लोचदार बकलिंग से इनलास्टिक के बीच पतलापन अनुपात फॉर्मूला

Fx प्रतिलिपि
LaTeX प्रतिलिपि
पतलापन अनुपात एक स्तंभ की लंबाई और उसके क्रॉस सेक्शन के घुमाव की न्यूनतम त्रिज्या का अनुपात है। FAQs जांचें
λ=2(π2)EsFy
λ - पतलापन अनुपात?Es - स्टील की लोच का मापांक?Fy - स्टील का न्यूनतम निर्दिष्ट उपज तनाव?π - आर्किमिडीज़ का स्थिरांक?

लोचदार बकलिंग से इनलास्टिक के बीच पतलापन अनुपात उदाहरण

मूल्यों के साथ
इकाइयों के साथ
केवल उदाहरण

लोचदार बकलिंग से इनलास्टिक के बीच पतलापन अनुपात समीकरण मूल्यों के साथ जैसा दिखता है।

लोचदार बकलिंग से इनलास्टिक के बीच पतलापन अनुपात समीकरण इकाइयों के साथ जैसा दिखता है।

लोचदार बकलिंग से इनलास्टिक के बीच पतलापन अनुपात समीकरण जैसा दिखता है।

321.9175Edit=2(3.14162)210000Edit40Edit
प्रतिलिपि
रीसेट
शेयर करना
आप यहां हैं -
HomeIcon घर » Category अभियांत्रिकी » Category नागरिक » Category कॉलम » fx लोचदार बकलिंग से इनलास्टिक के बीच पतलापन अनुपात

लोचदार बकलिंग से इनलास्टिक के बीच पतलापन अनुपात समाधान

लोचदार बकलिंग से इनलास्टिक के बीच पतलापन अनुपात की गणना कैसे करें, इसके लिए हमारे चरण-दर-चरण समाधान का पालन करें।

पहला कदम सूत्र पर विचार करें
λ=2(π2)EsFy
अगला कदम चरों के प्रतिस्थापन मान
λ=2(π2)210000MPa40MPa
अगला कदम स्थिरांकों के प्रतिस्थापन मान
λ=2(3.14162)210000MPa40MPa
अगला कदम मूल्यांकन के लिए तैयार रहें
λ=2(3.14162)21000040
अगला कदम मूल्यांकन करना
λ=321.91745248035
अंतिम चरण उत्तर को गोल करना
λ=321.9175

लोचदार बकलिंग से इनलास्टिक के बीच पतलापन अनुपात FORMULA तत्वों

चर
स्थिरांक
कार्य
पतलापन अनुपात
पतलापन अनुपात एक स्तंभ की लंबाई और उसके क्रॉस सेक्शन के घुमाव की न्यूनतम त्रिज्या का अनुपात है।
प्रतीक: λ
माप: NAइकाई: Unitless
टिप्पणी: मान 0 से अधिक होना चाहिए.
स्टील की लोच का मापांक
स्टील की लोच का मापांक एक विशेषता है जो लोड के तहत विरूपण के लिए स्टील के प्रतिरोध का आकलन करता है। यह तनाव से तनाव का अनुपात है।
प्रतीक: Es
माप: तनावइकाई: MPa
टिप्पणी: मान 0 से अधिक होना चाहिए.
स्टील का न्यूनतम निर्दिष्ट उपज तनाव
स्टील का न्यूनतम निर्दिष्ट उपज तनाव अधिकतम तनाव है जिसे स्थायी रूप से आकार बदलने से पहले लागू किया जा सकता है।
प्रतीक: Fy
माप: दबावइकाई: MPa
टिप्पणी: मान 0 से अधिक होना चाहिए.
आर्किमिडीज़ का स्थिरांक
आर्किमिडीज़ स्थिरांक एक गणितीय स्थिरांक है जो एक वृत्त की परिधि और उसके व्यास के अनुपात को दर्शाता है।
प्रतीक: π
कीमत: 3.14159265358979323846264338327950288
sqrt
वर्गमूल फ़ंक्शन एक ऐसा फ़ंक्शन है जो एक गैर-ऋणात्मक संख्या को इनपुट के रूप में लेता है और दी गई इनपुट संख्या का वर्गमूल लौटाता है।
वाक्य - विन्यास: sqrt(Number)

अक्षीय भारित स्टील कॉलम डिजाइन श्रेणी में अन्य सूत्र

​जाना स्वीकार्य संपीड़न तनाव जब Slenderness Rc Cc से कम है
Fa=1-(λ22Cc2)(53)+(3λ8Cc)-(λ38(Cc3))Fy
​जाना स्वीकार्य संपीड़न तनाव दिया पतलापन अनुपात
Fa=12(π2)Es23(λ2)

लोचदार बकलिंग से इनलास्टिक के बीच पतलापन अनुपात का मूल्यांकन कैसे करें?

लोचदार बकलिंग से इनलास्टिक के बीच पतलापन अनुपात मूल्यांकनकर्ता पतलापन अनुपात, इलास्टिक बकलिंग फॉर्मूले से इनलेस्टिक के बीच स्लेन्डरनेस रेशियो स्लेन्डरनेस के माप की गणना करता है जो एक कॉलम के बकल होने की प्रवृत्ति का माप है। का मूल्यांकन करने के लिए Slenderness Ratio = sqrt((2*(pi^2)*स्टील की लोच का मापांक)/स्टील का न्यूनतम निर्दिष्ट उपज तनाव) का उपयोग करता है। पतलापन अनुपात को λ प्रतीक द्वारा दर्शाया जाता है।

इस ऑनलाइन मूल्यांकनकर्ता का उपयोग करके लोचदार बकलिंग से इनलास्टिक के बीच पतलापन अनुपात का मूल्यांकन कैसे करें? लोचदार बकलिंग से इनलास्टिक के बीच पतलापन अनुपात के लिए इस ऑनलाइन मूल्यांकनकर्ता का उपयोग करने के लिए, स्टील की लोच का मापांक (Es) & स्टील का न्यूनतम निर्दिष्ट उपज तनाव (Fy) दर्ज करें और गणना बटन दबाएं।

FAQs पर लोचदार बकलिंग से इनलास्टिक के बीच पतलापन अनुपात

लोचदार बकलिंग से इनलास्टिक के बीच पतलापन अनुपात ज्ञात करने का सूत्र क्या है?
लोचदार बकलिंग से इनलास्टिक के बीच पतलापन अनुपात का सूत्र Slenderness Ratio = sqrt((2*(pi^2)*स्टील की लोच का मापांक)/स्टील का न्यूनतम निर्दिष्ट उपज तनाव) के रूप में व्यक्त किया जाता है। यहाँ एक उदाहरण दिया गया है- 321.9175 = sqrt((2*(pi^2)*210000000000)/40000000).
लोचदार बकलिंग से इनलास्टिक के बीच पतलापन अनुपात की गणना कैसे करें?
स्टील की लोच का मापांक (Es) & स्टील का न्यूनतम निर्दिष्ट उपज तनाव (Fy) के साथ हम लोचदार बकलिंग से इनलास्टिक के बीच पतलापन अनुपात को सूत्र - Slenderness Ratio = sqrt((2*(pi^2)*स्टील की लोच का मापांक)/स्टील का न्यूनतम निर्दिष्ट उपज तनाव) का उपयोग करके पा सकते हैं। यह सूत्र आर्किमिडीज़ का स्थिरांक और वर्गमूल (sqrt) फ़ंक्शन का भी उपयोग करता है.
Copied!