Rechercher Formules

Veuillez saisir au moins trois caractères pour commencer à rechercher des formules .

Sélectionner un filtre

Affinez vos résultats de recherche à l’aide de ces filtres.

50 Formules correspondantes trouvées !

Vitesse efficace

La Vitesse RMS est la mesure de la Vitesse des particules dans un gaz, définie comme la racine carrée de la Vitesse quadratique moyenne des molécules dans un gaz. ... La Vitesse quadratique moyenne prend en compte à la fois le poids moléculaire et la température, deux facteurs qui affectent directement l'énergie cinétique d'un matériau.

Vrms=3[R]TgMmolar

Vitesse moyenne des gaz

La Vitesse moyenne des gaz est un ensemble de particules gazeuses à une température donnée. Les Vitesses moyennes des gaz sont souvent exprimées sous forme de moyennes quadratiques moyennes.

Vavg=8[R]TgaπMmolar

Vitesse la plus probable

La Vitesse la plus probable est la Vitesse au sommet de la courbe de distribution de Maxwell-Boltzmann car le plus grand nombre de molécules ont cette Vitesse.

Vp=2[R]TgaMmolar

Vitesse de transmission de la puissance maximale par courroie

La formule de Vitesse de transmission de puissance maximale par courroie est définie comme la Vitesse de transmission de puissance maximale d'un système d'entraînement par courroie, ce qui est essentiel dans la conception et l'optimisation des systèmes d'entraînement par courroie pour une transmission de puissance efficace.

v=Pm3m

Vitesse de rotation en tr/min

La formule de la Vitesse de rotation en RPM est définie comme une mesure de la Vitesse de rotation d'un arbre ou d'un autre élément rotatif, généralement dans un système mécanique, ce qui est crucial pour déterminer les performances et l'efficacité du système.

Nequillibrium=602πtan(φ)mball

Vitesse de la particule alpha en utilisant la distance de l'approche la plus proche

La Vitesse de la particule alpha utilisant la distance d'approche la plus proche est la Vitesse à laquelle une particule alpha se déplace dans un noyau atomique.

v=[Coulomb]Z([Charge-e]2)[Atomic-m]r0

Vitesse angulaire moyenne d’équilibre

La formule de la Vitesse angulaire moyenne d'équilibre est définie comme une mesure de la Vitesse angulaire moyenne d'un arbre rotatif dans un système mécanique, généralement utilisée dans les mécanismes de régulation pour réguler la Vitesse d'un moteur ou d'autres machines.

ωequillibrium=ω1+ω22

Vitesse d'équilibre moyenne en tr/min

La formule de la Vitesse d'équilibre moyenne en RPM est définie comme la Vitesse de rotation moyenne d'un régulateur à laquelle la force centrifuge des billes équilibre exactement le poids des billes, ce qui entraîne un fonctionnement stable du moteur.

Nequillibrium=N1+N22

Vitesse relative d'entrée de Pelton

La Vitesse relative d'entrée de Pelton est la Vitesse du jet d'eau par rapport au seau en mouvement. Elle est déterminée en soustrayant la Vitesse du godet de la Vitesse absolue du jet d’eau.

Vr1=V1-U

Vitesse maximale du suiveur pour la came à arc circulaire en contact avec le flanc circulaire

La formule de Vitesse maximale du suiveur pour une came en arc de cercle en contact avec un flanc circulaire est définie comme la Vitesse la plus élevée atteinte par le suiveur lorsqu'il se déplace dans une came en arc de cercle en contact avec un flanc circulaire, ce qui est un paramètre critique dans la conception et l'optimisation des systèmes de suiveur de came.

Vm=ω(R-r1)sin()

Vitesse du suiveur pour la came à arc circulaire si le contact est sur le flanc circulaire

La formule de Vitesse du suiveur pour une came en arc de cercle si le contact est sur le flanc circulaire est définie comme la mesure de la Vitesse du suiveur dans un mécanisme de came en arc de cercle lorsque le point de contact est sur le flanc circulaire, ce qui est un paramètre critique dans la conception et l'optimisation des systèmes de suiveur de came.

v=ω(R-r1)sin(θturned)

Vitesse du godet de la turbine Pelton

La Vitesse des augets de la turbine Pelton fait référence à la Vitesse à laquelle les augets de la turbine se déplacent lorsqu'ils sont frappés par les jets d'eau à grande Vitesse. Cette Vitesse est généralement environ la moitié de la Vitesse du jet d’eau, optimisant ainsi le transfert d’énergie et l’efficacité de la turbine.

U=V1-Vr1

Vitesse relative de sortie de Pelton

La Vitesse relative de sortie de Pelton est la Vitesse de l'eau à sa sortie du seau par rapport au seau en mouvement. Elle est influencée par la forme du godet, l'angle de déflexion et la Vitesse du godet.

Vr2=kVr1

Vitesse angulaire de vibration utilisant la force transmise

La formule de la Vitesse angulaire de vibration utilisant la force transmise est définie comme une mesure de la Vitesse de rotation d'un objet vibrant en raison d'une force externe, donnant un aperçu du mouvement oscillatoire de l'objet dans un système mécanique.

ω=(FTK)2-k2c

Vitesse derrière le choc normal

La Vitesse derrière le choc normal calcule la Vitesse d'un fluide en aval d'une onde de choc normale. Cette formule intègre des paramètres tels que la Vitesse en amont du choc, le rapport des chaleurs spécifiques du fluide et le nombre de Mach du débit. Il fournit des informations précieuses sur le changement de Vitesse résultant du passage de l’onde de choc.

V2=V1γ+1(γ-1)+2M2

Vitesse d'écoulement uniforme pour la fonction de courant au point d'écoulement combiné

La Vitesse d'écoulement uniforme pour la fonction de flux au point dans la formule de flux combiné est connue à partir de la relation de la fonction de flux en raison du flux uniforme et de la fonction de flux en raison de la source considérant l'angle 'θ' et la distance de O à P(x,y) comme 'r' en coordonnées polaires.

U=ψ-(q2π∠A)A'sin(∠A)

Vitesse à l'aide de l'équation du débit d'eau

La Vitesse utilisant l'équation du débit d'eau est définie comme la Vitesse d'écoulement lorsque la surface de la section transversale du tuyau et le débit d'eau sont donnés.

Vf=QwAcs

Vitesse angulaire compte tenu du débit théorique et du déplacement volumétrique

La Vitesse angulaire donnée par la formule de débit théorique et de déplacement volumétrique est définie comme une mesure de la Vitesse de rotation d'une pompe hydraulique, ce qui est crucial pour déterminer les performances et l'efficacité de la pompe dans diverses applications industrielles.

n1=QgpVgp

Vitesse de décollage pour une Vitesse de décrochage donnée

La Vitesse de décollage pour une Vitesse de décrochage donnée est une mesure de la Vitesse minimale requise pour qu'un avion décolle, calculée en multipliant la Vitesse de décrochage par un facteur de sécurité de 1,2, garantissant une marge de sécurité au-dessus de la Vitesse de décrochage pour éviter une panne moteur ou une perte de contrôle. pendant les phases critiques du vol.

VLO=1.2Vstall

Vitesse de décrochage pour une Vitesse de décollage donnée

La Vitesse de décrochage pour une Vitesse de décollage donnée est la Vitesse minimale à laquelle un avion peut maintenir un vol en palier, calculée en divisant la Vitesse de décollage par 1,2.

Vstall=VLO1.2

Vitesse de décollage pour un poids donné

La Vitesse de décollage pour un poids donné est une mesure de la Vitesse minimale requise pour qu'un objet décolle du sol, calculée en fonction du poids, de la densité du flux libre, de la zone de référence et du coefficient de portance maximal.

VLO=1.2(2WρSCL,max)

Vitesse de décrochage pour un poids donné

La Vitesse de décrochage pour une masse donnée est une mesure de la Vitesse à laquelle une aile d'avion décroche, calculée en fonction du poids, de la densité du flux libre, de la zone de référence et du coefficient de portance maximale, fournissant un seuil de Vitesse critique pour des opérations aériennes sûres.

Vstall=2WρSCL,max

Vitesse de transport et de retour en milles par heure à temps variable

La formule de Vitesse de transport et de retour en milles par heure étant donné le temps variable est définie comme la distance parcourue par unité de temps.

Smph=Hft+Rft88Tv

Vitesse de transport et de retour en kilomètres par heure en temps variable

La Vitesse de transport et de retour en kilomètres par heure étant donné le temps variable est définie comme la Vitesse lorsque nous disposons d'informations préalables sur la distance de retour et la distance de transport.

Skmph=hm+Rmeter16.7Tv

Vitesse tangentielle de la roue à aubes à l'entrée en utilisant la Vitesse angulaire

La Vitesse tangentielle de la turbine à l'entrée à l'aide de la formule de Vitesse angulaire est définie comme le produit de la Vitesse angulaire et du rayon de la turbine à l'entrée.

u1=ωR1

Vitesse tangentielle de la turbine à la sortie en utilisant la Vitesse angulaire

La Vitesse tangentielle de la turbine à la sortie à l'aide de la formule de Vitesse angulaire est définie comme le produit de la Vitesse angulaire et du rayon de la turbine à la sortie de la pompe.

u2=ωR2

Vitesse du piston ou du corps pour le mouvement du piston dans le Dash-Pot

La Vitesse du piston ou du corps pour le mouvement du piston dans la formule du tableau de bord est connue en tenant compte du poids, de la longueur et du diamètre du piston, de la viscosité du fluide ou de l'huile et du jeu entre le tableau de bord et le piston.

V=4WbC33πLdp3μ

Vitesse spécifique d'aspiration

La formule de Vitesse spécifique d'aspiration est définie comme un paramètre sans dimension qui caractérise les performances d'aspiration d'une pompe, fournissant une mesure relative de la capacité de la pompe à gérer un débit et une hauteur manométrique donnés, permettant la comparaison de différentes conceptions de pompes et leur adéquation à des applications spécifiques.

Nsuc=ωQ(Hsv)34

Vitesse à la section 1 de l'équation de Bernoulli

La Vitesse à la section 1 de l'équation de Bernoulli est définie comme la Vitesse à une section particulière du tuyau.

V1=2[g]((P2γf)+(0.5(Vp22[g]))+Z2-Z1-P1γf)

Vitesse d'écoulement donnée Tête de Vitesse pour un écoulement stable non visqueux

La Vitesse d'écoulement donnée à la tête de Vitesse pour un écoulement stable non visqueux est définie comme une mesure de la Vitesse du fluide à un point particulier et est définie comme le rapport de la Vitesse du fluide au carré à deux fois l'accélération due à la gravité.

V=Vh2[g]

Vitesse des ondes planes

La formule Plane Wave Velocity est définie comme simplement la projection de la Vitesse de l'énergie sur la direction de propagation.

Vplane=ωβ

Vitesse avant de l'aéronef pour une composante normale donnée de la Vitesse latérale

La Vitesse avant de l'avion pour une composante normale donnée de la Vitesse latérale est une mesure de la Vitesse d'un avion en vol vers l'avant, calculée sur la base de la composante normale de la Vitesse latérale et du changement local de l'angle d'attaque.

V=VnΔα

Vitesse de la ligne de pas de l'engrenage

La Vitesse de la ligne de pas de l'engrenage est définie comme la Vitesse de tout point sur le cercle primitif de l'engrenage. Cela dépend de la Vitesse de rotation de l'engrenage et du pas diamétral.

v=πdng

Vitesse de dérapage de l'avion pour un angle dièdre donné

La Vitesse de dérapage de l'avion pour un angle dièdre donné est une mesure de la Vitesse du mouvement latéral d'un avion, calculée en divisant la composante normale de la Vitesse latérale par le sinus de l'angle dièdre de l'aile, fournissant un aperçu de la stabilité et du contrôle de l'avion pendant le vol.

Vβ=Vnsin(Γ)

Vitesse de coupe à partir de la température de l'outil

La Vitesse de coupe à partir de la formule de température de l'outil est définie comme la Vitesse utilisée pour couper un matériau particulier à l'aide de l'outil.

V=(θk0.44c0.56C0UsA0.22)10044

Vitesse superficielle d'Ergun étant donné le nombre de Reynolds

La Vitesse superficielle d'Ergun étant donnée la formule du nombre de Reynolds est définie comme le débit volumétrique de ce fluide divisé par l'aire de la section transversale.

Ub=Repbμ(1-)Deffρ

Vitesse critique compte tenu de l'énergie totale au point critique

La formule de Vitesse critique étant donné l’énergie totale au point critique est définie comme la Vitesse à laquelle le flux passe du statut sous-critique à supercritique, en tenant compte de l’énergie totale au point critique.

Vc=2g(Ec-(dc+hf))

Vitesse critique compte tenu de la perte de charge

La formule de Vitesse critique étant donné la perte de charge est définie comme la mesure de la Vitesse à laquelle le flux passe d'un état sous-critique à un état supercritique. Dans un écoulement en canal ouvert, la Vitesse critique se produit lorsque l'énergie cinétique de l'écoulement est égale à l'énergie potentielle, étant donné que nous disposons de l'information préalable sur la perte de charge.

Vc=(hf2g0.1)12

Vitesse de coupe de référence donnée Taux d'augmentation de la largeur d'usure

La Vitesse de coupe de référence donnée par le taux d'augmentation de la largeur de l'usure dans l'usinage des métaux fait référence à la Vitesse linéaire souhaitée du bord de l'outil de coupe par rapport à la surface de la pièce, définie en tenant compte de la Vitesse à laquelle la largeur de l'usure atterrit sur la coupe. l'outil augmente pendant l'usinage.

Vref=V(VrTrefw)n

Vitesse de coupe en fonction du taux d'augmentation de la largeur d'usure

La Vitesse de coupe, compte tenu du taux d'augmentation de la largeur de la zone d'usure, appelée Vitesse de coupe, est un paramètre critique qui influence directement l'usure de l'outil et les performances d'usinage. Le taux d'augmentation de la largeur de la zone d'usure, quant à lui, décrit la rapidité avec laquelle la largeur de la surface usée sur l'outil de coupe augmente au fil du temps au cours du processus d'usinage.

V=Vref(VrTrefw)n

Vitesse d'écoulement dans le réservoir d'huile

La Vitesse d'écoulement dans le réservoir d'huile est définie comme la Vitesse à laquelle le fluide ou l'huile dans le réservoir se déplace en raison de l'application de la force du piston.

uOiltank=(dp|dr0.5RR-CHRμ)-(vpistonRCH)

Vitesse du piston en fonction de la Vitesse d'écoulement dans le réservoir d'huile

La Vitesse du piston compte tenu de la Vitesse d'écoulement dans le réservoir d'huile est définie comme la Vitesse à laquelle le piston descend par rapport à la distance verticale.

vpiston=((0.5dp|drRR-CHRμ)-uOiltank)(CHR)

Vitesse des pistons pour la chute de pression sur la longueur du piston

La Vitesse des pistons pour la chute de pression sur la longueur du piston est définie comme la Vitesse à laquelle le piston descend.

vpiston=ΔPf(6μLPCR3)(0.5D+CR)

Vitesse du piston pour la force verticale ascendante sur le piston

La Vitesse du piston pour la force verticale vers le haut sur le piston est définie comme la Vitesse moyenne avec laquelle l'huile ou le piston se déplace dans le réservoir.

vpiston=FvLPπμ(0.75((DCR)3)+1.5((DCR)2))

Vitesse RMS compte tenu de la pression et du volume de gaz en 1D

La Vitesse RMS compte tenu de la pression et du volume de gaz dans la formule 1D est définie comme la proportion directe de la Vitesse quadratique moyenne avec la racine carrée de la pression et du volume et la proportion inverse de la racine carrée moyenne avec la racine carrée de la masse molaire.

CRMS=PgasVMmolar

Vitesse RMS en fonction de la température et de la masse molaire en 1D

La Vitesse RMS compte tenu de la température et de la masse molaire dans la formule 1D est définie comme le rapport de la racine carrée de la température du gaz à la masse molaire.

CRMS=[R]TgMmolar

Vitesse de coupe de référence compte tenu de la durée de vie de l'outil et de la distance parcourue par le coin de l'outil

La Vitesse de coupe de référence compte tenu de la durée de vie de l'outil et de la distance parcourue par le coin de l'outil est définie comme la Vitesse à laquelle la pièce se déplace par rapport à l'outil pour la durée de vie de l'outil de référence. (généralement mesuré en pieds par minute).

Vc=((TTref)z)Ktm

Vitesse de surface de la pièce à partir de l'analyse semi-empirique de Lindsay

La Vitesse de surface de la pièce issue de l'analyse semi-empirique de Lindsay est une méthode utilisée pour estimer la Vitesse de surface de la pièce dans les processus de meulage. Dans cette analyse, la Vitesse de surface de la pièce est calculée en fonction de divers paramètres tels que le diamètre de la meule, la Vitesse de rotation de la meule et la profondeur de coupe.

vw=(de0.14Vb0.47dg0.13Nhardness1.42Λt7.93100000(1vt)0.158(1+(4ad3f))f0.58vt)1000158

Vitesse de surface de la roue d'après l'analyse semi-empirique de Lindsay

La Vitesse de surface de la roue de la formule d'analyse semi-empirique de Lindsay est définie comme la Vitesse de la surface de la roue qui est utilisée pour le meulage.

vt=(de0.14Vb0.47dg0.13Nhardness1.42Λt7.93100000(vw)0.158(1+(4ad3f))f0.58)11-0.158

Vitesse moyenne d'écoulement pour l'énergie totale par unité de poids d'eau dans la section d'écoulement

La Vitesse moyenne d'écoulement pour l'énergie totale par unité de poids d'eau dans la section d'écoulement est définie comme la Vitesse moyenne dans le tuyau ou le canal à tous les points dans la direction de l'écoulement.

Vmean=(Etotal-(df+y))2[g]

Comment trouver Formules ?

Voici quelques conseils pour obtenir de meilleurs résultats de recherche.
Soyez précis : Plus votre requête est spécifique, meilleurs sont vos résultats.
Utilisez plusieurs mots clés : Combinez plusieurs mots clés pour affiner les résultats.
Expérimentez avec des synonymes : Différents termes peuvent donner des résultats différents.
Recherche générique : Utilisez l'opérateur * (astérisque). NOTEZ que cet opérateur ne fonctionne qu'à la fin d'un mot. Exemple : Bio*, Zone*, etc.

Vous pouvez également parcourir les sous-catégories de pour vous concentrer sur les formules qui vous intéressent.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!