Rechercher Formules

Veuillez saisir au moins trois caractères pour commencer à rechercher des formules .

Sélectionner un filtre

Affinez vos résultats de recherche à l’aide de ces filtres.

50 Formules correspondantes trouvées !

Vitesse synchrone dans le moteur à induction

La Vitesse synchrone dans le moteur à induction est la Vitesse du champ magnétique du stator dans le moteur à induction triphasé.

Ns=120fn

Vitesse du moteur dans le moteur à induction

La Vitesse du moteur dans le moteur à induction est la Vitesse à laquelle le rotor d'un moteur à induction tourne.

Nm=Ns(1-s)

Vitesse périphérique de projection du point P sur diamètre pour SHM du suiveur

La formule de la Vitesse périphérique de projection du point P sur le diamètre du SHM du suiveur est définie comme la Vitesse à laquelle le point P se déplace le long du diamètre du cercle dans un mouvement harmonique simple du suiveur dans un système à came et suiveur, ce qui est crucial pour comprendre la cinématique du mécanisme.

Ps=πS2to

Vitesse Périphérique de Projection du Point P' (Projection du Point P sur Dia) pour SHM du Suiveur

La formule de la Vitesse périphérique de projection du point P' (projection du point P sur le diamètre) pour la SHM du suiveur est définie comme la Vitesse à laquelle la projection d'un point sur le diamètre d'une came se déplace pendant le mouvement harmonique simple du suiveur dans un système à came et suiveur.

Ps=πSω2θo

Vitesse maximale du suiveur en sortie lorsque le suiveur se déplace avec SHM

La Vitesse maximale du suiveur lors de la course extérieure lorsque le suiveur se déplace avec la formule SHM est définie comme la Vitesse la plus élevée atteinte par le suiveur pendant son mouvement vers l'extérieur, ce qui est un paramètre critique dans l'évaluation des performances d'un système mécanique impliquant un mouvement harmonique simple.

Vm=πSω2θo

Vitesse maximale du suiveur en sortie de course compte tenu du temps de course

Vitesse maximale du suiveur lors de la course extérieure en fonction du temps La formule de course est définie comme la Vitesse la plus élevée atteinte par le suiveur pendant la phase de course extérieure d'un système suiveur de came, ce qui est un paramètre critique dans la conception et l'optimisation des systèmes mécaniques, en particulier dans les applications d'ingénierie automobile et aérospatiale.

Vm=πS2to

Vitesse maximale du suiveur lors de la course de retour lorsque le suiveur se déplace avec SHM

La Vitesse maximale du suiveur lors de la course de retour lorsque le suiveur se déplace avec la formule SHM est définie comme la Vitesse la plus élevée atteinte par le suiveur lors de sa course de retour tout en se déplaçant dans un mouvement harmonique simple, ce qui est un paramètre critique dans la conception et l'optimisation des systèmes mécaniques.

Vm=πSω2θR

Vitesse initiale compte tenu du temps de vol du jet de liquide

La formule de la Vitesse initiale donnée par le temps de vol du jet de liquide est définie comme une méthode permettant de déterminer la Vitesse initiale d'un jet de liquide en fonction de son temps de vol et de l'angle de projection. Ce concept est crucial en mécanique des fluides pour analyser la dynamique des jets.

Vo=Tgsin(Θ)

Vitesse initiale compte tenu du temps nécessaire pour atteindre le point le plus élevé du liquide

La formule de la Vitesse initiale étant donné le temps nécessaire pour atteindre le point le plus élevé du liquide est définie comme une méthode permettant de déterminer la Vitesse initiale nécessaire à un jet de liquide pour atteindre sa hauteur maximale. Ce concept est essentiel en mécanique des fluides pour analyser le comportement des projections de liquide sous l'influence de la gravitation.

Vo=T'gsin(Θ)

Vitesse initiale du jet de liquide compte tenu de l'élévation verticale maximale

La formule de la Vitesse initiale d'un jet de liquide en fonction de l'élévation verticale maximale est définie comme une méthode permettant de déterminer la Vitesse nécessaire d'un jet de liquide pour atteindre une hauteur spécifiée. Ce concept est essentiel en mécanique des fluides pour comprendre la dynamique des jets et optimiser l'écoulement des fluides dans diverses applications.

Vo=H2gsin(Θ)sin(Θ)

Vitesse du véhicule donnée Longueur minimale de la spirale

La formule de la Vitesse du véhicule compte tenu de la longueur minimale de la spirale est définie comme la distance parcourue par un véhicule en un temps donné.

Vv=(LRtac3.15)13

Vitesse de stagnation du son

La formule de la Vitesse de stagnation du son est définie comme la racine carrée du produit de l'indice adiabatique, de la constante de gaz universelle et de la température de stagnation.

ao=γ[R]T0

Vitesse de stagnation du son compte tenu de la chaleur spécifique à pression constante

La Vitesse de stagnation du son étant donné la formule de chaleur spécifique à pression constante est définie comme la racine carrée du produit de l'indice adiabatique soustrait par l'unité, la chaleur spécifique à pression constante et la température de stagnation.

ao=(γ-1)CpT0

Vitesse de stagnation du son compte tenu de l'enthalpie de stagnation

La Vitesse de stagnation du son étant donnée la formule d'enthalpie de stagnation est définie comme la racine carrée du produit de l'indice adiabatique soustrait par l'unité et l'enthalpie de stagnation.

ao=(γ-1)h0

Vitesse à la section 1-1 pour un élargissement soudain

La Vitesse à la section 1-1 pour la formule d'agrandissement soudain est connue en considérant la Vitesse d'écoulement à la section 2-2 après l'élargissement, et la perte de charge due au frottement pour un liquide s'écoulant à travers le tuyau.

V1'=V2'+he2[g]

Vitesse à la section 2-2 pour un élargissement soudain

La Vitesse à la section 2-2 pour la formule d'agrandissement soudain est connue en considérant la Vitesse d'écoulement à la section 1-1 avant l'élargissement, et la perte de charge due au frottement pour un liquide s'écoulant à travers le tuyau.

V2'=V1'-he2[g]

Vitesse à la section 2-2 pour contraction soudaine

La Vitesse à la section 2-2 pour la formule de contraction soudaine est connue en considérant la perte de charge due à une contraction soudaine et le coefficient de contraction à cc.

V2'=hc2[g](1Cc)-1

Vitesse théorique à la section 2 dans le débitmètre à orifice

La formule de la Vitesse théorique à la section 2 du compteur à orifice est définie comme la Vitesse calculée de l'écoulement du fluide lorsqu'il traverse l'orifice étroit, déterminée à l'aide de l'équation de Bernoulli et du principe de conservation de l'énergie.

Vp2=2[g]hventuri+V12

Vitesse théorique à la section 1 dans le débitmètre à orifice

La formule de la Vitesse théorique à la section 1 du compteur à orifice est définie comme la Vitesse calculée de l'écoulement du fluide juste avant qu'il n'entre dans la plaque à orifice, déterminée en fonction des propriétés du fluide et de la différence de pression à travers l'orifice et est utilisée pour calculer le débit à travers le compteur.

V1=(Vp22)-(2[g]hventuri)

Vitesse réelle donnée Vitesse théorique à la section 2

La Vitesse réelle donnée par la formule de la Vitesse théorique de la section 2 est définie comme la Vitesse mesurée pour la valeur réelle.

v=CvVp2

Vitesse de coupe en utilisant le taux de consommation d'énergie pendant l'usinage

La Vitesse de coupe utilisant le taux de consommation d'énergie pendant l'usinage est définie comme la Vitesse à laquelle la pièce se déplace par rapport à l'outil (généralement mesurée en pieds par minute).

Vcut=PmFc

Vitesse réelle à la section 2 en fonction du coefficient de contraction

La Vitesse réelle à la section 2 donnée par la formule du coefficient de contraction est définie comme la Vitesse mesurée à travers un débitmètre à orifice.

v=Cv2[g]hventuri+(Vp2CcaoAi)2

Vitesse d'avance pour l'opération de tournage compte tenu du temps d'usinage

La Vitesse d'avance pour l'opération de tournage compte tenu du temps d'usinage est loin de déterminer l'avance maximale qui peut être donnée sur une pièce afin de terminer une opération de tournage dans un temps donné.

fr=Lcuttmω

Vitesse au point du profil aérodynamique pour un coefficient de pression et une Vitesse de flux libre donnés

La Vitesse au point sur le profil aérodynamique pour un coefficient de pression donné et la formule de Vitesse du flux libre est le produit de la Vitesse du flux libre en racine carrée de un moins le coefficient de pression dans un flux incompressible.

V=u2(1-Cp)

Vitesse radiale pour un flux source incompressible 2D

La formule de Vitesse radiale pour un flux source incompressible 2D indique que la Vitesse radiale en tout point du champ d'écoulement est directement proportionnelle à la force de la source et inversement proportionnelle à la distance radiale du point source, cela signifie que la Vitesse diminue à mesure que vous s'éloigner de la source, et son ampleur dépend de la force de la source. Cette formule est dérivée de la théorie des écoulements potentiels, qui est un modèle simplifié utilisé pour décrire le comportement des fluides non visqueux et incompressibles.

Vr=Λ2πr

Vitesse statique au point de transition

La formule de la Vitesse statique au point de transition est définie comme la Vitesse à laquelle l'écoulement passe du laminaire au turbulent, caractérisant le comportement de la couche limite sur une plaque plate en écoulement visqueux, fournissant des informations sur la dynamique des fluides et les mécanismes de transfert de chaleur.

ue=Retμeρext

Vitesse du son dans l'eau compte tenu du temps écoulé du signal ultrasonique envoyé par A

La Vitesse du son dans l'eau en fonction du temps écoulé du signal ultrasonique envoyé par une formule est définie comme la Vitesse du son dans l'eau circulant dans le canal.

C=(Lt1)-vp

Vitesse moyenne le long du chemin AB à une certaine hauteur au-dessus du lit

La formule de Vitesse moyenne le long du chemin AB à une certaine hauteur au-dessus du lit est définie comme la Vitesse moyenne de l'écoulement à travers la section transversale à une hauteur au-dessus du lit du canal.

vavg=((L2)cos(θ))((1t1)-(1t2))

Vitesse statique utilisant l'épaisseur de moment de la couche limite

La formule de la Vitesse statique utilisant l'épaisseur de la quantité de mouvement de la couche limite est définie comme une mesure de la Vitesse au bord de la couche limite dans une plaque plate, ce qui est essentiel pour comprendre les caractéristiques de l'écoulement visqueux et les forces de traînée qui en résultent.

ue=Reμeρeθt

Vitesse de l'onde sonore compte tenu du module de masse

La Vitesse de l'onde sonore, compte tenu du module de masse du support, donne un aperçu de la rapidité avec laquelle le son se propage à travers ce matériau. Comprendre cette relation est crucial dans les applications en acoustique, en science des matériaux et en ingénierie où la propagation du son et les propriétés mécaniques des matériaux sont des considérations importantes.

C=Kρa

Vitesse de l'onde sonore à l'aide du processus isotherme

La Vitesse de l'onde sonore à l'aide du processus isotherme donne un aperçu de la manière dont la température et les propriétés physiques des gaz affectent la Vitesse à laquelle le son se propage, permettant ainsi des calculs précis et des décisions de conception éclairées en acoustique, aérodynamique et diverses applications technologiques.

C=Rc

Vitesse de l'onde sonore à l'aide du processus adiabatique

La Vitesse de l'onde sonore utilisant le processus adiabatique dépend de l'indice adiabatique (rapport des chaleurs spécifiques), de la constante universelle du gaz, de la température absolue du gaz et de la masse molaire du gaz.

C=yRc

Vitesse de l'onde sonore compte tenu du nombre de Mach pour un écoulement de fluide compressible

La Vitesse de l'onde sonore, compte tenu du nombre de Mach pour l'écoulement d'un fluide compressible, indique la Vitesse à laquelle le son se propage dans le milieu par rapport à la Vitesse du son dans ce milieu. Cette relation est fondamentale en aérodynamique, en ingénierie aérospatiale et en acoustique, où le nombre de Mach caractérise le régime d'écoulement et influence le comportement des ondes de choc et la transmission du son.

C=VM

Vitesse moyenne de l'écoulement du fluide

La Vitesse moyenne de l'écoulement du fluide est définie comme la Vitesse moyenne du courant circulant dans le tuyau mesurée sur toute la longueur.

Vmean=(18μ)dp|drR2

Vitesse moyenne de l'écoulement donnée Vitesse maximale à l'axe de l'élément cylindrique

La formule de la Vitesse moyenne d'écoulement donnée par la Vitesse maximale à l'axe de l'élément cylindrique est définie comme la Vitesse moyenne du fluide s'écoulant à travers une section transversale donnée sur une période de temps spécifique.

Vmean=0.5Vmax

Vitesse maximale à l'axe de l'élément cylindrique étant donné la Vitesse moyenne de l'écoulement

La Vitesse maximale au niveau de l'axe de l'élément cylindrique, donnée par la formule de la Vitesse moyenne d'écoulement, est définie comme l'écoulement laminaire à travers un tuyau circulaire, le profil de Vitesse est parabolique et la Vitesse maximale au centre du tuyau est le double de la Vitesse moyenne.

Vmax=2Vmean

Vitesse moyenne de l'écoulement compte tenu de la chute de pression sur la longueur du tuyau

La Vitesse moyenne de l'écoulement compte tenu de la chute de pression sur la longueur du tuyau est définie comme la Vitesse moyenne du flux dans le tuyau.

Vmean=ΔP32μLpDpipe2

Vitesse finale en chute libre sous gravité compte tenu de la Vitesse initiale et du temps

La formule de la Vitesse finale en chute libre sous l'effet de la gravité, compte tenu de la Vitesse initiale et du temps, est définie comme la Vitesse qu'un objet atteint sous la seule influence de la gravité, en tenant compte de la Vitesse initiale et du temps de chute, fournissant un concept fondamental pour comprendre le mouvement de chute libre.

vf=u+[g]t

Vitesse finale en chute libre sous gravité compte tenu de la Vitesse et du déplacement initiaux

La Vitesse finale en chute libre sous l'effet de la gravité, étant donné la formule de la Vitesse initiale et du déplacement, est définie comme une mesure de la Vitesse qu'un objet atteint lorsqu'il tombe librement sous la seule influence de la gravité, en considérant la Vitesse initiale et le déplacement de l'objet par rapport à sa position initiale.

vf=u2+2[g]d

Vitesse moyenne de l'écoulement compte tenu de la perte de charge sur la longueur du tuyau

La Vitesse moyenne de l'écoulement compte tenu de la perte de charge sur la longueur du tuyau est définie comme la Vitesse moyenne du flux dans le tuyau.

Vmean=h32μLpγfDpipe2

Vitesse d'auto-nettoyage

La Vitesse d'auto-nettoyage est définie comme la Vitesse minimale à laquelle le fluide doit s'écouler dans un égout pour éviter le dépôt de sédiments et maintenir un chemin dégagé.

vs=Ckd'(G-1)

Vitesse apparente d'infiltration

La formule de la Vitesse apparente d’infiltration est définie comme le débit d’eau à travers un milieu poreux. Il est défini par la loi de Darcy et est calculé comme le débit volumétrique par unité de surface du milieu. La conception des structures hydrauliques telles que les barrages, les digues et les installations de recharge des eaux souterraines nécessite une connaissance des Vitesses d'infiltration pour garantir la stabilité et éviter les défaillances dues à des infiltrations ou des canalisations incontrôlées.

V=K''dhds

Vitesse apparente d'infiltration lorsque le débit et la section transversale sont pris en compte

La formule de la Vitesse apparente d'infiltration lorsque le débit et la section transversale sont considérés est définie comme la Vitesse à laquelle les eaux souterraines semblent se déplacer à travers une zone transversale donnée de sol ou de roche. Comprendre les Vitesses d'infiltration est crucial dans la conception de barrages, de digues et d'autres structures hydrauliques afin de garantir la stabilité et d'éviter les défaillances dues à une infiltration excessive.

V=Q'A

Vitesse apparente du suintement compte tenu du nombre de Reynolds de l'unité de valeur

La Vitesse apparente d'infiltration étant donné la formule du nombre de Reynolds de valeur unitaire est définie comme le débit volumétrique de fluide par unité de surface à travers un milieu poreux. Il s'agit d'une Vitesse conceptuelle qui suppose que le fluide se déplace uniformément sur toute la section transversale du milieu poreux.

V=Reνstokesda

Vitesse de coupe instantanée

La Vitesse de coupe instantanée fait référence à la Vitesse linéaire d'un point spécifique sur le tranchant de l'outil de coupe lorsqu'il entre en contact avec le matériau de la pièce pendant le processus d'usinage. Il représente la Vitesse à laquelle l'arête de coupe se déplace par rapport à la surface de la pièce à un moment donné pendant l'usinage.

V=2πωsr

Vitesse de rotation du roulement

La Vitesse de rotation du roulement est la Vitesse à laquelle le roulement tourne.

N=L1010660L10h

Vitesse absolue pour la masse de l'aube de frappe fluide par seconde

La Vitesse absolue pour la masse de l'aube de frappe de fluide par seconde peut être définie comme la Vitesse linéaire uniforme commune de divers composants d'un système physique, par rapport à l'espace absolu.

Vabsolute=(mfGγfAJet)+v

Vitesse de l'aube pour une masse de fluide donnée

La Vitesse de l'aube pour une masse de fluide donnée est définie comme la Vitesse à laquelle une masse de fluide passe devant l'aube.

v=Vabsolute-(mfGγfAJet)

Vitesse absolue pour la force exercée par le jet dans la direction du flux du jet entrant

La Vitesse absolue de la force exercée par le jet dans la direction du flux du jet entrant est définie comme le taux de changement de sa position par rapport à un cadre de référence et est une fonction du temps.

Vabsolute=(FGγfAJet(1+cos(θ)))+v

Vitesse de l'aube compte tenu de la force exercée par le jet

La Vitesse de l'aube compte tenu de la force exercée par le jet est définie comme la Vitesse à laquelle l'aube se déplace en réponse à l'impact du jet. Il représente le taux de variation de la position de l'aube et est déterminé par l'amplitude et la direction de la force appliquée par le jet.

v=-(FGγfAJet(1+cos(θ))-Vabsolute)

Comment trouver Formules ?

Voici quelques conseils pour obtenir de meilleurs résultats de recherche.
Soyez précis : Plus votre requête est spécifique, meilleurs sont vos résultats.
Utilisez plusieurs mots clés : Combinez plusieurs mots clés pour affiner les résultats.
Expérimentez avec des synonymes : Différents termes peuvent donner des résultats différents.
Recherche générique : Utilisez l'opérateur * (astérisque). NOTEZ que cet opérateur ne fonctionne qu'à la fin d'un mot. Exemple : Bio*, Zone*, etc.

Vous pouvez également parcourir les sous-catégories de pour vous concentrer sur les formules qui vous intéressent.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!