Rechercher Formules

Veuillez saisir au moins trois caractères pour commencer à rechercher des formules .

Sélectionner un filtre

Affinez vos résultats de recherche à l’aide de ces filtres.

50 Formules correspondantes trouvées !

Vitesse de rotation en tr/min

La formule de la Vitesse de rotation en RPM est définie comme une mesure de la Vitesse de rotation d'un arbre ou d'un autre élément rotatif, généralement dans un système mécanique, ce qui est crucial pour déterminer les performances et l'efficacité du système.

Nequillibrium=602πtan(φ)mball

Vitesse de la particule alpha en utilisant la distance de l'approche la plus proche

La Vitesse de la particule alpha utilisant la distance d'approche la plus proche est la Vitesse à laquelle une particule alpha se déplace dans un noyau atomique.

v=[Coulomb]Z([Charge-e]2)[Atomic-m]r0

Vitesse angulaire moyenne d’équilibre

La formule de la Vitesse angulaire moyenne d'équilibre est définie comme une mesure de la Vitesse angulaire moyenne d'un arbre rotatif dans un système mécanique, généralement utilisée dans les mécanismes de régulation pour réguler la Vitesse d'un moteur ou d'autres machines.

ωequillibrium=ω1+ω22

Vitesse d'équilibre moyenne en tr/min

La formule de la Vitesse d'équilibre moyenne en RPM est définie comme la Vitesse de rotation moyenne d'un régulateur à laquelle la force centrifuge des billes équilibre exactement le poids des billes, ce qui entraîne un fonctionnement stable du moteur.

Nequillibrium=N1+N22

Vitesse relative d'entrée de Pelton

La Vitesse relative d'entrée de Pelton est la Vitesse du jet d'eau par rapport au seau en mouvement. Elle est déterminée en soustrayant la Vitesse du godet de la Vitesse absolue du jet d’eau.

Vr1=V1-U

Vitesse maximale du suiveur pour la came à arc circulaire en contact avec le flanc circulaire

La formule de Vitesse maximale du suiveur pour une came en arc de cercle en contact avec un flanc circulaire est définie comme la Vitesse la plus élevée atteinte par le suiveur lorsqu'il se déplace dans une came en arc de cercle en contact avec un flanc circulaire, ce qui est un paramètre critique dans la conception et l'optimisation des systèmes de suiveur de came.

Vm=ω(R-r1)sin()

Vitesse du suiveur pour la came à arc circulaire si le contact est sur le flanc circulaire

La formule de Vitesse du suiveur pour une came en arc de cercle si le contact est sur le flanc circulaire est définie comme la mesure de la Vitesse du suiveur dans un mécanisme de came en arc de cercle lorsque le point de contact est sur le flanc circulaire, ce qui est un paramètre critique dans la conception et l'optimisation des systèmes de suiveur de came.

v=ω(R-r1)sin(θturned)

Vitesse du godet de la turbine Pelton

La Vitesse des augets de la turbine Pelton fait référence à la Vitesse à laquelle les augets de la turbine se déplacent lorsqu'ils sont frappés par les jets d'eau à grande Vitesse. Cette Vitesse est généralement environ la moitié de la Vitesse du jet d’eau, optimisant ainsi le transfert d’énergie et l’efficacité de la turbine.

U=V1-Vr1

Vitesse relative de sortie de Pelton

La Vitesse relative de sortie de Pelton est la Vitesse de l'eau à sa sortie du seau par rapport au seau en mouvement. Elle est influencée par la forme du godet, l'angle de déflexion et la Vitesse du godet.

Vr2=kVr1

Vitesse angulaire de vibration utilisant la force transmise

La formule de la Vitesse angulaire de vibration utilisant la force transmise est définie comme une mesure de la Vitesse de rotation d'un objet vibrant en raison d'une force externe, donnant un aperçu du mouvement oscillatoire de l'objet dans un système mécanique.

ω=(FTK)2-k2c

Vitesse en aval à l'aide de la relation de Prandtl

La Vitesse en aval utilisant la relation de Prandtl relie la Vitesse critique du son aux Vitesses en amont et en aval d'une onde de choc.

V2=acr2V1

Vitesse théorique

La formule de Vitesse théorique est définie à partir de l'équation de Bernoulli de l'écoulement à travers un orifice. H est la tête du liquide au-dessus du centre de l'orifice.

v=29.81Hp

Vitesse pour un rayon de virage donné

La Vitesse pour un rayon de virage donné est une mesure de la Vitesse d'un objet lorsqu'il tourne sur une trajectoire circulaire, en fonction du rayon de virage, de l'accélération gravitationnelle et du facteur de charge.

V=R[g](n2-1)

Vitesse à la section 1-1 pour un élargissement soudain

La Vitesse à la section 1-1 pour la formule d'agrandissement soudain est connue en considérant la Vitesse d'écoulement à la section 2-2 après l'élargissement, et la perte de charge due au frottement pour un liquide s'écoulant à travers le tuyau.

V1'=V2'+he2[g]

Vitesse à la section 2-2 pour un élargissement soudain

La Vitesse à la section 2-2 pour la formule d'agrandissement soudain est connue en considérant la Vitesse d'écoulement à la section 1-1 avant l'élargissement, et la perte de charge due au frottement pour un liquide s'écoulant à travers le tuyau.

V2'=V1'-he2[g]

Vitesse à la section 2-2 pour contraction soudaine

La Vitesse à la section 2-2 pour la formule de contraction soudaine est connue en considérant la perte de charge due à une contraction soudaine et le coefficient de contraction à cc.

V2'=hc2[g](1Cc)-1

Vitesse de coupe résultante

La Vitesse de coupe résultante est la Vitesse résultante de la Vitesse de l'outil primaire et de la Vitesse d'avance simultanées, donnée à l'outil pendant l'usinage. Dans des conditions idéales, il est considéré comme identique à la Vitesse de coupe.

Vr=vccos((η))

Vitesse du flux libre selon le théorème de Kutta-Joukowski

La Vitesse Freestream par la formule du théorème de Kutta-Joukowski est définie comme la fonction de la portance par unité de portée, de la circulation et de la densité du courant libre.

V=L'ρΓ

Vitesse du flux libre

La formule de Vitesse Freestream est définie comme la viscosité dynamique du fluide divisée par le produit du carré de l'émissivité, de la densité du flux libre et du rayon du nez.

V=μviscosityε2ρrnose

Vitesse moyenne du gaz à une température donnée

La Vitesse moyenne du gaz selon la formule de température est définie comme le rapport de la racine carrée de la température et de la masse molaire du gaz respectif.

Cav=8[R]TgπMmolar

Vitesse moyenne du gaz compte tenu de la pression et du volume

La formule de la Vitesse moyenne du gaz en fonction de la pression et du volume est définie comme le rapport de la racine carrée de la pression et du volume à la masse molaire du gaz respectif.

vavg_P_V=8PgasVπMmolar

Vitesse moyenne du gaz compte tenu de la pression et de la densité

La formule de la Vitesse moyenne du gaz en fonction de la pression et de la densité est définie comme la racine carrée du rapport de la pression du gaz à la densité du gaz.

vavg_P_D=8Pgasπρgas

Vitesse moyenne du gaz donnée Vitesse quadratique moyenne

La Vitesse moyenne du gaz étant donné la formule de la Vitesse quadratique moyenne est définie comme le produit de la Vitesse quadratique moyenne avec 0,9213. La Vitesse moyenne est la Vitesse moyenne de chaque molécule du gaz.

vavg_RMS=(0.9213CRMS_speed)

Vitesse RMS donnée Vitesse moyenne

La formule de Vitesse moyenne donnée par la Vitesse RMS est définie comme le rapport de la Vitesse moyenne du gaz à 0,9213.

CRMS=(Cav0.9213)

Vitesse d'auto-nettoyage

La Vitesse d'auto-nettoyage est définie comme la Vitesse minimale à laquelle le fluide doit s'écouler dans un égout pour éviter le dépôt de sédiments et maintenir un chemin dégagé.

vs=Ckd'(G-1)

Vitesse de montée minimale compte tenu de la surface du réservoir d'écrémage

La formule de Vitesse de montée minimale étant donné la surface du réservoir d'écrémage est définie comme la Vitesse minimale à laquelle les particules ou les contaminants (tels que les huiles et les graisses) montent à la surface de l'eau. Il s’agit d’un paramètre crucial pour la conception et le fonctionnement des bassins d’écrémage, utilisés pour éliminer les matières flottantes des eaux usées.

Vr=0.00622qflowSA

Vitesse d'écoulement de l'eau entrant dans le réservoir

La formule de Vitesse d'écoulement de l'eau entrant dans le réservoir est définie comme la valeur de la Vitesse à laquelle un fluide se déplace à l'intérieur d'un réservoir, généralement calculée en fonction des dimensions du réservoir et du débit du fluide.

vw=(QwDt)

Vitesse d'écoulement de l'eau entrant dans le réservoir donnée Section transversale du réservoir

La formule de Vitesse d'écoulement de l'eau entrant dans le réservoir étant donné la surface de la section transversale du réservoir est définie comme la valeur de la Vitesse à laquelle un fluide se déplace à l'intérieur d'un réservoir, généralement calculée en fonction de la surface de la section transversale du réservoir.

vin=QAcs

Vitesse d'écoulement donnée Longueur du réservoir

La formule de Vitesse d'écoulement donnée selon la longueur du réservoir est définie comme la Vitesse à laquelle un fluide se déplace dans un réservoir, généralement calculée en fonction des dimensions du réservoir et du débit du fluide.

Vf=(vsLd)

Vitesse de sédimentation en fonction de la longueur du réservoir

La formule de Vitesse de sédimentation donnée selon la longueur du réservoir est définie comme la Vitesse à laquelle les particules se déposent dans un fluide au repos. Il s'agit d'une mesure de la rapidité avec laquelle les particules tombent au fond d'un réservoir ou d'un autre bassin de décantation, en tenant compte de la longueur du réservoir.

vs=VfdL

Vitesse de sédimentation donnée Décharge

La formule de Vitesse de sédimentation donnée est définie comme la valeur de la Vitesse à laquelle les particules en suspension se déposent hors de l'eau sous l'influence de la gravité, ce qui est essentiel pour la conception et l'analyse des processus de sédimentation.

vs=(QswL)

Vitesse de stabilisation en fonction de la zone du plan

La formule de Vitesse de décantation donnée dans la zone de plan est définie comme la valeur de la Vitesse à laquelle les particules se déposent dans un fluide au repos. Il s'agit d'une mesure de la rapidité avec laquelle les particules tombent au fond d'un réservoir ou d'un autre bassin de décantation, compte tenu de la zone du plan.

vs=(QSABase)

Vitesse de sédimentation compte tenu du rapport hauteur/longueur

La formule de Vitesse de sédimentation donnée par le rapport hauteur/longueur est définie comme la Vitesse à laquelle les particules se déposent hors d'un fluide, tel que l'eau. Le « rapport hauteur/longueur » peut jouer un rôle important dans la détermination de cette Vitesse de sédimentation.

vs=(Qwd)(HL)

Vitesse du cylindre extérieur compte tenu du gradient de Vitesse

La Vitesse du cylindre extérieur donnée par la formule du gradient de Vitesse est définie comme la Vitesse à laquelle le cylindre tourne en tours par minute.

Ω=VGπr230(r2-r1)

Vitesse du cylindre extérieur compte tenu de la viscosité dynamique du fluide

La Vitesse du cylindre extérieur donnée par la formule de viscosité dynamique du fluide est définie comme la Vitesse en tours par minute pour le cylindre.

Ω=15T(r2-r1)ππr1r1r2hμ

Vitesse du cylindre extérieur compte tenu du couple exercé sur le cylindre extérieur

La Vitesse du cylindre extérieur étant donné la formule du couple exercé sur le cylindre extérieur est définie comme le couple qui lui est appliqué, suivant la relation entre le couple, l'inertie de rotation et l'accélération angulaire.

Ω=Toππμr1460C

Vitesse du cylindre extérieur compte tenu du couple total

La Vitesse du cylindre extérieur donnée par la formule du couple total est définie comme la Vitesse du cylindre en tours par minute.

Ω=ΤTorqueVcμ

Vitesse moyenne dans le canal

La Vitesse moyenne dans le canal est définie comme la Vitesse à n'importe quel point de la section dans le canal dans un canal ouvert.

Vavg=8[g]RHSf

Vitesse moyenne dans le canal en fonction de la constante de Chezy

La Vitesse moyenne dans le canal étant donné la constante Chezy est définie comme la Vitesse en tout point de section du canal dans un canal ouvert.

Vavg=CRHS

Vitesse moyenne d'écoulement dans les canaux lisses

La Vitesse moyenne de l'écoulement dans les canaux lisses est définie comme la Vitesse de l'écoulement turbulent dans un canal lisse à travers la frontière.

Vavg(Tur)=Vshear(3.25+5.75log10(RHVshearνTur))

Vitesse moyenne d'écoulement dans les canaux rugueux

La formule de la Vitesse moyenne d'écoulement dans les canaux rugueux est définie comme la Vitesse de l'écoulement turbulent dans un canal rugueux à travers la limite.

Vavg(Tur)=Vshear(6.25+5.75log10(RHRa))

Vitesse du jet pour la masse de la plaque de frappe fluide

La Vitesse du jet pour la masse de la plaque de frappe fluide est le taux de changement de sa position par rapport à un cadre de référence, et est fonction du temps.

v=-((mfGγfAJet)-Vabsolute)

Vitesse absolue donnée Poussée exercée par Jet on Plate

La Vitesse absolue donnée par poussée exercée par Jet on Plate peut être définie comme la Vitesse linéaire uniforme commune des divers composants d'un système physique, par rapport à l'espace absolu.

Vabsolute=(mfGγfAJet)+v

Vitesse du jet compte tenu de la poussée dynamique exercée par le jet sur la plaque

La Vitesse du jet compte tenu de la poussée dynamique exercée par le jet sur la plaque est le taux de changement de sa position par rapport à un cadre de référence, et est fonction du temps.

v=-(mfGγfAJet-Vabsolute)

Vitesse de virage de l'aéronef compte tenu de la distance de visibilité

La Vitesse de virage de l'aéronef compte tenu de la distance de visibilité est définie comme un paramètre influençant la Vitesse de virage pour la conception de la voie de sortie reliant la piste et la voie de circulation principale parallèle.

VTurning Speed=25.5dSD

Vitesse de sédimentation compte tenu du nombre de particules de Reynold

La formule de la Vitesse de sédimentation d'une particule donnée par le nombre de Reynolds est définie comme la Vitesse à laquelle une particule tombe à travers un fluide sous l'influence de la gravité.

vs=μviscosityReρfd

Vitesse d'écoulement donnée Coefficient de perméabilité

La formule du coefficient de perméabilité donné par la Vitesse d'écoulement est définie comme la valeur de la Vitesse d'écoulement lorsque nous disposons d'informations préalables sur le coefficient de perméabilité.

Vfwh=(KWHie)

Vitesse d'écoulement lorsque le nombre de Reynold est Unity

La Vitesse d'écoulement lorsque le nombre de Reynolds est égal à un est définie comme le calcul de la Vitesse d'écoulement du fluide dans un tuyau ou un canal où le nombre de Reynolds (Re) est égal à 1.

Vf=(μviscosityρDp)

Vitesse du courant côtier

La formule de Vitesse du courant littoral est définie comme la Vitesse d'un courant qui s'écoule parallèlement au rivage dans la zone des vagues déferlantes et qui est liée à la taille des vagues et à leur angle d'approche.

V=(5π16)tan(β*)γb[g]Dsin(α)cos(α)Cf

Vitesse angulaire de la Terre pour la Vitesse à la surface

La formule de la Vitesse angulaire de la Terre pour la Vitesse à la surface est définie comme la Vitesse de rotation de la Terre à sa surface. La Vitesse angulaire de la Terre affecte divers aspects de l'ingénierie côtière et océanique en influençant l'effet Coriolis, les courants géostrophiques, la dynamique des marées et d'autres phénomènes océanographiques.

ΩE=(πτVs)22DFρwatersin(L)

Comment trouver Formules ?

Voici quelques conseils pour obtenir de meilleurs résultats de recherche.
Soyez précis : Plus votre requête est spécifique, meilleurs sont vos résultats.
Utilisez plusieurs mots clés : Combinez plusieurs mots clés pour affiner les résultats.
Expérimentez avec des synonymes : Différents termes peuvent donner des résultats différents.
Recherche générique : Utilisez l'opérateur * (astérisque). NOTEZ que cet opérateur ne fonctionne qu'à la fin d'un mot. Exemple : Bio*, Zone*, etc.

Vous pouvez également parcourir les sous-catégories de pour vous concentrer sur les formules qui vous intéressent.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!