Rechercher Formules

Veuillez saisir au moins trois caractères pour commencer à rechercher des formules .

Sélectionner un filtre

Affinez vos résultats de recherche à l’aide de ces filtres.

50 Formules correspondantes trouvées !

Vitesse angulaire donnée Vitesse en RPM

La formule de Vitesse angulaire donnée en RPM est définie comme une mesure du taux de changement du déplacement angulaire par rapport au temps, décrivant le mouvement de rotation d'un objet, particulièrement utile dans le contexte de la cinétique du mouvement.

ω=2πNA60

Vitesse de la poulie de guidage

La formule de la Vitesse de la poulie de guidage est définie comme une mesure de la Vitesse de rotation de la poulie de guidage dans un système mécanique, ce qui est crucial pour déterminer le mouvement du système, en particulier dans le contexte de la cinétique du mouvement, où la Vitesse de la poulie de guidage affecte les performances et l'efficacité globales du système.

NP=NDdd1

Vitesse finale des corps A et B après collision inélastique

La formule de la Vitesse finale des corps A et B après une collision inélastique est définie comme la Vitesse de deux ou plusieurs objets après une collision et une fusion en un seul objet, où l'impulsion totale avant la collision est égale à l'impulsion totale après la collision.

v=m1u1+m2u2m1+m2

Vitesse de l'objet en mouvement circulaire

La formule Vitesse de l'objet en mouvement circulaire est définie comme la Vitesse à laquelle un objet se déplace le long d'une trajectoire circulaire, influencée par le rayon du cercle et la fréquence de rotation, fournissant un concept fondamental pour comprendre le mouvement circulaire et ses applications en physique et en ingénierie. .

V=2πrf

Vitesse de rotation en tr/min

La formule de la Vitesse de rotation en RPM est définie comme une mesure de la Vitesse de rotation d'un arbre ou d'un autre élément rotatif, généralement dans un système mécanique, ce qui est crucial pour déterminer les performances et l'efficacité du système.

Nequillibrium=602πtan(φ)mball

Vitesse de la particule alpha en utilisant la distance de l'approche la plus proche

La Vitesse de la particule alpha utilisant la distance d'approche la plus proche est la Vitesse à laquelle une particule alpha se déplace dans un noyau atomique.

v=[Coulomb]Z([Charge-e]2)[Atomic-m]r0

Vitesse angulaire moyenne d’équilibre

La formule de la Vitesse angulaire moyenne d'équilibre est définie comme une mesure de la Vitesse angulaire moyenne d'un arbre rotatif dans un système mécanique, généralement utilisée dans les mécanismes de régulation pour réguler la Vitesse d'un moteur ou d'autres machines.

ωequillibrium=ω1+ω22

Vitesse d'équilibre moyenne en tr/min

La formule de la Vitesse d'équilibre moyenne en RPM est définie comme la Vitesse de rotation moyenne d'un régulateur à laquelle la force centrifuge des billes équilibre exactement le poids des billes, ce qui entraîne un fonctionnement stable du moteur.

Nequillibrium=N1+N22

Vitesse longitudinale de l'extrémité libre pour les vibrations longitudinales

La formule de Vitesse longitudinale de l'extrémité libre pour les vibrations longitudinales est définie comme une mesure de la Vitesse de l'extrémité libre d'un objet subissant une vibration longitudinale, qui est influencée par l'énergie cinétique et la masse de l'objet contraint, donnant un aperçu de l'effet de l'inertie dans les vibrations longitudinales et transversales.

Vlongitudinal=6KEmc

Vitesse du petit élément pour les vibrations transversales

La formule de la Vitesse d'un petit élément pour les vibrations transversales est définie comme une mesure de la Vitesse d'un petit élément dans une vibration transversale, qui est affectée par l'inertie de la contrainte, et est utilisée pour analyser le mouvement des particules dans les vibrations longitudinales et transversales.

vs=(3lx2-x3)Vtraverse2l3

Vitesse transversale de l'extrémité libre

La formule de la Vitesse transversale de l'extrémité libre est définie comme une mesure de la Vitesse de l'extrémité libre d'un système vibrant, influencée par l'effet de l'inertie de la contrainte dans les vibrations longitudinales et transversales, donnant un aperçu du comportement dynamique du système sous diverses contraintes.

Vtraverse=280KE33mc

Vitesse de la particule 1 compte tenu de l'énergie cinétique

La Vitesse de la particule 1 donnée formule d'énergie cinétique est une méthode de calcul de la Vitesse d'une particule lorsque nous connaissons la Vitesse des autres particules et l'énergie cinétique totale du système. Comme l'énergie cinétique totale est la somme de l'énergie cinétique individuelle des deux particules, il nous reste donc une seule variable, et en résolvant l'équation, nous obtenons la Vitesse requise.

v1=(2KE)-(m2v22)m1

Vitesse de la particule 2 compte tenu de l'énergie cinétique

La Vitesse de la particule 2 étant donné la formule d'énergie cinétique est une méthode de calcul de la Vitesse d'une particule lorsque nous connaissons la Vitesse d'une autre particule et l'énergie cinétique totale du système. L'énergie cinétique est le travail nécessaire pour accélérer un corps d'une masse donnée à partir du repos à sa Vitesse annoncée. Comme l'énergie cinétique, KE, est une somme de l'énergie cinétique pour chaque masse, nous nous sommes donc retrouvés avec une seule variable, et en résolvant l'équation, nous obtenons la Vitesse requise.

v2=(2KE)-(m1v12)m2

Vitesse de la particule 1

La formule de la Vitesse de la particule 1 est définie pour relier la Vitesse à la fréquence de rotation et au rayon. La Vitesse linéaire est le rayon multiplié par la Vitesse angulaire et en outre la relation entre la Vitesse angulaire et la fréquence (Vitesse angulaire = 2 * pi * fréquence). Donc, d'après ces équations, la Vitesse est de 2 * pi fois le produit du rayon et de la fréquence de rotation.

vp1=2πR1νrot

Vitesse de la particule 2

La formule Velocity of Particle 2 est définie pour relier la Vitesse à la fréquence de rotation et au rayon. La Vitesse linéaire est le rayon multiplié par la Vitesse angulaire et en outre la relation de la Vitesse angulaire avec la fréquence (Vitesse angulaire = 2*pi* fréquence). Ainsi, par ces équations, la Vitesse est 2 * pi fois le produit du rayon et de la fréquence de rotation.

v2=2πR2νrot

Vitesse résultante pour deux composantes de Vitesse

La Vitesse résultante pour deux composantes de Vitesse est connue à partir de l'écoulement cinématique tout en considérant les composantes de Vitesse u et v dans la relation entre la fonction de flux et la fonction de potentiel de Vitesse.

V=(u2)+(v2)

Vitesse angulaire du vortex en utilisant la profondeur de la parabole

La Vitesse angulaire du vortex utilisant la profondeur de la parabole est définie à partir de l'équation de l'écoulement vortex forcé en tenant compte de la profondeur de la parabole formée à la surface libre de l'eau et du rayon du réservoir.

ω=Z29.81r12

Vitesse Freestream étant donné la puissance requise

La Vitesse Freestream étant donné la puissance requise fait référence à la Vitesse du fluide (tel que l'air ou l'eau) en amont d'un objet ou dans un champ d'écoulement non perturbé. Il s'agit d'un paramètre crucial utilisé pour caractériser les conditions d'écoulement affectant les performances aérodynamiques de l'objet.

V=PT

Vitesse d'écoulement en utilisant la formule de Manning

La Vitesse d'écoulement selon la formule de Manning est définie comme le débit d'eau lorsque l'on connaît au préalable le coefficient de rugosité du matériau du tuyau utilisé, la perte d'énergie qui lui est due et le rayon hydraulique.

Vf=CrH23S12nc

Vitesse pour un rayon de virage donné

La Vitesse pour un rayon de virage donné est une mesure de la Vitesse d'un objet lorsqu'il tourne sur une trajectoire circulaire, en fonction du rayon de virage, de l'accélération gravitationnelle et du facteur de charge.

V=R[g](n2-1)

Vitesse à la section 1-1 pour un élargissement soudain

La Vitesse à la section 1-1 pour la formule d'agrandissement soudain est connue en considérant la Vitesse d'écoulement à la section 2-2 après l'élargissement, et la perte de charge due au frottement pour un liquide s'écoulant à travers le tuyau.

V1'=V2'+he2[g]

Vitesse à la section 2-2 pour un élargissement soudain

La Vitesse à la section 2-2 pour la formule d'agrandissement soudain est connue en considérant la Vitesse d'écoulement à la section 1-1 avant l'élargissement, et la perte de charge due au frottement pour un liquide s'écoulant à travers le tuyau.

V2'=V1'-he2[g]

Vitesse à la section 2-2 pour contraction soudaine

La Vitesse à la section 2-2 pour la formule de contraction soudaine est connue en considérant la perte de charge due à une contraction soudaine et le coefficient de contraction à cc.

V2'=hc2[g](1Cc)-1

Vitesse de coupe résultante

La Vitesse de coupe résultante est la Vitesse résultante de la Vitesse de l'outil primaire et de la Vitesse d'avance simultanées, donnée à l'outil pendant l'usinage. Dans des conditions idéales, il est considéré comme identique à la Vitesse de coupe.

Vr=vccos((η))

Vitesse Freestream pour le coefficient de portance dans un cylindre rotatif avec circulation

La Vitesse Freestream pour le coefficient de portance dans un cylindre rotatif avec formule de circulation est connue en tenant compte du rapport de circulation sur le rayon du cylindre et du coefficient de portance.

V=ΓcRC'

Vitesse des particules dans la boîte 3D

La Vitesse des particules dans la formule de la boîte 3D est définie comme un rapport de deux fois la longueur de la boîte rectangulaire et le temps entre la collision.

u3D=2Lt

Vitesse de la molécule de gaz à force donnée

La Vitesse de la molécule de gaz donnée par la formule de force est définie comme la racine carrée du produit de la longueur de la boîte rectangulaire et de la force par masse de la particule.

uF=FLm

Vitesse de la molécule de gaz en 1D à pression donnée

La Vitesse de la molécule de gaz dans la formule de pression donnée 1D est définie comme sous la racine du rapport de la pression du gaz multipliée par le volume avec la masse de la particule.

up=PgasVboxm

Vitesse quadratique moyenne de la molécule de gaz compte tenu de la pression et du volume de gaz

La Vitesse quadratique moyenne de la molécule de gaz étant donné la pression et le volume de formule de gaz est définie comme la racine carrée du rapport de trois fois la pression et le volume du gaz à la masse de chaque molécule de gaz.

CRMS=3PgasVNmoleculesm

Vitesse du corps donné son élan

La formule de la Vitesse d'un corps donné est définie comme une mesure de la Vitesse d'un objet dans une direction spécifique, calculée en divisant l'élan de l'objet par sa masse, fournissant un concept fondamental pour comprendre le mouvement d'un objet et sa relation avec la force.

v=pmo

Vitesse du projectile du cône de Mach dans un écoulement de fluide compressible

La Vitesse du projectile du cône de Mach dans un écoulement de fluide compressible décrit la Vitesse à laquelle le projectile se déplace lorsqu'il atteint ou dépasse la Vitesse du son dans le milieu environnant. Comprendre cette Vitesse est crucial dans les études aérodynamiques et balistiques, car elle indique l’apparition des ondes de choc et les défis aérodynamiques associés au vol supersonique et hypersonique.

V=Csin(μ)

Vitesse de l'onde sonore compte tenu de l'angle de Mach dans un écoulement de fluide compressible

La Vitesse de l'onde sonore, en tenant compte de l'angle de Mach dans un écoulement de fluide compressible, est importante pour comprendre comment le son se propage dans un milieu lorsque la Vitesse du fluide approche ou dépasse la Vitesse du son. Cette relation permet de prédire le comportement des ondes de choc et la transmission du son dans divers environnements, éléments essentiels en ingénierie aérospatiale, en acoustique et dans l'étude de la dynamique des fluides à grande Vitesse.

C=Vsin(μ)

Vitesse de coupe à l'aide de la durée de vie et de l'interception de Taylor

La Vitesse de coupe utilisant la durée de vie et l'interception de l'outil de Taylor est une méthode pour trouver la Vitesse de coupe maximale avec laquelle la pièce peut être usinée lorsque l'intervalle de temps d'affûtage de l'outil est fixé.

V'cut=XTvx

Vitesse proportionnelle donnée à la Vitesse lors d'un fonctionnement partiellement complet

La Vitesse proportionnelle donnée La Vitesse lors du fonctionnement partiellement plein est définie comme le rapport entre la Vitesse du fluide dans un tuyau partiellement rempli et la Vitesse lorsque le tuyau est entièrement rempli.

Pv=VsV

Vitesse pendant le fonctionnement à pleine Vitesse étant donné la Vitesse proportionnelle

La Vitesse pendant le fonctionnement plein donnée La Vitesse proportionnelle est définie comme la Vitesse d'écoulement du fluide dans un tuyau lorsqu'il est complètement rempli, influencée par la pente et la rugosité du tuyau.

V=VsPv

Vitesse proportionnelle compte tenu du coefficient de rugosité

La Vitesse proportionnelle compte tenu du coefficient de rugosité calcule la Vitesse proportionnelle lorsque nous disposons d'informations préalables sur les autres paramètres utilisés.

Pv=(Nnp)(rpfrpf)23

Vitesse de surface de la roue compte tenu du nombre de copeaux produits par temps

La Vitesse de surface de la meule étant donné le nombre de copeaux produits par temps est définie comme la Vitesse à laquelle le bord extérieur de la meule se déplace par rapport à la surface de la pièce, influençant la formation de copeaux et le taux d'enlèvement de matière pendant les opérations de meulage.

vT=NcApcg

Vitesse de surface de la meule donnée constante pour la meule

La Vitesse de surface de la meule, donnée constante pour la meule, est définie comme la Vitesse à laquelle le bord extérieur de la meule se déplace pendant le fonctionnement, garantissant des performances de coupe et une finition de surface constantes, quels que soient d'autres facteurs tels que le diamètre de la meule ou la Vitesse de la machine.

VT=KVwfinacmax2

Vitesse de surface de la pièce donnée constante pour la meule

La Vitesse de surface de la pièce, donnée constante pour la meule, est définie comme la Vitesse à laquelle un point de sa surface dépasse un point de référence fixe par unité de temps.

vw=(acMax2)VtKgfi

Vitesse de coupe pour un temps de production minimum

La Vitesse de coupe pour le temps de production minimum est une méthode pour déterminer la Vitesse de coupe requise pour opérer sur une pièce à usiner de telle sorte que le temps de production pour un lot donné soit minimum.

Vp=Vref((nmptLref(1-nmpt)tct)nmpt)

Vitesse de coupe de référence en utilisant le temps de production minimum

La Vitesse de coupe de référence utilisant le temps de production minimum est une méthode pour déterminer la Vitesse de coupe optimale requise pour une taille de lot donnée dans une condition d'usinage de référence pour fabriquer de sorte que le temps de production total soit minimum.

Vref=Vp(nmptLref(1-nmpt)tct)nmpt

Vitesse de coupe pour un temps de production minimum compte tenu du coût de changement d'outil

La Vitesse de coupe pour un temps de production minimum compte tenu du coût de changement d'outil est une méthode permettant de déterminer la Vitesse de coupe nécessaire pour opérer sur une pièce de sorte que le temps de production pour un lot donné soit minimum.

Vp=Vref((nmptMminLref(1-nmpt)Cct)nmpt)

Vitesse moyenne du gaz compte tenu de la pression et de la densité en 2D

La Vitesse moyenne du gaz étant donné la pression et la densité en 2D est la moyenne arithmétique des Vitesses des différentes molécules d'un gaz à une température donnée en 2 dimensions.

vavg_P_D=πPgas2ρgas

Vitesse moyenne du gaz étant donné la Vitesse quadratique moyenne en 2D

La Vitesse moyenne du gaz donnée Vitesse quadratique moyenne en 2D est la moyenne arithmétique des Vitesses de différentes molécules d'un gaz à une température donnée en 2 dimensions.

vavg_RMS=(0.8862CRMS_speed)

Vitesse moyenne du gaz compte tenu de la pression et du volume en 2D

La Vitesse moyenne du gaz à pression et volume donnés en 2D est la moyenne arithmétique des Vitesses de différentes molécules d'un gaz à une température donnée en 2 dimensions.

vavg_P_V=πPgasV2Mmolar

Vitesse moyenne du gaz à température donnée en 2D

La Vitesse moyenne du gaz à température donnée en 2D est la moyenne arithmétique des Vitesses de différentes molécules d'un gaz à une température donnée en 2 dimensions.

vavg_T=π[R]Tg2Mmolar

Vitesse quadratique moyenne de la molécule de gaz compte tenu de la pression et du volume de gaz en 2D

La Vitesse quadratique moyenne de la molécule de gaz étant donné la pression et le volume de gaz dans la formule 2D est définie comme le carré entier de la moyenne quadratique de la molécule de gaz en 2D.

CRMS_2D=2PgasVNmoleculesm

Vitesse la plus probable du gaz compte tenu de la pression et de la densité en 2D

La Vitesse la plus probable du gaz compte tenu de la pression et de la densité dans la formule 2D est définie comme le rapport de la racine carrée de la pression à la densité du gaz respectif.

CP_D=Pgasρgas

Vitesse la plus probable du gaz compte tenu de la pression et du volume en 2D

La Vitesse la plus probable du gaz étant donné la pression et le volume dans la formule 2D est définie comme le rapport de la racine carrée de la pression et du volume à la masse molaire du gaz particulier.

CP_V=PgasVMmolar

Vitesse absolue pour la masse de la plaque de frappe fluide

La Vitesse absolue de la masse de la plaque de frappe de fluide peut être définie comme la Vitesse linéaire uniforme commune de divers composants d'un système physique, par rapport à l'espace absolu.

Vabsolute=(mfGγfAJet)+v

Comment trouver Formules ?

Voici quelques conseils pour obtenir de meilleurs résultats de recherche.
Soyez précis : Plus votre requête est spécifique, meilleurs sont vos résultats.
Utilisez plusieurs mots clés : Combinez plusieurs mots clés pour affiner les résultats.
Expérimentez avec des synonymes : Différents termes peuvent donner des résultats différents.
Recherche générique : Utilisez l'opérateur * (astérisque). NOTEZ que cet opérateur ne fonctionne qu'à la fin d'un mot. Exemple : Bio*, Zone*, etc.

Vous pouvez également parcourir les sous-catégories de pour vous concentrer sur les formules qui vous intéressent.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!