Rechercher Formules

Veuillez saisir au moins trois caractères pour commencer à rechercher des formules .

Sélectionner un filtre

Affinez vos résultats de recherche à l’aide de ces filtres.

50 Formules correspondantes trouvées !

Vitesse finale du corps

La formule de la Vitesse finale du corps est définie comme la Vitesse qu'un objet atteint après une certaine période de temps, en tenant compte de sa Vitesse initiale, de son accélération et de son temps, ce qui est essentiel pour comprendre la cinématique du mouvement et décrire le mouvement des objets.

vf=u+at

Vitesse moyenne du corps compte tenu de la Vitesse initiale et finale

La formule de la Vitesse moyenne d'un corps donnée, la Vitesse initiale et finale, est définie comme une mesure du taux moyen de changement de la position d'un objet par rapport au temps, offrant une compréhension complète du mouvement d'un objet entre deux points.

vavg=u+vf2

Vitesse finale d'un corps en chute libre depuis la hauteur lorsqu'il atteint le sol

La formule de la Vitesse finale d'un corps tombant librement d'une certaine hauteur lorsqu'il atteint le sol est définie comme la Vitesse à laquelle un objet tombe d'une certaine hauteur et atteint le sol, influencée par l'accélération due à la gravité et la hauteur initiale de l'objet.

V=2gv

Vitesse angulaire finale donnée Vitesse angulaire initiale Accélération angulaire et temps

La formule de la Vitesse angulaire finale étant donnée la Vitesse angulaire initiale, l'accélération angulaire et le temps est définie comme une mesure de la Vitesse de rotation d'un objet à un moment précis, prenant en compte sa Vitesse angulaire initiale, son accélération angulaire et le temps écoulé, offrant une compréhension complète du mouvement de rotation d'un objet.

ω1=ωo+αt

Vitesse angulaire donnée Vitesse tangentielle

La Vitesse angulaire, étant donné la formule de la Vitesse tangentielle, est définie comme une mesure du taux de variation du déplacement angulaire d'un objet se déplaçant sur une trajectoire circulaire, fournissant un concept fondamental pour comprendre le mouvement de rotation et ses applications dans divers domaines de la physique et de l'ingénierie.

ω=vtRc

Vitesse maximale du suiveur pendant la course de retour pour une accélération uniforme

La formule de la Vitesse maximale du suiveur pendant la course de retour pour une accélération uniforme est définie comme la Vitesse la plus élevée atteinte par le suiveur pendant sa course de retour dans un système mécanique avec une accélération uniforme, où le suiveur se déplace sur une trajectoire circulaire et sa Vitesse varie avec le déplacement angulaire.

Vm=2SωθR

Vitesse angulaire de la machine à courant continu utilisant Kf

La Vitesse angulaire de la machine à courant continu utilisant la formule Kf est définie comme le taux de variation du déplacement angulaire de la machine à courant continu.

ωs=VaKfΦIa

Vitesse angulaire du générateur CC en série compte tenu du couple

La Vitesse angulaire du générateur CC série étant donnée la formule de couple est définie comme la Vitesse angulaire du générateur CC série lorsque la puissance d'entrée est donnée.

ωs=Pinτ

Vitesse en vol accéléré

La Vitesse en vol accéléré fait référence à la Vitesse de l'avion lorsqu'il subit des changements de Vitesse ou de direction pour atteindre des objectifs de vol spécifiques. Elle est généralement mesurée comme la Vitesse anémométrique de l'avion, qui est la Vitesse de l'avion par rapport à l'air ambiant.

v=(Rcurvaturem(FL+Tsin(σT)-m[g]cos(γ)))12

Vitesse de l'avion à un taux de montée donné

La Vitesse de l'avion à un taux de montée donné est la Vitesse requise pour qu'un avion atteigne un taux de montée spécifique. Cette formule calcule la Vitesse en divisant le taux de montée par le sinus de l'angle de la trajectoire de vol pendant la montée. Comprendre et appliquer cette formule est crucial pour les pilotes et les ingénieurs afin d'optimiser les performances de montée.

v=RCsin(γ)

Vitesse d'écoulement uniforme pour le demi-corps de Rankine

La Vitesse d'écoulement uniforme pour le demi-corps de Rankine fait référence à la Vitesse du courant libre à l'infini, où le flux se rapproche de la forme du demi-corps de Rankine. Cette forme est un modèle théorique en dynamique des fluides où l'on considère l'écoulement autour d'une plaque plate semi-infinie placée dans un champ d'écoulement uniforme.

U=q2y(1-∠Aπ)

Vitesse au niveau de la mer étant donné le coefficient de portance

La Vitesse au niveau de la mer étant donné le coefficient de portance est une mesure qui calcule la Vitesse d'un objet au niveau de la mer, en tenant compte du poids corporel, de la densité de l'air au niveau de la mer, de la zone de référence et du coefficient de portance, fournissant un paramètre crucial dans l'aérodynamique et la conception des avions. .

V0=2Wbody[Std-Air-Density-Sea]SCL

Vitesse à l'altitude

La Vitesse en altitude est une mesure de la Vitesse d'un objet à une hauteur spécifique au-dessus de la surface de la Terre, en tenant compte du poids du corps, de la densité de l'air, de la zone de référence et du coefficient de portance. Cette formule permet de calculer la Vitesse dans les systèmes aérodynamiques. fournir des informations précieuses aux ingénieurs et aux chercheurs dans les domaines de l'aérospatiale et de l'aérodynamique.

Valt=2Wbodyρ0SCL

Vitesse à l'altitude donnée Vitesse au niveau de la mer

Vitesse à une altitude donnée La Vitesse au niveau de la mer est une mesure de la Vitesse d'un objet à une certaine altitude, calculée en multipliant la Vitesse au niveau de la mer par la racine carrée du rapport entre la densité standard de l'air au niveau de la mer et la densité de l'air. à l'altitude donnée.

Valt=V0[Std-Air-Density-Sea]ρ0

Vitesse du moteur du moteur à courant continu

La formule de la Vitesse du moteur du moteur à courant continu est définie comme la Vitesse du rotor du moteur à courant continu par rapport au no. de pôles, de chemins parallèles et de conducteurs.

N=60n||EbZnΦ

Vitesse de rotation pour la force de cisaillement dans le palier lisse

La Vitesse de rotation pour la force de cisaillement dans le roulement à billes est influencée par la force de cisaillement subie dans le roulement. Des forces de cisaillement plus élevées nécessitent généralement des ajustements de Vitesse pour maintenir des performances optimales des roulements et éviter une usure excessive.

N=Fstμπ2Ds2L

Vitesse de la sphère dans la méthode de résistance à la chute de la sphère

La formule de la méthode de résistance à la Vitesse de la sphère en chute de sphère est connue en considérant la viscosité du fluide ou de l'huile, le diamètre de la sphère et la force de traînée.

U=FD3πμd

Vitesse de rotation de la centrifugeuse utilisant la force d'accélération centrifuge

La Vitesse de rotation de la centrifugeuse utilisant la force d'accélération centrifuge est définie comme le nombre de tours de l'objet divisé par le temps, spécifié en tours par minute.

N=32.2G(2π)2Rb

Vitesse du fluide pour le nombre de Reynold

La formule de la Vitesse du fluide pour le nombre de Reynold est connue en tenant compte du rapport du nombre de Reynolds et de la viscosité du fluide à la densité du liquide et à la longueur de la plaque.

V=ReμρfL

Vitesse de séparation après impact

La formule de Vitesse de séparation après impact est définie comme le produit du coefficient de restitution et de la différence entre la Vitesse initiale du premier corps et la Vitesse initiale du second corps.

vsep=e(u1-u2)

Vitesse d'approche

La formule de la Vitesse d'approche est définie comme le rapport de la différence de la Vitesse finale du deuxième corps et de la Vitesse finale du premier corps au coefficient de restitution.

vapp=v2-v1e

Vitesse tangentielle du cylindre avec coefficient de portance

La formule de la Vitesse tangentielle du cylindre avec le coefficient de portance est connue en considérant les termes coefficient de portance et Vitesse de flux libre.

vt=C'V2π

Vitesse libre pour le coefficient de portance avec Vitesse tangentielle

La Vitesse Freestream pour le coefficient de portance avec la formule de Vitesse tangentielle est connue en considérant le rapport de la Vitesse tangentielle du cylindre avec deux pi au coefficient de portance.

V=2πvtC'

Vitesse tangentielle pour un seul point de stagnation

La formule de Vitesse tangentielle pour un point de stagnation unique est connue comme le double de la Vitesse de flux libre présente dans le cylindre.

vt=2V

Vitesse du piston

La formule de la Vitesse du piston est définie comme la Vitesse à laquelle le piston se déplace dans une pompe alternative, qui est un composant critique dans diverses applications industrielles et est un facteur clé pour déterminer les performances et l'efficacité globales de la pompe.

vpiston=ωrsin(ωtsec)

Vitesse du liquide dans le tuyau

La formule de la Vitesse du liquide dans un tuyau est définie comme le débit du liquide à travers un tuyau dans un système de pompe alternative, influencé par des facteurs tels que la section transversale du tuyau, la Vitesse angulaire, le rayon et le temps, qui ont un impact collectif sur le mouvement et la pression du liquide.

vl=Aaωrsin(ωts)

Vitesse d'écoulement donnée Taux d'écoulement à travers l'hélice

La Vitesse d'écoulement donnée par le débit à travers l'hélice est définie comme la Vitesse du fluide arrivant sur le jet.

Vf=(8qflowπD2)-V

Vitesse du jet compte tenu de la puissance perdue

La Vitesse du jet compte tenu de la perte de puissance est définie comme la Vitesse du jet émetteur au point de rotation de l'hélice.

V=(PlossρFluidqflow0.5)+Vf

Vitesse d'écoulement donnée Puissance perdue

La Vitesse d'écoulement compte tenu de la puissance perdue est définie comme la Vitesse du flux entrant dans l'hélice à réaction.

Vf=V-(PlossρFluidqflow0.5)

Vitesse d'écoulement donnée Efficacité propulsive théorique

La Vitesse d'écoulement donnée pour l'efficacité propulsive théorique est définie comme la Vitesse d'écoulement du flux au point de jet.

Vf=V2η-1

Vitesse de rotation de distribution

La Vitesse de rotation de distribution d'un objet tournant autour d'un axe est le nombre de tours de l'objet divisé par le temps, spécifié en tours par minute.

n=1.6QTNDR

Vitesse RMS compte tenu de la température et de la masse molaire

La formule de Vitesse RMS compte tenu de la température et de la masse molaire est définie comme le rapport de la racine carrée de la température du gaz à la masse molaire.

CRMS=3[R]TgMmolar

Vitesse RMS compte tenu de la pression et du volume de gaz

La formule de la pression et du volume de gaz de la Vitesse RMS donnée est définie comme la proportion directe de la Vitesse quadratique moyenne avec la racine carrée de la pression et du volume et la proportion inverse de la racine carrée moyenne avec la racine carrée de la masse molaire.

CRMS=3PgasVMmolar

Vitesse RMS compte tenu de la pression et de la densité

La formule de pression et de densité de la Vitesse RMS donnée est définie comme la proportion directe de la Vitesse quadratique moyenne avec la racine carrée de la pression et la proportion inverse de la racine carrée moyenne avec la racine carrée de la masse molaire.

CRMS=3Pgasρgas

Vitesse uniforme des électrons

La Vitesse uniforme des électrons fait référence à la Vitesse à laquelle un électron pénètre dans la cavité dans le vide. Dans le vide, un électron aura une Vitesse uniforme s'il est soumis à un champ électrique constant. La Vitesse de l'électron dépendra de la force du champ électrique et de la masse de l'électron.

Evo=(2Vo)([Charge-e][Mass-e])

Vitesse de sédimentation par rapport au diamètre de la particule

La formule de la Vitesse de sédimentation par rapport au diamètre des particules est définie comme la Vitesse à laquelle une particule se dépose dans un fluide sous l'influence de la gravité. Cette Vitesse est influencée par la taille, la forme et la densité des particules.

Vsd=(g(G-1)(Dp)1.613.88(ν)0.6)0.714

Vitesse de stabilisation pour la stabilisation turbulente

La formule de Vitesse de sédimentation pour la sédimentation turbulente est définie comme le calcul de la Vitesse de sédimentation pendant le mouvement turbulent.

Vst=(1.8g(G-1)Dp)

Vitesse de stabilisation pour l'équation de Hazen modifiée

La formule de la Vitesse de sédimentation pour l'équation de Hazen modifiée est définie comme le calcul de la Vitesse de sédimentation lorsque nous disposons d'informations préalables sur d'autres paramètres.

Vsm=(60.6Dp(G-1)((3T)+70100))

Vitesse de sédimentation des solides inorganiques

La Vitesse de sédimentation des solides inorganiques (également appelée «Vitesse de sédimentation») est définie comme la Vitesse terminale d'une particule dans un fluide immobile.

vs(in)=(Dp((3T)+70))

Vitesse de sédimentation de la matière organique

La Vitesse de sédimentation de la matière organique (également appelée «Vitesse de sédimentation») est définie comme la Vitesse terminale d'une particule dans un fluide immobile.

vs(o)=0.12Dp((3T)+70)

Vitesse d'avance en broyage

La Vitesse d'avance dans la rectification est la quantité d'avance donnée par rapport à une pièce par unité de temps dans la rectification.

VF=Vi-(dT2)

Vitesse d'avance machine donnée Vitesse d'avance en Rectification

La Vitesse d'avance de la machine donnée. La Vitesse d'avance en meulage est définie comme la Vitesse de rotation de la broche de la rectifieuse ajustée pour s'adapter à la Vitesse d'avance spécifiée pendant le processus de meulage.

Vi=VF+(dT2)

Vitesse de gaz la plus probable compte tenu de la Vitesse RMS en 2D

La Vitesse la plus probable du gaz étant donné la Vitesse RMS dans la formule 2D est définie comme le produit de la Vitesse quadratique moyenne du gaz avec 0,7071.

Cmp_RMS=(0.7071CRMS)

Vitesse la plus probable du gaz compte tenu de la température en 2D

La Vitesse la plus probable du gaz étant donné la température dans la formule 2D est définie comme le rapport de la racine carrée de la température à la masse molaire.

CT=[R]TgMmolar

Vitesse RMS donnée Vitesse la plus probable en 2D

La Vitesse RMS donnée dans la formule de Vitesse la plus probable en 2D est définie comme le produit de la Vitesse la plus probable de la molécule gazeuse par la racine carrée de 2.

CRMS=(Cmp2)

Vitesse RMS compte tenu de la pression et de la densité en 2D

La Vitesse RMS compte tenu de la pression et de la densité en 2D est définie comme la proportion directe de la Vitesse quadratique moyenne avec la racine carrée de la pression et la proportion inverse de la racine carrée moyenne avec la racine carrée de la masse molaire.

CRMS=2Pgasρgas

Vitesse RMS compte tenu de la pression et du volume de gaz en 2D

La Vitesse RMS compte tenu de la pression et du volume de gaz dans la formule 2D est définie comme la proportion directe de la Vitesse quadratique moyenne avec la racine carrée de la pression et du volume et la proportion inverse de la racine carrée moyenne avec la racine carrée de la masse molaire.

CRMS=2PgasVMmolar

Vitesse RMS en fonction de la température et de la masse molaire en 2D

La Vitesse RMS compte tenu de la température et de la masse molaire dans la formule 2D est définie comme le rapport de la racine carrée de la température du gaz à la masse molaire.

CRMS=2[R]TgMmolar

Vitesse RMS donnée Vitesse moyenne en 2D

La Vitesse RMS donnée dans la formule de Vitesse moyenne en 2D est définie comme le produit de la Vitesse moyenne du gaz avec 1,0854.

CRMS=(Cav1.0854)

Vitesse de sédimentation de particules de taille particulière

La formule de la Vitesse de sédimentation de particules de taille particulière est définie comme la valeur de la Vitesse à laquelle les particules se déposent dans un fluide au repos. Il s'agit d'une mesure de la rapidité avec laquelle les particules tombent au fond d'un réservoir ou d'un autre bassin de décantation, en fonction de particules de taille particulière.

vs=70Qs100wL

Comment trouver Formules ?

Voici quelques conseils pour obtenir de meilleurs résultats de recherche.
Soyez précis : Plus votre requête est spécifique, meilleurs sont vos résultats.
Utilisez plusieurs mots clés : Combinez plusieurs mots clés pour affiner les résultats.
Expérimentez avec des synonymes : Différents termes peuvent donner des résultats différents.
Recherche générique : Utilisez l'opérateur * (astérisque). NOTEZ que cet opérateur ne fonctionne qu'à la fin d'un mot. Exemple : Bio*, Zone*, etc.

Vous pouvez également parcourir les sous-catégories de pour vous concentrer sur les formules qui vous intéressent.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!