Rechercher Formules

Veuillez saisir au moins trois caractères pour commencer à rechercher des formules .

Sélectionner un filtre

Affinez vos résultats de recherche à l’aide de ces filtres.

50 Formules correspondantes trouvées !

Vitesse linéaire moyenne

La formule de la Vitesse linéaire moyenne est définie comme la Vitesse moyenne d'un objet subissant un mouvement circulaire, fournissant une mesure de sa Vitesse de rotation, essentielle dans l'analyse des diagrammes de moment de rotation et des systèmes de volant d'inertie.

v=v1+v22

Vitesse angulaire moyenne

La formule de la Vitesse angulaire moyenne est définie comme la moyenne de deux Vitesses angulaires, fournissant une valeur unique qui représente le mouvement de rotation global d'un objet ou d'un système, couramment utilisée dans l'analyse des diagrammes de moment de rotation et des systèmes de volant d'inertie.

ω=ω1+ω22

Vitesse accrue

La formule d'augmentation de Vitesse est définie comme la mesure de la Vitesse de rotation d'un volant d'inertie ou d'un système mécanique en réponse à un changement de charge ou de Vitesse d'entrée, généralement utilisée dans le contexte des mécanismes de régulation pour réguler la Vitesse du moteur.

S=Nequillibrium(1+δc)

Vitesse relative d'entrée de Pelton

La Vitesse relative d'entrée de Pelton est la Vitesse du jet d'eau par rapport au seau en mouvement. Elle est déterminée en soustrayant la Vitesse du godet de la Vitesse absolue du jet d’eau.

Vr1=V1-U

Vitesse maximale du suiveur pour la came à arc circulaire en contact avec le flanc circulaire

La formule de Vitesse maximale du suiveur pour une came en arc de cercle en contact avec un flanc circulaire est définie comme la Vitesse la plus élevée atteinte par le suiveur lorsqu'il se déplace dans une came en arc de cercle en contact avec un flanc circulaire, ce qui est un paramètre critique dans la conception et l'optimisation des systèmes de suiveur de came.

Vm=ω(R-r1)sin()

Vitesse du suiveur pour la came à arc circulaire si le contact est sur le flanc circulaire

La formule de Vitesse du suiveur pour une came en arc de cercle si le contact est sur le flanc circulaire est définie comme la mesure de la Vitesse du suiveur dans un mécanisme de came en arc de cercle lorsque le point de contact est sur le flanc circulaire, ce qui est un paramètre critique dans la conception et l'optimisation des systèmes de suiveur de came.

v=ω(R-r1)sin(θturned)

Vitesse du godet de la turbine Pelton

La Vitesse des augets de la turbine Pelton fait référence à la Vitesse à laquelle les augets de la turbine se déplacent lorsqu'ils sont frappés par les jets d'eau à grande Vitesse. Cette Vitesse est généralement environ la moitié de la Vitesse du jet d’eau, optimisant ainsi le transfert d’énergie et l’efficacité de la turbine.

U=V1-Vr1

Vitesse relative de sortie de Pelton

La Vitesse relative de sortie de Pelton est la Vitesse de l'eau à sa sortie du seau par rapport au seau en mouvement. Elle est influencée par la forme du godet, l'angle de déflexion et la Vitesse du godet.

Vr2=kVr1

Vitesse du liquide à CC pour Hc, Ha et H

La Vitesse du liquide à CC pour les formules Hc, Ha et H est considérée à partir de la relation d'écoulement à travers un embout buccal convergent-divergent.

Vi=29.81(Ha+Hc-HAP)

Vitesse de l'avion à un taux de montée donné

La Vitesse de l'avion à un taux de montée donné est la Vitesse requise pour qu'un avion atteigne un taux de montée spécifique. Cette formule calcule la Vitesse en divisant le taux de montée par le sinus de l'angle de la trajectoire de vol pendant la montée. Comprendre et appliquer cette formule est crucial pour les pilotes et les ingénieurs afin d'optimiser les performances de montée.

v=RCsin(γ)

Vitesse d'écoulement uniforme pour le demi-corps de Rankine

La Vitesse d'écoulement uniforme pour le demi-corps de Rankine fait référence à la Vitesse du courant libre à l'infini, où le flux se rapproche de la forme du demi-corps de Rankine. Cette forme est un modèle théorique en dynamique des fluides où l'on considère l'écoulement autour d'une plaque plate semi-infinie placée dans un champ d'écoulement uniforme.

U=q2y(1-∠Aπ)

Vitesse au niveau de la mer étant donné le coefficient de portance

La Vitesse au niveau de la mer étant donné le coefficient de portance est une mesure qui calcule la Vitesse d'un objet au niveau de la mer, en tenant compte du poids corporel, de la densité de l'air au niveau de la mer, de la zone de référence et du coefficient de portance, fournissant un paramètre crucial dans l'aérodynamique et la conception des avions. .

V0=2Wbody[Std-Air-Density-Sea]SCL

Vitesse à l'altitude

La Vitesse en altitude est une mesure de la Vitesse d'un objet à une hauteur spécifique au-dessus de la surface de la Terre, en tenant compte du poids du corps, de la densité de l'air, de la zone de référence et du coefficient de portance. Cette formule permet de calculer la Vitesse dans les systèmes aérodynamiques. fournir des informations précieuses aux ingénieurs et aux chercheurs dans les domaines de l'aérospatiale et de l'aérodynamique.

Valt=2Wbodyρ0SCL

Vitesse à l'altitude donnée Vitesse au niveau de la mer

Vitesse à une altitude donnée La Vitesse au niveau de la mer est une mesure de la Vitesse d'un objet à une certaine altitude, calculée en multipliant la Vitesse au niveau de la mer par la racine carrée du rapport entre la densité standard de l'air au niveau de la mer et la densité de l'air. à l'altitude donnée.

Valt=V0[Std-Air-Density-Sea]ρ0

Vitesse du moteur du moteur à courant continu

La formule de la Vitesse du moteur du moteur à courant continu est définie comme la Vitesse du rotor du moteur à courant continu par rapport au no. de pôles, de chemins parallèles et de conducteurs.

N=60n||EbZnΦ

Vitesse de rotation pour la force de cisaillement dans le palier lisse

La Vitesse de rotation pour la force de cisaillement dans le roulement à billes est influencée par la force de cisaillement subie dans le roulement. Des forces de cisaillement plus élevées nécessitent généralement des ajustements de Vitesse pour maintenir des performances optimales des roulements et éviter une usure excessive.

N=Fstμπ2Ds2L

Vitesse de transport et de retour en milles par heure à temps variable

La formule de Vitesse de transport et de retour en milles par heure étant donné le temps variable est définie comme la distance parcourue par unité de temps.

Smph=Hft+Rft88Tv

Vitesse de transport et de retour en kilomètres par heure en temps variable

La Vitesse de transport et de retour en kilomètres par heure étant donné le temps variable est définie comme la Vitesse lorsque nous disposons d'informations préalables sur la distance de retour et la distance de transport.

Skmph=hm+Rmeter16.7Tv

Vitesse tangentielle de la roue à aubes à l'entrée en utilisant la Vitesse angulaire

La Vitesse tangentielle de la turbine à l'entrée à l'aide de la formule de Vitesse angulaire est définie comme le produit de la Vitesse angulaire et du rayon de la turbine à l'entrée.

u1=ωR1

Vitesse tangentielle de la turbine à la sortie en utilisant la Vitesse angulaire

La Vitesse tangentielle de la turbine à la sortie à l'aide de la formule de Vitesse angulaire est définie comme le produit de la Vitesse angulaire et du rayon de la turbine à la sortie de la pompe.

u2=ωR2

Vitesse du piston ou du corps pour le mouvement du piston dans le Dash-Pot

La Vitesse du piston ou du corps pour le mouvement du piston dans la formule du tableau de bord est connue en tenant compte du poids, de la longueur et du diamètre du piston, de la viscosité du fluide ou de l'huile et du jeu entre le tableau de bord et le piston.

V=4WbC33πLdp3μ

Vitesse moyenne dans les cours d'eau modérément profonds

La formule de la Vitesse moyenne dans les cours d'eau moyennement profonds est définie comme le volume de fluide par unité de temps s'écoulant au-delà d'un point à travers la zone A.

v=v0.2+v0.82

Vitesse moyenne obtenue en utilisant le facteur de réduction

La Vitesse moyenne obtenue en utilisant la formule du facteur de réduction est définie comme le déplacement total divisé par le temps total pris. En d’autres termes, c’est la Vitesse à laquelle un objet change de position d’un endroit à un autre.

v=Kvs

Vitesse de flux moyenne en fonction du poids minimum

La formule de Vitesse moyenne du ruisseau compte tenu du poids minimum est définie comme la Vitesse de l'eau dans le ruisseau. Les unités sont la distance par temps. La Vitesse du cours d'eau est la plus élevée au milieu du cours d'eau, près de la surface, et est la plus lente le long du lit et des berges du cours d'eau en raison de la friction.

v=N50d

Vitesse de surface

La formule de Vitesse de surface est définie comme la direction et la Vitesse avec lesquelles l'eau se déplace, mesurées en pieds par seconde (ft/s) ou en mètres par seconde (m/s).

vs=St

Vitesse du bateau en mouvement

La formule de Vitesse du bateau en mouvement est définie comme un courantomètre à hélice qui est libre de se déplacer autour d'un axe vertical et est remorqué dans un bateau à une certaine Vitesse.

vb=Vcos(θ)

Vitesse résultante donnée Vitesse du bateau en mouvement

La formule de Vitesse résultante donnée par la Vitesse du bateau en mouvement est définie comme la Vitesse enregistrée dans le courantomètre à hélice qui est libre de se déplacer autour d'un axe vertical remorqué dans un bateau à une certaine Vitesse.

V=vbcos(θ)

Vitesse résultante en fonction de la Vitesse d'écoulement

La formule de Vitesse résultante donnée par la Vitesse d'écoulement est définie comme la Vitesse enregistrée dans le courantomètre à hélice qui est libre de se déplacer autour d'un axe vertical remorqué dans un bateau à une certaine Vitesse.

V=Vfsin(θ)

Vitesse du bateau en mouvement étant donné la largeur entre deux verticales

La formule de Vitesse du bateau en mouvement étant donné la largeur entre deux verticales est définie comme le mouvement combiné du bateau par rapport à l'eau et le mouvement de l'eau par rapport au rivage.

vb=WΔt

Vitesse de surface donnée Moyenne de la Vitesse

La formule de Vitesse de surface donnée par la moyenne de la Vitesse est définie comme la Vitesse dans la direction et la Vitesse avec lesquelles l'eau se déplace.

vs=vK

Vitesse tangentielle du cylindre avec coefficient de portance

La formule de la Vitesse tangentielle du cylindre avec le coefficient de portance est connue en considérant les termes coefficient de portance et Vitesse de flux libre.

vt=C'V2π

Vitesse libre pour le coefficient de portance avec Vitesse tangentielle

La Vitesse Freestream pour le coefficient de portance avec la formule de Vitesse tangentielle est connue en considérant le rapport de la Vitesse tangentielle du cylindre avec deux pi au coefficient de portance.

V=2πvtC'

Vitesse tangentielle pour un seul point de stagnation

La formule de Vitesse tangentielle pour un point de stagnation unique est connue comme le double de la Vitesse de flux libre présente dans le cylindre.

vt=2V

Vitesse du piston

La formule de la Vitesse du piston est définie comme la Vitesse à laquelle le piston se déplace dans une pompe alternative, qui est un composant critique dans diverses applications industrielles et est un facteur clé pour déterminer les performances et l'efficacité globales de la pompe.

vpiston=ωrsin(ωtsec)

Vitesse du liquide dans le tuyau

La formule de la Vitesse du liquide dans un tuyau est définie comme le débit du liquide à travers un tuyau dans un système de pompe alternative, influencé par des facteurs tels que la section transversale du tuyau, la Vitesse angulaire, le rayon et le temps, qui ont un impact collectif sur le mouvement et la pression du liquide.

vl=Aaωrsin(ωts)

Vitesse d'écoulement donnée Taux d'écoulement à travers l'hélice

La Vitesse d'écoulement donnée par le débit à travers l'hélice est définie comme la Vitesse du fluide arrivant sur le jet.

Vf=(8qflowπD2)-V

Vitesse du jet compte tenu de la puissance perdue

La Vitesse du jet compte tenu de la perte de puissance est définie comme la Vitesse du jet émetteur au point de rotation de l'hélice.

V=(PlossρFluidqflow0.5)+Vf

Vitesse d'écoulement donnée Puissance perdue

La Vitesse d'écoulement compte tenu de la puissance perdue est définie comme la Vitesse du flux entrant dans l'hélice à réaction.

Vf=V-(PlossρFluidqflow0.5)

Vitesse d'écoulement donnée Efficacité propulsive théorique

La Vitesse d'écoulement donnée pour l'efficacité propulsive théorique est définie comme la Vitesse d'écoulement du flux au point de jet.

Vf=V2η-1

Vitesse en tout point de l'élément cylindrique

La Vitesse à tout point de la formule de l'élément cylindrique est définie comme la Vitesse à laquelle le fluide pénètre dans le tuyau formant un profil parabolique.

vFluid=-(14μ)dp|dr((R2)-(dradial2))

Vitesse à la sortie de la buse pour un débit maximal de fluide

La Vitesse à la sortie de la buse pour un débit maximal de fluide est cruciale pour déterminer l'efficacité et les performances des systèmes de dynamique des fluides. Il est directement corrélé au rapport de pression à travers la buse, à la densité du fluide et aux caractéristiques de conception de la buse, influençant le débit et l'efficacité de la propulsion dans des applications telles que les moteurs de fusée et les systèmes de pulvérisation industriels. Comprendre et optimiser cette Vitesse est essentiel pour atteindre les résultats opérationnels souhaités dans les applications d’ingénierie et technologiques.

Vf=2yP1(y+1)ρa

Vitesse dans le drain en fonction du temps d'écoulement du canal

La formule de Vitesse dans le drain étant donné le temps d'écoulement du canal est définie comme la Vitesse de l'eau s'écoulant à travers le drain.

V=LTm/f

Vitesse du courant libre étant donné le coefficient de frottement local

La formule de la Vitesse du courant libre, donnée par le coefficient de frottement local, est définie comme la Vitesse d'un fluide lorsqu'il est loin d'une limite ou d'un mur, non affecté par la présence du mur, et constitue un paramètre critique pour comprendre le comportement de l'écoulement du fluide sur une plaque plate.

u=2τwρCfx

Vitesse proportionnelle donnée à la Vitesse lors d'un fonctionnement partiellement complet

La Vitesse proportionnelle donnée La Vitesse lors du fonctionnement partiellement plein est définie comme le rapport entre la Vitesse du fluide dans un tuyau partiellement rempli et la Vitesse lorsque le tuyau est entièrement rempli.

Pv=VsV

Vitesse pendant le fonctionnement à pleine Vitesse étant donné la Vitesse proportionnelle

La Vitesse pendant le fonctionnement plein donnée La Vitesse proportionnelle est définie comme la Vitesse d'écoulement du fluide dans un tuyau lorsqu'il est complètement rempli, influencée par la pente et la rugosité du tuyau.

V=VsPv

Vitesse proportionnelle compte tenu du coefficient de rugosité

La Vitesse proportionnelle compte tenu du coefficient de rugosité calcule la Vitesse proportionnelle lorsque nous disposons d'informations préalables sur les autres paramètres utilisés.

Pv=(Nnp)(rpfrpf)23

Vitesse à travers l'écran compte tenu de la perte de charge à travers l'écran

La Vitesse à travers l'écran compte tenu de la perte de charge à travers l'écran est le taux de changement de sa position par rapport à un cadre de référence et est une fonction du temps.

v=(hL0.0729)+u2

Vitesse au-dessus de l'écran compte tenu de la perte de charge à travers l'écran

La Vitesse au-dessus de l'écran compte tenu de la perte de charge à travers l'écran est le taux de changement de sa position par rapport à un cadre de référence et est une fonction du temps.

u=v2-(hL0.0729)

Vitesse de sédimentation des particules sphériques

La formule de la Vitesse de sédimentation des particules sphériques est définie comme la Vitesse constante à laquelle une particule sphérique tombe à travers un fluide sous l'influence de la gravité.

Vsp=(g18)(G-1)((Dp)2ν)

Vitesse de sédimentation d'une particule sphérique compte tenu du nombre de Reynold

La Vitesse de sédimentation d'une particule sphérique donnée par la formule du nombre de Reynolds est définie comme la Vitesse à laquelle une particule se dépose dans un fluide, tel que l'eau ou l'air, sous l'influence de la gravité, compte tenu du nombre de Reynolds.

Vsr=RpνDp

Comment trouver Formules ?

Voici quelques conseils pour obtenir de meilleurs résultats de recherche.
Soyez précis : Plus votre requête est spécifique, meilleurs sont vos résultats.
Utilisez plusieurs mots clés : Combinez plusieurs mots clés pour affiner les résultats.
Expérimentez avec des synonymes : Différents termes peuvent donner des résultats différents.
Recherche générique : Utilisez l'opérateur * (astérisque). NOTEZ que cet opérateur ne fonctionne qu'à la fin d'un mot. Exemple : Bio*, Zone*, etc.

Vous pouvez également parcourir les sous-catégories de pour vous concentrer sur les formules qui vous intéressent.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!