperature diverse.

Ea2=[R]ln(K2K1)T1T2T2-T1

Energia di attivazione utilizzando la velocità di reazione a due diverse temperature

La formula dell'Energia di attivazione utilizzando la velocità di reazione a due diverse temperature è definita come l'Energia minima richiesta per far sì che una stessa reazione avvenga a due diverse temperature, considerando le rispettive velocità di reazione.

Ea1=[R]ln(r2r1)T1T2T2-T1

Energia di ogni Quanta

L'Energia di ogni formula Quanta è definita come il prodotto della costante di Planck e della frequenza.

Eq=[hP]ν

Energia nel circuito CC

La formula Energy in DC Circuit è definita come il prodotto di potenza e tempo. È anche definita come la potenza consumata in un periodo di tempo.

E=PT

Energia di deformazione dovuta alla torsione nell'albero cavo

La formula dell'Energia di deformazione dovuta alla torsione nell'albero cavo è definita come l'Energia immagazzinata nell'albero cavo quando sottoposto a torsione.

U=𝜏2(douter2+dinner2)V4Gpadouter2

Energia di deformazione in torsione per albero pieno

La formula dell'Energia di deformazione in torsione per alberi pieni è definita come la misura dell'Energia immagazzinata in un albero pieno, quando è sottoposto a torsione entro limiti elastici.

U=𝜏2V4Gpa

Energia dell'elettrone in orbita ellittica

L'Energia dell'elettrone nell'orbita ellittica è definita come l'Energia consumata da una particella/elettrone per muoversi in un'orbita ellittica.

Eeo=(-(Z2)[Mass-e]([Charge-e]4)8([Permitivity-vacuum]2)([hP]2)(nquantum2))

Energia totale dell'elettrone nell'ennesima orbita

L'Energia totale dell'elettrone nell'ennesima orbita è definita come la somma dell'Energia cinetica e dell'Energia potenziale consumata da una particella in movimento quando si sposta da un punto a un altro.

EeV_orbital=(-[Mass-e]([Charge-e]4)(Z2)8([Permitivity-vacuum]2)(nquantum2)([hP]2))

Energia dell'elettrone per numero quantico principale

La formula Energia dell'elettrone per numero quantico principale è definita come lo stato di Energia costante in cui gli elettroni esistono nel livello di Energia iniziale o inferiore.

E=nquantum+l

Energia vibrazionale utilizzando il numero di onda vibrazionale

L'Energia vibrazionale che utilizza la formula del numero d'onda vibrazionale è definita come l'Energia totale dei rispettivi livelli di rotazione-vibrazione di una molecola biatomica.

Ewn=(v+12)ω'

Energia cinetica dell'aria all'ingresso

La formula Energia cinetica dell'aria all'ingresso è definita come la metà del prodotto della portata massica dell'aria per il quadrato della velocità di avanzamento dell'aereo.

KE=12maV2

Come trovare Formule?

Ecco alcuni suggerimenti per risultati di ricerca migliori.
Sii specifico: più specifica è la tua query, migliori saranno i tuoi risultati.
Utilizza più parole chiave: combina più parole chiave parole chiave per restringere i risultati.
Sperimenta con i sinonimi: termini diversi possono produrre risultati diversi.
Ricerca con caratteri jolly: utilizza l'operatore * (asterisco). NOTA che questo operatore funziona solo alla fine di una parola. Esempio: Bio*, Area*, ecc.

In alternativa, puoi navigare tra le sottocategorie all'interno di per individuare le Formule di interesse.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!