Rechercher Formules

Veuillez saisir au moins trois caractères pour commencer à rechercher des formules .

Sélectionner un filtre

Affinez vos résultats de recherche à l’aide de ces filtres.

50 Formules correspondantes trouvées !

Vitesse angulaire donnée Vitesse en RPM

La formule de Vitesse angulaire donnée en RPM est définie comme une mesure du taux de changement du déplacement angulaire par rapport au temps, décrivant le mouvement de rotation d'un objet, particulièrement utile dans le contexte de la cinétique du mouvement.

ω=2πNA60

Vitesse de la poulie de guidage

La formule de la Vitesse de la poulie de guidage est définie comme une mesure de la Vitesse de rotation de la poulie de guidage dans un système mécanique, ce qui est crucial pour déterminer le mouvement du système, en particulier dans le contexte de la cinétique du mouvement, où la Vitesse de la poulie de guidage affecte les performances et l'efficacité globales du système.

NP=NDdd1

Vitesse finale des corps A et B après collision inélastique

La formule de la Vitesse finale des corps A et B après une collision inélastique est définie comme la Vitesse de deux ou plusieurs objets après une collision et une fusion en un seul objet, où l'impulsion totale avant la collision est égale à l'impulsion totale après la collision.

v=m1u1+m2u2m1+m2

Vitesse de l'objet en mouvement circulaire

La formule Vitesse de l'objet en mouvement circulaire est définie comme la Vitesse à laquelle un objet se déplace le long d'une trajectoire circulaire, influencée par le rayon du cercle et la fréquence de rotation, fournissant un concept fondamental pour comprendre le mouvement circulaire et ses applications en physique et en ingénierie. .

V=2πrf

Vitesse du suiveur après le temps t pour le mouvement cycloïdal

La formule de la Vitesse du suiveur après le temps t pour le mouvement cycloïdal est définie comme la mesure de la Vitesse du suiveur dans un système à came et suiveur, qui subit un mouvement cycloïdal, décrivant le mouvement du suiveur lorsqu'il tourne et se déplace sur une trajectoire circulaire.

v=ωSθo(1-cos(2πθrotationθo))

Vitesse maximale du suiveur pendant la course sortante pour le mouvement cycloïdal

La formule de la Vitesse maximale du suiveur pendant la course extérieure pour un mouvement cycloïdal est définie comme la Vitesse la plus élevée atteinte par le suiveur pendant la phase de course extérieure du mouvement cycloïdal, qui est un concept fondamental dans les systèmes mécaniques et la cinématique, en particulier dans la conception et l'analyse des liaisons mécaniques et des systèmes à cames.

Vm=2ωSθo

Vitesse maximale du suiveur pendant la course de retour pour le mouvement cycloïdal

La formule de la Vitesse maximale du suiveur pendant la course de retour pour un mouvement cycloïdal est définie comme la Vitesse la plus élevée atteinte par le suiveur pendant sa course de retour dans un mouvement cycloïdal, qui est un concept fondamental dans les systèmes mécaniques et la cinématique, essentiel pour la conception et l'optimisation des composants mécaniques.

Vm=2ωSθR

Vitesse résultante pour deux composantes de Vitesse

La Vitesse résultante pour deux composantes de Vitesse est connue à partir de l'écoulement cinématique tout en considérant les composantes de Vitesse u et v dans la relation entre la fonction de flux et la fonction de potentiel de Vitesse.

V=(u2)+(v2)

Vitesse angulaire du vortex en utilisant la profondeur de la parabole

La Vitesse angulaire du vortex utilisant la profondeur de la parabole est définie à partir de l'équation de l'écoulement vortex forcé en tenant compte de la profondeur de la parabole formée à la surface libre de l'eau et du rayon du réservoir.

ω=Z29.81r12

Vitesse Freestream étant donné la puissance requise

La Vitesse Freestream étant donné la puissance requise fait référence à la Vitesse du fluide (tel que l'air ou l'eau) en amont d'un objet ou dans un champ d'écoulement non perturbé. Il s'agit d'un paramètre crucial utilisé pour caractériser les conditions d'écoulement affectant les performances aérodynamiques de l'objet.

V=PT

Vitesse d'écoulement en utilisant la formule de Manning

La Vitesse d'écoulement selon la formule de Manning est définie comme le débit d'eau lorsque l'on connaît au préalable le coefficient de rugosité du matériau du tuyau utilisé, la perte d'énergie qui lui est due et le rayon hydraulique.

Vf=CrH23S12nc

Vitesse pour un taux de virage donné

La Vitesse pour un taux de virage donné est une mesure de la Vitesse d'un avion pendant un virage, calculée en fonction du facteur de charge, de l'accélération gravitationnelle et du taux de virage.

V=[g]n2-1ω

Vitesse du corps en mouvement harmonique simple

La formule de la Vitesse du corps dans un mouvement harmonique simple est définie comme la Vitesse maximale d'un objet lorsqu'il oscille autour de sa position d'équilibre, fournissant une mesure de l'énergie cinétique de l'objet pendant son mouvement vibratoire.

V=A'ωcos(ωtsec)

Vitesse pour un rayon de manœuvre de traction donné

La Vitesse pour un rayon de manœuvre de traction donné d'un avion dépend du rayon de manœuvre et du facteur de charge de l'avion, cette formule fournit une approximation simplifiée de la Vitesse nécessaire pour maintenir le taux de descente souhaité pendant la manœuvre de traction.

Vpull-up=R[g](n-1)

Vitesse pour un taux de manœuvre de traction donné

La Vitesse pour un taux de manœuvre de traction donné est la Vitesse requise pour qu'un avion maintienne un taux de montée spécifique pendant une manœuvre de traction. Cette formule calcule la Vitesse en fonction de l'accélération gravitationnelle, du facteur de charge de traction et du taux de virage. Comprendre et appliquer cette formule est essentiel pour les pilotes et les ingénieurs afin de garantir des manœuvres de traction sûres et efficaces.

Vpull-up=[g]npull-up-1ω

Vitesse maximale du corps en mouvement harmonique simple

La formule de la Vitesse maximale du corps dans un mouvement harmonique simple est définie comme la Vitesse la plus élevée atteinte par un objet dans un mouvement harmonique simple, qui est un type de mouvement périodique qui se produit lorsque la force nette sur un objet est proportionnelle à son déplacement par rapport à sa position d'équilibre.

Vmax=ωA'

Vitesse de rotation compte tenu de la puissance absorbée et du couple dans le palier lisse

La Vitesse de rotation prenant en compte la puissance absorbée et le couple dans le roulement à billes est déterminée par la relation entre la puissance absorbée par le roulement et le couple qu'il subit.

N=P2πτ

Vitesse de rotation pour le couple requis dans le palier Foot-Step

La Vitesse de rotation pour le couple requis dans la formule de roulement à pas de pied est connue tout en considérant la viscosité de l'huile ou du fluide, le couple requis pour surmonter la résistance visqueuse, l'épaisseur et le rayon de l'arbre.

N=τtμπ2(Ds2)4

Vitesse de pointe de l'impulseur compte tenu du diamètre moyen

La Vitesse de pointe de la roue étant donné le diamètre moyen calcule la Vitesse à la pointe de la roue en fonction de la Vitesse de rotation et du diamètre moyen de la roue. Cette formule dérive la Vitesse de pointe en utilisant le diamètre moyen et la Vitesse de rotation, en tenant compte de la configuration géométrique de la roue.

Ut=π(2Dm2-Dh2)0.5N60

Vitesse minimale de démarrage de la pompe centrifuge

La formule de Vitesse minimale pour le démarrage d'une pompe centrifuge est définie comme la Vitesse la plus basse requise pour qu'une pompe centrifuge commence à fonctionner efficacement, en tenant compte des paramètres de la pompe tels que l'efficacité du moteur, le débit d'eau et les diamètres de la roue, pour assurer un fonctionnement de pompage fluide et efficace.

Nmin=120ηmVw2D2π(D22-D12)(2π60)

Vitesse de pointe de la turbine en fonction du diamètre du moyeu

La Vitesse de pointe de la turbine étant donné le diamètre du moyeu, calcule la Vitesse à la pointe de la turbine en fonction de la Vitesse de rotation et des dimensions géométriques de la turbine. Cette formule dérive la Vitesse de pointe en prenant en compte le diamètre de la pointe de la turbine, le diamètre du moyeu et la Vitesse de rotation.

Ut=πN60Dt2+Dh22

Vitesse tangentielle donnée rapport de Vitesse

La formule du rapport de Vitesse donnée de la Vitesse tangentielle est définie comme le produit du rapport de Vitesse et de la racine carrée de deux fois l'accélération due à la gravité et la hauteur manométrique.

u2=Ku2[g]Hm

Vitesse d'écoulement en fonction du rapport d'écoulement

La formule du rapport de débit donné pour la Vitesse d'écoulement est définie comme la Vitesse d'écoulement du fluide à la sortie d'une pompe centrifuge, qui est un paramètre critique pour déterminer les performances et l'efficacité de la pompe, et est influencée par des facteurs tels que le rapport de débit, l'accélération gravitationnelle et la conception géométrique de la pompe.

Vf2=Kf2[g]Hm

Vitesse du fluide dans le tuyau pour la perte de charge à l'entrée du tuyau

La Vitesse du fluide dans le tuyau pour la perte de charge à l'entrée de la formule du tuyau est connue en tenant compte de la perte de charge à l'entrée du tuyau qui dépend de la forme de l'entrée.

v=hi2[g]0.5

Vitesse théorique à la section 2 dans le débitmètre à orifice

La formule de la Vitesse théorique à la section 2 du compteur à orifice est définie comme la Vitesse calculée de l'écoulement du fluide lorsqu'il traverse l'orifice étroit, déterminée à l'aide de l'équation de Bernoulli et du principe de conservation de l'énergie.

Vp2=2[g]hventuri+V12

Vitesse théorique à la section 1 dans le débitmètre à orifice

La formule de la Vitesse théorique à la section 1 du compteur à orifice est définie comme la Vitesse calculée de l'écoulement du fluide juste avant qu'il n'entre dans la plaque à orifice, déterminée en fonction des propriétés du fluide et de la différence de pression à travers l'orifice et est utilisée pour calculer le débit à travers le compteur.

V1=(Vp22)-(2[g]hventuri)

Vitesse réelle donnée Vitesse théorique à la section 2

La Vitesse réelle donnée par la formule de la Vitesse théorique de la section 2 est définie comme la Vitesse mesurée pour la valeur réelle.

v=CvVp2

Vitesse de coupe en utilisant le taux de consommation d'énergie pendant l'usinage

La Vitesse de coupe utilisant le taux de consommation d'énergie pendant l'usinage est définie comme la Vitesse à laquelle la pièce se déplace par rapport à l'outil (généralement mesurée en pieds par minute).

Vcut=PmFc

Vitesse réelle à la section 2 en fonction du coefficient de contraction

La Vitesse réelle à la section 2 donnée par la formule du coefficient de contraction est définie comme la Vitesse mesurée à travers un débitmètre à orifice.

v=Cv2[g]hventuri+(Vp2CcaoAi)2

Vitesse d'avance pour l'opération de tournage compte tenu du temps d'usinage

La Vitesse d'avance pour l'opération de tournage compte tenu du temps d'usinage est loin de déterminer l'avance maximale qui peut être donnée sur une pièce afin de terminer une opération de tournage dans un temps donné.

fr=Lcuttmω

Vitesse au point du profil aérodynamique pour un coefficient de pression et une Vitesse de flux libre donnés

La Vitesse au point sur le profil aérodynamique pour un coefficient de pression donné et la formule de Vitesse du flux libre est le produit de la Vitesse du flux libre en racine carrée de un moins le coefficient de pression dans un flux incompressible.

V=u2(1-Cp)

Vitesse radiale pour un flux source incompressible 2D

La formule de Vitesse radiale pour un flux source incompressible 2D indique que la Vitesse radiale en tout point du champ d'écoulement est directement proportionnelle à la force de la source et inversement proportionnelle à la distance radiale du point source, cela signifie que la Vitesse diminue à mesure que vous s'éloigner de la source, et son ampleur dépend de la force de la source. Cette formule est dérivée de la théorie des écoulements potentiels, qui est un modèle simplifié utilisé pour décrire le comportement des fluides non visqueux et incompressibles.

Vr=Λ2πr

Vitesse statique au point de transition

La formule de la Vitesse statique au point de transition est définie comme la Vitesse à laquelle l'écoulement passe du laminaire au turbulent, caractérisant le comportement de la couche limite sur une plaque plate en écoulement visqueux, fournissant des informations sur la dynamique des fluides et les mécanismes de transfert de chaleur.

ue=Retμeρext

Vitesse du son dans l'eau compte tenu du temps écoulé du signal ultrasonique envoyé par A

La Vitesse du son dans l'eau en fonction du temps écoulé du signal ultrasonique envoyé par une formule est définie comme la Vitesse du son dans l'eau circulant dans le canal.

C=(Lt1)-vp

Vitesse moyenne le long du chemin AB à une certaine hauteur au-dessus du lit

La formule de Vitesse moyenne le long du chemin AB à une certaine hauteur au-dessus du lit est définie comme la Vitesse moyenne de l'écoulement à travers la section transversale à une hauteur au-dessus du lit du canal.

vavg=((L2)cos(θ))((1t1)-(1t2))

Vitesse statique utilisant l'épaisseur de moment de la couche limite

La formule de la Vitesse statique utilisant l'épaisseur de la quantité de mouvement de la couche limite est définie comme une mesure de la Vitesse au bord de la couche limite dans une plaque plate, ce qui est essentiel pour comprendre les caractéristiques de l'écoulement visqueux et les forces de traînée qui en résultent.

ue=Reμeρeθt

Vitesse à distance radiale r1 donnée Couple exercé sur le fluide

La Vitesse à la distance radiale r1 donnée du couple exercé sur le fluide est définie comme le couple exercé sur le fluide, entraînant un mouvement de rotation ou un écoulement.

V1=qflowr2V2-(τΔ)r1qflow

Vitesse à distance radiale r2 donnée Couple exercé sur le fluide

La Vitesse à la distance radiale r2 donnée du couple exercé sur le fluide est définie comme le couple influence la Vitesse angulaire, il conduit à un changement correspondant de la Vitesse du fluide, résultant en une valeur spécifique à la distance radiale donnée.

V2=qflowr1V1+(τΔ)qflowr2

Vitesse moyenne de l'écoulement compte tenu de la perte de charge due à la résistance au frottement

La Vitesse moyenne de l'écoulement compte tenu de la perte de charge due à la résistance au frottement est définie comme la Vitesse moyenne du flux.

Vmean=h2[g]DpipefLp

Vitesse finale lorsque la particule est projetée vers le haut en utilisant la Vitesse initiale et le temps

La formule de la Vitesse finale lorsque la particule est projetée vers le haut à l'aide de la Vitesse initiale et du temps est définie comme une mesure de la Vitesse d'un objet projeté vers le haut, en tenant compte de la Vitesse initiale et du temps, ce qui aide à comprendre le mouvement de l'objet sous l'influence de la gravité.

vf=-u+[g]t

Vitesse des vagues dans le milieu

La formule Wave Velocity in Medium est définie car elle indique la Vitesse de toute onde utilisée pour la transmission lorsqu'elle passe à travers un support spécifique.

V=V0RI

Vitesse des vagues dans le vide

La formule Wave Velocity in Vacuum est définie comme la Vitesse de l'onde qui se déplace dans le vide. Un vide est un espace dépourvu de matière. Le mot vient de l'adjectif latin "vacuus" pour "vacant" ou "vide".

V0=VRI

Vitesse moyenne de l'écoulement en fonction de la Vitesse d'écoulement sans gradient de pression

La Vitesse moyenne d'écoulement étant donné la Vitesse d'écoulement sans gradient de pression est définie comme la Vitesse moyenne du fluide dans le tuyau.

Vmean=DR

Vitesse moyenne de l'écoulement compte tenu de la contrainte de cisaillement

La Vitesse moyenne d'écoulement compte tenu de la contrainte de cisaillement est définie comme la Vitesse moyenne s'écoulant à travers le tuyau dans le cours d'eau.

Vmean=(𝜏+dp|dr(0.5D-R))(Dμ)

Vitesse moyenne d'écoulement dans la section

La formule de la Vitesse moyenne d'écoulement dans la section est définie comme la Vitesse moyenne dans le canal avec une pente de lit inclinée à un angle particulier par rapport à l'horizontale.

Vmean=γfdh|dx(dsectionR-R2)μ

Vitesse moyenne selon la loi de Darcy

La Vitesse moyenne utilisant la formule de la loi de Darcy est définie comme la Vitesse moyenne d'un fluide ou d'un objet sur une période de temps ou une distance donnée qui est directement proportionnelle à la fois au gradient hydraulique et au coefficient de perméabilité.

Vmean=kH

Vitesse critique compte tenu de l'énergie totale au point critique

La formule de Vitesse critique étant donné l’énergie totale au point critique est définie comme la Vitesse à laquelle le flux passe du statut sous-critique à supercritique, en tenant compte de l’énergie totale au point critique.

Vc=2g(Ec-(dc+hf))

Vitesse critique compte tenu de la perte de charge

La formule de Vitesse critique étant donné la perte de charge est définie comme la mesure de la Vitesse à laquelle le flux passe d'un état sous-critique à un état supercritique. Dans un écoulement en canal ouvert, la Vitesse critique se produit lorsque l'énergie cinétique de l'écoulement est égale à l'énergie potentielle, étant donné que nous disposons de l'information préalable sur la perte de charge.

Vc=(hf2g0.1)12

Vitesse de coupe de référence donnée Taux d'augmentation de la largeur d'usure

La Vitesse de coupe de référence donnée par le taux d'augmentation de la largeur de l'usure dans l'usinage des métaux fait référence à la Vitesse linéaire souhaitée du bord de l'outil de coupe par rapport à la surface de la pièce, définie en tenant compte de la Vitesse à laquelle la largeur de l'usure atterrit sur la coupe. l'outil augmente pendant l'usinage.

Vref=V(VrTrefw)n

Vitesse de coupe en fonction du taux d'augmentation de la largeur d'usure

La Vitesse de coupe, compte tenu du taux d'augmentation de la largeur de la zone d'usure, appelée Vitesse de coupe, est un paramètre critique qui influence directement l'usure de l'outil et les performances d'usinage. Le taux d'augmentation de la largeur de la zone d'usure, quant à lui, décrit la rapidité avec laquelle la largeur de la surface usée sur l'outil de coupe augmente au fil du temps au cours du processus d'usinage.

V=Vref(VrTrefw)n

Comment trouver Formules ?

Voici quelques conseils pour obtenir de meilleurs résultats de recherche.
Soyez précis : Plus votre requête est spécifique, meilleurs sont vos résultats.
Utilisez plusieurs mots clés : Combinez plusieurs mots clés pour affiner les résultats.
Expérimentez avec des synonymes : Différents termes peuvent donner des résultats différents.
Recherche générique : Utilisez l'opérateur * (astérisque). NOTEZ que cet opérateur ne fonctionne qu'à la fin d'un mot. Exemple : Bio*, Zone*, etc.

Vous pouvez également parcourir les sous-catégories de pour vous concentrer sur les formules qui vous intéressent.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!