Rechercher Formules

Veuillez saisir au moins trois caractères pour commencer à rechercher des formules .

Sélectionner un filtre

Affinez vos résultats de recherche à l’aide de ces filtres.

50 Formules correspondantes trouvées !

Vitesse efficace

La Vitesse RMS est la mesure de la Vitesse des particules dans un gaz, définie comme la racine carrée de la Vitesse quadratique moyenne des molécules dans un gaz. ... La Vitesse quadratique moyenne prend en compte à la fois le poids moléculaire et la température, deux facteurs qui affectent directement l'énergie cinétique d'un matériau.

Vrms=3[R]TgMmolar

Vitesse moyenne des gaz

La Vitesse moyenne des gaz est un ensemble de particules gazeuses à une température donnée. Les Vitesses moyennes des gaz sont souvent exprimées sous forme de moyennes quadratiques moyennes.

Vavg=8[R]TgaπMmolar

Vitesse la plus probable

La Vitesse la plus probable est la Vitesse au sommet de la courbe de distribution de Maxwell-Boltzmann car le plus grand nombre de molécules ont cette Vitesse.

Vp=2[R]TgaMmolar

Vitesse de transmission de la puissance maximale par courroie

La formule de Vitesse de transmission de puissance maximale par courroie est définie comme la Vitesse de transmission de puissance maximale d'un système d'entraînement par courroie, ce qui est essentiel dans la conception et l'optimisation des systèmes d'entraînement par courroie pour une transmission de puissance efficace.

v=Pm3m

Vitesse de dérive donnée en section transversale

La formule de la Vitesse de dérive donnée par la section transversale est définie comme une mesure de la Vitesse moyenne des porteurs de charge dans un conducteur, ce qui est crucial pour comprendre le flux de courant électrique et est influencée par la section transversale du conducteur et la charge. densité des porteurs.

Vd=Ie-[Charge-e]A

Vitesse de dérive

La formule de Vitesse de dérive est définie comme une mesure de la Vitesse moyenne des électrons dans un conducteur, qui est influencée par le champ électrique et les propriétés du conducteur, fournissant ainsi un aperçu du comportement des électrons dans les circuits électriques.

Vd=E𝛕[Charge-e]2[Mass-e]

Vitesse du suiveur pour la came tangente du suiveur à rouleaux si le contact s'effectue avec des flancs droits

La formule de la Vitesse du suiveur pour une came tangente à galet suiveur si le contact se fait avec des flancs droits est définie comme une mesure de la Vitesse du suiveur dans un système de came-suiveur où le contact se fait avec des flancs droits, fournissant un aperçu de la cinématique du système et permettant la conception de systèmes mécaniques efficaces.

v=ω(r1+rroller)sin(θ)(cos(θ))2

Vitesse maximale du suiveur pour came tangente avec suiveur à rouleaux

La formule de Vitesse maximale du suiveur pour came tangente avec suiveur à rouleaux est définie comme la Vitesse maximale à laquelle le suiveur se déplace dans une came tangente avec un suiveur à rouleaux, ce qui est essentiel dans la conception et l'optimisation des systèmes de suiveur de came pour des performances mécaniques efficaces.

Vm=ω(r1+rr)sin(φ)cos(φ)2

Vitesse absolue du jet Pelton

La Vitesse absolue du jet Pelton est la Vitesse à laquelle l'eau sort de la buse et frappe les augets de la turbine Pelton. Cette Vitesse est cruciale car elle influence directement l'énergie cinétique transférée aux aubes de la turbine et est généralement déterminée par la hauteur et la pression de la source d'eau alimentant la turbine.

V1=Cv2[g]H

Vitesse du suiveur de la came tangente du suiveur à rouleaux pour le contact avec le nez

La formule de Vitesse du suiveur d'un suiveur à rouleaux tangentiel pour le contact avec le nez est définie comme la Vitesse du suiveur dans un système à came et suiveur, ce qui est un paramètre critique pour déterminer les performances et l'efficacité du système, en particulier lorsque le suiveur est en contact avec le nez de la came.

v=ωr(sin(θ1)+rsin(2θ1)2L2-r2(sin(θ1))2)

Vitesse pour un rayon de virage donné

La Vitesse pour un rayon de virage donné est une mesure de la Vitesse d'un objet lorsqu'il tourne sur une trajectoire circulaire, en fonction du rayon de virage, de l'accélération gravitationnelle et du facteur de charge.

V=R[g](n2-1)

Vitesse de pointe de l'impulseur compte tenu du diamètre moyen

La Vitesse de pointe de la roue étant donné le diamètre moyen calcule la Vitesse à la pointe de la roue en fonction de la Vitesse de rotation et du diamètre moyen de la roue. Cette formule dérive la Vitesse de pointe en utilisant le diamètre moyen et la Vitesse de rotation, en tenant compte de la configuration géométrique de la roue.

Ut=π(2Dm2-Dh2)0.5N60

Vitesse minimale de démarrage de la pompe centrifuge

La formule de Vitesse minimale pour le démarrage d'une pompe centrifuge est définie comme la Vitesse la plus basse requise pour qu'une pompe centrifuge commence à fonctionner efficacement, en tenant compte des paramètres de la pompe tels que l'efficacité du moteur, le débit d'eau et les diamètres de la roue, pour assurer un fonctionnement de pompage fluide et efficace.

Nmin=120ηmVw2D2π(D22-D12)(2π60)

Vitesse de pointe de la turbine en fonction du diamètre du moyeu

La Vitesse de pointe de la turbine étant donné le diamètre du moyeu, calcule la Vitesse à la pointe de la turbine en fonction de la Vitesse de rotation et des dimensions géométriques de la turbine. Cette formule dérive la Vitesse de pointe en prenant en compte le diamètre de la pointe de la turbine, le diamètre du moyeu et la Vitesse de rotation.

Ut=πN60Dt2+Dh22

Vitesse tangentielle donnée rapport de Vitesse

La formule du rapport de Vitesse donnée de la Vitesse tangentielle est définie comme le produit du rapport de Vitesse et de la racine carrée de deux fois l'accélération due à la gravité et la hauteur manométrique.

u2=Ku2[g]Hm

Vitesse d'écoulement en fonction du rapport d'écoulement

La formule du rapport de débit donné pour la Vitesse d'écoulement est définie comme la Vitesse d'écoulement du fluide à la sortie d'une pompe centrifuge, qui est un paramètre critique pour déterminer les performances et l'efficacité de la pompe, et est influencée par des facteurs tels que le rapport de débit, l'accélération gravitationnelle et la conception géométrique de la pompe.

Vf2=Kf2[g]Hm

Vitesse du fluide dans le tuyau pour la perte de charge à l'entrée du tuyau

La Vitesse du fluide dans le tuyau pour la perte de charge à l'entrée de la formule du tuyau est connue en tenant compte de la perte de charge à l'entrée du tuyau qui dépend de la forme de l'entrée.

v=hi2[g]0.5

Vitesse théorique à la section 2 dans le débitmètre à orifice

La formule de la Vitesse théorique à la section 2 du compteur à orifice est définie comme la Vitesse calculée de l'écoulement du fluide lorsqu'il traverse l'orifice étroit, déterminée à l'aide de l'équation de Bernoulli et du principe de conservation de l'énergie.

Vp2=2[g]hventuri+V12

Vitesse théorique à la section 1 dans le débitmètre à orifice

La formule de la Vitesse théorique à la section 1 du compteur à orifice est définie comme la Vitesse calculée de l'écoulement du fluide juste avant qu'il n'entre dans la plaque à orifice, déterminée en fonction des propriétés du fluide et de la différence de pression à travers l'orifice et est utilisée pour calculer le débit à travers le compteur.

V1=(Vp22)-(2[g]hventuri)

Vitesse réelle donnée Vitesse théorique à la section 2

La Vitesse réelle donnée par la formule de la Vitesse théorique de la section 2 est définie comme la Vitesse mesurée pour la valeur réelle.

v=CvVp2

Vitesse de coupe en utilisant le taux de consommation d'énergie pendant l'usinage

La Vitesse de coupe utilisant le taux de consommation d'énergie pendant l'usinage est définie comme la Vitesse à laquelle la pièce se déplace par rapport à l'outil (généralement mesurée en pieds par minute).

Vcut=PmFc

Vitesse réelle à la section 2 en fonction du coefficient de contraction

La Vitesse réelle à la section 2 donnée par la formule du coefficient de contraction est définie comme la Vitesse mesurée à travers un débitmètre à orifice.

v=Cv2[g]hventuri+(Vp2CcaoAi)2

Vitesse d'avance pour l'opération de tournage compte tenu du temps d'usinage

La Vitesse d'avance pour l'opération de tournage compte tenu du temps d'usinage est loin de déterminer l'avance maximale qui peut être donnée sur une pièce afin de terminer une opération de tournage dans un temps donné.

fr=Lcuttmω

Vitesse au point du profil aérodynamique pour un coefficient de pression et une Vitesse de flux libre donnés

La Vitesse au point sur le profil aérodynamique pour un coefficient de pression donné et la formule de Vitesse du flux libre est le produit de la Vitesse du flux libre en racine carrée de un moins le coefficient de pression dans un flux incompressible.

V=u2(1-Cp)

Vitesse radiale pour un flux source incompressible 2D

La formule de Vitesse radiale pour un flux source incompressible 2D indique que la Vitesse radiale en tout point du champ d'écoulement est directement proportionnelle à la force de la source et inversement proportionnelle à la distance radiale du point source, cela signifie que la Vitesse diminue à mesure que vous s'éloigner de la source, et son ampleur dépend de la force de la source. Cette formule est dérivée de la théorie des écoulements potentiels, qui est un modèle simplifié utilisé pour décrire le comportement des fluides non visqueux et incompressibles.

Vr=Λ2πr

Vitesse statique au point de transition

La formule de la Vitesse statique au point de transition est définie comme la Vitesse à laquelle l'écoulement passe du laminaire au turbulent, caractérisant le comportement de la couche limite sur une plaque plate en écoulement visqueux, fournissant des informations sur la dynamique des fluides et les mécanismes de transfert de chaleur.

ue=Retμeρext

Vitesse du son dans l'eau compte tenu du temps écoulé du signal ultrasonique envoyé par A

La Vitesse du son dans l'eau en fonction du temps écoulé du signal ultrasonique envoyé par une formule est définie comme la Vitesse du son dans l'eau circulant dans le canal.

C=(Lt1)-vp

Vitesse moyenne le long du chemin AB à une certaine hauteur au-dessus du lit

La formule de Vitesse moyenne le long du chemin AB à une certaine hauteur au-dessus du lit est définie comme la Vitesse moyenne de l'écoulement à travers la section transversale à une hauteur au-dessus du lit du canal.

vavg=((L2)cos(θ))((1t1)-(1t2))

Vitesse statique utilisant l'épaisseur de moment de la couche limite

La formule de la Vitesse statique utilisant l'épaisseur de la quantité de mouvement de la couche limite est définie comme une mesure de la Vitesse au bord de la couche limite dans une plaque plate, ce qui est essentiel pour comprendre les caractéristiques de l'écoulement visqueux et les forces de traînée qui en résultent.

ue=Reμeρeθt

Vitesse de l'onde sonore compte tenu du module de masse

La Vitesse de l'onde sonore, compte tenu du module de masse du support, donne un aperçu de la rapidité avec laquelle le son se propage à travers ce matériau. Comprendre cette relation est crucial dans les applications en acoustique, en science des matériaux et en ingénierie où la propagation du son et les propriétés mécaniques des matériaux sont des considérations importantes.

C=Kρa

Vitesse de l'onde sonore à l'aide du processus isotherme

La Vitesse de l'onde sonore à l'aide du processus isotherme donne un aperçu de la manière dont la température et les propriétés physiques des gaz affectent la Vitesse à laquelle le son se propage, permettant ainsi des calculs précis et des décisions de conception éclairées en acoustique, aérodynamique et diverses applications technologiques.

C=Rc

Vitesse de l'onde sonore à l'aide du processus adiabatique

La Vitesse de l'onde sonore utilisant le processus adiabatique dépend de l'indice adiabatique (rapport des chaleurs spécifiques), de la constante universelle du gaz, de la température absolue du gaz et de la masse molaire du gaz.

C=yRc

Vitesse de l'onde sonore compte tenu du nombre de Mach pour un écoulement de fluide compressible

La Vitesse de l'onde sonore, compte tenu du nombre de Mach pour l'écoulement d'un fluide compressible, indique la Vitesse à laquelle le son se propage dans le milieu par rapport à la Vitesse du son dans ce milieu. Cette relation est fondamentale en aérodynamique, en ingénierie aérospatiale et en acoustique, où le nombre de Mach caractérise le régime d'écoulement et influence le comportement des ondes de choc et la transmission du son.

C=VM

Vitesse moyenne de l'écoulement du fluide

La Vitesse moyenne de l'écoulement du fluide est définie comme la Vitesse moyenne du courant circulant dans le tuyau mesurée sur toute la longueur.

Vmean=(18μ)dp|drR2

Vitesse moyenne de l'écoulement donnée Vitesse maximale à l'axe de l'élément cylindrique

La formule de la Vitesse moyenne d'écoulement donnée par la Vitesse maximale à l'axe de l'élément cylindrique est définie comme la Vitesse moyenne du fluide s'écoulant à travers une section transversale donnée sur une période de temps spécifique.

Vmean=0.5Vmax

Vitesse maximale à l'axe de l'élément cylindrique étant donné la Vitesse moyenne de l'écoulement

La Vitesse maximale au niveau de l'axe de l'élément cylindrique, donnée par la formule de la Vitesse moyenne d'écoulement, est définie comme l'écoulement laminaire à travers un tuyau circulaire, le profil de Vitesse est parabolique et la Vitesse maximale au centre du tuyau est le double de la Vitesse moyenne.

Vmax=2Vmean

Vitesse moyenne de l'écoulement compte tenu de la chute de pression sur la longueur du tuyau

La Vitesse moyenne de l'écoulement compte tenu de la chute de pression sur la longueur du tuyau est définie comme la Vitesse moyenne du flux dans le tuyau.

Vmean=ΔP32μLpDpipe2

Vitesse finale en chute libre sous gravité compte tenu de la Vitesse initiale et du temps

La formule de la Vitesse finale en chute libre sous l'effet de la gravité, compte tenu de la Vitesse initiale et du temps, est définie comme la Vitesse qu'un objet atteint sous la seule influence de la gravité, en tenant compte de la Vitesse initiale et du temps de chute, fournissant un concept fondamental pour comprendre le mouvement de chute libre.

vf=u+[g]t

Vitesse finale en chute libre sous gravité compte tenu de la Vitesse et du déplacement initiaux

La Vitesse finale en chute libre sous l'effet de la gravité, étant donné la formule de la Vitesse initiale et du déplacement, est définie comme une mesure de la Vitesse qu'un objet atteint lorsqu'il tombe librement sous la seule influence de la gravité, en considérant la Vitesse initiale et le déplacement de l'objet par rapport à sa position initiale.

vf=u2+2[g]d

Vitesse moyenne de l'écoulement compte tenu de la perte de charge sur la longueur du tuyau

La Vitesse moyenne de l'écoulement compte tenu de la perte de charge sur la longueur du tuyau est définie comme la Vitesse moyenne du flux dans le tuyau.

Vmean=h32μLpγfDpipe2

Vitesse des vagues dans le milieu

La formule Wave Velocity in Medium est définie car elle indique la Vitesse de toute onde utilisée pour la transmission lorsqu'elle passe à travers un support spécifique.

V=V0RI

Vitesse des vagues dans le vide

La formule Wave Velocity in Vacuum est définie comme la Vitesse de l'onde qui se déplace dans le vide. Un vide est un espace dépourvu de matière. Le mot vient de l'adjectif latin "vacuus" pour "vacant" ou "vide".

V0=VRI

Vitesse moyenne de l'écoulement compte tenu du gradient de pression

La Vitesse moyenne d'écoulement compte tenu du gradient de pression est définie comme suit : La Vitesse d'écoulement moyenne d'un fluide dans un système hydraulique est déterminée par le gradient de pression, influençant le mouvement du fluide dans un espace confiné.

Vmean=(w212μ)dp|dr

Vitesse moyenne de l'écoulement compte tenu de la Vitesse maximale

La Vitesse moyenne d'écoulement étant donné la Vitesse maximale est définie comme la Vitesse moyenne d'écoulement du flux.

Vmean=(23)Vmax

Vitesse maximale donnée Vitesse moyenne de l'écoulement

La Vitesse maximale donnée à la Vitesse moyenne de l'écoulement est définie comme la Vitesse maximale au niveau de la ligne médiane du tuyau.

Vmax=1.5Vmean

Vitesse moyenne du débit compte tenu de la différence de pression

La Vitesse moyenne de l'écoulement compte tenu de la différence de pression est définie comme la Vitesse moyenne de l'écoulement peut être déterminée en mesurant la différence de pression entre deux points et en utilisant l'équation de Bernoulli pour les fluides incompressibles.

Vmean=ΔPw12μLp

Vitesse moyenne du débit compte tenu de la chute de pression

La Vitesse moyenne de l'écoulement compte tenu de la chute de pression est définie comme la Vitesse moyenne du flux à travers le tuyau dans l'écoulement.

Vmean=ΔPS(Dpipe2)12μLp

Vitesse d'écoulement de la section

La Vitesse d'écoulement de la section est définie comme la Vitesse du fluide dans le tuyau à travers une section particulière au niveau du flux en écoulement laminaire.

Vf=(VmeanRw)-0.5dp|dr(DR-R2)μ

Vitesse moyenne de l'écoulement compte tenu de la Vitesse de l'écoulement

La Vitesse moyenne d'écoulement étant donnée la Vitesse d'écoulement est définie comme la Vitesse moyenne du fluide dans le flux en écoulement laminaire.

Vf=(VmeanRw)-0.5dp|dr(wR-R2)μ

Vitesse d'écoulement donnée Pas de gradient de pression

La Vitesse d'écoulement donnée sans gradient de pression est définie comme la Vitesse du fluide dans le flux dans le canal sectionnel.

Vf=(VmeanR)

Comment trouver Formules ?

Voici quelques conseils pour obtenir de meilleurs résultats de recherche.
Soyez précis : Plus votre requête est spécifique, meilleurs sont vos résultats.
Utilisez plusieurs mots clés : Combinez plusieurs mots clés pour affiner les résultats.
Expérimentez avec des synonymes : Différents termes peuvent donner des résultats différents.
Recherche générique : Utilisez l'opérateur * (astérisque). NOTEZ que cet opérateur ne fonctionne qu'à la fin d'un mot. Exemple : Bio*, Zone*, etc.

Vous pouvez également parcourir les sous-catégories de pour vous concentrer sur les formules qui vous intéressent.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!