Vitesse de dérive donnée en section transversaleLa formule de la Vitesse de dérive donnée par la section transversale est définie comme une mesure de la Vitesse moyenne des porteurs de charge dans un conducteur, ce qui est crucial pour comprendre le flux de courant électrique et est influencée par la section transversale du conducteur et la charge. densité des porteurs.
Vitesse de dériveLa formule de Vitesse de dérive est définie comme une mesure de la Vitesse moyenne des électrons dans un conducteur, qui est influencée par le champ électrique et les propriétés du conducteur, fournissant ainsi un aperçu du comportement des électrons dans les circuits électriques.
Vitesse du suiveur après le temps t pour le mouvement cycloïdalLa formule de la Vitesse du suiveur après le temps t pour le mouvement cycloïdal est définie comme la mesure de la Vitesse du suiveur dans un système à came et suiveur, qui subit un mouvement cycloïdal, décrivant le mouvement du suiveur lorsqu'il tourne et se déplace sur une trajectoire circulaire.
Vitesse maximale du suiveur pendant la course sortante pour le mouvement cycloïdalLa formule de la Vitesse maximale du suiveur pendant la course extérieure pour un mouvement cycloïdal est définie comme la Vitesse la plus élevée atteinte par le suiveur pendant la phase de course extérieure du mouvement cycloïdal, qui est un concept fondamental dans les systèmes mécaniques et la cinématique, en particulier dans la conception et l'analyse des liaisons mécaniques et des systèmes à cames.
Vitesse maximale du suiveur pendant la course de retour pour le mouvement cycloïdalLa formule de la Vitesse maximale du suiveur pendant la course de retour pour un mouvement cycloïdal est définie comme la Vitesse la plus élevée atteinte par le suiveur pendant sa course de retour dans un mouvement cycloïdal, qui est un concept fondamental dans les systèmes mécaniques et la cinématique, essentiel pour la conception et l'optimisation des composants mécaniques.
Vitesse théoriqueLa formule de Vitesse théorique est définie à partir de l'équation de Bernoulli de l'écoulement à travers un orifice. H est la tête du liquide au-dessus du centre de l'orifice.
Vitesse derrière le choc normal par l'équation d'impulsion du choc normalLa Vitesse derrière le choc normal par l'équation de l'impulsion de choc normal calcule la Vitesse d'un fluide en aval d'une onde de choc normale à l'aide de l'équation d'impulsion de choc normal. Cette formule intègre des paramètres tels que les pressions statiques avant et derrière le choc, la densité avant le choc et la Vitesse en amont du choc. Il fournit des informations cruciales sur le changement de Vitesse résultant du passage de l’onde de choc.
Vitesse avant le choc normal par l'équation d'impulsion du choc normalL'équation de Vitesse avant le choc normal par impulsion de choc normal calcule la Vitesse d'un fluide avant une onde de choc normale à l'aide de l'équation d'impulsion de choc normal. Cette formule prend en compte des paramètres tels que les pressions statiques devant et derrière le choc, la densité derrière le choc et la Vitesse en aval du choc. Il fournit des informations cruciales sur la Vitesse du fluide avant de rencontrer l’onde de choc, facilitant ainsi l’analyse du comportement de l’écoulement compressible.
Vitesse en amont à l'aide de la relation de PrandtlLa Vitesse en amont utilisant la relation de Prandtl calcule la Vitesse d'un fluide en amont d'une onde de choc normale sur la base de la relation de Prandtl. Cette formule utilise la Vitesse critique du son et la Vitesse aval du fluide pour déterminer la Vitesse amont. Il donne un aperçu des conditions d’écoulement en amont de l’onde de choc, facilitant ainsi l’analyse des phénomènes d’écoulement compressible.
Vitesse du piston pendant l'extensionLa formule de la Vitesse du piston pendant l'extension est définie comme la Vitesse de déplacement d'un piston dans un actionneur ou un moteur hydraulique, qui est un paramètre critique pour déterminer les performances et l'efficacité du système, et est influencé par le débit et la surface du piston.
Vitesse du piston pendant la rétractionLa formule de la Vitesse du piston pendant la phase de rétraction est définie comme la Vitesse de déplacement d'un piston pendant la phase de rétraction dans un système hydraulique, ce qui est essentiel pour déterminer les performances et l'efficacité globales des actionneurs et des moteurs hydrauliques.
Vitesse du flux libre de la plaque plate dans un écoulement turbulent interneLa formule de la Vitesse du flux libre d'une plaque plate dans un écoulement turbulent interne est définie comme la Vitesse du fluide s'approchant de la plaque plate dans un régime d'écoulement turbulent, ce qui est un paramètre critique dans les processus de transfert de masse par convection, en particulier dans les applications industrielles telles que les échangeurs de chaleur et les réacteurs chimiques.
Vitesse angulaire du cylindre extérieur dans la méthode du cylindre rotatifVitesse angulaire du cylindre extérieur dans la méthode du cylindre rotatif, la Vitesse angulaire du cylindre extérieur est la Vitesse à laquelle le cylindre extérieur tourne. Il est utilisé pour calculer le taux de cisaillement et déterminer la viscosité du fluide en fonction de la résistance rencontrée par le fluide lorsque le cylindre tourne.
Vitesse de cisaillement pour un écoulement turbulent dans les tuyauxLa Vitesse de cisaillement pour l'écoulement turbulent dans les tuyaux, également connue sous le nom de Vitesse de frottement (u*), est un paramètre clé utilisé pour caractériser l'intensité de la contrainte de cisaillement près de la paroi du tuyau. Il représente la Vitesse à laquelle les couches de fluide adjacentes à la paroi du tuyau se déplacent les unes par rapport aux autres.
Vitesse de vol étant donné le coefficient de moment de charnière d'ascenseurLa Vitesse de vol étant donné le coefficient de moment de charnière de l'ascenseur est une mesure de la Vitesse longitudinale du vol d'un avion, calculée en tenant compte du coefficient de moment de charnière de l'ascenseur, de la densité, de la surface et de la longueur de la corde, fournissant un indicateur crucial de la stabilité et du contrôle de l'avion pendant le vol.
Vitesse statique en utilisant le nombre de StantonLa Vitesse statique utilisant la formule du nombre de Stanton est définie comme une mesure de la Vitesse d'un fluide dans une couche limite, en particulier dans un écoulement hypersonique, ce qui est crucial pour comprendre le comportement des fluides à grande Vitesse et leur interaction avec les surfaces.
Vitesse théorique du flux d'écoulementLa formule de la Vitesse théorique d'un courant d'eau est définie comme la Vitesse que l'eau atteindrait s'il n'y avait pas de pertes d'énergie dues au frottement ou à d'autres résistances.
Vitesse réelle du flux d'écoulementLa formule de la Vitesse réelle d'un courant d'eau est définie comme le déplacement de l'eau à travers une section transversale spécifique du courant.
Vitesse de coupe pour une durée de vie donnée de l'outil de TaylorLa Vitesse de coupe pour une durée de vie donnée de l'outil Taylor est une méthode pour trouver la Vitesse de coupe maximale avec laquelle la pièce peut être usinée lorsque l'intervalle de temps d'affûtage de l'outil, l'avance et la profondeur de coupe sont fixes.
Vitesse de coupe donnée, durée de vie de l'outil et volume de métal enlevéL'avance donnée à la Vitesse de coupe, à la durée de vie de l'outil et au volume de métal enlevé est une méthode pour déterminer la Vitesse d'avance valide qui doit être appliquée à l'outil afin d'obtenir le volume autorisé de matériau enlevé d'où la durée de vie optimale de l'outil.
Vitesse de coupe à l'aide de l'indice d'usinabilitéLa Vitesse de coupe à l'aide de l'indice d'usinabilité est une méthode permettant de déterminer la Vitesse maximale à laquelle une pièce peut être utilisée lorsque son indice d'usinabilité est connu.
Vitesse à moyenne distance donnéeLa formule Velocity in Medium given Distance est définie comme la Vitesse de l'onde lumineuse utilisée dans l'instrument EDM lorsque l'onde se déplace d'un point à un autre.
Vitesse moyenne d'écoulement dans la sectionLa formule de la Vitesse moyenne d'écoulement dans la section est définie comme la Vitesse moyenne dans le canal avec une pente de lit inclinée à un angle particulier par rapport à l'horizontale.
Vitesse moyenne selon la loi de DarcyLa Vitesse moyenne utilisant la formule de la loi de Darcy est définie comme la Vitesse moyenne d'un fluide ou d'un objet sur une période de temps ou une distance donnée qui est directement proportionnelle à la fois au gradient hydraulique et au coefficient de perméabilité.
Vitesse de surface de la pièce donnée Taux d'enlèvement de métal pendant le meulageVitesse de surface de la pièce donnée Le taux d'enlèvement de métal pendant les opérations de meulage est le taux de Vitesse de surface de la pièce donnée. Taux d'enlèvement de métal pendant les opérations de meulage. il détermine la Vitesse de rotation de la surface par rapport à l'outil de meulage en fonction du taux d'enlèvement de matière, de l'avance et de la largeur du chemin de meulage.
Vitesse de montée minimale compte tenu de la surface du réservoir d'écrémageLa formule de Vitesse de montée minimale étant donné la surface du réservoir d'écrémage est définie comme la Vitesse minimale à laquelle les particules ou les contaminants (tels que les huiles et les graisses) montent à la surface de l'eau. Il s’agit d’un paramètre crucial pour la conception et le fonctionnement des bassins d’écrémage, utilisés pour éliminer les matières flottantes des eaux usées.
Vitesse d'écoulement de l'eau entrant dans le réservoirLa formule de Vitesse d'écoulement de l'eau entrant dans le réservoir est définie comme la valeur de la Vitesse à laquelle un fluide se déplace à l'intérieur d'un réservoir, généralement calculée en fonction des dimensions du réservoir et du débit du fluide.
Vitesse d'écoulement donnée Longueur du réservoirLa formule de Vitesse d'écoulement donnée selon la longueur du réservoir est définie comme la Vitesse à laquelle un fluide se déplace dans un réservoir, généralement calculée en fonction des dimensions du réservoir et du débit du fluide.
Vitesse de sédimentation en fonction de la longueur du réservoirLa formule de Vitesse de sédimentation donnée selon la longueur du réservoir est définie comme la Vitesse à laquelle les particules se déposent dans un fluide au repos. Il s'agit d'une mesure de la rapidité avec laquelle les particules tombent au fond d'un réservoir ou d'un autre bassin de décantation, en tenant compte de la longueur du réservoir.
Vitesse de sédimentation donnée DéchargeLa formule de Vitesse de sédimentation donnée est définie comme la valeur de la Vitesse à laquelle les particules en suspension se déposent hors de l'eau sous l'influence de la gravité, ce qui est essentiel pour la conception et l'analyse des processus de sédimentation.
Vitesse de stabilisation en fonction de la zone du planLa formule de Vitesse de décantation donnée dans la zone de plan est définie comme la valeur de la Vitesse à laquelle les particules se déposent dans un fluide au repos. Il s'agit d'une mesure de la rapidité avec laquelle les particules tombent au fond d'un réservoir ou d'un autre bassin de décantation, compte tenu de la zone du plan.
Vitesse de sédimentation compte tenu du rapport hauteur/longueurLa formule de Vitesse de sédimentation donnée par le rapport hauteur/longueur est définie comme la Vitesse à laquelle les particules se déposent hors d'un fluide, tel que l'eau. Le « rapport hauteur/longueur » peut jouer un rôle important dans la détermination de cette Vitesse de sédimentation.