Fx प्रतिलिपि
LaTeX प्रतिलिपि
हाइपरबोला का लैटस रेक्टम किसी भी फ़ॉसी से गुजरने वाला रेखा खंड है और अनुप्रस्थ अक्ष के लंबवत है जिसके सिरे हाइपरबोला पर हैं। FAQs जांचें
L=(2b)2(e2-1)
L - हाइपरबोला का लैटस रेक्टम?b - हाइपरबोला का अर्ध संयुग्म अक्ष?e - हाइपरबोला की विलक्षणता?

उत्केन्द्रता और अर्ध संयुग्मी अक्ष दिए गए अतिपरवलय के नाभीय रेक्टम उदाहरण

मूल्यों के साथ
इकाइयों के साथ
केवल उदाहरण

उत्केन्द्रता और अर्ध संयुग्मी अक्ष दिए गए अतिपरवलय के नाभीय रेक्टम समीकरण मूल्यों के साथ जैसा दिखता है।

उत्केन्द्रता और अर्ध संयुग्मी अक्ष दिए गए अतिपरवलय के नाभीय रेक्टम समीकरण इकाइयों के साथ जैसा दिखता है।

उत्केन्द्रता और अर्ध संयुग्मी अक्ष दिए गए अतिपरवलय के नाभीय रेक्टम समीकरण जैसा दिखता है।

67.8823Edit=(212Edit)2(3Edit2-1)
प्रतिलिपि
रीसेट
शेयर करना
आप यहां हैं -

उत्केन्द्रता और अर्ध संयुग्मी अक्ष दिए गए अतिपरवलय के नाभीय रेक्टम समाधान

उत्केन्द्रता और अर्ध संयुग्मी अक्ष दिए गए अतिपरवलय के नाभीय रेक्टम की गणना कैसे करें, इसके लिए हमारे चरण-दर-चरण समाधान का पालन करें।

पहला कदम सूत्र पर विचार करें
L=(2b)2(e2-1)
अगला कदम चरों के प्रतिस्थापन मान
L=(212m)2(3m2-1)
अगला कदम मूल्यांकन के लिए तैयार रहें
L=(212)2(32-1)
अगला कदम मूल्यांकन करना
L=67.8822509939086m
अंतिम चरण उत्तर को गोल करना
L=67.8823m

उत्केन्द्रता और अर्ध संयुग्मी अक्ष दिए गए अतिपरवलय के नाभीय रेक्टम FORMULA तत्वों

चर
कार्य
हाइपरबोला का लैटस रेक्टम
हाइपरबोला का लैटस रेक्टम किसी भी फ़ॉसी से गुजरने वाला रेखा खंड है और अनुप्रस्थ अक्ष के लंबवत है जिसके सिरे हाइपरबोला पर हैं।
प्रतीक: L
माप: लंबाईइकाई: m
टिप्पणी: मान 0 से अधिक होना चाहिए.
हाइपरबोला का अर्ध संयुग्म अक्ष
हाइपरबोला का सेमी कंजुगेट एक्सिस हाइपरबोला और जीवा के किसी भी कोने से फॉसी से गुजरने वाले वृत्त और हाइपरबोला के केंद्र में केंद्रित स्पर्शरेखा का आधा होता है।
प्रतीक: b
माप: लंबाईइकाई: m
टिप्पणी: मान 0 से अधिक होना चाहिए.
हाइपरबोला की विलक्षणता
हाइपरबोला की विलक्षणता हाइपरबोला पर फोकस और डायरेक्ट्रिक्स से किसी भी बिंदु की दूरी का अनुपात है, या यह हाइपरबोला के रैखिक सनकी और अर्ध अनुप्रस्थ अक्ष का अनुपात है।
प्रतीक: e
माप: लंबाईइकाई: m
टिप्पणी: मान 1 से अधिक होना चाहिए.
sqrt
वर्गमूल फ़ंक्शन एक ऐसा फ़ंक्शन है जो एक गैर-ऋणात्मक संख्या को इनपुट के रूप में लेता है और दी गई इनपुट संख्या का वर्गमूल लौटाता है।
वाक्य - विन्यास: sqrt(Number)

हाइपरबोला का लैटस रेक्टम खोजने के लिए अन्य सूत्र

​जाना हाइपरबोला का लैटस रेक्टम
L=2b2a
​जाना उत्केन्द्रता और अर्द्ध अनुप्रस्थ अक्ष दिए गए अतिपरवलय का नाभिलम्ब रेक्टम
L=2a(e2-1)
​जाना हाइपरबोला के लैटस रेक्टम को रैखिक उत्केन्द्रता और अर्ध अनुप्रस्थ अक्ष दिया गया है
L=2a((ca)2-1)
​जाना हाइपरबोला के लैटस रेक्टम को रैखिक उत्केन्द्रता और अर्ध संयुग्मित अक्ष दिया गया है
L=(2b2)2c2-b2

हाइपरबोला का लैटस रेक्टम श्रेणी में अन्य सूत्र

​जाना हाइपरबोला का सेमी लेटस रेक्टम
LSemi=b2a
​जाना हाइपरबोला का सेमी लैटस रेक्टम दी गई लीनियर एक्सेंट्रिकिटी और सेमी कॉन्जुगेट एक्सिस
LSemi=(2b2)2c2-b22
​जाना हाइपरबोला का सेमी लैटस रेक्टम दिया गया रैखिक उत्केन्द्रता और अर्ध अनुप्रस्थ अक्ष
LSemi=a((ca)2-1)
​जाना उत्केन्द्रता और अर्ध अनुप्रस्थ अक्ष दिए गए अतिपरवलय का अर्द्ध अक्षांशीय मलाशय
LSemi=a(e2-1)

उत्केन्द्रता और अर्ध संयुग्मी अक्ष दिए गए अतिपरवलय के नाभीय रेक्टम का मूल्यांकन कैसे करें?

उत्केन्द्रता और अर्ध संयुग्मी अक्ष दिए गए अतिपरवलय के नाभीय रेक्टम मूल्यांकनकर्ता हाइपरबोला का लैटस रेक्टम, हाइपरबोला के लैटस रेक्टम दिए गए एक्सेंट्रिकिटी और सेमी कॉन्जुगेट एक्सिस फॉर्मूला को रेखा खंड के रूप में परिभाषित किया गया है जो कि किसी भी foci से होकर गुजरता है और अनुप्रस्थ अक्ष के लंबवत होता है, जिसके सिरे हाइपरबोला पर होते हैं और इसकी गणना हाइपरबोला के एक्सेंट्रिकिटी और सेमी-कंजुगेट अक्ष का उपयोग करके की जाती है। का मूल्यांकन करने के लिए Latus Rectum of Hyperbola = sqrt((2*हाइपरबोला का अर्ध संयुग्म अक्ष)^2*(हाइपरबोला की विलक्षणता^2-1)) का उपयोग करता है। हाइपरबोला का लैटस रेक्टम को L प्रतीक द्वारा दर्शाया जाता है।

इस ऑनलाइन मूल्यांकनकर्ता का उपयोग करके उत्केन्द्रता और अर्ध संयुग्मी अक्ष दिए गए अतिपरवलय के नाभीय रेक्टम का मूल्यांकन कैसे करें? उत्केन्द्रता और अर्ध संयुग्मी अक्ष दिए गए अतिपरवलय के नाभीय रेक्टम के लिए इस ऑनलाइन मूल्यांकनकर्ता का उपयोग करने के लिए, हाइपरबोला का अर्ध संयुग्म अक्ष (b) & हाइपरबोला की विलक्षणता (e) दर्ज करें और गणना बटन दबाएं।

FAQs पर उत्केन्द्रता और अर्ध संयुग्मी अक्ष दिए गए अतिपरवलय के नाभीय रेक्टम

उत्केन्द्रता और अर्ध संयुग्मी अक्ष दिए गए अतिपरवलय के नाभीय रेक्टम ज्ञात करने का सूत्र क्या है?
उत्केन्द्रता और अर्ध संयुग्मी अक्ष दिए गए अतिपरवलय के नाभीय रेक्टम का सूत्र Latus Rectum of Hyperbola = sqrt((2*हाइपरबोला का अर्ध संयुग्म अक्ष)^2*(हाइपरबोला की विलक्षणता^2-1)) के रूप में व्यक्त किया जाता है। यहाँ एक उदाहरण दिया गया है- 67.88225 = sqrt((2*12)^2*(3^2-1)).
उत्केन्द्रता और अर्ध संयुग्मी अक्ष दिए गए अतिपरवलय के नाभीय रेक्टम की गणना कैसे करें?
हाइपरबोला का अर्ध संयुग्म अक्ष (b) & हाइपरबोला की विलक्षणता (e) के साथ हम उत्केन्द्रता और अर्ध संयुग्मी अक्ष दिए गए अतिपरवलय के नाभीय रेक्टम को सूत्र - Latus Rectum of Hyperbola = sqrt((2*हाइपरबोला का अर्ध संयुग्म अक्ष)^2*(हाइपरबोला की विलक्षणता^2-1)) का उपयोग करके पा सकते हैं। यह सूत्र वर्गमूल (sqrt) फ़ंक्शन का भी उपयोग करता है.
हाइपरबोला का लैटस रेक्टम की गणना करने के अन्य तरीके क्या हैं?
हाइपरबोला का लैटस रेक्टम-
  • Latus Rectum of Hyperbola=2*(Semi Conjugate Axis of Hyperbola^2)/(Semi Transverse Axis of Hyperbola)OpenImg
  • Latus Rectum of Hyperbola=2*Semi Transverse Axis of Hyperbola*(Eccentricity of Hyperbola^2-1)OpenImg
  • Latus Rectum of Hyperbola=2*Semi Transverse Axis of Hyperbola*((Linear Eccentricity of Hyperbola/Semi Transverse Axis of Hyperbola)^2-1)OpenImg
की गणना करने के विभिन्न तरीके यहां दिए गए हैं
क्या उत्केन्द्रता और अर्ध संयुग्मी अक्ष दिए गए अतिपरवलय के नाभीय रेक्टम ऋणात्मक हो सकता है?
{हां या नहीं}, लंबाई में मापा गया उत्केन्द्रता और अर्ध संयुग्मी अक्ष दिए गए अतिपरवलय के नाभीय रेक्टम ऋणात्मक {हो सकता है या नहीं हो सकता}।
उत्केन्द्रता और अर्ध संयुग्मी अक्ष दिए गए अतिपरवलय के नाभीय रेक्टम को मापने के लिए किस इकाई का उपयोग किया जाता है?
उत्केन्द्रता और अर्ध संयुग्मी अक्ष दिए गए अतिपरवलय के नाभीय रेक्टम को आम तौर पर लंबाई के लिए मीटर[m] का उपयोग करके मापा जाता है। मिलीमीटर[m], किलोमीटर[m], मिटर का दशमांश[m] कुछ अन्य इकाइयाँ हैं जिनमें उत्केन्द्रता और अर्ध संयुग्मी अक्ष दिए गए अतिपरवलय के नाभीय रेक्टम को मापा जा सकता है।
Copied!