Rechercher Formules

Veuillez saisir au moins trois caractères pour commencer à rechercher des formules .

Sélectionner un filtre

Affinez vos résultats de recherche à l’aide de ces filtres.

50 Formules correspondantes trouvées !

Vitesse de dérive donnée en section transversale

La formule de la Vitesse de dérive donnée par la section transversale est définie comme une mesure de la Vitesse moyenne des porteurs de charge dans un conducteur, ce qui est crucial pour comprendre le flux de courant électrique et est influencée par la section transversale du conducteur et la charge. densité des porteurs.

Vd=Ie-[Charge-e]A

Vitesse de dérive

La formule de Vitesse de dérive est définie comme une mesure de la Vitesse moyenne des électrons dans un conducteur, qui est influencée par le champ électrique et les propriétés du conducteur, fournissant ainsi un aperçu du comportement des électrons dans les circuits électriques.

Vd=E𝛕[Charge-e]2[Mass-e]

Vitesse du suiveur pour la came tangente du suiveur à rouleaux si le contact s'effectue avec des flancs droits

La formule de la Vitesse du suiveur pour une came tangente à galet suiveur si le contact se fait avec des flancs droits est définie comme une mesure de la Vitesse du suiveur dans un système de came-suiveur où le contact se fait avec des flancs droits, fournissant un aperçu de la cinématique du système et permettant la conception de systèmes mécaniques efficaces.

v=ω(r1+rroller)sin(θ)(cos(θ))2

Vitesse maximale du suiveur pour came tangente avec suiveur à rouleaux

La formule de Vitesse maximale du suiveur pour came tangente avec suiveur à rouleaux est définie comme la Vitesse maximale à laquelle le suiveur se déplace dans une came tangente avec un suiveur à rouleaux, ce qui est essentiel dans la conception et l'optimisation des systèmes de suiveur de came pour des performances mécaniques efficaces.

Vm=ω(r1+rr)sin(φ)cos(φ)2

Vitesse absolue du jet Pelton

La Vitesse absolue du jet Pelton est la Vitesse à laquelle l'eau sort de la buse et frappe les augets de la turbine Pelton. Cette Vitesse est cruciale car elle influence directement l'énergie cinétique transférée aux aubes de la turbine et est généralement déterminée par la hauteur et la pression de la source d'eau alimentant la turbine.

V1=Cv2[g]H

Vitesse du suiveur de la came tangente du suiveur à rouleaux pour le contact avec le nez

La formule de Vitesse du suiveur d'un suiveur à rouleaux tangentiel pour le contact avec le nez est définie comme la Vitesse du suiveur dans un système à came et suiveur, ce qui est un paramètre critique pour déterminer les performances et l'efficacité du système, en particulier lorsque le suiveur est en contact avec le nez de la came.

v=ωr(sin(θ1)+rsin(2θ1)2L2-r2(sin(θ1))2)

Vitesse du véhicule donnée Longueur minimale de la spirale

La formule de la Vitesse du véhicule compte tenu de la longueur minimale de la spirale est définie comme la distance parcourue par un véhicule en un temps donné.

Vv=(LRtac3.15)13

Vitesse de stagnation du son

La formule de la Vitesse de stagnation du son est définie comme la racine carrée du produit de l'indice adiabatique, de la constante de gaz universelle et de la température de stagnation.

ao=γ[R]T0

Vitesse de stagnation du son compte tenu de la chaleur spécifique à pression constante

La Vitesse de stagnation du son étant donné la formule de chaleur spécifique à pression constante est définie comme la racine carrée du produit de l'indice adiabatique soustrait par l'unité, la chaleur spécifique à pression constante et la température de stagnation.

ao=(γ-1)CpT0

Vitesse de stagnation du son compte tenu de l'enthalpie de stagnation

La Vitesse de stagnation du son étant donnée la formule d'enthalpie de stagnation est définie comme la racine carrée du produit de l'indice adiabatique soustrait par l'unité et l'enthalpie de stagnation.

ao=(γ-1)h0

Vitesse à la section 1-1 pour un élargissement soudain

La Vitesse à la section 1-1 pour la formule d'agrandissement soudain est connue en considérant la Vitesse d'écoulement à la section 2-2 après l'élargissement, et la perte de charge due au frottement pour un liquide s'écoulant à travers le tuyau.

V1'=V2'+he2[g]

Vitesse à la section 2-2 pour un élargissement soudain

La Vitesse à la section 2-2 pour la formule d'agrandissement soudain est connue en considérant la Vitesse d'écoulement à la section 1-1 avant l'élargissement, et la perte de charge due au frottement pour un liquide s'écoulant à travers le tuyau.

V2'=V1'-he2[g]

Vitesse à la section 2-2 pour contraction soudaine

La Vitesse à la section 2-2 pour la formule de contraction soudaine est connue en considérant la perte de charge due à une contraction soudaine et le coefficient de contraction à cc.

V2'=hc2[g](1Cc)-1

Vitesse de séparation en impact indirect de corps avec plan fixe

La Vitesse de séparation en cas d'impact indirect d'un corps avec une formule à plan fixe est définie comme le produit de la Vitesse finale de la masse et du cos de l'angle entre la Vitesse finale et la ligne d'impact.

vsep=vfcos(θf)

Vitesse de coupe compte tenu de l'élévation de température moyenne du matériau sous la zone de cisaillement primaire

La Vitesse de coupe compte tenu de l'élévation de température moyenne du matériau sous la zone de cisaillement primaire est définie comme la Vitesse (généralement en pieds par minute) d'un outil lorsqu'il coupe le travail.

Vcut=(1-Γ)PsρwpCθavgacdcut

Vitesse de coupe pour une durée de vie donnée de l'outil de Taylor

La Vitesse de coupe pour une durée de vie donnée de l'outil Taylor est une méthode pour trouver la Vitesse de coupe maximale avec laquelle la pièce peut être usinée lorsque l'intervalle de temps d'affûtage de l'outil, l'avance et la profondeur de coupe sont fixes.

Vcut=X(Tvx)(fre)(dcd)

Vitesse de coupe pour une durée de vie d'outil et un volume de métal enlevés donnés

La Vitesse de coupe pour une durée de vie de l'outil et un volume de métal enlevés donnés est une méthode permettant de déterminer la Vitesse de coupe maximale autorisée pour l'usinage lorsque la durée de vie de l'outil et le volume maximum de copeaux qu'il peut éliminer sont connus.

Vcut=LTvfrdc

Vitesse de coupe donnée, durée de vie de l'outil et volume de métal enlevé

L'avance donnée à la Vitesse de coupe, à la durée de vie de l'outil et au volume de métal enlevé est une méthode pour déterminer la Vitesse d'avance valide qui doit être appliquée à l'outil afin d'obtenir le volume autorisé de matériau enlevé d'où la durée de vie optimale de l'outil.

f=volTLVd'cut

Vitesse de coupe à l'aide de l'indice d'usinabilité

La Vitesse de coupe à l'aide de l'indice d'usinabilité est une méthode permettant de déterminer la Vitesse maximale à laquelle une pièce peut être utilisée lorsque son indice d'usinabilité est connu.

Vcut=IVs100

Vitesse de coupe de l'acier de décolletage compte tenu de la Vitesse de coupe de l'outil et de l'indice d'usinabilité

La Vitesse de coupe de l'acier de décolletage compte tenu de la Vitesse de coupe de l'outil et de l'indice d'usinabilité est une méthode de rétrocalcul permettant de déterminer la Vitesse de coupe utilisée sur l'acier de décolletage standard lorsque l'indice d'usinabilité et la Vitesse de coupe du matériau sont connus.

Vs=Vcut100I

Vitesse à moyenne distance donnée

La formule Velocity in Medium given Distance est définie comme la Vitesse de l'onde lumineuse utilisée dans l'instrument EDM lorsque l'onde se déplace d'un point à un autre.

c=2DΔt

Vitesse moyenne de l'écoulement compte tenu du gradient de pression

La Vitesse moyenne d'écoulement compte tenu du gradient de pression est définie comme suit : La Vitesse d'écoulement moyenne d'un fluide dans un système hydraulique est déterminée par le gradient de pression, influençant le mouvement du fluide dans un espace confiné.

Vmean=(w212μ)dp|dr

Vitesse moyenne de l'écoulement compte tenu de la Vitesse maximale

La Vitesse moyenne d'écoulement étant donné la Vitesse maximale est définie comme la Vitesse moyenne d'écoulement du flux.

Vmean=(23)Vmax

Vitesse maximale donnée Vitesse moyenne de l'écoulement

La Vitesse maximale donnée à la Vitesse moyenne de l'écoulement est définie comme la Vitesse maximale au niveau de la ligne médiane du tuyau.

Vmax=1.5Vmean

Vitesse moyenne du débit compte tenu de la différence de pression

La Vitesse moyenne de l'écoulement compte tenu de la différence de pression est définie comme la Vitesse moyenne de l'écoulement peut être déterminée en mesurant la différence de pression entre deux points et en utilisant l'équation de Bernoulli pour les fluides incompressibles.

Vmean=ΔPw12μLp

Vitesse moyenne du débit compte tenu de la chute de pression

La Vitesse moyenne de l'écoulement compte tenu de la chute de pression est définie comme la Vitesse moyenne du flux à travers le tuyau dans l'écoulement.

Vmean=ΔPS(Dpipe2)12μLp

Vitesse d'écoulement de la section

La Vitesse d'écoulement de la section est définie comme la Vitesse du fluide dans le tuyau à travers une section particulière au niveau du flux en écoulement laminaire.

Vf=(VmeanRw)-0.5dp|dr(DR-R2)μ

Vitesse moyenne de l'écoulement compte tenu de la Vitesse de l'écoulement

La Vitesse moyenne d'écoulement étant donnée la Vitesse d'écoulement est définie comme la Vitesse moyenne du fluide dans le flux en écoulement laminaire.

Vf=(VmeanRw)-0.5dp|dr(wR-R2)μ

Vitesse d'écoulement donnée Pas de gradient de pression

La Vitesse d'écoulement donnée sans gradient de pression est définie comme la Vitesse du fluide dans le flux dans le canal sectionnel.

Vf=(VmeanR)

Vitesse critique compte tenu de la profondeur critique dans la section de contrôle

La formule de Vitesse critique étant donné la profondeur critique dans la section de contrôle est définie comme la mesure de la Vitesse à laquelle le flux passe d'un état sous-critique à un état supercritique. Dans un écoulement en canal ouvert, la Vitesse critique se produit lorsque l'énergie cinétique de l'écoulement est égale à l'énergie potentielle.

Vc=dcg

Vitesse critique compte tenu de la profondeur de la section

La formule de Vitesse critique étant donné la profondeur de section est définie comme la mesure de la valeur de la Vitesse à laquelle le flux passe d'un état sous-critique à un état supercritique. Dans un écoulement en canal ouvert, la Vitesse critique se produit lorsque l'énergie cinétique de l'écoulement est égale à l'énergie potentielle.

Vc=dg1.55

Vitesse d'avance en fonction de la pièce à usiner et du paramètre d'enlèvement de la meule

La Vitesse d'avance donnée en fonction du paramètre de retrait de la pièce et de la meule est la Vitesse à laquelle la meule ou l'outil abrasif avance contre la pièce à usiner, qui est en cours de meulage lorsque le « paramètre de retrait de la meule » nous est connu. Il s'agit essentiellement de la Vitesse à laquelle le matériau est retiré de la surface de la pièce par l'action abrasive de la meule. La Vitesse d'avance joue un rôle crucial dans l'efficacité globale du broyage.

Vf=Vi1+ΛtdwΛwdt

Vitesse d'avance de la machine en fonction du paramètre de retrait de la pièce et de la meule

La Vitesse d'avance de la machine étant donné le paramètre de retrait de la pièce et de la meule est le mouvement requis de la meule vers la pièce pour atteindre la profondeur de coupe souhaitée pour obtenir le MRR souhaité de la pièce, lorsque nous connaissons le paramètre de retrait de la meule pour le matériau spécifique de la meule. L'alimentation de la machine nous donne des informations précieuses pour déterminer des facteurs tels que le MRR, l'état de surface de la pièce, l'efficacité du meulage et l'usure des meules.

Vi=Vf(1+ΛtdwΛwdt)

Vitesse critique donnée par la décharge à travers la section de contrôle

La Vitesse critique donnée lors de la décharge via la section de contrôle est définie comme la Vitesse à laquelle un objet en chute atteint lorsque la gravité et la résistance de l'air sont égalisées sur l'objet, lorsque nous disposons d'une information préalable sur la valeur de la décharge via la section de contrôle.

Vc=(QeWtdc)

Vitesse critique donnée décharge

La formule de Vitesse critique étant donné la décharge est définie comme la mesure de la valeur de la Vitesse à laquelle le flux passe d'un état sous-critique à un état supercritique. Dans un écoulement en canal ouvert, la Vitesse critique se produit lorsque l'énergie cinétique de l'écoulement est égale à l'énergie potentielle, étant donné que nous disposons d'une information sur la valeur du débit.

Vc=(QeFarea)

Vitesse de la sphère compte tenu de la force de résistance sur la surface sphérique

La Vitesse de la sphère donnée à la force de résistance sur la surface sphérique est définie comme la Vitesse de l'objet dans le fluide en écoulement.

Vmean=Fresistance3πμDS

Vitesse de chute terminale

La formule de Vitesse de chute terminale est définie comme la Vitesse à laquelle l'objet se déplace dans le fluide dans le canal.

Vterminal=(DS218μ)(γf-S)

Vitesse de la sphère compte tenu de la force de traînée

La Vitesse de la sphère donnée à la force de traînée est définie comme la Vitesse terminale atteinte par l'objet dans le milieu d'écoulement.

Vmean=FDACDρ0.5

Vitesse de la sphère donnée Coefficient de traînée

La Vitesse de la sphère donnée par le coefficient de traînée est définie comme la Vitesse moyenne avec laquelle la sphère se déplace.

Vmean=24μρCDDS

Vitesse du fluide donnée Poussée exercée perpendiculairement à la plaque

La Vitesse du fluide donnée Poussée exercée normale à la plaque est définie comme le taux de changement de sa position par rapport à un cadre de référence et est une fonction du temps.

vjet=Fp[g]γfAJet(sin(∠D))

Vitesse du fluide donné Poussée parallèle au jet

La Vitesse du fluide donnée poussée parallèlement au jet est le taux de changement de sa position par rapport à un cadre de référence et est une fonction du temps.

vjet=FX[g]γfAJet(sin(∠D))2

Vitesse du fluide donné Poussée normale au jet

la Vitesse du fluide donnée Poussée normale au jet est le taux de changement de sa position par rapport à un cadre de référence et est une fonction du temps.

vjet=FY[g]γfAJet(sin(∠D))cos(∠D)

Vitesse pour la longueur d'onde de l'onde

La formule Vitesse pour la longueur d'onde de l'onde est définie comme la Vitesse à laquelle l'onde se propage dans un milieu, calculée comme le produit de sa fréquence et de sa longueur d'onde.

C=(λf)

Vitesse de l'onde sonore

La formule de la Vitesse de l’onde sonore est définie comme étant la Vitesse, bien que, proprement dite, la Vitesse implique à la fois la Vitesse et la direction. La Vitesse d'une onde est égale au produit de sa longueur d'onde et de sa fréquence (nombre de vibrations par seconde) et est indépendante de son intensité.

C=20.05T

Vitesse de l'onde sonore compte tenu de l'intensité sonore

La formule de Vitesse de l'onde sonore étant donné l'intensité sonore est définie comme la Vitesse, bien que, proprement, la Vitesse implique à la fois la Vitesse et la direction. La Vitesse d'une onde est égale au produit de sa longueur d'onde et de sa fréquence (nombre de vibrations par seconde) et est indépendante de son intensité.

C=Prms2Iρ

Vitesse à l'entrée pour la masse de l'aube de frappe de fluide par seconde

La Vitesse à l'entrée pour la masse de l'aube de frappe de fluide par seconde est le taux de changement de sa position par rapport au cadre de référence et est fonction du temps.

v=mfGγfAJet

Vitesse à la profondeur1 donnée Vitesse absolue de surtension se déplaçant vers la droite

La Vitesse à la profondeur1 étant donné la formule de Vitesse absolue de surtension se déplaçant vers la droite est définie comme la Vitesse résultante à une profondeur spécifique due à la combinaison de la surtension et du mouvement horizontal.

VNegativesurges=(vabs(D2-h 1))+(V2D2)h 1

Vitesse en profondeur2 donnée Vitesse absolue des surtensions se déplaçant vers la droite

La formule de Vitesse à la profondeur 2 étant donné la Vitesse absolue des surtensions se déplaçant vers la droite est définie comme la Vitesse résultante à la profondeur 2 en tenant compte du mouvement de surtension.

V2=(vabs(h 1-D2))+(VNegativesurgesh 1)D2

Vitesse à la profondeur1 lorsque la Vitesse absolue de la montée subite lorsque le débit est complètement arrêté

La formule Vitesse à la profondeur 1 lorsque la Vitesse absolue de montée subite lorsque le débit est complètement arrêté est définie comme la Vitesse initiale de l'eau lors d'un arrêt brusque.

VNegativesurges=vabs(D2-h 1)h 1

Vitesse à la profondeur1 lorsque la hauteur de surtension pour la hauteur de surtension est négligeable Profondeur d'écoulement

La Vitesse à la profondeur1 lorsque la hauteur de la surtension pour la hauteur de la surtension est une formule de profondeur de flux négligeable est définie comme la Vitesse de la surtension au point.

VNegativesurges=(Hch[g]Cw)+V2

Comment trouver Formules ?

Voici quelques conseils pour obtenir de meilleurs résultats de recherche.
Soyez précis : Plus votre requête est spécifique, meilleurs sont vos résultats.
Utilisez plusieurs mots clés : Combinez plusieurs mots clés pour affiner les résultats.
Expérimentez avec des synonymes : Différents termes peuvent donner des résultats différents.
Recherche générique : Utilisez l'opérateur * (astérisque). NOTEZ que cet opérateur ne fonctionne qu'à la fin d'un mot. Exemple : Bio*, Zone*, etc.

Vous pouvez également parcourir les sous-catégories de pour vous concentrer sur les formules qui vous intéressent.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!