Rechercher Formules

Veuillez saisir au moins trois caractères pour commencer à rechercher des formules .

Sélectionner un filtre

Affinez vos résultats de recherche à l’aide de ces filtres.

50 Formules correspondantes trouvées !

Vitesse périphérique de projection du point P sur diamètre pour SHM du suiveur

La formule de la Vitesse périphérique de projection du point P sur le diamètre du SHM du suiveur est définie comme la Vitesse à laquelle le point P se déplace le long du diamètre du cercle dans un mouvement harmonique simple du suiveur dans un système à came et suiveur, ce qui est crucial pour comprendre la cinématique du mécanisme.

Ps=πS2to

Vitesse Périphérique de Projection du Point P' (Projection du Point P sur Dia) pour SHM du Suiveur

La formule de la Vitesse périphérique de projection du point P' (projection du point P sur le diamètre) pour la SHM du suiveur est définie comme la Vitesse à laquelle la projection d'un point sur le diamètre d'une came se déplace pendant le mouvement harmonique simple du suiveur dans un système à came et suiveur.

Ps=πSω2θo

Vitesse maximale du suiveur en sortie lorsque le suiveur se déplace avec SHM

La Vitesse maximale du suiveur lors de la course extérieure lorsque le suiveur se déplace avec la formule SHM est définie comme la Vitesse la plus élevée atteinte par le suiveur pendant son mouvement vers l'extérieur, ce qui est un paramètre critique dans l'évaluation des performances d'un système mécanique impliquant un mouvement harmonique simple.

Vm=πSω2θo

Vitesse maximale du suiveur en sortie de course compte tenu du temps de course

Vitesse maximale du suiveur lors de la course extérieure en fonction du temps La formule de course est définie comme la Vitesse la plus élevée atteinte par le suiveur pendant la phase de course extérieure d'un système suiveur de came, ce qui est un paramètre critique dans la conception et l'optimisation des systèmes mécaniques, en particulier dans les applications d'ingénierie automobile et aérospatiale.

Vm=πS2to

Vitesse maximale du suiveur lors de la course de retour lorsque le suiveur se déplace avec SHM

La Vitesse maximale du suiveur lors de la course de retour lorsque le suiveur se déplace avec la formule SHM est définie comme la Vitesse la plus élevée atteinte par le suiveur lors de sa course de retour tout en se déplaçant dans un mouvement harmonique simple, ce qui est un paramètre critique dans la conception et l'optimisation des systèmes mécaniques.

Vm=πSω2θR

Vitesse synchrone du moteur synchrone compte tenu de la puissance mécanique

La formule de Vitesse synchrone du moteur synchrone étant donné la puissance mécanique est définie comme une Vitesse définie pour une machine à courant alternatif qui dépend de la fréquence du circuit d'alimentation car l'élément rotatif passe par une paire de pôles pour chaque alternance du courant alternatif.

Ns=Pmτg

Vitesse de coupe

La Vitesse de coupe, également appelée Vitesse de surface ou Vitesse de coupe, est un paramètre critique dans les processus de coupe des métaux. Il fait référence à la Vitesse à laquelle l'outil de coupe se déplace par rapport au matériau de la pièce à couper. La Vitesse de coupe est généralement mesurée en mètres par minute (m/min) ou en pieds par minute (ft/min).

Vc=πdiN

Vitesse derrière le choc normal

La Vitesse derrière le choc normal calcule la Vitesse d'un fluide en aval d'une onde de choc normale. Cette formule intègre des paramètres tels que la Vitesse en amont du choc, le rapport des chaleurs spécifiques du fluide et le nombre de Mach du débit. Il fournit des informations précieuses sur le changement de Vitesse résultant du passage de l’onde de choc.

V2=V1γ+1(γ-1)+2M2

Vitesse de stagnation du son

La formule de la Vitesse de stagnation du son est définie comme la racine carrée du produit de l'indice adiabatique, de la constante de gaz universelle et de la température de stagnation.

ao=γ[R]T0

Vitesse de stagnation du son compte tenu de la chaleur spécifique à pression constante

La Vitesse de stagnation du son étant donné la formule de chaleur spécifique à pression constante est définie comme la racine carrée du produit de l'indice adiabatique soustrait par l'unité, la chaleur spécifique à pression constante et la température de stagnation.

ao=(γ-1)CpT0

Vitesse de stagnation du son compte tenu de l'enthalpie de stagnation

La Vitesse de stagnation du son étant donnée la formule d'enthalpie de stagnation est définie comme la racine carrée du produit de l'indice adiabatique soustrait par l'unité et l'enthalpie de stagnation.

ao=(γ-1)h0

Vitesse de pointe de l'impulseur compte tenu du diamètre moyen

La Vitesse de pointe de la roue étant donné le diamètre moyen calcule la Vitesse à la pointe de la roue en fonction de la Vitesse de rotation et du diamètre moyen de la roue. Cette formule dérive la Vitesse de pointe en utilisant le diamètre moyen et la Vitesse de rotation, en tenant compte de la configuration géométrique de la roue.

Ut=π(2Dm2-Dh2)0.5N60

Vitesse minimale de démarrage de la pompe centrifuge

La formule de Vitesse minimale pour le démarrage d'une pompe centrifuge est définie comme la Vitesse la plus basse requise pour qu'une pompe centrifuge commence à fonctionner efficacement, en tenant compte des paramètres de la pompe tels que l'efficacité du moteur, le débit d'eau et les diamètres de la roue, pour assurer un fonctionnement de pompage fluide et efficace.

Nmin=120ηmVw2D2π(D22-D12)(2π60)

Vitesse de pointe de la turbine en fonction du diamètre du moyeu

La Vitesse de pointe de la turbine étant donné le diamètre du moyeu, calcule la Vitesse à la pointe de la turbine en fonction de la Vitesse de rotation et des dimensions géométriques de la turbine. Cette formule dérive la Vitesse de pointe en prenant en compte le diamètre de la pointe de la turbine, le diamètre du moyeu et la Vitesse de rotation.

Ut=πN60Dt2+Dh22

Vitesse tangentielle donnée rapport de Vitesse

La formule du rapport de Vitesse donnée de la Vitesse tangentielle est définie comme le produit du rapport de Vitesse et de la racine carrée de deux fois l'accélération due à la gravité et la hauteur manométrique.

u2=Ku2[g]Hm

Vitesse d'écoulement en fonction du rapport d'écoulement

La formule du rapport de débit donné pour la Vitesse d'écoulement est définie comme la Vitesse d'écoulement du fluide à la sortie d'une pompe centrifuge, qui est un paramètre critique pour déterminer les performances et l'efficacité de la pompe, et est influencée par des facteurs tels que le rapport de débit, l'accélération gravitationnelle et la conception géométrique de la pompe.

Vf2=Kf2[g]Hm

Vitesse du fluide dans le tuyau pour la perte de charge à l'entrée du tuyau

La Vitesse du fluide dans le tuyau pour la perte de charge à l'entrée de la formule du tuyau est connue en tenant compte de la perte de charge à l'entrée du tuyau qui dépend de la forme de l'entrée.

v=hi2[g]0.5

Vitesse de coupe résultante

La Vitesse de coupe résultante est la Vitesse résultante de la Vitesse de l'outil primaire et de la Vitesse d'avance simultanées, donnée à l'outil pendant l'usinage. Dans des conditions idéales, il est considéré comme identique à la Vitesse de coupe.

Vr=vccos((η))

Vitesse Freestream pour le coefficient de portance dans un cylindre rotatif avec circulation

La Vitesse Freestream pour le coefficient de portance dans un cylindre rotatif avec formule de circulation est connue en tenant compte du rapport de circulation sur le rayon du cylindre et du coefficient de portance.

V=ΓcRC'

Vitesse le long de l'axe de lacet pour un petit angle d'attaque

La Vitesse le long de l'axe de lacet pour un petit angle d'attaque est une mesure du taux de changement de position d'un objet le long de l'axe de lacet, par rapport à son mouvement dû à un petit angle d'attaque, elle est calculée en multipliant la Vitesse le long de l'axe de roulis par l'angle d'attaque en radians, fournissant un paramètre crucial en aérodynamique et en dynamique de vol.

w=uα

Vitesse Freestream sur plaque plate en utilisant le numéro de Stanton

La Vitesse du courant libre sur une plaque plate à l'aide de la formule du nombre de Stanton est définie comme une mesure de la Vitesse du fluide s'approchant de la plaque plate dans un cas d'écoulement visqueux, ce qui est essentiel pour comprendre les caractéristiques de transfert de chaleur et d'écoulement du fluide sur la plaque.

V=qwStρ(haw-hw)

Vitesse le long de l'axe de roulis pour un petit angle d'attaque

La Vitesse le long de l'axe de roulis pour un petit angle d'attaque est une mesure de la Vitesse de rotation d'un objet autour de son axe de roulis lorsque l'angle d'attaque est relativement petit et est calculée en divisant la Vitesse le long du mouvement de lacet par l'angle d'attaque en radians.

u=wα

Vitesse le long de l’axe de tangage pour un petit angle de dérapage

La Vitesse le long de l'axe de tangage pour un petit angle de dérapage est une mesure de la Vitesse d'un avion ou d'un objet se déplaçant selon un petit angle de dérapage, ce qui est essentiel pour comprendre et prédire sa trajectoire et sa stabilité.

v=βu

Vitesse le long de l’axe de roulis pour un petit angle de dérapage

La Vitesse le long de l'axe de roulis pour un petit angle de dérapage est une mesure de la Vitesse de l'avion dans la direction de l'axe de roulis lorsque l'angle de dérapage est petit, ce qui donne un aperçu de la stabilité et de la réactivité de l'avion pendant le vol.

u=vβ

Vitesse de flux libre sur une plaque plate avec des conditions de flux libre

La formule de la Vitesse du courant libre sur une plaque plate avec des conditions de courant libre est définie comme la Vitesse du fluide s'approchant d'une plaque plate dans un cas d'écoulement visqueux, qui est un concept fondamental en dynamique des fluides et en aérodynamique, utilisé pour analyser le comportement des fluides s'écoulant sur une surface plane.

V=2(h0-h)

Vitesse de flux libre sur une plaque plate en utilisant la force de traînée

La Vitesse du courant libre sur une plaque plate à l'aide de la formule de la force de traînée est définie comme la Vitesse du fluide s'approchant de la plaque plate, qui est affectée par la force de traînée, la densité de l'air, la surface et le coefficient de traînée, et est un paramètre essentiel pour comprendre l'écoulement visqueux sur une plaque plate.

V=FD0.5ρSCD

Vitesse du flux libre

La formule de Vitesse Freestream est définie comme la viscosité dynamique du fluide divisée par le produit du carré de l'émissivité, de la densité du flux libre et du rayon du nez.

V=μviscosityε2ρrnose

Vitesse moyenne du gaz à une température donnée

La Vitesse moyenne du gaz selon la formule de température est définie comme le rapport de la racine carrée de la température et de la masse molaire du gaz respectif.

Cav=8[R]TgπMmolar

Vitesse moyenne du gaz compte tenu de la pression et du volume

La formule de la Vitesse moyenne du gaz en fonction de la pression et du volume est définie comme le rapport de la racine carrée de la pression et du volume à la masse molaire du gaz respectif.

vavg_P_V=8PgasVπMmolar

Vitesse moyenne du gaz compte tenu de la pression et de la densité

La formule de la Vitesse moyenne du gaz en fonction de la pression et de la densité est définie comme la racine carrée du rapport de la pression du gaz à la densité du gaz.

vavg_P_D=8Pgasπρgas

Vitesse moyenne du gaz donnée Vitesse quadratique moyenne

La Vitesse moyenne du gaz étant donné la formule de la Vitesse quadratique moyenne est définie comme le produit de la Vitesse quadratique moyenne avec 0,9213. La Vitesse moyenne est la Vitesse moyenne de chaque molécule du gaz.

vavg_RMS=(0.9213CRMS_speed)

Vitesse RMS donnée Vitesse moyenne

La formule de Vitesse moyenne donnée par la Vitesse RMS est définie comme le rapport de la Vitesse moyenne du gaz à 0,9213.

CRMS=(Cav0.9213)

Vitesse à travers l'écran compte tenu de la perte de charge à travers l'écran

La Vitesse à travers l'écran compte tenu de la perte de charge à travers l'écran est le taux de changement de sa position par rapport à un cadre de référence et est une fonction du temps.

v=(hL0.0729)+u2

Vitesse au-dessus de l'écran compte tenu de la perte de charge à travers l'écran

La Vitesse au-dessus de l'écran compte tenu de la perte de charge à travers l'écran est le taux de changement de sa position par rapport à un cadre de référence et est une fonction du temps.

u=v2-(hL0.0729)

Vitesse de sédimentation des particules sphériques

La formule de la Vitesse de sédimentation des particules sphériques est définie comme la Vitesse constante à laquelle une particule sphérique tombe à travers un fluide sous l'influence de la gravité.

Vsp=(g18)(G-1)((Dp)2ν)

Vitesse de sédimentation d'une particule sphérique compte tenu du nombre de Reynold

La Vitesse de sédimentation d'une particule sphérique donnée par la formule du nombre de Reynolds est définie comme la Vitesse à laquelle une particule se dépose dans un fluide, tel que l'eau ou l'air, sous l'influence de la gravité, compte tenu du nombre de Reynolds.

Vsr=RpνDp

Vitesse de chute compte tenu de la force de traînée offerte par le fluide

La formule de la Vitesse de chute donnée par la force de traînée offerte par le fluide est définie comme le calcul de la Vitesse de chute lorsque nous avons des informations préalables sur la force de traînée.

v=2(FdCDAρwater)

Vitesse de sédimentation d'une particule sphérique en fonction du coefficient de traînée

La Vitesse de sédimentation d'une particule sphérique donnée par la formule du coefficient de traînée est définie comme la Vitesse à laquelle une particule se dépose dans un fluide, tel que l'eau ou l'air, sous l'influence de la gravité, en considérant le coefficient de traînée.

Vsc=(43)(γs-γw)DpρwaterCD

Vitesse lissée

La formule Smoothed Velocity est l'estimation lissée de la Vitesse actuelle de la cible sur la base des détections passées par le radar de surveillance track-while-scan.

vs=vs(n-1)+βTs(xn-xpn)

Vitesse cible

La formule de Vitesse cible est définie comme la Vitesse de la cible qui se déplace avec la fréquence doppler par rapport à la source d'onde.

vt=Δfdλ2

Vitesse absolue pour une poussée normale donnée parallèlement à la direction du jet

La Vitesse absolue pour une poussée normale donnée parallèlement à la direction du jet est le taux de changement de sa position par rapport à un cadre de référence et est fonction du temps.

Vabsolute=FtGγfAJet(∠D(180π))2+v

Vitesse du jet donnée Poussée normale parallèle à la direction du jet

La Vitesse du jet donnée pour une poussée normale parallèle à la direction du jet est le taux de changement de sa position par rapport à un cadre de référence et est une fonction du temps.

v=-(FtGγfAJet(∠D(180π))2-Vabsolute)

Vitesse absolue pour une poussée normale donnée Normal à la direction du jet

La Vitesse absolue pour une poussée normale donnée Normal à la direction du jet est le taux de changement de sa position par rapport à un cadre de référence et est fonction du temps.

Vabsolute=(FtGγfAJet(∠D(180π))cos(θ))+v

Vitesse du jet donnée Poussée normale Normale à la direction du jet

La Vitesse du jet donnée à la poussée normale normale à la direction du jet est le taux de changement de sa position par rapport à un cadre de référence et est une fonction du temps.

v=-(FtGγfAJet(∠D(180π))cos(θ))+Vabsolute

Vitesse de coupe de référence donnée Coût de production par composant

La Vitesse de coupe de référence donnée par le coût de production par composant est une méthode pour déterminer la Vitesse de coupe optimale requise pour une durée de vie d'outil donnée dans une condition d'usinage de référence pour fabriquer un seul composant.

Vref=(KLref(Mtc+Ct)(V1-nn)Cp-M(NPT+KV))n

Vitesse de coupe de référence donnée Coût de production minimum

La Vitesse de coupe de référence donnée au coût de production minimum est une méthode pour déterminer la Vitesse de coupe optimale requise pour une taille de lot donnée dans une condition d'usinage de référence à fabriquer de telle sorte que le coût de production total soit minimum.

V=K(TL)n(1-n)(CpR-ts)

Vitesse de virage de l'aéronef compte tenu de la distance de visibilité

La Vitesse de virage de l'aéronef compte tenu de la distance de visibilité est définie comme un paramètre influençant la Vitesse de virage pour la conception de la voie de sortie reliant la piste et la voie de circulation principale parallèle.

VTurning Speed=25.5dSD

Vitesse angulaire du disque

La formule de la Vitesse angulaire du disque est définie comme étant utilisée pour calculer la distance parcourue par le corps en termes de rotations ou de révolutions par rapport au temps pris. La Vitesse dépend de la lenteur ou de la Vitesse à laquelle un objet se déplace.

ωd=TKD

Vitesse de transport de masse au deuxième ordre

La Vitesse de transport de masse au second ordre peut être mesurée comme le rapport du déplacement d'une particule à la longueur de l'intervalle de temps correspondant fourni et la contribution des termes du second ordre est importante par rapport à celle des termes du premier ordre.

Uz=(πHwλ)2Ccosh(4πDZ+dλ)2sinh(2πdλ)2

Vitesse du vent géostrophique

La formule de la Vitesse géostrophique du vent est définie comme une Vitesse théorique du vent qui résulte d'un équilibre entre la force de Coriolis et la force du gradient de pression, concepts explorés plus en détail dans des lectures ultérieures.

Ug=(1ρf)dpdngradient

Comment trouver Formules ?

Voici quelques conseils pour obtenir de meilleurs résultats de recherche.
Soyez précis : Plus votre requête est spécifique, meilleurs sont vos résultats.
Utilisez plusieurs mots clés : Combinez plusieurs mots clés pour affiner les résultats.
Expérimentez avec des synonymes : Différents termes peuvent donner des résultats différents.
Recherche générique : Utilisez l'opérateur * (astérisque). NOTEZ que cet opérateur ne fonctionne qu'à la fin d'un mot. Exemple : Bio*, Zone*, etc.

Vous pouvez également parcourir les sous-catégories de pour vous concentrer sur les formules qui vous intéressent.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!