Cerca Formule

Inserisci un minimo di 3 caratteri per iniziare con la ricerca delle formule .

Seleziona Filtra

Restringi i risultati della ricerca con l'aiuto di questi filtri.

50 Formule corrispondenti trovate!

Energia libera critica per la nucleazione

L'Energia libera critica per la nucleazione è l'Energia libera richiesta per la formazione di un nucleo stabile. Allo stesso modo, può essere considerato una barriera energetica al processo di nucleazione.

ΔG*=16π𝛾3Tm23ΔHf2ΔT2

Energia del fotone

L'Energia del fotone (luce) è direttamente correlata alla frequenza elettromagnetica del fotone. L'Energia del fotone dipende dalla lunghezza d'onda in modo tale che l'Energia del fotone sia inversamente proporzionale alla lunghezza d'onda. Maggiore è la frequenza dell'Energia del fotone, maggiore è la sua Energia.

E=[hP][c]λ

Energia immagazzinata nel condensatore data capacità e tensione

Energia immagazzinata nel condensatore data la formula di capacità e tensione è definita come l'Energia totale accumulata in un condensatore, che è un dispositivo che immagazzina Energia elettrica, e dipende dalla capacità e dalla tensione del condensatore, fornendo una misura dell'Energia potenziale elettrica immagazzinata .

U=12CVcapacitor2

Energia immagazzinata nel condensatore data la carica e la capacità

L'Energia immagazzinata nel condensatore data la formula di carica e capacità è definita come l'Energia totale accumulata in un condensatore come risultato del trasferimento di carica elettrica, che dipende dalla quantità di carica immagazzinata e dalla capacità del condensatore ed è un parametro critico nella comprensione del comportamento dei circuiti elettrici.

U=Q22C

Energia immagazzinata nel condensatore data la carica e la tensione

Energia immagazzinata nel condensatore data la formula di carica e tensione è definita come l'Energia totale accumulata in un condensatore come risultato del flusso di carica elettrica e della tensione applicata attraverso le sue piastre, fornendo una misura della capacità del condensatore di immagazzinare Energia elettrica.

Ue=12QV

Energia potenziale data Spostamento del corpo

L'Energia potenziale data la formula dello spostamento del corpo è definita come l'Energia che un oggetto possiede a causa della sua posizione o stato, in particolare quando viene spostato dalla sua posizione di equilibrio, ed è un concetto fondamentale per comprendere il comportamento degli oggetti in vari sistemi fisici.

PE=sconstrain(sbody2)2

Energia cinetica massima nella posizione media

La formula dell'Energia cinetica massima in posizione media è definita come l'Energia massima posseduta da un oggetto a causa del suo movimento in una posizione media, un concetto fondamentale per comprendere la dinamica delle vibrazioni longitudinali libere, in particolare nei sistemi meccanici.

KE=Wloadωf2x22

Energia cinetica posseduta dall'elemento

La formula dell'Energia cinetica posseduta dall'elemento è definita come l'Energia associata al movimento di un oggetto in un sistema di vibrazioni torsionali, che è un concetto fondamentale nell'ingegneria meccanica e nella fisica, in particolare nello studio del moto rotatorio e delle oscillazioni.

KE=Ic(ωfx)2δx2l3

Energia cinetica totale del vincolo

La formula dell'Energia cinetica totale di vincolo è definita come l'Energia associata al moto rotatorio di un sistema in vibrazioni torsionali, dove l'inerzia del sistema e la frequenza angolare sono fattori chiave nel determinare questa Energia.

KE=Icωf26

Energia rotazionale mediante distorsione centrifuga

L'Energia rotazionale che utilizza la formula della distorsione centrifuga è definita come Energia di serie di linee nello spettro rotazionale di una molecola biatomica. Le molecole biatomiche sono spesso approssimate come rotori rigidi, il che significa che si presume che la lunghezza del legame sia fissa.

Erot_CD=(BJ(J+1))-(DCj(J2)((J+1)2))

Energia vibrazionale

La formula Energia vibrazionale è definita come l'Energia totale dei rispettivi livelli di rotazione-vibrazione di una molecola biatomica.

Et=(v+12)([hP]vvib)

Energia di deformazione immagazzinata nel corpo a causa dello sforzo di taglio

L'Energia di deformazione immagazzinata nel corpo a causa dello sforzo di taglio è definita come l'Energia immagazzinata in un corpo a causa della deformazione. L'Energia di deformazione per unità di volume è nota come densità di Energia di deformazione e l'area sotto la curva sforzo-deformazione verso il punto di deformazione.

Ubody=𝜏2VT2G

Energia modificata per un'onda d'urto cilindrica

La formula dell'Energia modificata per l'onda d'urto cilindrica è definita come una misura dell'Energia rilasciata durante un'onda d'urto cilindrica, che è un concetto fondamentale nel principio di equivalenza ipersonica e nella teoria delle onde d'urto, utilizzato per descrivere la distribuzione di Energia nelle esplosioni ad alta velocità.

E=0.5ρV2dCD

Energia di taglio specifica nella lavorazione

L'Energia di taglio specifica nella lavorazione è l'Energia consumata per rimuovere un volume unitario di materiale, che viene calcolata come il rapporto tra l'Energia di taglio E e il volume di rimozione del materiale V.

ps=PmZw

Energia di risonanza ionica covalente

L'Energia di risonanza ionica covalente è l'Energia cinetica prodotta come risultato di un'ampia partecipazione o di orbitali o di miscelazione covalente-ionica.

Δ=EA-B-EA-B(cov)

Energia di legame effettiva data Energia di risonanza ionica covalente

L'Energia di legame effettiva data dall'Energia di risonanza ionica covalente è definita come la quantità di Energia necessaria per rompere una mole di molecole nei suoi atomi componenti.

EA-B=Δ+EA-B(cov)

Energia di risonanza ionica covalente utilizzando le energie di legame

L'Energia di risonanza ionica covalente che utilizza le energie di legame è l'Energia cinetica prodotta come risultato di una grande partecipazione o di orbitali o miscelazione covalente-ionica.

Δ=EA-B-EA-AEB-B

Energia di risonanza ionica covalente utilizzando l'elettronegatività di Pauling

L'Energia di risonanza ionica covalente che utilizza l'elettronegatività di Pauling è l'Energia cinetica prodotta come risultato di una grande partecipazione o di orbitali o miscelazione covalente-ionica.

Δp=XP2

Energia di radiazione emessa dal corpo nero nell'intervallo di tempo dato il potere emissivo

La formula dell'Energia di radiazione emessa dal corpo nero in un dato intervallo di tempo, data la potenza emissiva, è definita come l'Energia totale irradiata da un corpo nero in un dato intervallo di tempo, in funzione della sua potenza emissiva, della superficie e del numero di intervalli di tempo, fornendo una misura dell'Energia emessa dal corpo nero.

E=EbSAN

Energia per quanto di radiazione in termini di lunghezza d'onda

La formula Energia per quanto di radiazione in termini di lunghezza d'onda è definita come l'Energia di una molecola per quanto di radiazione in relazione alla lunghezza d'onda della sostanza che viene assorbita durante una reazione fotochimica.

EQuantum=[hP][c]λ

Energia totale dell'onda in una lunghezza d'onda per unità di larghezza della cresta

La formula dell'Energia totale dell'onda in una lunghezza d'onda per unità di larghezza della cresta è definita come il contenuto energetico di un ciclo d'onda rispetto alla larghezza della sua cresta.

TE=ρ[g]H2λ8

Energia dell'onda totale data l'Energia cinetica e l'Energia potenziale

La formula dell'Energia totale dell'onda data dall'Energia cinetica e dall'Energia potenziale è definita come il trasporto e la cattura di Energia da parte delle onde superficiali dell'oceano e l'Energia catturata viene quindi utilizzata per tutti i diversi tipi di lavoro utile, tra cui la generazione di elettricità, la desalinizzazione dell'acqua e il pompaggio dell'acqua. .

TE=KE+PE

Energia cinetica data l'Energia dell'onda totale

L'Energia cinetica data dall'Energia totale delle onde è definita come la teoria lineare secondo cui parte dell'Energia totale è dovuta alla velocità delle particelle d'acqua associate al movimento delle onde.

KE=TE-PE

Energia potenziale data l'Energia dell'onda totale

La formula dell'Energia potenziale data dall'Energia totale dell'onda è definita come lo spostamento dell'acqua dalla sua posizione di equilibrio, tipicamente proporzionale al quadrato dell'ampiezza dell'onda e influenzato da fattori quali l'accelerazione gravitazionale e la densità dell'acqua.

PE=TE-KE

Energia specifica o densità di Energia data la lunghezza d'onda e l'Energia dell'onda

L'Energia specifica o densità di Energia data la formula Lunghezza d'onda ed Energia dell'onda è definita come l'Energia media totale dell'onda per unità di superficie.

U=TEλ

Energia specifica o densità di Energia data l'altezza dell'onda

La formula dell'Energia specifica o densità di Energia data l'altezza dell'onda è definita come l'Energia media totale delle onde per unità di superficie.

U=ρ[g]H28

Energia totale delle onde per la potenza delle onde delle acque profonde

La formula Total Wave Energy for Wave Power of Deepwater è definita come la somma dei componenti di Energia cinetica e potenziale, che rappresentano l'Energia complessiva trasmessa dalle onde per unità di tempo e lunghezza di cresta unitaria in profondità dell'acqua superiori alla metà della lunghezza d'onda.

E=Pd0.5Co

Energia dell'onda totale data la potenza dell'onda per acque poco profonde

La formula Energia totale delle onde data dalla potenza delle onde per acque poco profonde è definita come la somma dei componenti di Energia cinetica e potenziale, che rappresentano l'Energia complessiva trasmessa dalle onde per unità di tempo e lunghezza di cresta unitaria in profondità dell'acqua superiori alla metà della lunghezza d'onda.

E=PsCs

Energia delle onde per potenza per unità di lunghezza della cresta

La formula Energia dell'onda per potenza per unità di lunghezza della cresta è definita come la quantità di Energia che può essere sfruttata dalle onde dell'oceano lungo una lunghezza specifica di costa o cresta di struttura. Nell’ingegneria costiera, questa metrica è fondamentale per valutare il potenziale dei sistemi di conversione dell’Energia del moto ondoso per generare elettricità rinnovabile.

E=PCG

Energia totale del sistema

L'Energia totale della formula del sistema è definita come somma di Energia cinetica, Energia potenziale ed Energia interna. Gli oggetti con Energia totale inferiore a zero sono vincolati; quelli con zero o maggiore sono illimitati.

Esystem=PE+KE+U

Energia potenziale elastica della molla

L'Energia potenziale elastica della molla definita come Energia immagazzinata come risultato dell'applicazione di una forza per deformare un oggetto elastico. L'Energia viene immagazzinata fino a quando la forza non viene rimossa.

U=12kx2

Energia libera di Gibbs data la superficie

La formula di Gibbs Free Energy Given Surface Area è definita come l'Energia libera di Gibbs di una superficie curva che è direttamente proporzionale all'area della superficie.

G=γA

Energia di attivazione data la pendenza della linea tra LnK e temperatura inversa

L'Energia di attivazione data la pendenza della linea tra LnK e temperatura inversa è definita come quando l'Lnk (costante di velocità) è tracciata rispetto all'inverso della temperatura (kelvin), la pendenza è una linea retta.

Ea=-(mslope[R])

Energia di attivazione data la pendenza della linea tra Log K e Temp Inverse

L'Energia di attivazione data la pendenza della linea tra Log K e Temp Inverse ha definito che il grafico tra LogK e 1/T è una linea retta. Il grafico tra Log K vs 1/T darà pendenza −Ea/2.303R.

Ea=-2.303[R]m

Energia meccanica totale

L'Energia meccanica totale è la somma dell'Energia cinetica e dell'Energia potenziale.

ξ=KE+PE

Energia di attivazione utilizzando la costante di frequenza a due diverse temperature

La formula dell'Energia di attivazione utilizzando la costante di velocità a due temperature diverse è definita come l'Energia minima richiesta per far sì che una stessa reazione avvenga a due temperature diverse.

Ea2=[R]ln(K2K1)T1T2T2-T1

Energia di attivazione utilizzando la velocità di reazione a due diverse temperature

La formula dell'Energia di attivazione utilizzando la velocità di reazione a due diverse temperature è definita come l'Energia minima richiesta per far sì che una stessa reazione avvenga a due diverse temperature, considerando le rispettive velocità di reazione.

Ea1=[R]ln(r2r1)T1T2T2-T1

Energia di ogni Quanta

L'Energia di ogni formula Quanta è definita come il prodotto della costante di Planck e della frequenza.

Eq=[hP]ν

Energia interna del sistema monoatomico

La formula dell'Energia interna del sistema monoatomico in equilibrio termico è che ogni grado di libertà ha un'Energia media di 3kT/2, dove T è la temperatura assoluta e k è la costante di Boltzmann.

Upoly=32[BoltZ]Tu

Energia interna del sistema biatomico

La formula dell'Energia interna del sistema biatomico in equilibrio termico è che ogni grado di libertà ha un'Energia media di 5kT/2, dove T è la temperatura assoluta e k è la costante di Boltzmann.

Upoly=52[BoltZ]Tu

Energia interna del sistema non lineare triatomico

L'Energia interna del sistema triatomico non lineare nell'equilibrio termico è che ogni grado di libertà ha un'Energia media di 6kT/2, dove T è la temperatura assoluta e k è la costante di Boltzmann.

Upoly=62[BoltZ]Tu

Energia interna del sistema lineare triatomico

L'Energia interna del sistema lineare triatomico in equilibrio termico è che ogni grado di libertà ha un'Energia media di 7kT/2, dove T è la temperatura assoluta e k è la costante di Boltzmann.

Upoly=72[BoltZ]Tu

Energia richiesta per frantumare materiali grossolani secondo la legge di Bond

L'Energia richiesta per frantumare i materiali grossolani secondo la legge di Bond calcola l'Energia necessaria per frantumare le materie prime in modo tale che l'80% del prodotto passi attraverso un'apertura del setaccio del diametro del prodotto.

E=Wi((100d2)0.5-(100d1)0.5)

Energia cinetica data la velocità angolare

La formula dell'Energia cinetica data la velocità angolare è definita come la somma dell'Energia cinetica per ciascuna massa. La velocità lineare(v) è il raggio(r) moltiplicato per la velocità angolare (ω). Quindi la formula dell'Energia cinetica può essere modificata sostituendo v con r*ω. Quindi otteniamo l'Energia cinetica totale in termini di velocità angolare(ω).

KE1=((m1(R12))+(m2(R22)))ω22

Energia cinetica data inerzia e velocità angolare

La formula dell'Energia cinetica data l'inerzia e la velocità angolare è definita come l'Energia cinetica dovuta alla rotazione di un oggetto e fa parte della sua Energia cinetica totale. L'Energia cinetica di rotazione è direttamente proporzionale all'inerzia rotazionale e al quadrato dell'ampiezza della velocità angolare. L'Energia cinetica di un oggetto rotante può essere espressa come metà del prodotto della velocità angolare dell'oggetto e del momento di inerzia attorno all'asse di rotazione.

KE2=Iω22

Energia richiesta dal forno per fondere l'acciaio

L'Energia richiesta dalla fornace per fondere l'acciaio è definita come il prodotto della massa, del calore specifico, della differenza di temperatura con l'aggiunta del prodotto della massa e del calore latente.

E=(mSheat(T2-T1))+(mLheat)

Energia di attivazione per reazioni di ordine zero

La formula Energia di attivazione per reazioni di ordine zero è definita come il prodotto della costante universale del gas con la temperatura della reazione e la differenza del logaritmo naturale del fattore di frequenza e della costante di velocità. L'Energia di attivazione è la quantità minima di Energia necessaria per attivare atomi o molecole in una condizione in cui possono subire una trasformazione chimica.

Ea=[R]Tgas(ln(A)-ln(k))

Energia di Attivazione per la Reazione del Primo Ordine

L'Energia di attivazione per la formula di reazione del primo ordine è definita come la moltiplicazione della costante universale dei gas con la temperatura e con il rapporto tra il logaritmo naturale del fattore di frequenza e la costante di velocità. La quantità minima di Energia necessaria per attivare atomi o molecole in una condizione in cui possono subire una trasformazione chimica.

Ea=[R]Tgas(ln(Akfirst))

Energia di attivazione per la reazione del secondo ordine

La formula Energia di attivazione per reazione del secondo ordine è definita come la moltiplicazione della costante universale dei gas con la temperatura e con la differenza dei logaritmi naturali del fattore di frequenza e della costante di velocità. La quantità minima di Energia necessaria per attivare atomi o molecole in una condizione in cui possono subire una trasformazione chimica è chiamata Energia di attivazione.

Ea=[R]TKinetics(ln(Afactor)-ln(Ksecond))

Energia libera di Gibbs di gas ideale utilizzando il modello di miscela di gas ideale nel sistema binario

L'Energia libera di Gibbs del gas ideale che utilizza la formula del modello di miscela di gas ideale nella formula del sistema binario è definita come la funzione dell'Energia di Gibbs del gas ideale di entrambi i componenti e della frazione molare di entrambi i componenti in fase vapore nel sistema binario.

Gig=modu̲s((y1G1ig+y2G2ig)+[R]T(y1ln(y1)+y2ln(y2)))

Come trovare Formule?

Ecco alcuni suggerimenti per risultati di ricerca migliori.
Sii specifico: più specifica è la tua query, migliori saranno i tuoi risultati.
Utilizza più parole chiave: combina più parole chiave parole chiave per restringere i risultati.
Sperimenta con i sinonimi: termini diversi possono produrre risultati diversi.
Ricerca con caratteri jolly: utilizza l'operatore * (asterisco). NOTA che questo operatore funziona solo alla fine di una parola. Esempio: Bio*, Area*, ecc.

In alternativa, puoi navigare tra le sottocategorie all'interno di per individuare le Formule di interesse.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!