Rechercher Formules

Veuillez saisir au moins trois caractères pour commencer à rechercher des formules .

Sélectionner un filtre

Affinez vos résultats de recherche à l’aide de ces filtres.

50 Formules correspondantes trouvées !

Vitesse angulaire donnée Vitesse en RPM

La formule de Vitesse angulaire donnée en RPM est définie comme une mesure du taux de changement du déplacement angulaire par rapport au temps, décrivant le mouvement de rotation d'un objet, particulièrement utile dans le contexte de la cinétique du mouvement.

ω=2πNA60

Vitesse de la poulie de guidage

La formule de la Vitesse de la poulie de guidage est définie comme une mesure de la Vitesse de rotation de la poulie de guidage dans un système mécanique, ce qui est crucial pour déterminer le mouvement du système, en particulier dans le contexte de la cinétique du mouvement, où la Vitesse de la poulie de guidage affecte les performances et l'efficacité globales du système.

NP=NDdd1

Vitesse finale des corps A et B après collision inélastique

La formule de la Vitesse finale des corps A et B après une collision inélastique est définie comme la Vitesse de deux ou plusieurs objets après une collision et une fusion en un seul objet, où l'impulsion totale avant la collision est égale à l'impulsion totale après la collision.

v=m1u1+m2u2m1+m2

Vitesse de l'objet en mouvement circulaire

La formule Vitesse de l'objet en mouvement circulaire est définie comme la Vitesse à laquelle un objet se déplace le long d'une trajectoire circulaire, influencée par le rayon du cercle et la fréquence de rotation, fournissant un concept fondamental pour comprendre le mouvement circulaire et ses applications en physique et en ingénierie. .

V=2πrf

Vitesse du suiveur après le temps t pour le mouvement cycloïdal

La formule de la Vitesse du suiveur après le temps t pour le mouvement cycloïdal est définie comme la mesure de la Vitesse du suiveur dans un système à came et suiveur, qui subit un mouvement cycloïdal, décrivant le mouvement du suiveur lorsqu'il tourne et se déplace sur une trajectoire circulaire.

v=ωSθo(1-cos(2πθrotationθo))

Vitesse maximale du suiveur pendant la course sortante pour le mouvement cycloïdal

La formule de la Vitesse maximale du suiveur pendant la course extérieure pour un mouvement cycloïdal est définie comme la Vitesse la plus élevée atteinte par le suiveur pendant la phase de course extérieure du mouvement cycloïdal, qui est un concept fondamental dans les systèmes mécaniques et la cinématique, en particulier dans la conception et l'analyse des liaisons mécaniques et des systèmes à cames.

Vm=2ωSθo

Vitesse maximale du suiveur pendant la course de retour pour le mouvement cycloïdal

La formule de la Vitesse maximale du suiveur pendant la course de retour pour un mouvement cycloïdal est définie comme la Vitesse la plus élevée atteinte par le suiveur pendant sa course de retour dans un mouvement cycloïdal, qui est un concept fondamental dans les systèmes mécaniques et la cinématique, essentiel pour la conception et l'optimisation des composants mécaniques.

Vm=2ωSθR

Vitesse derrière le choc normal par l'équation d'impulsion du choc normal

La Vitesse derrière le choc normal par l'équation de l'impulsion de choc normal calcule la Vitesse d'un fluide en aval d'une onde de choc normale à l'aide de l'équation d'impulsion de choc normal. Cette formule intègre des paramètres tels que les pressions statiques avant et derrière le choc, la densité avant le choc et la Vitesse en amont du choc. Il fournit des informations cruciales sur le changement de Vitesse résultant du passage de l’onde de choc.

V2=P1-P2+ρ1V12ρ2

Vitesse avant le choc normal par l'équation d'impulsion du choc normal

L'équation de Vitesse avant le choc normal par impulsion de choc normal calcule la Vitesse d'un fluide avant une onde de choc normale à l'aide de l'équation d'impulsion de choc normal. Cette formule prend en compte des paramètres tels que les pressions statiques devant et derrière le choc, la densité derrière le choc et la Vitesse en aval du choc. Il fournit des informations cruciales sur la Vitesse du fluide avant de rencontrer l’onde de choc, facilitant ainsi l’analyse du comportement de l’écoulement compressible.

V1=P2-P1+ρ2V22ρ1

Vitesse en amont à l'aide de la relation de Prandtl

La Vitesse en amont utilisant la relation de Prandtl calcule la Vitesse d'un fluide en amont d'une onde de choc normale sur la base de la relation de Prandtl. Cette formule utilise la Vitesse critique du son et la Vitesse aval du fluide pour déterminer la Vitesse amont. Il donne un aperçu des conditions d’écoulement en amont de l’onde de choc, facilitant ainsi l’analyse des phénomènes d’écoulement compressible.

V1=acr2V2

Vitesse critique du son à partir de la relation de Prandtl

La Vitesse critique du son d'après la formule de relation de Prandtl est définie comme la racine carrée du produit des Vitesses amont et aval à travers le choc normal.

acr=V2V1

Vitesse du piston pendant l'extension

La formule de la Vitesse du piston pendant l'extension est définie comme la Vitesse de déplacement d'un piston dans un actionneur ou un moteur hydraulique, qui est un paramètre critique pour déterminer les performances et l'efficacité du système, et est influencé par le débit et la surface du piston.

vpiston=QextAp

Vitesse du piston pendant la rétraction

La formule de la Vitesse du piston pendant la phase de rétraction est définie comme la Vitesse de déplacement d'un piston pendant la phase de rétraction dans un système hydraulique, ce qui est essentiel pour déterminer les performances et l'efficacité globales des actionneurs et des moteurs hydrauliques.

vpiston=QretAp-Ar

Vitesse spécifique de la pompe

La formule de la Vitesse spécifique de la pompe est définie comme une quantité sans dimension qui caractérise les performances d'une pompe, offrant un moyen de classer et de comparer différentes pompes en fonction de leurs caractéristiques de fonctionnement, telles que la Vitesse de rotation, le débit et la hauteur manométrique, permettant une conception et une sélection efficaces des pompes pour diverses applications.

Ns=ωQHm34

Vitesse spécifique de la turbine

La formule de Vitesse spécifique de la turbine est définie comme un indice utilisé pour prédire les performances souhaitées de la pompe ou de la turbine. c'est-à-dire qu'il prédit la forme générale de la roue d'une pompe.

Ns=NPHeff54

Vitesse unitaire de la turbomachine

La Vitesse unitaire de la turbomachine est la Vitesse à laquelle la machine fonctionne lorsque le débit, la hauteur et la puissance sont réduits à leurs valeurs unitaires sans dimension correspondantes, généralement utilisées pour comparer différentes machines quelle que soit leur taille. Il contribue à normaliser les caractéristiques de performance et joue un rôle crucial dans les lois de similarité et les modèles d’échelle pour les turbomachines.

Nu=NHeff

Vitesse de toucher des roues

La Vitesse de toucher des roues est la Vitesse à laquelle un avion atterrit. Cette formule calcule la Vitesse d'atterrissage en fonction du poids de l'avion, de la densité du flux libre, de la zone de référence et du coefficient de portance maximal. Comprendre et appliquer cette formule est essentiel pour les pilotes et les ingénieurs afin de garantir des atterrissages sûrs et contrôlés, en optimisant les performances d'approche et d'atterrissage.

VT=1.3(2WρSCL,max)

Vitesse angulaire donnée Vitesse spécifique de la pompe

La formule de la Vitesse angulaire donnée par la Vitesse spécifique de la pompe est définie comme une mesure de la Vitesse de rotation d'une pompe, qui est un paramètre critique dans la conception et le fonctionnement de la pompe, caractérisant la capacité de la pompe à transférer de l'énergie au fluide pompé.

ω=Ns(Hm34)Q

Vitesse de toucher des roues pour une Vitesse de décrochage donnée

La Vitesse de toucher des roues pour une Vitesse de décrochage donnée est une mesure de la Vitesse maximale qu'un avion peut avoir pendant l'atterrissage, calculée en multipliant la Vitesse de décrochage par un facteur de sécurité de 1,3 pour garantir un atterrissage stable et contrôlé.

VT=1.3Vstall

Vitesse angulaire de la turbine compte tenu de la Vitesse spécifique

La Vitesse angulaire de la turbine compte tenu de la formule de Vitesse spécifique est définie comme le taux de variation du déplacement angulaire de la turbine.

N=NsHeff54P

Vitesse de décrochage pour une Vitesse de toucher donnée

La Vitesse de décrochage pour une Vitesse d'atterrissage donnée est la Vitesse à laquelle l'avion n'est plus en mesure de maintenir la portance et entrera en condition de décrochage. Cette équation que vous avez fournie semble estimer la Vitesse de décrochage d'un avion lors de l'atterrissage en divisant la Vitesse d'atterrissage par un facteur. de 1,3.

Vstall=VT1.3

Vitesse de l'onde sonore compte tenu du module de masse

La Vitesse de l'onde sonore, compte tenu du module de masse du support, donne un aperçu de la rapidité avec laquelle le son se propage à travers ce matériau. Comprendre cette relation est crucial dans les applications en acoustique, en science des matériaux et en ingénierie où la propagation du son et les propriétés mécaniques des matériaux sont des considérations importantes.

C=Kρa

Vitesse de l'onde sonore à l'aide du processus isotherme

La Vitesse de l'onde sonore à l'aide du processus isotherme donne un aperçu de la manière dont la température et les propriétés physiques des gaz affectent la Vitesse à laquelle le son se propage, permettant ainsi des calculs précis et des décisions de conception éclairées en acoustique, aérodynamique et diverses applications technologiques.

C=Rc

Vitesse de l'onde sonore à l'aide du processus adiabatique

La Vitesse de l'onde sonore utilisant le processus adiabatique dépend de l'indice adiabatique (rapport des chaleurs spécifiques), de la constante universelle du gaz, de la température absolue du gaz et de la masse molaire du gaz.

C=yRc

Vitesse de l'onde sonore compte tenu du nombre de Mach pour un écoulement de fluide compressible

La Vitesse de l'onde sonore, compte tenu du nombre de Mach pour l'écoulement d'un fluide compressible, indique la Vitesse à laquelle le son se propage dans le milieu par rapport à la Vitesse du son dans ce milieu. Cette relation est fondamentale en aérodynamique, en ingénierie aérospatiale et en acoustique, où le nombre de Mach caractérise le régime d'écoulement et influence le comportement des ondes de choc et la transmission du son.

C=VM

Vitesse moyenne de l'écoulement du fluide

La Vitesse moyenne de l'écoulement du fluide est définie comme la Vitesse moyenne du courant circulant dans le tuyau mesurée sur toute la longueur.

Vmean=(18μ)dp|drR2

Vitesse moyenne de l'écoulement donnée Vitesse maximale à l'axe de l'élément cylindrique

La formule de la Vitesse moyenne d'écoulement donnée par la Vitesse maximale à l'axe de l'élément cylindrique est définie comme la Vitesse moyenne du fluide s'écoulant à travers une section transversale donnée sur une période de temps spécifique.

Vmean=0.5Vmax

Vitesse maximale à l'axe de l'élément cylindrique étant donné la Vitesse moyenne de l'écoulement

La Vitesse maximale au niveau de l'axe de l'élément cylindrique, donnée par la formule de la Vitesse moyenne d'écoulement, est définie comme l'écoulement laminaire à travers un tuyau circulaire, le profil de Vitesse est parabolique et la Vitesse maximale au centre du tuyau est le double de la Vitesse moyenne.

Vmax=2Vmean

Vitesse moyenne de l'écoulement compte tenu de la chute de pression sur la longueur du tuyau

La Vitesse moyenne de l'écoulement compte tenu de la chute de pression sur la longueur du tuyau est définie comme la Vitesse moyenne du flux dans le tuyau.

Vmean=ΔP32μLpDpipe2

Vitesse finale en chute libre sous gravité compte tenu de la Vitesse initiale et du temps

La formule de la Vitesse finale en chute libre sous l'effet de la gravité, compte tenu de la Vitesse initiale et du temps, est définie comme la Vitesse qu'un objet atteint sous la seule influence de la gravité, en tenant compte de la Vitesse initiale et du temps de chute, fournissant un concept fondamental pour comprendre le mouvement de chute libre.

vf=u+[g]t

Vitesse finale en chute libre sous gravité compte tenu de la Vitesse et du déplacement initiaux

La Vitesse finale en chute libre sous l'effet de la gravité, étant donné la formule de la Vitesse initiale et du déplacement, est définie comme une mesure de la Vitesse qu'un objet atteint lorsqu'il tombe librement sous la seule influence de la gravité, en considérant la Vitesse initiale et le déplacement de l'objet par rapport à sa position initiale.

vf=u2+2[g]d

Vitesse moyenne de l'écoulement compte tenu de la perte de charge sur la longueur du tuyau

La Vitesse moyenne de l'écoulement compte tenu de la perte de charge sur la longueur du tuyau est définie comme la Vitesse moyenne du flux dans le tuyau.

Vmean=h32μLpγfDpipe2

Vitesse des vagues dans le milieu

La formule Wave Velocity in Medium est définie car elle indique la Vitesse de toute onde utilisée pour la transmission lorsqu'elle passe à travers un support spécifique.

V=V0RI

Vitesse des vagues dans le vide

La formule Wave Velocity in Vacuum est définie comme la Vitesse de l'onde qui se déplace dans le vide. Un vide est un espace dépourvu de matière. Le mot vient de l'adjectif latin "vacuus" pour "vacant" ou "vide".

V0=VRI

Vitesse moyenne de l'écoulement en fonction de la Vitesse d'écoulement sans gradient de pression

La Vitesse moyenne d'écoulement étant donné la Vitesse d'écoulement sans gradient de pression est définie comme la Vitesse moyenne du fluide dans le tuyau.

Vmean=DR

Vitesse moyenne de l'écoulement compte tenu de la contrainte de cisaillement

La Vitesse moyenne d'écoulement compte tenu de la contrainte de cisaillement est définie comme la Vitesse moyenne s'écoulant à travers le tuyau dans le cours d'eau.

Vmean=(𝜏+dp|dr(0.5D-R))(Dμ)

Vitesse moyenne d'écoulement dans la section

La formule de la Vitesse moyenne d'écoulement dans la section est définie comme la Vitesse moyenne dans le canal avec une pente de lit inclinée à un angle particulier par rapport à l'horizontale.

Vmean=γfdh|dx(dsectionR-R2)μ

Vitesse moyenne selon la loi de Darcy

La Vitesse moyenne utilisant la formule de la loi de Darcy est définie comme la Vitesse moyenne d'un fluide ou d'un objet sur une période de temps ou une distance donnée qui est directement proportionnelle à la fois au gradient hydraulique et au coefficient de perméabilité.

Vmean=kH

Vitesse de surface de la pièce donnée Taux d'enlèvement de métal pendant le meulage

Vitesse de surface de la pièce donnée Le taux d'enlèvement de métal pendant les opérations de meulage est le taux de Vitesse de surface de la pièce donnée. Taux d'enlèvement de métal pendant les opérations de meulage. il détermine la Vitesse de rotation de la surface par rapport à l'outil de meulage en fonction du taux d'enlèvement de matière, de l'avance et de la largeur du chemin de meulage.

vw=Zmfiap

Vitesse de coupe instantanée

La Vitesse de coupe instantanée fait référence à la Vitesse linéaire d'un point spécifique sur le tranchant de l'outil de coupe lorsqu'il entre en contact avec le matériau de la pièce pendant le processus d'usinage. Il représente la Vitesse à laquelle l'arête de coupe se déplace par rapport à la surface de la pièce à un moment donné pendant l'usinage.

V=2πωsr

Vitesse réelle de l'avion (nombre de Mach)

La Vitesse réelle de l'aéronef (nombre de Mach) est définie comme la Vitesse équivalente corrigée de la température et de l'altitude pression.

VTAS=cMTrue

Vitesse du son (nombre de Mach)

La Vitesse du son (nombre de Mach) est définie comme le rapport de la Vitesse équivalente de l'avion à celle du vrai nombre de correspondance.

c=VTASMTrue

Vitesse du véhicule pour la force de levage fournie par le corps de l'aile du véhicule

La Vitesse du véhicule pour la force de levage fournie par le corps de l'aile du véhicule est définie comme la Vitesse à laquelle le véhicule se déplace ou se déplace.

V=(LAircraft0.5ρSCl)

Vitesse de décrochage du véhicule compte tenu du coefficient de portance maximal atteignable

La Vitesse de décrochage du véhicule compte tenu du coefficient de portance maximal atteignable est définie comme étant la Vitesse minimale à laquelle l'aéronef doit voler pour rester en l'air.

V=2MAircraft[g]ρSCL,max

Vitesse absolue de surtension se déplaçant vers la droite

La formule Vitesse absolue de surtension se déplaçant vers la droite est définie comme la Vitesse de surtension quel que soit le milieu.

vabs=V1h 1-V2D2h 1-D2

Vitesse en profondeur donnée Vitesse absolue de poussée se déplaçant vers la droite

La formule de Vitesse en profondeur étant donné la Vitesse absolue de surtension se déplaçant vers la droite est définie comme la Vitesse résultante des particules de fluide tenant compte du mouvement de surtension.

VNegativesurges=(vabs(h 1-D2))+(V2D2)h 1

Vitesse absolue de surtension se déplaçant vers la droite dans les surtensions négatives

La formule de la Vitesse absolue de surtension se déplaçant vers la droite dans les surtensions négatives est définie comme la Vitesse de propagation des ondes défavorables vers la droite.

vabs=V1+[g]D2(D2+h 1)2h 1

Vitesse à la profondeur1 lorsque la hauteur de la surtension est négligeable

La formule de la Vitesse à Depth1 lorsque la hauteur de la surtension est négligeable est définie comme la Vitesse de la pointe d'écoulement en un point.

VNegativesurges=(Hch[g]Cw)+V2

Vitesse des particules abrasives

La Vitesse des particules abrasives fait référence à la Vitesse à laquelle ces particules se déplacent vers la surface de la pièce lors des processus d'usinage abrasif tels que l'usinage par jet abrasif (AJM) ou le meulage. Il s'agit d'un paramètre critique car il influence directement le taux d'enlèvement de matière, l'efficacité de coupe et l'état de surface.

V=(ZwA0Ndmean3(ρ12hb)34)23

Vitesse d'onde donnée Premier type de Vitesse moyenne du fluide

La Vitesse des vagues donnée au premier type de Vitesse moyenne des fluides est définie comme la Vitesse à laquelle les vagues se déplacent et est déterminée par les propriétés du milieu dans lequel la vague se déplace.

v=Cf-Uh

Comment trouver Formules ?

Voici quelques conseils pour obtenir de meilleurs résultats de recherche.
Soyez précis : Plus votre requête est spécifique, meilleurs sont vos résultats.
Utilisez plusieurs mots clés : Combinez plusieurs mots clés pour affiner les résultats.
Expérimentez avec des synonymes : Différents termes peuvent donner des résultats différents.
Recherche générique : Utilisez l'opérateur * (astérisque). NOTEZ que cet opérateur ne fonctionne qu'à la fin d'un mot. Exemple : Bio*, Zone*, etc.

Vous pouvez également parcourir les sous-catégories de pour vous concentrer sur les formules qui vous intéressent.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!