Rechercher Formules

Veuillez saisir au moins trois caractères pour commencer à rechercher des formules .

Sélectionner un filtre

Affinez vos résultats de recherche à l’aide de ces filtres.

50 Formules correspondantes trouvées !

Vitesse de l'électron

La Vitesse de l'électron fait référence à sa Vitesse et à sa direction de mouvement et elle est déterminée par le principe de conservation de l'énergie. Il dit essentiellement que le changement d'énergie cinétique de l'électron est égal au changement d'énergie potentielle qu'il subit en raison du champ électrique.

Vv=2[Charge-e]V[Mass-e]

Vitesse de l'onde de pression dans les fluides

La formule de la Vitesse des ondes de pression dans les fluides est définie comme la Vitesse à laquelle les ondes de pression se propagent dans un milieu fluide. Cette Vitesse est influencée par le module d'élasticité et la densité du fluide, jouant un rôle crucial dans la compréhension de la dynamique des fluides et du comportement des ondes dans diverses applications d'ingénierie.

C=Kρ

Vitesse de l'électron dans les champs de force

La Vitesse de l'électron dans les champs de force est utilisée pour calculer la Vitesse d'une particule chargée dans un champ où un champ électrique et magnétique est présent.

Vef=EIH

Vitesse angulaire de l'électron dans le champ magnétique

La Vitesse angulaire de l'électron dans un champ magnétique est calculée lorsqu'une particule de masse m et de charge q se déplace dans un champ magnétique constant B.

ωe=[Charge-e]H[Mass-e]

Vitesse synchrone donnée Puissance mécanique

Vitesse synchrone donnée La puissance mécanique est la Vitesse de révolution du champ magnétique dans l'enroulement du stator du moteur. C'est la Vitesse à laquelle la force électromotrice est produite par la machine alternative.

Ns=60Pm2πτg

Vitesse de transmission

La Vitesse de transmission fait référence au nombre de changements de signaux ou de symboles qui se produisent par seconde. Il est noté «r».

r=Rnb

Vitesse du moteur donnée Vitesse synchrone

Vitesse du moteur donnée La Vitesse synchrone est la Vitesse à laquelle le rotor tourne. Avec cette formule, nous pouvons facilement trouver la Vitesse du moteur lorsque la Vitesse synchrone du rotor est donnée.

Nm=Ns(1-s)

Vitesse théorique pour le tube de Pitot

La formule de la Vitesse théorique du tube de Pitot est définie comme la Vitesse d'un fluide s'écoulant à travers un tube de Pitot, qui est un dispositif utilisé pour mesurer la Vitesse des fluides dans les systèmes hydrostatiques, fournissant des lectures précises des débits de fluides dans diverses applications industrielles et d'ingénierie.

Vth=2[g]hd

Vitesse de frottement

La formule de la Vitesse de frottement est définie comme une mesure de la Vitesse à laquelle le frottement du fluide influence les caractéristiques d'écoulement d'un jet de liquide. Elle permet de comprendre la relation entre la dynamique des fluides et la résistance rencontrée en raison du frottement dans diverses applications mécaniques.

Vf=Vf8

Vitesse synchrone du moteur synchrone

La Vitesse synchrone du moteur synchrone donnée ka formule est définie comme une Vitesse définie pour une machine à courant alternatif qui dépend de la fréquence du circuit d'alimentation car l'élément rotatif passe une paire de pôles pour chaque alternance du courant alternatif.

Ns=120fP

Vitesse du fluide compte tenu de la pression dynamique

La formule de la Vitesse d'un fluide en fonction de la pression dynamique est définie comme une relation qui exprime la Vitesse d'écoulement du fluide en fonction de la pression dynamique et de la densité du fluide. Elle est essentielle pour comprendre la dynamique des fluides et analyser le comportement des fluides dans divers systèmes mécaniques.

uFluid=Pdynamic2LD

Vitesse angulaire compte tenu de l'inertie et de l'énergie cinétique

La formule de Vitesse angulaire compte tenu de l'inertie et de l'énergie cinétique est une variante de la formule KE. L'énergie cinétique d'un objet en rotation peut être exprimée comme la moitié du produit de la Vitesse angulaire de l'objet et du moment d'inertie autour de l'axe de rotation. Ainsi, nous obtenons la relation entre la Vitesse angulaire, le moment d'inertie et KE

ω2=2KEI

Vitesse de dérive des électrons du canal dans le transistor NMOS

La Vitesse de dérive des électrons du canal dans le transistor NMOS est due au champ électrique qui, à son tour, fait dériver les électrons du canal vers le drain avec une certaine Vitesse.

vd=μnEL

Vitesse en vol accéléré

La Vitesse en vol accéléré fait référence à la Vitesse de l'avion lorsqu'il subit des changements de Vitesse ou de direction pour atteindre des objectifs de vol spécifiques. Elle est généralement mesurée comme la Vitesse anémométrique de l'avion, qui est la Vitesse de l'avion par rapport à l'air ambiant.

v=(Rcurvaturem(FL+Tsin(σT)-m[g]cos(γ)))12

Vitesse de l'avion à un taux de montée donné

La Vitesse de l'avion à un taux de montée donné est la Vitesse requise pour qu'un avion atteigne un taux de montée spécifique. Cette formule calcule la Vitesse en divisant le taux de montée par le sinus de l'angle de la trajectoire de vol pendant la montée. Comprendre et appliquer cette formule est crucial pour les pilotes et les ingénieurs afin d'optimiser les performances de montée.

v=RCsin(γ)

Vitesse d'écoulement uniforme pour le demi-corps de Rankine

La Vitesse d'écoulement uniforme pour le demi-corps de Rankine fait référence à la Vitesse du courant libre à l'infini, où le flux se rapproche de la forme du demi-corps de Rankine. Cette forme est un modèle théorique en dynamique des fluides où l'on considère l'écoulement autour d'une plaque plate semi-infinie placée dans un champ d'écoulement uniforme.

U=q2y(1-∠Aπ)

Vitesse au niveau de la mer étant donné le coefficient de portance

La Vitesse au niveau de la mer étant donné le coefficient de portance est une mesure qui calcule la Vitesse d'un objet au niveau de la mer, en tenant compte du poids corporel, de la densité de l'air au niveau de la mer, de la zone de référence et du coefficient de portance, fournissant un paramètre crucial dans l'aérodynamique et la conception des avions. .

V0=2Wbody[Std-Air-Density-Sea]SCL

Vitesse à l'altitude

La Vitesse en altitude est une mesure de la Vitesse d'un objet à une hauteur spécifique au-dessus de la surface de la Terre, en tenant compte du poids du corps, de la densité de l'air, de la zone de référence et du coefficient de portance. Cette formule permet de calculer la Vitesse dans les systèmes aérodynamiques. fournir des informations précieuses aux ingénieurs et aux chercheurs dans les domaines de l'aérospatiale et de l'aérodynamique.

Valt=2Wbodyρ0SCL

Vitesse à l'altitude donnée Vitesse au niveau de la mer

Vitesse à une altitude donnée La Vitesse au niveau de la mer est une mesure de la Vitesse d'un objet à une certaine altitude, calculée en multipliant la Vitesse au niveau de la mer par la racine carrée du rapport entre la densité standard de l'air au niveau de la mer et la densité de l'air. à l'altitude donnée.

Valt=V0[Std-Air-Density-Sea]ρ0

Vitesse de décollage pour une Vitesse de décrochage donnée

La Vitesse de décollage pour une Vitesse de décrochage donnée est une mesure de la Vitesse minimale requise pour qu'un avion décolle, calculée en multipliant la Vitesse de décrochage par un facteur de sécurité de 1,2, garantissant une marge de sécurité au-dessus de la Vitesse de décrochage pour éviter une panne moteur ou une perte de contrôle. pendant les phases critiques du vol.

VLO=1.2Vstall

Vitesse de décrochage pour une Vitesse de décollage donnée

La Vitesse de décrochage pour une Vitesse de décollage donnée est la Vitesse minimale à laquelle un avion peut maintenir un vol en palier, calculée en divisant la Vitesse de décollage par 1,2.

Vstall=VLO1.2

Vitesse de décollage pour un poids donné

La Vitesse de décollage pour un poids donné est une mesure de la Vitesse minimale requise pour qu'un objet décolle du sol, calculée en fonction du poids, de la densité du flux libre, de la zone de référence et du coefficient de portance maximal.

VLO=1.2(2WρSCL,max)

Vitesse de décrochage pour un poids donné

La Vitesse de décrochage pour une masse donnée est une mesure de la Vitesse à laquelle une aile d'avion décroche, calculée en fonction du poids, de la densité du flux libre, de la zone de référence et du coefficient de portance maximale, fournissant un seuil de Vitesse critique pour des opérations aériennes sûres.

Vstall=2WρSCL,max

Vitesse angulaire de la pompe centrifuge

La formule de la Vitesse angulaire d'une pompe centrifuge est définie comme une mesure de la Vitesse de rotation d'une pompe centrifuge, qui est un paramètre critique pour déterminer les performances et l'efficacité de la pompe dans diverses applications industrielles et d'ingénierie.

ω=2πNr60

Vitesse tangentielle de la roue à aubes à l'entrée

La formule de Vitesse tangentielle de la turbine à l'entrée est définie comme le produit de pi, du diamètre de la turbine à l'entrée et de la Vitesse de la turbine (tr/min) divisé par 60.

u1=πD1ω60

Vitesse donnée au rayon de braquage pour un facteur de charge élevé

La Vitesse donnée par le rayon de virage pour des conditions de facteur de charge élevé est la Vitesse requise pour qu'un avion maintienne un rayon de virage spécifique tout en subissant un facteur de charge important. Cette formule calcule la Vitesse en fonction du rayon de virage, du facteur de charge et de l'accélération gravitationnelle. Comprendre et appliquer cette formule est crucial pour les pilotes et les ingénieurs afin d'optimiser la maniabilité des avions et d'assurer la sécurité lors des manœuvres à charge élevée.

v=Rn[g]

Vitesse tangentielle de la roue à la sortie

La formule de Vitesse tangentielle de la roue à la sortie est définie comme le produit de pi, le diamètre de la roue à la sortie et la Vitesse de la roue (tr / min) divisé par 60.

u2=πD2ω60

Vitesse massique de l'air par unité de surface

La formule de Vitesse massique de l'air par unité de surface est définie comme la Vitesse de masse de l'air en mouvement par unité de surface par seconde lors de l'humidification.

G=Zkyln(Ya-Y1Ya-Y2)

Vitesse théorique à la section 2 dans le débitmètre à orifice

La formule de la Vitesse théorique à la section 2 du compteur à orifice est définie comme la Vitesse calculée de l'écoulement du fluide lorsqu'il traverse l'orifice étroit, déterminée à l'aide de l'équation de Bernoulli et du principe de conservation de l'énergie.

Vp2=2[g]hventuri+V12

Vitesse théorique à la section 1 dans le débitmètre à orifice

La formule de la Vitesse théorique à la section 1 du compteur à orifice est définie comme la Vitesse calculée de l'écoulement du fluide juste avant qu'il n'entre dans la plaque à orifice, déterminée en fonction des propriétés du fluide et de la différence de pression à travers l'orifice et est utilisée pour calculer le débit à travers le compteur.

V1=(Vp22)-(2[g]hventuri)

Vitesse réelle donnée Vitesse théorique à la section 2

La Vitesse réelle donnée par la formule de la Vitesse théorique de la section 2 est définie comme la Vitesse mesurée pour la valeur réelle.

v=CvVp2

Vitesse de coupe en utilisant le taux de consommation d'énergie pendant l'usinage

La Vitesse de coupe utilisant le taux de consommation d'énergie pendant l'usinage est définie comme la Vitesse à laquelle la pièce se déplace par rapport à l'outil (généralement mesurée en pieds par minute).

Vcut=PmFc

Vitesse réelle à la section 2 en fonction du coefficient de contraction

La Vitesse réelle à la section 2 donnée par la formule du coefficient de contraction est définie comme la Vitesse mesurée à travers un débitmètre à orifice.

v=Cv2[g]hventuri+(Vp2CcaoAi)2

Vitesse d'avance pour l'opération de tournage compte tenu du temps d'usinage

La Vitesse d'avance pour l'opération de tournage compte tenu du temps d'usinage est loin de déterminer l'avance maximale qui peut être donnée sur une pièce afin de terminer une opération de tournage dans un temps donné.

fr=Lcuttmω

Vitesse au point du profil aérodynamique pour un coefficient de pression et une Vitesse de flux libre donnés

La Vitesse au point sur le profil aérodynamique pour un coefficient de pression donné et la formule de Vitesse du flux libre est le produit de la Vitesse du flux libre en racine carrée de un moins le coefficient de pression dans un flux incompressible.

V=u2(1-Cp)

Vitesse radiale pour un flux source incompressible 2D

La formule de Vitesse radiale pour un flux source incompressible 2D indique que la Vitesse radiale en tout point du champ d'écoulement est directement proportionnelle à la force de la source et inversement proportionnelle à la distance radiale du point source, cela signifie que la Vitesse diminue à mesure que vous s'éloigner de la source, et son ampleur dépend de la force de la source. Cette formule est dérivée de la théorie des écoulements potentiels, qui est un modèle simplifié utilisé pour décrire le comportement des fluides non visqueux et incompressibles.

Vr=Λ2πr

Vitesse statique au point de transition

La formule de la Vitesse statique au point de transition est définie comme la Vitesse à laquelle l'écoulement passe du laminaire au turbulent, caractérisant le comportement de la couche limite sur une plaque plate en écoulement visqueux, fournissant des informations sur la dynamique des fluides et les mécanismes de transfert de chaleur.

ue=Retμeρext

Vitesse du son dans l'eau compte tenu du temps écoulé du signal ultrasonique envoyé par A

La Vitesse du son dans l'eau en fonction du temps écoulé du signal ultrasonique envoyé par une formule est définie comme la Vitesse du son dans l'eau circulant dans le canal.

C=(Lt1)-vp

Vitesse moyenne le long du chemin AB à une certaine hauteur au-dessus du lit

La formule de Vitesse moyenne le long du chemin AB à une certaine hauteur au-dessus du lit est définie comme la Vitesse moyenne de l'écoulement à travers la section transversale à une hauteur au-dessus du lit du canal.

vavg=((L2)cos(θ))((1t1)-(1t2))

Vitesse statique utilisant l'épaisseur de moment de la couche limite

La formule de la Vitesse statique utilisant l'épaisseur de la quantité de mouvement de la couche limite est définie comme une mesure de la Vitesse au bord de la couche limite dans une plaque plate, ce qui est essentiel pour comprendre les caractéristiques de l'écoulement visqueux et les forces de traînée qui en résultent.

ue=Reμeρeθt

Vitesse de l'onde sonore compte tenu du module de masse

La Vitesse de l'onde sonore, compte tenu du module de masse du support, donne un aperçu de la rapidité avec laquelle le son se propage à travers ce matériau. Comprendre cette relation est crucial dans les applications en acoustique, en science des matériaux et en ingénierie où la propagation du son et les propriétés mécaniques des matériaux sont des considérations importantes.

C=Kρa

Vitesse de l'onde sonore à l'aide du processus isotherme

La Vitesse de l'onde sonore à l'aide du processus isotherme donne un aperçu de la manière dont la température et les propriétés physiques des gaz affectent la Vitesse à laquelle le son se propage, permettant ainsi des calculs précis et des décisions de conception éclairées en acoustique, aérodynamique et diverses applications technologiques.

C=Rc

Vitesse de l'onde sonore à l'aide du processus adiabatique

La Vitesse de l'onde sonore utilisant le processus adiabatique dépend de l'indice adiabatique (rapport des chaleurs spécifiques), de la constante universelle du gaz, de la température absolue du gaz et de la masse molaire du gaz.

C=yRc

Vitesse de l'onde sonore compte tenu du nombre de Mach pour un écoulement de fluide compressible

La Vitesse de l'onde sonore, compte tenu du nombre de Mach pour l'écoulement d'un fluide compressible, indique la Vitesse à laquelle le son se propage dans le milieu par rapport à la Vitesse du son dans ce milieu. Cette relation est fondamentale en aérodynamique, en ingénierie aérospatiale et en acoustique, où le nombre de Mach caractérise le régime d'écoulement et influence le comportement des ondes de choc et la transmission du son.

C=VM

Vitesse moyenne de l'écoulement du fluide

La Vitesse moyenne de l'écoulement du fluide est définie comme la Vitesse moyenne du courant circulant dans le tuyau mesurée sur toute la longueur.

Vmean=(18μ)dp|drR2

Vitesse moyenne de l'écoulement donnée Vitesse maximale à l'axe de l'élément cylindrique

La formule de la Vitesse moyenne d'écoulement donnée par la Vitesse maximale à l'axe de l'élément cylindrique est définie comme la Vitesse moyenne du fluide s'écoulant à travers une section transversale donnée sur une période de temps spécifique.

Vmean=0.5Vmax

Vitesse maximale à l'axe de l'élément cylindrique étant donné la Vitesse moyenne de l'écoulement

La Vitesse maximale au niveau de l'axe de l'élément cylindrique, donnée par la formule de la Vitesse moyenne d'écoulement, est définie comme l'écoulement laminaire à travers un tuyau circulaire, le profil de Vitesse est parabolique et la Vitesse maximale au centre du tuyau est le double de la Vitesse moyenne.

Vmax=2Vmean

Vitesse moyenne de l'écoulement compte tenu de la chute de pression sur la longueur du tuyau

La Vitesse moyenne de l'écoulement compte tenu de la chute de pression sur la longueur du tuyau est définie comme la Vitesse moyenne du flux dans le tuyau.

Vmean=ΔP32μLpDpipe2

Vitesse finale en chute libre sous gravité compte tenu de la Vitesse initiale et du temps

La formule de la Vitesse finale en chute libre sous l'effet de la gravité, compte tenu de la Vitesse initiale et du temps, est définie comme la Vitesse qu'un objet atteint sous la seule influence de la gravité, en tenant compte de la Vitesse initiale et du temps de chute, fournissant un concept fondamental pour comprendre le mouvement de chute libre.

vf=u+[g]t

Vitesse finale en chute libre sous gravité compte tenu de la Vitesse et du déplacement initiaux

La Vitesse finale en chute libre sous l'effet de la gravité, étant donné la formule de la Vitesse initiale et du déplacement, est définie comme une mesure de la Vitesse qu'un objet atteint lorsqu'il tombe librement sous la seule influence de la gravité, en considérant la Vitesse initiale et le déplacement de l'objet par rapport à sa position initiale.

vf=u2+2[g]d

Comment trouver Formules ?

Voici quelques conseils pour obtenir de meilleurs résultats de recherche.
Soyez précis : Plus votre requête est spécifique, meilleurs sont vos résultats.
Utilisez plusieurs mots clés : Combinez plusieurs mots clés pour affiner les résultats.
Expérimentez avec des synonymes : Différents termes peuvent donner des résultats différents.
Recherche générique : Utilisez l'opérateur * (astérisque). NOTEZ que cet opérateur ne fonctionne qu'à la fin d'un mot. Exemple : Bio*, Zone*, etc.

Vous pouvez également parcourir les sous-catégories de pour vous concentrer sur les formules qui vous intéressent.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!