Fx प्रतिलिपि
LaTeX प्रतिलिपि
समद्विबाहु समकोण त्रिभुज के टांगों पर माध्यिका एक रेखाखंड है जो टांग के मध्य बिंदु को उसके विपरीत शीर्ष से मिलाता है। FAQs जांचें
MLegs=5(2+2)ri 2
MLegs - समद्विबाहु समकोण त्रिभुज के टांगों पर माध्यिका?ri - समद्विबाहु समकोण त्रिभुज की अंतःत्रिज्या?

समद्विबाहु समकोण त्रिभुज के पादों पर माध्यिका रेखा को अंतःत्रिज्या दिया गया है उदाहरण

मूल्यों के साथ
इकाइयों के साथ
केवल उदाहरण

समद्विबाहु समकोण त्रिभुज के पादों पर माध्यिका रेखा को अंतःत्रिज्या दिया गया है समीकरण मूल्यों के साथ जैसा दिखता है।

समद्विबाहु समकोण त्रिभुज के पादों पर माध्यिका रेखा को अंतःत्रिज्या दिया गया है समीकरण इकाइयों के साथ जैसा दिखता है।

समद्विबाहु समकोण त्रिभुज के पादों पर माध्यिका रेखा को अंतःत्रिज्या दिया गया है समीकरण जैसा दिखता है।

7.6344Edit=5(2+2)2Edit2
प्रतिलिपि
रीसेट
शेयर करना

समद्विबाहु समकोण त्रिभुज के पादों पर माध्यिका रेखा को अंतःत्रिज्या दिया गया है समाधान

समद्विबाहु समकोण त्रिभुज के पादों पर माध्यिका रेखा को अंतःत्रिज्या दिया गया है की गणना कैसे करें, इसके लिए हमारे चरण-दर-चरण समाधान का पालन करें।

पहला कदम सूत्र पर विचार करें
MLegs=5(2+2)ri 2
अगला कदम चरों के प्रतिस्थापन मान
MLegs=5(2+2)2m2
अगला कदम मूल्यांकन के लिए तैयार रहें
MLegs=5(2+2)22
अगला कदम मूल्यांकन करना
MLegs=7.63441361516796m
अंतिम चरण उत्तर को गोल करना
MLegs=7.6344m

समद्विबाहु समकोण त्रिभुज के पादों पर माध्यिका रेखा को अंतःत्रिज्या दिया गया है FORMULA तत्वों

चर
कार्य
समद्विबाहु समकोण त्रिभुज के टांगों पर माध्यिका
समद्विबाहु समकोण त्रिभुज के टांगों पर माध्यिका एक रेखाखंड है जो टांग के मध्य बिंदु को उसके विपरीत शीर्ष से मिलाता है।
प्रतीक: MLegs
माप: लंबाईइकाई: m
टिप्पणी: मान 0 से अधिक होना चाहिए.
समद्विबाहु समकोण त्रिभुज की अंतःत्रिज्या
समद्विबाहु समकोण त्रिभुज की अंतःत्रिज्या को समद्विबाहु समकोण त्रिभुज के अंदर खुदे हुए वृत्त की त्रिज्या के रूप में परिभाषित किया गया है।
प्रतीक: ri
माप: लंबाईइकाई: m
टिप्पणी: मान 0 से अधिक होना चाहिए.
sqrt
वर्गमूल फ़ंक्शन एक ऐसा फ़ंक्शन है जो एक गैर-ऋणात्मक संख्या को इनपुट के रूप में लेता है और दी गई इनपुट संख्या का वर्गमूल लौटाता है।
वाक्य - विन्यास: sqrt(Number)

समद्विबाहु समकोण त्रिभुज के टांगों पर माध्यिका खोजने के लिए अन्य सूत्र

​जाना समद्विबाहु समकोण त्रिभुज के पादों पर मध्य रेखा
MLegs=5SLegs2
​जाना कर्ण दिए गए समद्विबाहु समकोण त्रिभुज के पादों पर माध्यिका रेखा
MLegs=52H2
​जाना परिधि दी गई समद्विबाहु समकोण त्रिभुज के पादों पर माध्यिका रेखा
MLegs=125P2+2
​जाना दिए गए क्षेत्र में समद्विबाहु समकोण त्रिभुज के पादों पर माध्यिका रेखा
MLegs=10A2

समद्विबाहु समकोण त्रिभुज की माध्यिका रेखा श्रेणी में अन्य सूत्र

​जाना समद्विबाहु समकोण त्रिभुज के कर्ण पर मध्य रेखा
MHypotenuse=SLegs2
​जाना कर्ण दिए गए समद्विबाहु समकोण त्रिभुज के कर्ण पर मध्य रेखा
MHypotenuse=H2
​जाना परिधि दी गई समद्विबाहु समकोण त्रिभुज के कर्ण पर माध्यिका रेखा
MHypotenuse=122P2+2
​जाना दिए गए क्षेत्र समद्विबाहु समकोण त्रिभुज के कर्ण पर माध्यिका रेखा
MHypotenuse=A

समद्विबाहु समकोण त्रिभुज के पादों पर माध्यिका रेखा को अंतःत्रिज्या दिया गया है का मूल्यांकन कैसे करें?

समद्विबाहु समकोण त्रिभुज के पादों पर माध्यिका रेखा को अंतःत्रिज्या दिया गया है मूल्यांकनकर्ता समद्विबाहु समकोण त्रिभुज के टांगों पर माध्यिका, दिए गए समद्विबाहु समकोण त्रिभुज के पैरों पर माध्यिका रेखा इनरेडियस सूत्र कर्ण और आसन्न पैरों सहित गठित शीर्ष से माध्यिका की गणना करता है, इस प्रकार इसे द्विभाजित करते हुए, इसके अंतःत्रिज्या का उपयोग करके गणना की जाती है। का मूल्यांकन करने के लिए Median on Legs of Isosceles Right Triangle = sqrt(5)*(2+sqrt(2))*समद्विबाहु समकोण त्रिभुज की अंतःत्रिज्या/2 का उपयोग करता है। समद्विबाहु समकोण त्रिभुज के टांगों पर माध्यिका को MLegs प्रतीक द्वारा दर्शाया जाता है।

इस ऑनलाइन मूल्यांकनकर्ता का उपयोग करके समद्विबाहु समकोण त्रिभुज के पादों पर माध्यिका रेखा को अंतःत्रिज्या दिया गया है का मूल्यांकन कैसे करें? समद्विबाहु समकोण त्रिभुज के पादों पर माध्यिका रेखा को अंतःत्रिज्या दिया गया है के लिए इस ऑनलाइन मूल्यांकनकर्ता का उपयोग करने के लिए, समद्विबाहु समकोण त्रिभुज की अंतःत्रिज्या (ri ) दर्ज करें और गणना बटन दबाएं।

FAQs पर समद्विबाहु समकोण त्रिभुज के पादों पर माध्यिका रेखा को अंतःत्रिज्या दिया गया है

समद्विबाहु समकोण त्रिभुज के पादों पर माध्यिका रेखा को अंतःत्रिज्या दिया गया है ज्ञात करने का सूत्र क्या है?
समद्विबाहु समकोण त्रिभुज के पादों पर माध्यिका रेखा को अंतःत्रिज्या दिया गया है का सूत्र Median on Legs of Isosceles Right Triangle = sqrt(5)*(2+sqrt(2))*समद्विबाहु समकोण त्रिभुज की अंतःत्रिज्या/2 के रूप में व्यक्त किया जाता है। यहाँ एक उदाहरण दिया गया है- 7.634414 = sqrt(5)*(2+sqrt(2))*2/2.
समद्विबाहु समकोण त्रिभुज के पादों पर माध्यिका रेखा को अंतःत्रिज्या दिया गया है की गणना कैसे करें?
समद्विबाहु समकोण त्रिभुज की अंतःत्रिज्या (ri ) के साथ हम समद्विबाहु समकोण त्रिभुज के पादों पर माध्यिका रेखा को अंतःत्रिज्या दिया गया है को सूत्र - Median on Legs of Isosceles Right Triangle = sqrt(5)*(2+sqrt(2))*समद्विबाहु समकोण त्रिभुज की अंतःत्रिज्या/2 का उपयोग करके पा सकते हैं। यह सूत्र वर्गमूल (sqrt) फ़ंक्शन का भी उपयोग करता है.
समद्विबाहु समकोण त्रिभुज के टांगों पर माध्यिका की गणना करने के अन्य तरीके क्या हैं?
समद्विबाहु समकोण त्रिभुज के टांगों पर माध्यिका-
  • Median on Legs of Isosceles Right Triangle=(sqrt(5)*Legs of Isosceles Right Triangle)/2OpenImg
  • Median on Legs of Isosceles Right Triangle=sqrt(5/2)*Hypotenuse of Isosceles Right Triangle/2OpenImg
  • Median on Legs of Isosceles Right Triangle=1/2*sqrt(5)*Perimeter of Isosceles Right Triangle/(2+sqrt(2))OpenImg
की गणना करने के विभिन्न तरीके यहां दिए गए हैं
क्या समद्विबाहु समकोण त्रिभुज के पादों पर माध्यिका रेखा को अंतःत्रिज्या दिया गया है ऋणात्मक हो सकता है?
{हां या नहीं}, लंबाई में मापा गया समद्विबाहु समकोण त्रिभुज के पादों पर माध्यिका रेखा को अंतःत्रिज्या दिया गया है ऋणात्मक {हो सकता है या नहीं हो सकता}।
समद्विबाहु समकोण त्रिभुज के पादों पर माध्यिका रेखा को अंतःत्रिज्या दिया गया है को मापने के लिए किस इकाई का उपयोग किया जाता है?
समद्विबाहु समकोण त्रिभुज के पादों पर माध्यिका रेखा को अंतःत्रिज्या दिया गया है को आम तौर पर लंबाई के लिए मीटर[m] का उपयोग करके मापा जाता है। मिलीमीटर[m], किलोमीटर[m], मिटर का दशमांश[m] कुछ अन्य इकाइयाँ हैं जिनमें समद्विबाहु समकोण त्रिभुज के पादों पर माध्यिका रेखा को अंतःत्रिज्या दिया गया है को मापा जा सकता है।
Copied!