Fx प्रतिलिपि
LaTeX प्रतिलिपि
हाइपरबोला की विलक्षणता हाइपरबोला पर फोकस और डायरेक्ट्रिक्स से किसी भी बिंदु की दूरी का अनुपात है, या यह हाइपरबोला के रैखिक सनकी और अर्ध अनुप्रस्थ अक्ष का अनुपात है। FAQs जांचें
e=cc2-b2
e - हाइपरबोला की विलक्षणता?c - हाइपरबोला की रैखिक विलक्षणता?b - हाइपरबोला का अर्ध संयुग्म अक्ष?

हाइपरबोला की उत्केन्द्रता दी गई रेखीय उत्केन्द्रता और अर्ध संयुग्मी अक्ष उदाहरण

मूल्यों के साथ
इकाइयों के साथ
केवल उदाहरण

हाइपरबोला की उत्केन्द्रता दी गई रेखीय उत्केन्द्रता और अर्ध संयुग्मी अक्ष समीकरण मूल्यों के साथ जैसा दिखता है।

हाइपरबोला की उत्केन्द्रता दी गई रेखीय उत्केन्द्रता और अर्ध संयुग्मी अक्ष समीकरण इकाइयों के साथ जैसा दिखता है।

हाइपरबोला की उत्केन्द्रता दी गई रेखीय उत्केन्द्रता और अर्ध संयुग्मी अक्ष समीकरण जैसा दिखता है।

2.6Edit=13Edit13Edit2-12Edit2
प्रतिलिपि
रीसेट
शेयर करना

हाइपरबोला की उत्केन्द्रता दी गई रेखीय उत्केन्द्रता और अर्ध संयुग्मी अक्ष समाधान

हाइपरबोला की उत्केन्द्रता दी गई रेखीय उत्केन्द्रता और अर्ध संयुग्मी अक्ष की गणना कैसे करें, इसके लिए हमारे चरण-दर-चरण समाधान का पालन करें।

पहला कदम सूत्र पर विचार करें
e=cc2-b2
अगला कदम चरों के प्रतिस्थापन मान
e=13m13m2-12m2
अगला कदम मूल्यांकन के लिए तैयार रहें
e=13132-122
अंतिम चरण मूल्यांकन करना
e=2.6m

हाइपरबोला की उत्केन्द्रता दी गई रेखीय उत्केन्द्रता और अर्ध संयुग्मी अक्ष FORMULA तत्वों

चर
कार्य
हाइपरबोला की विलक्षणता
हाइपरबोला की विलक्षणता हाइपरबोला पर फोकस और डायरेक्ट्रिक्स से किसी भी बिंदु की दूरी का अनुपात है, या यह हाइपरबोला के रैखिक सनकी और अर्ध अनुप्रस्थ अक्ष का अनुपात है।
प्रतीक: e
माप: लंबाईइकाई: m
टिप्पणी: मान 1 से अधिक होना चाहिए.
हाइपरबोला की रैखिक विलक्षणता
हाइपरबोला की रैखिक उत्केंद्रता हाइपरबोला के फॉसी के बीच की दूरी का आधा है।
प्रतीक: c
माप: लंबाईइकाई: m
टिप्पणी: मान 0 से अधिक होना चाहिए.
हाइपरबोला का अर्ध संयुग्म अक्ष
हाइपरबोला का सेमी कंजुगेट एक्सिस हाइपरबोला और जीवा के किसी भी कोने से फॉसी से गुजरने वाले वृत्त और हाइपरबोला के केंद्र में केंद्रित स्पर्शरेखा का आधा होता है।
प्रतीक: b
माप: लंबाईइकाई: m
टिप्पणी: मान 0 से अधिक होना चाहिए.
sqrt
वर्गमूल फ़ंक्शन एक ऐसा फ़ंक्शन है जो एक गैर-ऋणात्मक संख्या को इनपुट के रूप में लेता है और दी गई इनपुट संख्या का वर्गमूल लौटाता है।
वाक्य - विन्यास: sqrt(Number)

हाइपरबोला की विलक्षणता खोजने के लिए अन्य सूत्र

​जाना हाइपरबोला की विलक्षणता
e=1+b2a2
​जाना रैखिक उत्केन्द्रता और अर्द्ध अनुप्रस्थ अक्ष दिए गए अतिपरवलय की उत्केन्द्रता
e=ca
​जाना लैटस रेक्टम और सेमी ट्रांसवर्स एक्सिस दिए गए हाइपरबोला की विलक्षणता
e=1+L2a
​जाना लैटस रेक्टम और सेमी कॉन्जुगेट एक्सिस दिए गए हाइपरबोला की विलक्षणता
e=1+(L)2(2b)2

हाइपरबोला की उत्केन्द्रता दी गई रेखीय उत्केन्द्रता और अर्ध संयुग्मी अक्ष का मूल्यांकन कैसे करें?

हाइपरबोला की उत्केन्द्रता दी गई रेखीय उत्केन्द्रता और अर्ध संयुग्मी अक्ष मूल्यांकनकर्ता हाइपरबोला की विलक्षणता, दी गई रेखीय उत्केन्द्रता और अर्ध संयुग्म अक्ष सूत्र हाइपरबोला की उत्केंद्रता को फोकस और नियता से अतिपरवलय पर किसी भी बिंदु की दूरी के अनुपात के रूप में परिभाषित किया जाता है, और इसकी गणना हाइपरबोला के रैखिक उत्केन्द्रता और अर्ध संयुग्म अक्ष का उपयोग करके की जाती है। का मूल्यांकन करने के लिए Eccentricity of Hyperbola = हाइपरबोला की रैखिक विलक्षणता/sqrt(हाइपरबोला की रैखिक विलक्षणता^2-हाइपरबोला का अर्ध संयुग्म अक्ष^2) का उपयोग करता है। हाइपरबोला की विलक्षणता को e प्रतीक द्वारा दर्शाया जाता है।

इस ऑनलाइन मूल्यांकनकर्ता का उपयोग करके हाइपरबोला की उत्केन्द्रता दी गई रेखीय उत्केन्द्रता और अर्ध संयुग्मी अक्ष का मूल्यांकन कैसे करें? हाइपरबोला की उत्केन्द्रता दी गई रेखीय उत्केन्द्रता और अर्ध संयुग्मी अक्ष के लिए इस ऑनलाइन मूल्यांकनकर्ता का उपयोग करने के लिए, हाइपरबोला की रैखिक विलक्षणता (c) & हाइपरबोला का अर्ध संयुग्म अक्ष (b) दर्ज करें और गणना बटन दबाएं।

FAQs पर हाइपरबोला की उत्केन्द्रता दी गई रेखीय उत्केन्द्रता और अर्ध संयुग्मी अक्ष

हाइपरबोला की उत्केन्द्रता दी गई रेखीय उत्केन्द्रता और अर्ध संयुग्मी अक्ष ज्ञात करने का सूत्र क्या है?
हाइपरबोला की उत्केन्द्रता दी गई रेखीय उत्केन्द्रता और अर्ध संयुग्मी अक्ष का सूत्र Eccentricity of Hyperbola = हाइपरबोला की रैखिक विलक्षणता/sqrt(हाइपरबोला की रैखिक विलक्षणता^2-हाइपरबोला का अर्ध संयुग्म अक्ष^2) के रूप में व्यक्त किया जाता है। यहाँ एक उदाहरण दिया गया है- 2.6 = 13/sqrt(13^2-12^2).
हाइपरबोला की उत्केन्द्रता दी गई रेखीय उत्केन्द्रता और अर्ध संयुग्मी अक्ष की गणना कैसे करें?
हाइपरबोला की रैखिक विलक्षणता (c) & हाइपरबोला का अर्ध संयुग्म अक्ष (b) के साथ हम हाइपरबोला की उत्केन्द्रता दी गई रेखीय उत्केन्द्रता और अर्ध संयुग्मी अक्ष को सूत्र - Eccentricity of Hyperbola = हाइपरबोला की रैखिक विलक्षणता/sqrt(हाइपरबोला की रैखिक विलक्षणता^2-हाइपरबोला का अर्ध संयुग्म अक्ष^2) का उपयोग करके पा सकते हैं। यह सूत्र वर्गमूल (sqrt) फ़ंक्शन का भी उपयोग करता है.
हाइपरबोला की विलक्षणता की गणना करने के अन्य तरीके क्या हैं?
हाइपरबोला की विलक्षणता-
  • Eccentricity of Hyperbola=sqrt(1+(Semi Conjugate Axis of Hyperbola^2)/(Semi Transverse Axis of Hyperbola^2))OpenImg
  • Eccentricity of Hyperbola=Linear Eccentricity of Hyperbola/Semi Transverse Axis of HyperbolaOpenImg
  • Eccentricity of Hyperbola=sqrt(1+Latus Rectum of Hyperbola/(2*Semi Transverse Axis of Hyperbola))OpenImg
की गणना करने के विभिन्न तरीके यहां दिए गए हैं
क्या हाइपरबोला की उत्केन्द्रता दी गई रेखीय उत्केन्द्रता और अर्ध संयुग्मी अक्ष ऋणात्मक हो सकता है?
{हां या नहीं}, लंबाई में मापा गया हाइपरबोला की उत्केन्द्रता दी गई रेखीय उत्केन्द्रता और अर्ध संयुग्मी अक्ष ऋणात्मक {हो सकता है या नहीं हो सकता}।
हाइपरबोला की उत्केन्द्रता दी गई रेखीय उत्केन्द्रता और अर्ध संयुग्मी अक्ष को मापने के लिए किस इकाई का उपयोग किया जाता है?
हाइपरबोला की उत्केन्द्रता दी गई रेखीय उत्केन्द्रता और अर्ध संयुग्मी अक्ष को आम तौर पर लंबाई के लिए मीटर[m] का उपयोग करके मापा जाता है। मिलीमीटर[m], किलोमीटर[m], मिटर का दशमांश[m] कुछ अन्य इकाइयाँ हैं जिनमें हाइपरबोला की उत्केन्द्रता दी गई रेखीय उत्केन्द्रता और अर्ध संयुग्मी अक्ष को मापा जा सकता है।
Copied!