Rechercher Formules

Veuillez saisir au moins trois caractères pour commencer à rechercher des formules .

Sélectionner un filtre

Affinez vos résultats de recherche à l’aide de ces filtres.

50 Formules correspondantes trouvées !

Vitesse du suiveur après le temps t pour le mouvement cycloïdal

La formule de la Vitesse du suiveur après le temps t pour le mouvement cycloïdal est définie comme la mesure de la Vitesse du suiveur dans un système à came et suiveur, qui subit un mouvement cycloïdal, décrivant le mouvement du suiveur lorsqu'il tourne et se déplace sur une trajectoire circulaire.

v=ωSθo(1-cos(2πθrotationθo))

Vitesse maximale du suiveur pendant la course sortante pour le mouvement cycloïdal

La formule de la Vitesse maximale du suiveur pendant la course extérieure pour un mouvement cycloïdal est définie comme la Vitesse la plus élevée atteinte par le suiveur pendant la phase de course extérieure du mouvement cycloïdal, qui est un concept fondamental dans les systèmes mécaniques et la cinématique, en particulier dans la conception et l'analyse des liaisons mécaniques et des systèmes à cames.

Vm=2ωSθo

Vitesse maximale du suiveur pendant la course de retour pour le mouvement cycloïdal

La formule de la Vitesse maximale du suiveur pendant la course de retour pour un mouvement cycloïdal est définie comme la Vitesse la plus élevée atteinte par le suiveur pendant sa course de retour dans un mouvement cycloïdal, qui est un concept fondamental dans les systèmes mécaniques et la cinématique, essentiel pour la conception et l'optimisation des composants mécaniques.

Vm=2ωSθR

Vitesse angulaire donnée moment angulaire et inertie

La formule de la Vitesse angulaire donnée du moment angulaire et de l'inertie n'est qu'un réarrangement de la formule du moment angulaire (L = Iω). Le moment angulaire est exprimé comme le produit de l'inertie et de la Vitesse angulaire.

ω2=LI

Vitesse du son

La Vitesse du son est la Vitesse à laquelle de petites perturbations de pression, ou ondes sonores, se propagent dans un milieu. Il représente la Vitesse à laquelle ces perturbations se propagent à travers le milieu, transférant de l'énergie et des informations.

a=γ[R-Dry-Air]Ts

Vitesse du véhicule donnée Longueur minimale de la spirale

La formule de la Vitesse du véhicule compte tenu de la longueur minimale de la spirale est définie comme la distance parcourue par un véhicule en un temps donné.

Vv=(LRtac3.15)13

Vitesse de stagnation du son

La formule de la Vitesse de stagnation du son est définie comme la racine carrée du produit de l'indice adiabatique, de la constante de gaz universelle et de la température de stagnation.

ao=γ[R]T0

Vitesse de stagnation du son compte tenu de la chaleur spécifique à pression constante

La Vitesse de stagnation du son étant donné la formule de chaleur spécifique à pression constante est définie comme la racine carrée du produit de l'indice adiabatique soustrait par l'unité, la chaleur spécifique à pression constante et la température de stagnation.

ao=(γ-1)CpT0

Vitesse de stagnation du son compte tenu de l'enthalpie de stagnation

La Vitesse de stagnation du son étant donnée la formule d'enthalpie de stagnation est définie comme la racine carrée du produit de l'indice adiabatique soustrait par l'unité et l'enthalpie de stagnation.

ao=(γ-1)h0

Vitesse à la section 1-1 pour un élargissement soudain

La Vitesse à la section 1-1 pour la formule d'agrandissement soudain est connue en considérant la Vitesse d'écoulement à la section 2-2 après l'élargissement, et la perte de charge due au frottement pour un liquide s'écoulant à travers le tuyau.

V1'=V2'+he2[g]

Vitesse à la section 2-2 pour un élargissement soudain

La Vitesse à la section 2-2 pour la formule d'agrandissement soudain est connue en considérant la Vitesse d'écoulement à la section 1-1 avant l'élargissement, et la perte de charge due au frottement pour un liquide s'écoulant à travers le tuyau.

V2'=V1'-he2[g]

Vitesse à la section 2-2 pour contraction soudaine

La Vitesse à la section 2-2 pour la formule de contraction soudaine est connue en considérant la perte de charge due à une contraction soudaine et le coefficient de contraction à cc.

V2'=hc2[g](1Cc)-1

Vitesse d'écoulement à la sortie de la buse

La formule de Vitesse d'écoulement à la sortie de la buse est connue en tenant compte de la longueur, du diamètre, de la hauteur totale à l'entrée du tuyau, de la surface du tuyau, de la surface de la buse à la sortie et du coefficient de frottement.

Vf=2[g]Hbn1+(4μLa22D(A2))

Vitesse de vol pour une force de bâton donnée

La Vitesse de vol pour une force de manche donnée est une mesure qui calcule la Vitesse d'un avion en réponse à une force de manche spécifique, en tenant compte de facteurs tels que le rapport de transmission, le coefficient de moment charnière, la densité de l'air, la surface de gouverne de profondeur et la corde de gouverne de profondeur.

V=𝙁𝑮Che0.5ρSece

Vitesse d'écoulement à la sortie de la buse pour l'efficacité et la tête

La Vitesse d'écoulement à la sortie de la buse pour l'efficacité et la formule de hauteur est connue en tenant compte de l'efficacité de la transmission de puissance à travers la buse et de la hauteur totale disponible à l'entrée du tuyau.

Vf=ηn2[g]Hbn

Vitesse de séparation en impact indirect de corps avec plan fixe

La Vitesse de séparation en cas d'impact indirect d'un corps avec une formule à plan fixe est définie comme le produit de la Vitesse finale de la masse et du cos de l'angle entre la Vitesse finale et la ligne d'impact.

vsep=vfcos(θf)

Vitesse de coupe compte tenu de l'élévation de température moyenne du matériau sous la zone de cisaillement primaire

La Vitesse de coupe compte tenu de l'élévation de température moyenne du matériau sous la zone de cisaillement primaire est définie comme la Vitesse (généralement en pieds par minute) d'un outil lorsqu'il coupe le travail.

Vcut=(1-Γ)PsρwpCθavgacdcut

Vitesse de coupe pour une durée de vie donnée de l'outil de Taylor

La Vitesse de coupe pour une durée de vie donnée de l'outil Taylor est une méthode pour trouver la Vitesse de coupe maximale avec laquelle la pièce peut être usinée lorsque l'intervalle de temps d'affûtage de l'outil, l'avance et la profondeur de coupe sont fixes.

Vcut=X(Tvx)(fre)(dcd)

Vitesse de coupe pour une durée de vie d'outil et un volume de métal enlevés donnés

La Vitesse de coupe pour une durée de vie de l'outil et un volume de métal enlevés donnés est une méthode permettant de déterminer la Vitesse de coupe maximale autorisée pour l'usinage lorsque la durée de vie de l'outil et le volume maximum de copeaux qu'il peut éliminer sont connus.

Vcut=LTvfrdc

Vitesse de coupe donnée, durée de vie de l'outil et volume de métal enlevé

L'avance donnée à la Vitesse de coupe, à la durée de vie de l'outil et au volume de métal enlevé est une méthode pour déterminer la Vitesse d'avance valide qui doit être appliquée à l'outil afin d'obtenir le volume autorisé de matériau enlevé d'où la durée de vie optimale de l'outil.

f=volTLVd'cut

Vitesse de coupe à l'aide de l'indice d'usinabilité

La Vitesse de coupe à l'aide de l'indice d'usinabilité est une méthode permettant de déterminer la Vitesse maximale à laquelle une pièce peut être utilisée lorsque son indice d'usinabilité est connu.

Vcut=IVs100

Vitesse de coupe de l'acier de décolletage compte tenu de la Vitesse de coupe de l'outil et de l'indice d'usinabilité

La Vitesse de coupe de l'acier de décolletage compte tenu de la Vitesse de coupe de l'outil et de l'indice d'usinabilité est une méthode de rétrocalcul permettant de déterminer la Vitesse de coupe utilisée sur l'acier de décolletage standard lorsque l'indice d'usinabilité et la Vitesse de coupe du matériau sont connus.

Vs=Vcut100I

Vitesse à moyenne distance donnée

La formule Velocity in Medium given Distance est définie comme la Vitesse de l'onde lumineuse utilisée dans l'instrument EDM lorsque l'onde se déplace d'un point à un autre.

c=2DΔt

Vitesse de coupe à partir de la température de l'outil

La Vitesse de coupe à partir de la formule de température de l'outil est définie comme la Vitesse utilisée pour couper un matériau particulier à l'aide de l'outil.

V=(θk0.44c0.56C0UsA0.22)10044

Vitesse de coupe de référence compte tenu du lot de production et des conditions d'usinage

La Vitesse de coupe de référence donnée pour le lot de production et les conditions d'usinage est une méthode permettant de déterminer la Vitesse de coupe optimale requise pour une durée de vie d'outil donnée dans une condition d'usinage de référence pour fabriquer un lot de composants donné.

Vref=V(NbtbLrefNt)n

Vitesse de coupe d'un produit donnée constante pour l'opération d'usinage

La Vitesse de coupe d'un produit donnée constante pour l'opération d'usinage est une méthode pour déterminer la Vitesse de coupe requise pour opérer sur une pièce pour un processus d'usinage particulier afin de la terminer dans un temps donné.

V=Ktb

Vitesse du véhicule compte tenu de la force centrifuge

La formule de Vitesse du véhicule compte tenu de la force centrifuge est définie comme la Vitesse ou la Vitesse du véhicule lorsqu'il parcourt une courbe de transition. Il met en relation des paramètres, la force centrifuge, le rayon de la courbe, le poids du véhicule et l'accélération due à la pesanteur.

V=FcgRCurveW

Vitesse de coupe de référence donnée Taux d'augmentation de la largeur d'usure

La Vitesse de coupe de référence donnée par le taux d'augmentation de la largeur de l'usure dans l'usinage des métaux fait référence à la Vitesse linéaire souhaitée du bord de l'outil de coupe par rapport à la surface de la pièce, définie en tenant compte de la Vitesse à laquelle la largeur de l'usure atterrit sur la coupe. l'outil augmente pendant l'usinage.

Vref=V(VrTrefw)n

Vitesse de coupe en fonction du taux d'augmentation de la largeur d'usure

La Vitesse de coupe, compte tenu du taux d'augmentation de la largeur de la zone d'usure, appelée Vitesse de coupe, est un paramètre critique qui influence directement l'usure de l'outil et les performances d'usinage. Le taux d'augmentation de la largeur de la zone d'usure, quant à lui, décrit la rapidité avec laquelle la largeur de la surface usée sur l'outil de coupe augmente au fil du temps au cours du processus d'usinage.

V=Vref(VrTrefw)n

Vitesse d'écoulement dans le réservoir d'huile

La Vitesse d'écoulement dans le réservoir d'huile est définie comme la Vitesse à laquelle le fluide ou l'huile dans le réservoir se déplace en raison de l'application de la force du piston.

uOiltank=(dp|dr0.5RR-CHRμ)-(vpistonRCH)

Vitesse du piston en fonction de la Vitesse d'écoulement dans le réservoir d'huile

La Vitesse du piston compte tenu de la Vitesse d'écoulement dans le réservoir d'huile est définie comme la Vitesse à laquelle le piston descend par rapport à la distance verticale.

vpiston=((0.5dp|drRR-CHRμ)-uOiltank)(CHR)

Vitesse des pistons pour la chute de pression sur la longueur du piston

La Vitesse des pistons pour la chute de pression sur la longueur du piston est définie comme la Vitesse à laquelle le piston descend.

vpiston=ΔPf(6μLPCR3)(0.5D+CR)

Vitesse du piston pour la force verticale ascendante sur le piston

La Vitesse du piston pour la force verticale vers le haut sur le piston est définie comme la Vitesse moyenne avec laquelle l'huile ou le piston se déplace dans le réservoir.

vpiston=FvLPπμ(0.75((DCR)3)+1.5((DCR)2))

Vitesse du fluide donnée Poussée exercée perpendiculairement à la plaque

La Vitesse du fluide donnée Poussée exercée normale à la plaque est définie comme le taux de changement de sa position par rapport à un cadre de référence et est une fonction du temps.

vjet=Fp[g]γfAJet(sin(∠D))

Vitesse du fluide donné Poussée parallèle au jet

La Vitesse du fluide donnée poussée parallèlement au jet est le taux de changement de sa position par rapport à un cadre de référence et est une fonction du temps.

vjet=FX[g]γfAJet(sin(∠D))2

Vitesse du fluide donné Poussée normale au jet

la Vitesse du fluide donnée Poussée normale au jet est le taux de changement de sa position par rapport à un cadre de référence et est une fonction du temps.

vjet=FY[g]γfAJet(sin(∠D))cos(∠D)

Vitesse à la profondeur1 donnée Vitesse absolue de surtension se déplaçant vers la droite

La Vitesse à la profondeur1 étant donné la formule de Vitesse absolue de surtension se déplaçant vers la droite est définie comme la Vitesse résultante à une profondeur spécifique due à la combinaison de la surtension et du mouvement horizontal.

VNegativesurges=(vabs(D2-h 1))+(V2D2)h 1

Vitesse en profondeur2 donnée Vitesse absolue des surtensions se déplaçant vers la droite

La formule de Vitesse à la profondeur 2 étant donné la Vitesse absolue des surtensions se déplaçant vers la droite est définie comme la Vitesse résultante à la profondeur 2 en tenant compte du mouvement de surtension.

V2=(vabs(h 1-D2))+(VNegativesurgesh 1)D2

Vitesse à la profondeur1 lorsque la Vitesse absolue de la montée subite lorsque le débit est complètement arrêté

La formule Vitesse à la profondeur 1 lorsque la Vitesse absolue de montée subite lorsque le débit est complètement arrêté est définie comme la Vitesse initiale de l'eau lors d'un arrêt brusque.

VNegativesurges=vabs(D2-h 1)h 1

Vitesse à la profondeur1 lorsque la hauteur de surtension pour la hauteur de surtension est négligeable Profondeur d'écoulement

La Vitesse à la profondeur1 lorsque la hauteur de la surtension pour la hauteur de la surtension est une formule de profondeur de flux négligeable est définie comme la Vitesse de la surtension au point.

VNegativesurges=(Hch[g]Cw)+V2

Vitesse absolue des surtensions

La formule de la Vitesse absolue des surtensions est définie comme une Vitesse sans cadre de référence dans le flux des surtensions.

vabs=[g]df-vm

Vitesse d'écoulement donnée Vitesse absolue des surtensions

La Vitesse d'écoulement étant donné la Vitesse absolue des surtensions est définie comme la Vitesse résultante du mouvement du fluide tenant compte des effets de surtension.

vm=[g]df-vabs

Vitesse absolue des surtensions pour une profondeur d'écoulement donnée

La Vitesse absolue des surtensions pour une profondeur d'écoulement donnée est définie comme la Vitesse de surtension sans égard à la direction.

vabs=Cw+vm

Vitesse d'écoulement donnée Profondeur d'écoulement

La Vitesse d'écoulement étant donné la profondeur d'écoulement est définie comme la Vitesse moyenne avec l'eau se déplaçant dans le canal.

vm=[g]h 1-vabs

Vitesse de stabilisation compte tenu de la traînée de friction

La Vitesse de sédimentation donnée par la formule de traînée de frottement est définie comme la Vitesse à laquelle une particule tombe à travers un fluide sous l'influence de la gravité.

vs=2FDaCDρf

Vitesse de stabilisation

La formule de la Vitesse de sédimentation est définie comme la Vitesse terminale d'une particule dans un fluide immobile. Il donne la Vitesse de sédimentation d'une particule sphérique se déposant sous l'action de la gravité à condition que Re ≪ 1 et diamètre ≫ signifient libre parcours.

vs=4[g](ρm-ρf)d3CDρf

Vitesse de rotation du disque

La formule de la Vitesse de rotation du disque est définie comme le nombre de tours de l'objet divisé par le temps, spécifié en tours par minute.

w=5105uD2

Vitesse du vent donnée Temps requis pour le passage des vagues Fetch sous la Vitesse du vent

La Vitesse du vent compte tenu du temps requis pour les vagues traversant la formule Fetch sous la Vitesse du vent est définie comme une quantité atmosphérique fondamentale causée par le déplacement de l'air de haute à basse pression, généralement en raison de changements de température.

U=(77.23X0.67tx,u[g]0.33)10.34

Vitesse de l'aube à l'entrée compte tenu du rapport de Vitesse Francis Turbine

La Vitesse de l'aube à l'entrée de la Vitesse donnée Ratio turbine Francis est définie comme la Vitesse de l'aube à l'entrée de la turbine.

u1=Ku2gHi

Vitesse d'écoulement à l'entrée compte tenu du rapport d'écoulement dans la turbine Francis

La Vitesse d'écoulement à l'entrée donnée Le rapport de débit dans la formule de la turbine Francis est défini comme le champ vectoriel utilisé pour décrire le mouvement du fluide de manière mathématique.

Vf1=Kf2gHi

Comment trouver Formules ?

Voici quelques conseils pour obtenir de meilleurs résultats de recherche.
Soyez précis : Plus votre requête est spécifique, meilleurs sont vos résultats.
Utilisez plusieurs mots clés : Combinez plusieurs mots clés pour affiner les résultats.
Expérimentez avec des synonymes : Différents termes peuvent donner des résultats différents.
Recherche générique : Utilisez l'opérateur * (astérisque). NOTEZ que cet opérateur ne fonctionne qu'à la fin d'un mot. Exemple : Bio*, Zone*, etc.

Vous pouvez également parcourir les sous-catégories de pour vous concentrer sur les formules qui vous intéressent.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!