Cerca Formule

Inserisci un minimo di 3 caratteri per iniziare con la ricerca delle formule .

Seleziona Filtra

Restringi i risultati della ricerca con l'aiuto di questi filtri.

50 Formule corrispondenti trovate!

Energia di deformazione data il carico di tensione applicato

La formula dell'Energia di deformazione data dal carico di tensione applicato è definita come la misura della metà del rapporto tra il prodotto della lunghezza e del carico di tensione al quadrato e il prodotto dell'area dell'elemento e del modulo di Young.

U=W2L2ABaseE

Energia immagazzinata nell'induttore

La formula dell'Energia immagazzinata nell'induttore è definita come il campo magnetico che circonda un induttore e immagazzina Energia mentre la corrente scorre attraverso il campo. L'Energia viene immagazzinata sotto forma di campo magnetico. Se riduciamo lentamente la quantità di corrente, il campo magnetico inizia a collassare e rilascia l'Energia e l'induttore diventa una fonte di corrente.

Uinductor=0.5Lip2

Energia della corrente RMS

La formula dell'Energia della corrente efficace è definita come il prodotto del quadrato della corrente efficace, la resistenza del circuito e il tempo del flusso di corrente. L'unità SI è Joule.

Erms=ip2Rt

Energia dell'elettrone in orbita ellittica

L'Energia dell'elettrone nell'orbita ellittica è definita come l'Energia consumata da una particella/elettrone per muoversi in un'orbita ellittica.

Eeo=(-(Z2)[Mass-e]([Charge-e]4)8([Permitivity-vacuum]2)([hP]2)(nquantum2))

Energia totale dell'elettrone nell'ennesima orbita

L'Energia totale dell'elettrone nell'ennesima orbita è definita come la somma dell'Energia cinetica e dell'Energia potenziale consumata da una particella in movimento quando si sposta da un punto a un altro.

EeV_orbital=(-[Mass-e]([Charge-e]4)(Z2)8([Permitivity-vacuum]2)(nquantum2)([hP]2))

Energia delle transizioni rotazionali tra livelli rotazionali

La formula Energia delle transizioni rotazionali tra livelli rotazionali è definita come l'Energia della radiazione assorbita per subire una transizione energetica quando una molecola viene irradiata con fotoni di luce. Per una molecola biatomica, la differenza di Energia tra i livelli rotazionali (da J a J 1) è l'Energia delle transizioni rotazionali.

ERL=2B(J+1)

Energia interna di un gas perfetto a una data temperatura

L'Energia interna del gas perfetto a una data formula di temperatura è definita come il prodotto del calore specifico a volume e temperatura costanti.

U=CvT

Energia di taglio specifica nella lavorazione

L'Energia di taglio specifica nella lavorazione è l'Energia consumata per rimuovere un volume unitario di materiale, che viene calcolata come il rapporto tra l'Energia di taglio E e il volume di rimozione del materiale V.

ps=PmZw

Energia totale di ioni nel reticolo

L'Energia totale dello ione nel reticolo è la somma dell'Energia di Madelung e dell'Energia potenziale repulsiva.

Etotal=EM+ER

Energia totale di ioni date cariche e distanze

L'Energia totale dello ione date le cariche e le distanze nel reticolo è la somma dell'Energia di Madelung e dell'Energia potenziale repulsiva.

Etotal=(-(q2)([Charge-e]2)M4π[Permitivity-vacuum]r0)+(Br0nborn)

Energia potenziale minima di ioni

L'Energia potenziale minima dello ione è un mezzo per calcolare l'Energia del reticolo di un composto ionico cristallino.

Emin=(-(q2)([Charge-e]2)M4π[Permitivity-vacuum]r0)+(Br0nborn)

Energia reticolare usando l'equazione di Born-Mayer

L'Energia reticolare utilizzando l'equazione di Born-Mayer è un'equazione utilizzata per calcolare l'Energia reticolare di un composto ionico cristallino. È un perfezionamento dell'equazione di Born-Lande utilizzando un termine di repulsione migliorato.

U=-[Avaga-no]Mz+z-([Charge-e]2)(1-(ρr0))4π[Permitivity-vacuum]r0

Energia molare interna della molecola non lineare

L'Energia molare interna di una molecola non lineare di un sistema termodinamico è l'Energia contenuta al suo interno. È l'Energia necessaria per creare o preparare il sistema in un dato stato interno.

Umolar=((32)[R]T)+((0.5Iy(ωy2))+(0.5Iz(ωz2))+(0.5Ix(ωx2)))+((3N)-6)([R]T)

Energia termica media della molecola di gas poliatomico non lineare

L'Energia termica media della molecola di gas poliatomica non lineare viene prodotta quando un aumento della temperatura fa sì che atomi e molecole si muovano più velocemente e entrino in collisione tra loro.

Qin=((32)[BoltZ]T)+((0.5Iy(ωy2))+(0.5Iz(ωz2)))+((3N)-6)([BoltZ]T)

Energia vibrazionale della molecola lineare

L'Energia vibrazionale della molecola lineare è definita come l'Energia cinetica di un oggetto a causa del suo movimento vibratorio.

Evf=((3N)-5)([BoltZ]T)

Energia vibrazionale della molecola non lineare

L'Energia vibrazionale della molecola non lineare è definita come l'Energia cinetica che un oggetto possiede a causa del suo movimento vibratorio.

Evf=((3N)-6)([BoltZ]T)

Energia di deformazione immagazzinata in primavera

La formula dell'Energia di deformazione immagazzinata nella molla è definita come l'Energia immagazzinata in una molla quando viene compressa o allungata, che è una misura del lavoro svolto per deformare la molla ed è un parametro fondamentale per comprendere il comportamento delle molle sottoposte a vari carichi.

Uh=.5Pδ

Energia media erogata per scintilla

La formula Energia media erogata per scintilla è definita come la potenza media contenuta in ciascuna scintilla in una lavorazione non convenzionale che utilizza la tecnica EDM.

Pavg=Vav2𝜏avRavτp(12-exp(-τp𝜏av)+0.5exp(-2τp𝜏av))

Energia cinetica del getto al secondo

L'Energia cinetica del getto al secondo è una proprietà di un oggetto o particella in movimento e dipende non solo dal suo movimento ma anche dalla sua massa.

KE=AJetvjet32

Energia potenziale per unità Lunghezza della cresta d'onda

La formula dell'Energia potenziale per unità di lunghezza della cresta d'onda è definita come l'Energia potenziale immagazzinata in un'onda a causa dell'elevazione della superficie dell'acqua al di sopra del livello medio del mare. È una misura dell’Energia disponibile nell’onda che può essere utilizzata per varie applicazioni di ingegneria costiera e oceanica, come la generazione di Energia del moto ondoso e la protezione delle coste.

PE=(116)ρ[g]H2λ

Energia cinetica per unità Lunghezza della cresta d'onda

La formula dell'Energia cinetica per unità di lunghezza della cresta d'onda è definita come la quantità di Energia cinetica associata ad un'unità di lunghezza di un fronte d'onda, perpendicolare alla direzione di propagazione dell'onda. Nell’ingegneria costiera e oceanica, questa metrica è fondamentale per comprendere la dinamica energetica delle onde oceaniche, in particolare quando si valuta l’impatto delle onde sulle strutture costiere e sugli ambienti sotterranei.

KE=(116)ρ[g]H2λ

Energia di attivazione data la pendenza della linea tra LnK e temperatura inversa

L'Energia di attivazione data la pendenza della linea tra LnK e temperatura inversa è definita come quando l'Lnk (costante di velocità) è tracciata rispetto all'inverso della temperatura (kelvin), la pendenza è una linea retta.

Ea=-(mslope[R])

Energia di attivazione data la pendenza della linea tra Log K e Temp Inverse

L'Energia di attivazione data la pendenza della linea tra Log K e Temp Inverse ha definito che il grafico tra LogK e 1/T è una linea retta. Il grafico tra Log K vs 1/T darà pendenza −Ea/2.303R.

Ea=-2.303[R]m

Energia meccanica totale

L'Energia meccanica totale è la somma dell'Energia cinetica e dell'Energia potenziale.

ξ=KE+PE

Energia di attivazione utilizzando la costante di frequenza a due diverse temperature

La formula dell'Energia di attivazione utilizzando la costante di velocità a due temperature diverse è definita come l'Energia minima richiesta per far sì che una stessa reazione avvenga a due temperature diverse.

Ea2=[R]ln(K2K1)T1T2T2-T1

Energia di attivazione utilizzando la velocità di reazione a due diverse temperature

La formula dell'Energia di attivazione utilizzando la velocità di reazione a due diverse temperature è definita come l'Energia minima richiesta per far sì che una stessa reazione avvenga a due diverse temperature, considerando le rispettive velocità di reazione.

Ea1=[R]ln(r2r1)T1T2T2-T1

Energia di ogni Quanta

L'Energia di ogni formula Quanta è definita come il prodotto della costante di Planck e della frequenza.

Eq=[hP]ν

Energia cinetica dopo la collisione di veicoli

La formula dell'Energia cinetica dopo una collisione di veicoli è definita come una misura dell'Energia residua in un veicolo dopo una collisione, tenendo conto delle masse dei veicoli coinvolti e della loro Energia cinetica iniziale, fornendo un parametro cruciale nella ricostruzione degli incidenti e nell'analisi della sicurezza.

Kf=(m1m1+m2)Ki

Energia specifica dell'orbita circolare

La formula dell'Energia specifica dell'orbita circolare è definita come l'Energia totale per unità di massa necessaria per mantenere un satellite in un'orbita circolare attorno alla Terra, che è un parametro fondamentale nella progettazione delle missioni spaziali e nella determinazione dell'orbita.

ε=-[GM.Earth]22hc2

Energia specifica dell'orbita circolare dato il raggio orbitale

La formula dell'Energia specifica di un'orbita circolare dato il raggio orbitale è definita come una misura dell'Energia totale per unità di massa necessaria per mantenere un satellite in un'orbita circolare attorno alla Terra, considerando l'attrazione gravitazionale tra il satellite e la Terra.

ε=-[GM.Earth]2r

Energia libera complessiva in eccesso per il corpo cristallino sferico

La formula dell'Energia libera in eccesso complessiva per il corpo cristallino sferico è definita come la differenza di Energia totale tra lo stato iniziale di un sistema (tipicamente una soluzione) e lo stato finale del sistema (un solido cristallino) quando avviene il processo di cristallizzazione.

ΔG=4π(rcrystal2)σ+(4π3)(rcrystal3)ΔGv

Energia di rinculo per la rottura del legame

La formula dell'Energia di rinculo per la rottura del legame è definita come l'Energia richiesta per la rottura del legame in un telaio con centro di massa con velocità di rinculo terminale dei frammenti.

E=(12)μ(v2)

Energia cinetica del rotore

L'Energia cinetica del rotore nella stabilità del sistema di alimentazione è definita come l'Energia proporzionale alla metà del momento di inerzia del rotore e al quadrato della velocità sincrona.

KE=(12)Jωs210-6

Energia dell'elettrone per numero quantico principale

La formula Energia dell'elettrone per numero quantico principale è definita come lo stato di Energia costante in cui gli elettroni esistono nel livello di Energia iniziale o inferiore.

E=nquantum+l

Energia cinetica data il momento angolare

La formula dell'Energia cinetica data il momento angolare è definita come l'Energia immagazzinata nel sistema a causa della sua Energia cinetica rotazionale. Questa Energia è correlata alla velocità angolare e quindi al momento angolare.

KE1=L22I

Energia di rotazione usando la costante di rotazione

L'Energia rotazionale utilizzando la formula della costante rotazionale è definita come Energia di serie di linee nello spettro rotazionale di una molecola biatomica. Le molecole biatomiche sono spesso approssimate come rotori rigidi, il che significa che si presume che la lunghezza del legame sia fissa. Risolvendo l'equazione di Schrödinger per un rotore rigido si ottengono i seguenti livelli di Energia: E = BJ (J 1).

Erot_RC=BJ(J+1)

Energia rotazionale

La formula Energia rotazionale è definita come Energia di serie di linee nello spettro rotazionale di una molecola biatomica. Le molecole biatomiche sono spesso approssimate come rotori rigidi, il che significa che si presume che la lunghezza del legame sia fissa.

Erotational=([h-]2)β2I

Energia vibrazionale utilizzando il numero di onda vibrazionale

L'Energia vibrazionale che utilizza la formula del numero d'onda vibrazionale è definita come l'Energia totale dei rispettivi livelli di rotazione-vibrazione di una molecola biatomica.

Ewn=(v+12)ω'

Energia termica consumata in evaporazione

L'Energia termica utilizzata nella formula di evaporazione è definita come l'Energia utilizzata per trasformare il liquido in vapore, quindi la temperatura non cambia durante questo processo.

He=ρwaterLEL

Energia delle maree

L'Energia delle maree è definita come il rapporto tra il prodotto della densità dell'acqua, la prevalenza, l'area spazzata della pala, la costante 9,81 e il periodo del ciclo delle maree.

Pt=0.5Aρw[g]H2

Energia eolica

La formula dell'Energia eolica è definita come la metà del prodotto dell'area spazzata della pala, qube di velocità del vento, densità dell'aria.

Pwind=0.5ρairAbladeVwind3

Energia interna per il flusso ipersonico

La formula dell'Energia interna per il flusso ipersonico è definita come l'Energia totale di un fluido in movimento a velocità molto elevate, che comprende sia l'Energia cinetica che quella potenziale, il che è fondamentale per comprendere il comportamento dei fluidi nei flussi ipersonici, in particolare nel contesto dei principi fondamentali del flusso viscoso.

U=H+Pρ

Energia disponibile a causa della riduzione della velocità

L'Energia disponibile a causa della riduzione della velocità è la quantità di Energia quando si verifica una riduzione della velocità del treno che viene misurata in kW -hr.

Eo=0.01072Wev2-u2

Energia disponibile durante la rigenerazione

L'Energia disponibile durante la formula di rigenerazione è definita come la quantità di Energia in wattora/tonnellata disponibile quando si verifica una variazione negativa della velocità del treno che significa una variazione del ritardo.

ER=0.01072(WeW)(v2-u2)

Energia di radiazione emessa dal corpo nero nell'intervallo di tempo data la temperatura

La formula dell'Energia di radiazione emessa dal corpo nero in un dato intervallo di tempo a una data temperatura è definita come l'Energia totale emessa da un corpo nero in un dato intervallo di tempo a una temperatura specifica, che è un concetto fondamentale nella termodinamica e nella fisica delle radiazioni, che descrive il processo di emissione di Energia di un assorbitore perfetto idealizzato di radiazione elettromagnetica.

E=[Stefan-BoltZ]T4SATotalΔt

Energia di taglio specifica per unità di forza di taglio dalla temperatura dell'utensile

L'Energia di taglio specifica per unità di forza di taglio dalla formula della temperatura dell'utensile è definita come l'Energia di taglio specifica per unità di forza di taglio richiesta per eseguire l'operazione di taglio in determinate condizioni.

Us=θc0.56k0.44C0V0.44A0.22

Energia cinetica di una molecola di gas data la costante di Boltzmann

L'Energia cinetica di una molecola di gas data la formula della costante di Boltzmann è definita come il prodotto della temperatura di un particolare gas per la costante di Boltzmann.

KE=(32)[BoltZ]Tg

Energia totale del sistema

L'Energia totale della formula del sistema è definita come somma di Energia cinetica, Energia potenziale ed Energia interna. Gli oggetti con Energia totale inferiore a zero sono vincolati; quelli con zero o maggiore sono illimitati.

Esystem=PE+KE+U

Energia potenziale elastica della molla

L'Energia potenziale elastica della molla definita come Energia immagazzinata come risultato dell'applicazione di una forza per deformare un oggetto elastico. L'Energia viene immagazzinata fino a quando la forza non viene rimossa.

U=12kx2

Energia interna del gas ideale usando la legge dell'Energia di equipartizione

L'Energia interna del gas ideale utilizzando la formula della legge di equipartizione dell'Energia è definita come la divisione uguale dell'Energia di un sistema in equilibrio termico tra diversi gradi di libertà.

UEP=(F2)Nmoles[R]Tg

Come trovare Formule?

Ecco alcuni suggerimenti per risultati di ricerca migliori.
Sii specifico: più specifica è la tua query, migliori saranno i tuoi risultati.
Utilizza più parole chiave: combina più parole chiave parole chiave per restringere i risultati.
Sperimenta con i sinonimi: termini diversi possono produrre risultati diversi.
Ricerca con caratteri jolly: utilizza l'operatore * (asterisco). NOTA che questo operatore funziona solo alla fine di una parola. Esempio: Bio*, Area*, ecc.

In alternativa, puoi navigare tra le sottocategorie all'interno di per individuare le Formule di interesse.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!