Rechercher Formules

Veuillez saisir au moins trois caractères pour commencer à rechercher des formules .

Sélectionner un filtre

Affinez vos résultats de recherche à l’aide de ces filtres.

50 Formules correspondantes trouvées !

Vitesse de dérive donnée en section transversale

La formule de la Vitesse de dérive donnée par la section transversale est définie comme une mesure de la Vitesse moyenne des porteurs de charge dans un conducteur, ce qui est crucial pour comprendre le flux de courant électrique et est influencée par la section transversale du conducteur et la charge. densité des porteurs.

Vd=Ie-[Charge-e]A

Vitesse de dérive

La formule de Vitesse de dérive est définie comme une mesure de la Vitesse moyenne des électrons dans un conducteur, qui est influencée par le champ électrique et les propriétés du conducteur, fournissant ainsi un aperçu du comportement des électrons dans les circuits électriques.

Vd=E𝛕[Charge-e]2[Mass-e]

Vitesse du suiveur pour la came tangente du suiveur à rouleaux si le contact s'effectue avec des flancs droits

La formule de la Vitesse du suiveur pour une came tangente à galet suiveur si le contact se fait avec des flancs droits est définie comme une mesure de la Vitesse du suiveur dans un système de came-suiveur où le contact se fait avec des flancs droits, fournissant un aperçu de la cinématique du système et permettant la conception de systèmes mécaniques efficaces.

v=ω(r1+rroller)sin(θ)(cos(θ))2

Vitesse maximale du suiveur pour came tangente avec suiveur à rouleaux

La formule de Vitesse maximale du suiveur pour came tangente avec suiveur à rouleaux est définie comme la Vitesse maximale à laquelle le suiveur se déplace dans une came tangente avec un suiveur à rouleaux, ce qui est essentiel dans la conception et l'optimisation des systèmes de suiveur de came pour des performances mécaniques efficaces.

Vm=ω(r1+rr)sin(φ)cos(φ)2

Vitesse absolue du jet Pelton

La Vitesse absolue du jet Pelton est la Vitesse à laquelle l'eau sort de la buse et frappe les augets de la turbine Pelton. Cette Vitesse est cruciale car elle influence directement l'énergie cinétique transférée aux aubes de la turbine et est généralement déterminée par la hauteur et la pression de la source d'eau alimentant la turbine.

V1=Cv2[g]H

Vitesse du suiveur de la came tangente du suiveur à rouleaux pour le contact avec le nez

La formule de Vitesse du suiveur d'un suiveur à rouleaux tangentiel pour le contact avec le nez est définie comme la Vitesse du suiveur dans un système à came et suiveur, ce qui est un paramètre critique pour déterminer les performances et l'efficacité du système, en particulier lorsque le suiveur est en contact avec le nez de la came.

v=ωr(sin(θ1)+rsin(2θ1)2L2-r2(sin(θ1))2)

Vitesse angulaire donnée moment angulaire et inertie

La formule de la Vitesse angulaire donnée du moment angulaire et de l'inertie n'est qu'un réarrangement de la formule du moment angulaire (L = Iω). Le moment angulaire est exprimé comme le produit de l'inertie et de la Vitesse angulaire.

ω2=LI

Vitesse du son

La Vitesse du son est la Vitesse à laquelle de petites perturbations de pression, ou ondes sonores, se propagent dans un milieu. Il représente la Vitesse à laquelle ces perturbations se propagent à travers le milieu, transférant de l'énergie et des informations.

a=γ[R-Dry-Air]Ts

Vitesse du liquide à CC pour Hc, Ha et H

La Vitesse du liquide à CC pour les formules Hc, Ha et H est considérée à partir de la relation d'écoulement à travers un embout buccal convergent-divergent.

Vi=29.81(Ha+Hc-HAP)

Vitesse de l'avion pour une puissance excédentaire donnée

La Vitesse de l'avion pour une puissance excédentaire donnée est la Vitesse requise pour maintenir un taux de montée donné, en tenant compte de la puissance excédentaire disponible et de l'équilibre entre les forces de poussée et de traînée pendant le vol de montée. Comprendre et appliquer cette formule est crucial pour les pilotes et les ingénieurs afin d'optimiser les performances de montée.

v=PexcessT-FD

Vitesse en tout point pour le coefficient du tube de Pitot

La Vitesse en tout point pour le coefficient de formule du tube de Pitot est connue en considérant la montée du liquide dans le tube au-dessus de la surface libre qui est la hauteur du liquide dans le bord supérieur du tube de Pitot.

Vp=Cv29.81hp

Vitesse avant le choc normal à partir de l'équation d'énergie du choc normal

La Vitesse avant le choc normal à partir de la formule d'équation d'énergie de choc normale est définie comme la fonction de l'enthalpie totale et de la Vitesse en amont avant le choc normal. L'enthalpie utilisée dans la formule est l'enthalpie par unité de masse.

V1=2(h2+V222-h1)

Vitesse derrière le choc normal à partir de l'équation énergétique du choc normal

La Vitesse derrière le choc normal à partir de l'équation d'énergie de choc normal calcule la Vitesse d'un fluide en aval d'une onde de choc normale à l'aide de l'équation d'énergie de choc normal. Cette formule intègre des paramètres tels que l'enthalpie en avant et en arrière du choc et la Vitesse en amont du choc. Il fournit des informations essentielles sur le changement de Vitesse résultant du passage de l’onde de choc.

V2=2(h1+V122-h2)

Vitesse du moteur du moteur à courant continu

La formule de la Vitesse du moteur du moteur à courant continu est définie comme la Vitesse du rotor du moteur à courant continu par rapport au no. de pôles, de chemins parallèles et de conducteurs.

N=60n||EbZnΦ

Vitesse de rotation pour la force de cisaillement dans le palier lisse

La Vitesse de rotation pour la force de cisaillement dans le roulement à billes est influencée par la force de cisaillement subie dans le roulement. Des forces de cisaillement plus élevées nécessitent généralement des ajustements de Vitesse pour maintenir des performances optimales des roulements et éviter une usure excessive.

N=Fstμπ2Ds2L

Vitesse d'écoulement libre de l'écoulement laminaire plat

La formule de la Vitesse du flux libre d'un écoulement laminaire sur plaque plate est définie comme la Vitesse du fluide s'approchant de la plaque plate dans un régime d'écoulement laminaire, qui est un paramètre crucial dans les processus de transfert de masse par convection, en particulier dans le contexte de la dynamique des fluides et du transfert de chaleur.

u=kL(Sc0.67)(Re0.5)0.322

Vitesse d'écoulement libre de l'écoulement laminaire à plaque plate en fonction du coefficient de traînée

La Vitesse du flux libre d'un écoulement laminaire à plaque plate, étant donné la formule du coefficient de traînée, est définie comme une mesure de la Vitesse de l'écoulement du fluide au-dessus d'une plaque plate dans un régime d'écoulement laminaire, qui est influencée par le coefficient de traînée et d'autres propriétés physiques du système.

u=2kL(Sc0.67)CD

Vitesse angulaire constante donnée Accélération centripète à la distance radiale r de l'axe

La formule de la Vitesse angulaire constante donnée par l'accélération centripète à une distance radiale r de l'axe est définie comme la Vitesse à laquelle le fluide tourne.

ω=acdr

Vitesse de rotation de la centrifugeuse utilisant la force d'accélération centrifuge

La Vitesse de rotation de la centrifugeuse utilisant la force d'accélération centrifuge est définie comme le nombre de tours de l'objet divisé par le temps, spécifié en tours par minute.

N=32.2G(2π)2Rb

Vitesse du fluide pour le nombre de Reynold

La formule de la Vitesse du fluide pour le nombre de Reynold est connue en tenant compte du rapport du nombre de Reynolds et de la viscosité du fluide à la densité du liquide et à la longueur de la plaque.

V=ReμρfL

Vitesse de séparation après impact

La formule de Vitesse de séparation après impact est définie comme le produit du coefficient de restitution et de la différence entre la Vitesse initiale du premier corps et la Vitesse initiale du second corps.

vsep=e(u1-u2)

Vitesse d'approche

La formule de la Vitesse d'approche est définie comme le rapport de la différence de la Vitesse finale du deuxième corps et de la Vitesse finale du premier corps au coefficient de restitution.

vapp=v2-v1e

Vitesse de déplacement dans la rectifieuse plane à broche horizontale et verticale étant donné le MRR

La Vitesse de déplacement dans les meuleuses de surface à broche horizontale et verticale étant donné le MRR, est une méthode permettant de déterminer le mouvement de va-et-vient de la table de travail par rapport à la meule lorsque la quantité de MRR requise est connue. La Vitesse de déplacement est donnée en fonction de différents paramètres tels que l'état de surface souhaité, les différentes tailles de grains de la meule, etc.

Vtrav=Zwfdcut

Vitesse de déplacement pour rectifieuse cylindrique et interne compte tenu du MRR

La Vitesse de déplacement pour les meuleuses cylindriques et internes compte tenu du MRR est une méthode permettant de déterminer le mouvement de va-et-vient de la table de travail par rapport à la meule lorsque la quantité de MRR requise est connue. La Vitesse de déplacement est donnée en fonction de différents paramètres tels que l'état de surface souhaité, les différentes tailles de grains de la meule, etc.

Utrav=ZwπfDm

Vitesse de rotation de distribution

La Vitesse de rotation de distribution d'un objet tournant autour d'un axe est le nombre de tours de l'objet divisé par le temps, spécifié en tours par minute.

n=1.6QTNDR

Vitesse RMS compte tenu de la température et de la masse molaire

La formule de Vitesse RMS compte tenu de la température et de la masse molaire est définie comme le rapport de la racine carrée de la température du gaz à la masse molaire.

CRMS=3[R]TgMmolar

Vitesse RMS compte tenu de la pression et du volume de gaz

La formule de la pression et du volume de gaz de la Vitesse RMS donnée est définie comme la proportion directe de la Vitesse quadratique moyenne avec la racine carrée de la pression et du volume et la proportion inverse de la racine carrée moyenne avec la racine carrée de la masse molaire.

CRMS=3PgasVMmolar

Vitesse RMS compte tenu de la pression et de la densité

La formule de pression et de densité de la Vitesse RMS donnée est définie comme la proportion directe de la Vitesse quadratique moyenne avec la racine carrée de la pression et la proportion inverse de la racine carrée moyenne avec la racine carrée de la masse molaire.

CRMS=3Pgasρgas

Vitesse proportionnelle donnée à l'angle central

La Vitesse proportionnelle donnée par l'angle central est définie comme le rapport entre la Vitesse du fluide dans un tuyau partiellement rempli et la Vitesse lorsque le tuyau est entièrement rempli.

Pv=(1-(360π180)sin(central)2πcentral)23

Vitesse proportionnelle lorsque le coefficient de rugosité ne varie pas avec la profondeur

La Vitesse proportionnelle lorsque le coefficient de rugosité ne varie pas avec la profondeur calcule la Vitesse proportionnelle lorsque nous avons des informations préalables sur d'autres paramètres

Pv=(rpfRrf)23

Vitesse en cours d'exécution Partiellement pleine donnée Décharge

La Vitesse lors d'un fonctionnement partiellement plein donné est définie comme la Vitesse d'écoulement lorsque l'égout n'est pas complètement rempli, influencée par la profondeur et la pente.

Vs=qa

Vitesse lors de l'exécution complète de la décharge donnée

La Vitesse pendant le fonctionnement à pleine capacité donnée est définie comme la Vitesse du fluide se déplaçant à travers un tuyau ou un canal entièrement rempli, généralement à capacité maximale.

V=QA

Vitesse pendant le fonctionnement partiellement complet compte tenu de la décharge proportionnelle

La Vitesse lors d'un fonctionnement partiellement plein compte tenu d'un débit proportionnel est définie comme la Vitesse d'écoulement lorsque l'égout n'est pas complètement rempli, influencée par la profondeur et la pente.

Vs=PqVAa

Vitesse pendant le fonctionnement à pleine charge, compte tenu de la décharge proportionnelle

La Vitesse pendant le fonctionnement à plein débit proportionnel est définie comme la Vitesse d'écoulement du fluide dans un tuyau lorsqu'il est complètement rempli, influencée par la pente et la rugosité du tuyau.

V=VsaPqA

Vitesse de sédimentation en fonction de la gravité spécifique de la particule

La Vitesse de sédimentation donnée par la formule de la gravité spécifique d'une particule est définie comme la Vitesse atteinte par une particule lorsqu'elle tombe dans un fluide, en fonction de sa taille et de sa forme, et de la différence entre sa gravité spécifique et celle du milieu de sédimentation.

Vsg=(43)g(G-1)DpCD

Vitesse moyenne du gaz compte tenu de la pression et de la densité en 2D

La Vitesse moyenne du gaz étant donné la pression et la densité en 2D est la moyenne arithmétique des Vitesses des différentes molécules d'un gaz à une température donnée en 2 dimensions.

vavg_P_D=πPgas2ρgas

Vitesse moyenne du gaz étant donné la Vitesse quadratique moyenne en 2D

La Vitesse moyenne du gaz donnée Vitesse quadratique moyenne en 2D est la moyenne arithmétique des Vitesses de différentes molécules d'un gaz à une température donnée en 2 dimensions.

vavg_RMS=(0.8862CRMS_speed)

Vitesse moyenne du gaz compte tenu de la pression et du volume en 2D

La Vitesse moyenne du gaz à pression et volume donnés en 2D est la moyenne arithmétique des Vitesses de différentes molécules d'un gaz à une température donnée en 2 dimensions.

vavg_P_V=πPgasV2Mmolar

Vitesse moyenne du gaz à température donnée en 2D

La Vitesse moyenne du gaz à température donnée en 2D est la moyenne arithmétique des Vitesses de différentes molécules d'un gaz à une température donnée en 2 dimensions.

vavg_T=π[R]Tg2Mmolar

Vitesse quadratique moyenne de la molécule de gaz compte tenu de la pression et du volume de gaz en 2D

La Vitesse quadratique moyenne de la molécule de gaz étant donné la pression et le volume de gaz dans la formule 2D est définie comme le carré entier de la moyenne quadratique de la molécule de gaz en 2D.

CRMS_2D=2PgasVNmoleculesm

Vitesse la plus probable du gaz compte tenu de la pression et de la densité en 2D

La Vitesse la plus probable du gaz compte tenu de la pression et de la densité dans la formule 2D est définie comme le rapport de la racine carrée de la pression à la densité du gaz respectif.

CP_D=Pgasρgas

Vitesse la plus probable du gaz compte tenu de la pression et du volume en 2D

La Vitesse la plus probable du gaz étant donné la pression et le volume dans la formule 2D est définie comme le rapport de la racine carrée de la pression et du volume à la masse molaire du gaz particulier.

CP_V=PgasVMmolar

Vitesse donnée Longueur

Vitesse donnée La longueur est définie comme la Vitesse du véhicule à maintenir lorsque le taux d'accélération et le changement de pente de la courbe verticale sont fournis.

V=Lc100fg1-(g2)

Vitesse absolue pour une poussée normale donnée parallèlement à la direction du jet

La Vitesse absolue pour une poussée normale donnée parallèlement à la direction du jet est le taux de changement de sa position par rapport à un cadre de référence et est fonction du temps.

Vabsolute=FtGγfAJet(∠D(180π))2+v

Vitesse du jet donnée Poussée normale parallèle à la direction du jet

La Vitesse du jet donnée pour une poussée normale parallèle à la direction du jet est le taux de changement de sa position par rapport à un cadre de référence et est une fonction du temps.

v=-(FtGγfAJet(∠D(180π))2-Vabsolute)

Vitesse absolue pour une poussée normale donnée Normal à la direction du jet

La Vitesse absolue pour une poussée normale donnée Normal à la direction du jet est le taux de changement de sa position par rapport à un cadre de référence et est fonction du temps.

Vabsolute=(FtGγfAJet(∠D(180π))cos(θ))+v

Vitesse du jet donnée Poussée normale Normale à la direction du jet

La Vitesse du jet donnée à la poussée normale normale à la direction du jet est le taux de changement de sa position par rapport à un cadre de référence et est une fonction du temps.

v=-(FtGγfAJet(∠D(180π))cos(θ))+Vabsolute

Vitesse de coupe de référence donnée Coût de production par composant

La Vitesse de coupe de référence donnée par le coût de production par composant est une méthode pour déterminer la Vitesse de coupe optimale requise pour une durée de vie d'outil donnée dans une condition d'usinage de référence pour fabriquer un seul composant.

Vref=(KLref(Mtc+Ct)(V1-nn)Cp-M(NPT+KV))n

Vitesse de coupe de référence donnée Coût de production minimum

La Vitesse de coupe de référence donnée au coût de production minimum est une méthode pour déterminer la Vitesse de coupe optimale requise pour une taille de lot donnée dans une condition d'usinage de référence à fabriquer de telle sorte que le coût de production total soit minimum.

V=K(TL)n(1-n)(CpR-ts)

Vitesse de virage de l'aéronef compte tenu de la distance de visibilité

La Vitesse de virage de l'aéronef compte tenu de la distance de visibilité est définie comme un paramètre influençant la Vitesse de virage pour la conception de la voie de sortie reliant la piste et la voie de circulation principale parallèle.

VTurning Speed=25.5dSD

Comment trouver Formules ?

Voici quelques conseils pour obtenir de meilleurs résultats de recherche.
Soyez précis : Plus votre requête est spécifique, meilleurs sont vos résultats.
Utilisez plusieurs mots clés : Combinez plusieurs mots clés pour affiner les résultats.
Expérimentez avec des synonymes : Différents termes peuvent donner des résultats différents.
Recherche générique : Utilisez l'opérateur * (astérisque). NOTEZ que cet opérateur ne fonctionne qu'à la fin d'un mot. Exemple : Bio*, Zone*, etc.

Vous pouvez également parcourir les sous-catégories de pour vous concentrer sur les formules qui vous intéressent.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!