Fx प्रतिलिपि
LaTeX प्रतिलिपि
हाइपरबोला की विलक्षणता हाइपरबोला पर फोकस और डायरेक्ट्रिक्स से किसी भी बिंदु की दूरी का अनुपात है, या यह हाइपरबोला के रैखिक सनकी और अर्ध अनुप्रस्थ अक्ष का अनुपात है। FAQs जांचें
e=1+(L)2(2b)2
e - हाइपरबोला की विलक्षणता?L - हाइपरबोला का लैटस रेक्टम?b - हाइपरबोला का अर्ध संयुग्म अक्ष?

लैटस रेक्टम और सेमी कॉन्जुगेट एक्सिस दिए गए हाइपरबोला की विलक्षणता उदाहरण

मूल्यों के साथ
इकाइयों के साथ
केवल उदाहरण

लैटस रेक्टम और सेमी कॉन्जुगेट एक्सिस दिए गए हाइपरबोला की विलक्षणता समीकरण मूल्यों के साथ जैसा दिखता है।

लैटस रेक्टम और सेमी कॉन्जुगेट एक्सिस दिए गए हाइपरबोला की विलक्षणता समीकरण इकाइयों के साथ जैसा दिखता है।

लैटस रेक्टम और सेमी कॉन्जुगेट एक्सिस दिए गए हाइपरबोला की विलक्षणता समीकरण जैसा दिखता है।

2.6926Edit=1+(60Edit)2(212Edit)2
प्रतिलिपि
रीसेट
शेयर करना
आप यहां हैं -

लैटस रेक्टम और सेमी कॉन्जुगेट एक्सिस दिए गए हाइपरबोला की विलक्षणता समाधान

लैटस रेक्टम और सेमी कॉन्जुगेट एक्सिस दिए गए हाइपरबोला की विलक्षणता की गणना कैसे करें, इसके लिए हमारे चरण-दर-चरण समाधान का पालन करें।

पहला कदम सूत्र पर विचार करें
e=1+(L)2(2b)2
अगला कदम चरों के प्रतिस्थापन मान
e=1+(60m)2(212m)2
अगला कदम मूल्यांकन के लिए तैयार रहें
e=1+(60)2(212)2
अगला कदम मूल्यांकन करना
e=2.69258240356725m
अंतिम चरण उत्तर को गोल करना
e=2.6926m

लैटस रेक्टम और सेमी कॉन्जुगेट एक्सिस दिए गए हाइपरबोला की विलक्षणता FORMULA तत्वों

चर
कार्य
हाइपरबोला की विलक्षणता
हाइपरबोला की विलक्षणता हाइपरबोला पर फोकस और डायरेक्ट्रिक्स से किसी भी बिंदु की दूरी का अनुपात है, या यह हाइपरबोला के रैखिक सनकी और अर्ध अनुप्रस्थ अक्ष का अनुपात है।
प्रतीक: e
माप: लंबाईइकाई: m
टिप्पणी: मान 1 से अधिक होना चाहिए.
हाइपरबोला का लैटस रेक्टम
हाइपरबोला का लैटस रेक्टम किसी भी फ़ॉसी से गुजरने वाला रेखा खंड है और अनुप्रस्थ अक्ष के लंबवत है जिसके सिरे हाइपरबोला पर हैं।
प्रतीक: L
माप: लंबाईइकाई: m
टिप्पणी: मान 0 से अधिक होना चाहिए.
हाइपरबोला का अर्ध संयुग्म अक्ष
हाइपरबोला का सेमी कंजुगेट एक्सिस हाइपरबोला और जीवा के किसी भी कोने से फॉसी से गुजरने वाले वृत्त और हाइपरबोला के केंद्र में केंद्रित स्पर्शरेखा का आधा होता है।
प्रतीक: b
माप: लंबाईइकाई: m
टिप्पणी: मान 0 से अधिक होना चाहिए.
sqrt
वर्गमूल फ़ंक्शन एक ऐसा फ़ंक्शन है जो एक गैर-ऋणात्मक संख्या को इनपुट के रूप में लेता है और दी गई इनपुट संख्या का वर्गमूल लौटाता है।
वाक्य - विन्यास: sqrt(Number)

हाइपरबोला की विलक्षणता खोजने के लिए अन्य सूत्र

​जाना हाइपरबोला की विलक्षणता
e=1+b2a2
​जाना दिए गए फ़ोकल पैरामीटर हाइपरबोला की विलक्षणता
e=b2ap
​जाना रैखिक उत्केन्द्रता और अर्द्ध अनुप्रस्थ अक्ष दिए गए अतिपरवलय की उत्केन्द्रता
e=ca

लैटस रेक्टम और सेमी कॉन्जुगेट एक्सिस दिए गए हाइपरबोला की विलक्षणता का मूल्यांकन कैसे करें?

लैटस रेक्टम और सेमी कॉन्जुगेट एक्सिस दिए गए हाइपरबोला की विलक्षणता मूल्यांकनकर्ता हाइपरबोला की विलक्षणता, लैटस रेक्टम और सेमी कॉन्जुगेट एक्सिस फॉर्मूला दिए गए हाइपरबोला की उत्केन्द्रता को हाइपरबोला पर फोकस और डायरेक्ट्रिक्स से किसी भी बिंदु की दूरी के अनुपात के रूप में परिभाषित किया गया है, और हाइपरबोला के लेटस रेक्टम और सेमी कॉन्जुगेट अक्ष का उपयोग करके गणना की जाती है। का मूल्यांकन करने के लिए Eccentricity of Hyperbola = sqrt(1+(हाइपरबोला का लैटस रेक्टम)^2/(2*हाइपरबोला का अर्ध संयुग्म अक्ष)^2) का उपयोग करता है। हाइपरबोला की विलक्षणता को e प्रतीक द्वारा दर्शाया जाता है।

इस ऑनलाइन मूल्यांकनकर्ता का उपयोग करके लैटस रेक्टम और सेमी कॉन्जुगेट एक्सिस दिए गए हाइपरबोला की विलक्षणता का मूल्यांकन कैसे करें? लैटस रेक्टम और सेमी कॉन्जुगेट एक्सिस दिए गए हाइपरबोला की विलक्षणता के लिए इस ऑनलाइन मूल्यांकनकर्ता का उपयोग करने के लिए, हाइपरबोला का लैटस रेक्टम (L) & हाइपरबोला का अर्ध संयुग्म अक्ष (b) दर्ज करें और गणना बटन दबाएं।

FAQs पर लैटस रेक्टम और सेमी कॉन्जुगेट एक्सिस दिए गए हाइपरबोला की विलक्षणता

लैटस रेक्टम और सेमी कॉन्जुगेट एक्सिस दिए गए हाइपरबोला की विलक्षणता ज्ञात करने का सूत्र क्या है?
लैटस रेक्टम और सेमी कॉन्जुगेट एक्सिस दिए गए हाइपरबोला की विलक्षणता का सूत्र Eccentricity of Hyperbola = sqrt(1+(हाइपरबोला का लैटस रेक्टम)^2/(2*हाइपरबोला का अर्ध संयुग्म अक्ष)^2) के रूप में व्यक्त किया जाता है। यहाँ एक उदाहरण दिया गया है- 2.692582 = sqrt(1+(60)^2/(2*12)^2).
लैटस रेक्टम और सेमी कॉन्जुगेट एक्सिस दिए गए हाइपरबोला की विलक्षणता की गणना कैसे करें?
हाइपरबोला का लैटस रेक्टम (L) & हाइपरबोला का अर्ध संयुग्म अक्ष (b) के साथ हम लैटस रेक्टम और सेमी कॉन्जुगेट एक्सिस दिए गए हाइपरबोला की विलक्षणता को सूत्र - Eccentricity of Hyperbola = sqrt(1+(हाइपरबोला का लैटस रेक्टम)^2/(2*हाइपरबोला का अर्ध संयुग्म अक्ष)^2) का उपयोग करके पा सकते हैं। यह सूत्र वर्गमूल (sqrt) फ़ंक्शन का भी उपयोग करता है.
हाइपरबोला की विलक्षणता की गणना करने के अन्य तरीके क्या हैं?
हाइपरबोला की विलक्षणता-
  • Eccentricity of Hyperbola=sqrt(1+(Semi Conjugate Axis of Hyperbola^2)/(Semi Transverse Axis of Hyperbola^2))OpenImg
  • Eccentricity of Hyperbola=Semi Conjugate Axis of Hyperbola^2/(Semi Transverse Axis of Hyperbola*Focal Parameter of Hyperbola)OpenImg
  • Eccentricity of Hyperbola=Linear Eccentricity of Hyperbola/Semi Transverse Axis of HyperbolaOpenImg
की गणना करने के विभिन्न तरीके यहां दिए गए हैं
क्या लैटस रेक्टम और सेमी कॉन्जुगेट एक्सिस दिए गए हाइपरबोला की विलक्षणता ऋणात्मक हो सकता है?
{हां या नहीं}, लंबाई में मापा गया लैटस रेक्टम और सेमी कॉन्जुगेट एक्सिस दिए गए हाइपरबोला की विलक्षणता ऋणात्मक {हो सकता है या नहीं हो सकता}।
लैटस रेक्टम और सेमी कॉन्जुगेट एक्सिस दिए गए हाइपरबोला की विलक्षणता को मापने के लिए किस इकाई का उपयोग किया जाता है?
लैटस रेक्टम और सेमी कॉन्जुगेट एक्सिस दिए गए हाइपरबोला की विलक्षणता को आम तौर पर लंबाई के लिए मीटर[m] का उपयोग करके मापा जाता है। मिलीमीटर[m], किलोमीटर[m], मिटर का दशमांश[m] कुछ अन्य इकाइयाँ हैं जिनमें लैटस रेक्टम और सेमी कॉन्जुगेट एक्सिस दिए गए हाइपरबोला की विलक्षणता को मापा जा सकता है।
Copied!