Rechercher Formules

Veuillez saisir au moins trois caractères pour commencer à rechercher des formules .

Sélectionner un filtre

Affinez vos résultats de recherche à l’aide de ces filtres.

50 Formules correspondantes trouvées !

Vitesse synchrone donnée Vitesse du moteur

Vitesse synchrone donnée La Vitesse du moteur est la Vitesse de rotation du champ magnétique dans l'enroulement du stator du moteur. C'est la Vitesse à laquelle la force électromotrice est produite par la machine alternative.

Ns=Nm1-s

Vitesse synchrone du moteur synchrone compte tenu de la puissance mécanique

La formule de Vitesse synchrone du moteur synchrone étant donné la puissance mécanique est définie comme une Vitesse définie pour une machine à courant alternatif qui dépend de la fréquence du circuit d'alimentation car l'élément rotatif passe par une paire de pôles pour chaque alternance du courant alternatif.

Ns=Pmτg

Vitesse du son en utilisant la pression et la densité dynamiques

La formule de la Vitesse du son utilisant la pression dynamique et la densité est définie comme une mesure de la Vitesse des ondes sonores dans un milieu, qui est influencée par la pression dynamique et la densité du milieu, et constitue un paramètre important dans l'étude des relations de choc oblique et de l'aérodynamique.

cspeed=YPρ

Vitesse angulaire de la pompe à palettes compte tenu du débit théorique

La Vitesse angulaire de la pompe à palettes donnée par la formule de décharge théorique est définie comme la Vitesse de rotation de la pompe à palettes qui est théoriquement calculée en fonction des paramètres de conception de la pompe et des conditions de fonctionnement, fournissant une valeur idéalisée pour les performances de la pompe.

N1=2Qvpπewvp(dc+dr)

Vitesse de décollage pour une Vitesse de décrochage donnée

La Vitesse de décollage pour une Vitesse de décrochage donnée est une mesure de la Vitesse minimale requise pour qu'un avion décolle, calculée en multipliant la Vitesse de décrochage par un facteur de sécurité de 1,2, garantissant une marge de sécurité au-dessus de la Vitesse de décrochage pour éviter une panne moteur ou une perte de contrôle. pendant les phases critiques du vol.

VLO=1.2Vstall

Vitesse de décrochage pour une Vitesse de décollage donnée

La Vitesse de décrochage pour une Vitesse de décollage donnée est la Vitesse minimale à laquelle un avion peut maintenir un vol en palier, calculée en divisant la Vitesse de décollage par 1,2.

Vstall=VLO1.2

Vitesse de décollage pour un poids donné

La Vitesse de décollage pour un poids donné est une mesure de la Vitesse minimale requise pour qu'un objet décolle du sol, calculée en fonction du poids, de la densité du flux libre, de la zone de référence et du coefficient de portance maximal.

VLO=1.2(2WρSCL,max)

Vitesse de décrochage pour un poids donné

La Vitesse de décrochage pour une masse donnée est une mesure de la Vitesse à laquelle une aile d'avion décroche, calculée en fonction du poids, de la densité du flux libre, de la zone de référence et du coefficient de portance maximale, fournissant un seuil de Vitesse critique pour des opérations aériennes sûres.

Vstall=2WρSCL,max

Vitesse angulaire de la pompe centrifuge

La formule de la Vitesse angulaire d'une pompe centrifuge est définie comme une mesure de la Vitesse de rotation d'une pompe centrifuge, qui est un paramètre critique pour déterminer les performances et l'efficacité de la pompe dans diverses applications industrielles et d'ingénierie.

ω=2πNr60

Vitesse tangentielle de la roue à aubes à l'entrée

La formule de Vitesse tangentielle de la turbine à l'entrée est définie comme le produit de pi, du diamètre de la turbine à l'entrée et de la Vitesse de la turbine (tr/min) divisé par 60.

u1=πD1ω60

Vitesse donnée au rayon de braquage pour un facteur de charge élevé

La Vitesse donnée par le rayon de virage pour des conditions de facteur de charge élevé est la Vitesse requise pour qu'un avion maintienne un rayon de virage spécifique tout en subissant un facteur de charge important. Cette formule calcule la Vitesse en fonction du rayon de virage, du facteur de charge et de l'accélération gravitationnelle. Comprendre et appliquer cette formule est crucial pour les pilotes et les ingénieurs afin d'optimiser la maniabilité des avions et d'assurer la sécurité lors des manœuvres à charge élevée.

v=Rn[g]

Vitesse tangentielle de la roue à la sortie

La formule de Vitesse tangentielle de la roue à la sortie est définie comme le produit de pi, le diamètre de la roue à la sortie et la Vitesse de la roue (tr / min) divisé par 60.

u2=πD2ω60

Vitesse massique de l'air par unité de surface

La formule de Vitesse massique de l'air par unité de surface est définie comme la Vitesse de masse de l'air en mouvement par unité de surface par seconde lors de l'humidification.

G=Zkyln(Ya-Y1Ya-Y2)

Vitesse tangentielle pour un écoulement sans soulèvement sur un cylindre circulaire

La Vitesse tangentielle pour l'écoulement sans levage sur la formule du cylindre circulaire est fonction de la coordonnée radiale, de la Vitesse du courant libre, du rayon du cylindre et de l'angle polaire.

Vθ=-(1+(Rr)2)Vsin(θ)

Vitesse radiale pour un écoulement sans soulèvement sur un cylindre circulaire

La formule de Vitesse radiale pour un écoulement sans levage sur cylindre circulaire est définie comme la fonction de la Vitesse radiale, de la distance radiale par rapport à l'origine, de l'angle polaire et de la Vitesse du courant libre.

Vr=(1-(Rr)2)Vcos(θ)

Vitesse tangentielle pour un écoulement vortex 2D

La formule de Vitesse tangentielle pour l'écoulement vortex 2D est définie comme la fonction de la force de l'écoulement vortex et de la distance radiale du point à l'origine, elle représente la composante de Vitesse dans la direction circonférentielle autour du centre du vortex.

Vθ=-γ2πr

Vitesse radiale pour le flux de levage sur un cylindre circulaire

La Vitesse radiale pour l'écoulement de levage sur la formule du cylindre circulaire est définie comme la fonction de la force du vortex, de la distance radiale, de l'angle polaire et du rayon du cylindre.

Vr=(1-(Rr)2)Vcos(θ)

Vitesse tangentielle pour le flux de levage sur un cylindre circulaire

La Vitesse tangentielle pour l'écoulement de levage sur la formule du cylindre circulaire est une fonction de la coordonnée radiale, de la Vitesse du courant libre, du rayon du cylindre, de la force du vortex et de l'angle polaire.

Vθ=-(1+(Rr)2)Vsin(θ)-Γ2πr

Vitesse de crête donnée Temps d'accélération

La formule de Vitesse de crête donnée pour le temps d'accélération est définie comme le produit du temps d'accélération et de l'accélération du train. Elle est également connue sous le nom de Vitesse maximale du train.

Vm=tαα

Vitesse de planification

La formule de Vitesse programmée est définie comme le rapport entre la distance parcourue entre deux arrêts et la durée totale de la course, y compris le temps d'arrêt (durée programmée).

Vs=DTrun+Tstop

Vitesse du flux à l’emplacement de l’instrument

La formule de Vitesse du cours d'eau à l'emplacement de l'instrument est définie comme la Vitesse de l'eau dans le cours d'eau. Elle est la plus élevée au milieu du cours d'eau près de la surface et la plus lente le long du lit et des berges du cours d'eau en raison de la friction.

v=aNs+b

Vitesse du jet par rapport au mouvement du navire compte tenu de l'énergie cinétique

La Vitesse du jet par rapport au mouvement du navire étant donné l'énergie cinétique est définie comme la Vitesse relative d'impact.

Vr=KE2[g]Wbody

Vitesse absolue du jet émetteur étant donné la Vitesse relative

La Vitesse absolue du jet émetteur étant donné la Vitesse relative du jet par rapport au navire est utilisée pour calculer la Vitesse absolue du jet stream.

V=Vr-u

Vitesse du navire en mouvement compte tenu de la Vitesse relative

La Vitesse du navire en mouvement compte tenu de la Vitesse relative est définie comme la Vitesse réelle du navire générée par l'hélice.

u=Vr-V

Vitesse absolue du jet d'émission compte tenu de la force de propulsion

La Vitesse absolue du jet d'émission compte tenu de la force de propulsion est définie comme la Vitesse du jet mesurée par rapport à l'espace absolu.

V=[g]FWWater

Vitesse du jet donnée Poussée sur l'hélice

La formule Jet Velocity given Thrust on Propeller est définie comme la Vitesse à laquelle un moteur à réaction expulse le propulseur en réponse à la poussée de l'hélice, propulsant l'avion vers l'avant.

V=(FtρWaterqflow)+Vf

Vitesse d'écoulement donnée Poussée sur l'hélice

La Vitesse d'écoulement donnée à la poussée sur l'hélice est définie comme la Vitesse de décharge du fluide sur le jet.

Vf=-(FtρWaterqflow)+V

Vitesse en tout point de l'élément cylindrique

La Vitesse à tout point de la formule de l'élément cylindrique est définie comme la Vitesse à laquelle le fluide pénètre dans le tuyau formant un profil parabolique.

vFluid=-(14μ)dp|dr((R2)-(dradial2))

Vitesse à la sortie de la buse pour un débit maximal de fluide

La Vitesse à la sortie de la buse pour un débit maximal de fluide est cruciale pour déterminer l'efficacité et les performances des systèmes de dynamique des fluides. Il est directement corrélé au rapport de pression à travers la buse, à la densité du fluide et aux caractéristiques de conception de la buse, influençant le débit et l'efficacité de la propulsion dans des applications telles que les moteurs de fusée et les systèmes de pulvérisation industriels. Comprendre et optimiser cette Vitesse est essentiel pour atteindre les résultats opérationnels souhaités dans les applications d’ingénierie et technologiques.

Vf=2yP1(y+1)ρa

Vitesse dans le drain en fonction du temps d'écoulement du canal

La formule de Vitesse dans le drain étant donné le temps d'écoulement du canal est définie comme la Vitesse de l'eau s'écoulant à travers le drain.

V=LTm/f

Vitesse du courant libre étant donné le coefficient de frottement local

La formule de la Vitesse du courant libre, donnée par le coefficient de frottement local, est définie comme la Vitesse d'un fluide lorsqu'il est loin d'une limite ou d'un mur, non affecté par la présence du mur, et constitue un paramètre critique pour comprendre le comportement de l'écoulement du fluide sur une plaque plate.

u=2τwρCfx

Vitesse la plus probable du gaz compte tenu de la température

La formule de la Vitesse la plus probable du gaz étant donné la température est définie comme le rapport de la racine carrée de la température à la masse molaire.

CT=2[R]TgMmolar

Vitesse de gaz la plus probable compte tenu de la pression et du volume

La formule de la Vitesse la plus probable du gaz étant donné la pression et le volume est définie comme le rapport de la racine carrée de la pression et du volume à la masse molaire du gaz particulier.

CP_V=2PgasVMmolar

Vitesse la plus probable du gaz compte tenu de la pression et de la densité

La Vitesse la plus probable du gaz étant donné la pression et la formule de densité est définie comme le rapport de la racine carrée de la pression à la densité du gaz respectif.

CP_D=2Pgasρgas

Vitesse de gaz la plus probable compte tenu de la Vitesse RMS

La Vitesse la plus probable du gaz étant donné la formule de Vitesse RMS est définie comme le produit de la Vitesse quadratique moyenne du gaz avec 0,8166.

Cmp_RMS=(0.8166CRMS)

Vitesse RMS donnée Vitesse la plus probable

La Vitesse RMS étant donnée la formule de Vitesse la plus probable est définie comme le rapport de la Vitesse la plus probable de la molécule gazeuse à la constante numérique de 0,8166.

CRMS=(Cmp0.8166)

Vitesse d'avance donnée Taux d'enlèvement de matière

Vitesse d'avance donnée Le taux d'enlèvement de métal calcule la Vitesse à laquelle la meule ou l'outil abrasif avance contre la pièce à usiner, qui est en cours de meulage lorsque nous savons que le MRR est constant pendant l'opération. Il s'agit essentiellement de la Vitesse à laquelle le matériau est retiré de la surface de la pièce par l'action abrasive de la meule. La Vitesse d'avance joue un rôle crucial dans l'efficacité globale du broyage.

Vf=Zwπdwap

Vitesse d'affouillement critique minimale

La formule de la Vitesse minimale d'affouillement critique est définie comme la Vitesse la plus basse à laquelle le débit d'eau commence à éroder le matériau du lit d'un canal ou d'une rivière. Cette Vitesse est critique car elle représente le seuil auquel les particules de sédiments présentes sur le lit sont délogées et transportées en aval, entraînant un affouillement.

vmins=(3gDp(G-1))

Vitesse d'affouillement critique maximale

La formule de Vitesse d'affouillement critique maximale est définie comme la Vitesse d'écoulement la plus élevée à laquelle les particules de sédiments sur le lit et les berges d'un plan d'eau (comme une rivière, un canal ou un estuaire) commencent à être érodées et transportées par l'eau qui coule. Cette Vitesse représente un seuil au-delà duquel la stabilité des matériaux du lit et des berges est compromise, entraînant une érosion et des dommages structurels potentiels.

vmaxs=(4.5gD(G-1))

Vitesse d'écoulement horizontale donnée Distance dans la direction X du centre du déversoir

La formule de Vitesse d'écoulement horizontale donnée par la distance dans la direction X à partir du centre du déversoir est définie comme la Vitesse pour laquelle le déversoir est conçu lorsque nous disposons d'informations préalables sur d'autres paramètres.

Vh=x2WcCdπ2gy

Vitesse d'écoulement horizontale donnée à mi-largeur de la partie inférieure du déversoir

La formule de Vitesse d'écoulement horizontale donnée sur la moitié de la largeur de la partie inférieure du déversoir est définie comme la valeur de la Vitesse à laquelle l'eau s'écoule horizontalement sur un déversoir. Ceci peut être calculé en utilisant la demi-largeur de la partie inférieure du déversoir (b/2), où « b » représente la largeur totale de la partie inférieure.

Vh=Wh1.467Wc

Vitesse d'écoulement selon la loi de Darcy à distance radicale

La formule de la Vitesse d'écoulement selon la loi de Darcy à une distance radicale est définie comme le volume de fluide qui passe par unité de temps à une distance radicale.

Vr=K(dhdr)

Vitesse de broche optimale

Une Vitesse de broche optimale est essentielle pour obtenir des processus d'usinage des métaux efficaces. Les machinistes s'appuient souvent sur l'expérience, les données empiriques, les recommandations du fabricant et les simulations d'usinage pour déterminer la Vitesse de broche optimale pour des applications d'usinage spécifiques. La surveillance et l'ajustement continus de la Vitesse de broche tout au long du processus d'usinage aident à maintenir des conditions de coupe optimales et à maximiser les performances d'usinage.

ωs=(Vs2πRo)((1+n)CtTref(1-Rw)(1-n)(Cttc+Ct)(1-Rw1+nn))n

Vitesse de coupe de référence donnée Vitesse de broche optimale

La Vitesse de coupe de référence donnée par la Vitesse de broche optimale fait référence à la Vitesse linéaire souhaitée à un point spécifique sur le tranchant de l'outil lorsqu'il s'engage dans la pièce pendant l'usinage. Cette Vitesse de référence est choisie en fonction de facteurs tels que les propriétés des matériaux, l'outillage et les conditions d'usinage, et sert d'objectif pour atteindre des performances d'usinage optimales.

Vs=ωs2πRo((1-n)(Cttc+Ct)(1-Rw1+nn)(1+n)CtTref(1-Rw))n

Vitesse d'avance de l'outil donnée Taux d'enlèvement de matière volumétrique

La Vitesse d'avance de l'outil donnée au taux d'enlèvement de matière volumétrique est une méthode pour déterminer la Vitesse maximale à laquelle l'outil peut enlever le matériau lorsque le taux d'enlèvement de volume total est donné.

Vf=ZrA

Vitesse d'alimentation de l'outil donnée Courant fourni

La Vitesse d'alimentation de l'outil en fonction du courant fourni est une méthode permettant de déterminer la Vitesse maximale de déplacement de l'outil lorsque les conditions d'alimentation et de travail sont données.

Vf=ηeeIρA

Vitesse d'alimentation de l'outil en fonction de l'écart entre l'outil et la surface de travail

La Vitesse d'alimentation de l'outil compte tenu de l'écart entre l'outil et la surface de travail est une méthode permettant de déterminer la Vitesse maximale de déplacement de l'outil lorsque l'écart entre l'outil et la surface de travail est fixe.

Vf=ηeVsereρh

Vitesse réelle de l'avion (nombre de Mach)

La Vitesse réelle de l'aéronef (nombre de Mach) est définie comme la Vitesse équivalente corrigée de la température et de l'altitude pression.

VTAS=cMTrue

Vitesse du son (nombre de Mach)

La Vitesse du son (nombre de Mach) est définie comme le rapport de la Vitesse équivalente de l'avion à celle du vrai nombre de correspondance.

c=VTASMTrue

Vitesse du véhicule pour la force de levage fournie par le corps de l'aile du véhicule

La Vitesse du véhicule pour la force de levage fournie par le corps de l'aile du véhicule est définie comme la Vitesse à laquelle le véhicule se déplace ou se déplace.

V=(LAircraft0.5ρSCl)

Comment trouver Formules ?

Voici quelques conseils pour obtenir de meilleurs résultats de recherche.
Soyez précis : Plus votre requête est spécifique, meilleurs sont vos résultats.
Utilisez plusieurs mots clés : Combinez plusieurs mots clés pour affiner les résultats.
Expérimentez avec des synonymes : Différents termes peuvent donner des résultats différents.
Recherche générique : Utilisez l'opérateur * (astérisque). NOTEZ que cet opérateur ne fonctionne qu'à la fin d'un mot. Exemple : Bio*, Zone*, etc.

Vous pouvez également parcourir les sous-catégories de pour vous concentrer sur les formules qui vous intéressent.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!