Rechercher Formules

Veuillez saisir au moins trois caractères pour commencer à rechercher des formules .

Sélectionner un filtre

Affinez vos résultats de recherche à l’aide de ces filtres.

50 Formules correspondantes trouvées !

Vitesse spatiale du réacteur

La Vitesse spatiale du réacteur nous donne le nombre de volumes de réacteur qui peuvent être traités par unité de temps.

sReactor=voVreactor

Vitesse terminale

La Vitesse terminale est la Vitesse maximale pouvant être atteinte par un objet lorsqu'il tombe à travers un fluide (l'air est l'exemple le plus courant).

Vterminal=29r2(𝜌1-ρ2)gμviscosity

Vitesse de coupe donnée Vitesse angulaire

Vitesse de coupe donnée La Vitesse angulaire est définie comme la Vitesse à laquelle la pièce se déplace par rapport à l'outil (généralement mesurée en pieds par minute).

Vcutting=πdω

Vitesse du suiveur après le temps t pour le mouvement cycloïdal

La formule de la Vitesse du suiveur après le temps t pour le mouvement cycloïdal est définie comme la mesure de la Vitesse du suiveur dans un système à came et suiveur, qui subit un mouvement cycloïdal, décrivant le mouvement du suiveur lorsqu'il tourne et se déplace sur une trajectoire circulaire.

v=ωSθo(1-cos(2πθrotationθo))

Vitesse maximale du suiveur pendant la course sortante pour le mouvement cycloïdal

La formule de la Vitesse maximale du suiveur pendant la course extérieure pour un mouvement cycloïdal est définie comme la Vitesse la plus élevée atteinte par le suiveur pendant la phase de course extérieure du mouvement cycloïdal, qui est un concept fondamental dans les systèmes mécaniques et la cinématique, en particulier dans la conception et l'analyse des liaisons mécaniques et des systèmes à cames.

Vm=2ωSθo

Vitesse maximale du suiveur pendant la course de retour pour le mouvement cycloïdal

La formule de la Vitesse maximale du suiveur pendant la course de retour pour un mouvement cycloïdal est définie comme la Vitesse la plus élevée atteinte par le suiveur pendant sa course de retour dans un mouvement cycloïdal, qui est un concept fondamental dans les systèmes mécaniques et la cinématique, essentiel pour la conception et l'optimisation des composants mécaniques.

Vm=2ωSθR

Vitesse moyenne en fonction de la Vitesse de frottement

Vitesse moyenne donnée La formule de la Vitesse de frottement est définie comme une méthode permettant de relier la Vitesse moyenne d'un jet de liquide à sa Vitesse de frottement, fournissant ainsi des informations sur le comportement et les performances des fluides dans diverses applications mécaniques. Cette relation est cruciale pour optimiser la dynamique des fluides dans les systèmes d'ingénierie.

V=Vff8

Vitesse critique ou tourbillonnante en RPS

La Vitesse critique ou tourbillonnante dans la formule RPS est définie comme la Vitesse à laquelle un arbre rotatif commence à vibrer violemment en raison du déséquilibre de l'arbre, ce qui peut conduire à sa défaillance, et constitue un paramètre important dans la conception et le fonctionnement des machines tournantes.

ωc=0.4985δ

Vitesse critique ou tourbillonnante compte tenu de la déviation statique

La Vitesse critique ou tourbillonnante donnée par la formule de déflexion statique est définie comme la Vitesse à laquelle un arbre rotatif commence à vibrer violemment en raison du poids propre de l'arbre, provoquant le tourbillonnement ou la vibration de l'arbre, et constitue un paramètre critique dans la conception des machines rotatives.

ωc=gδ

Vitesse critique ou tourbillonnante compte tenu de la rigidité de l'arbre

La formule de Vitesse critique ou tourbillonnante donnée par la rigidité de l'arbre est définie comme une mesure de la Vitesse de rotation à laquelle un arbre commence à vibrer violemment, ce qui peut conduire à sa défaillance, et dépend de la rigidité de l'arbre et de la masse de l'élément rotatif.

ωc=Ssm

Vitesse pour un taux de virage donné

La Vitesse pour un taux de virage donné est une mesure de la Vitesse d'un avion pendant un virage, calculée en fonction du facteur de charge, de l'accélération gravitationnelle et du taux de virage.

V=[g]n2-1ω

Vitesse du corps en mouvement harmonique simple

La formule de la Vitesse du corps dans un mouvement harmonique simple est définie comme la Vitesse maximale d'un objet lorsqu'il oscille autour de sa position d'équilibre, fournissant une mesure de l'énergie cinétique de l'objet pendant son mouvement vibratoire.

V=A'ωcos(ωtsec)

Vitesse pour un rayon de manœuvre de traction donné

La Vitesse pour un rayon de manœuvre de traction donné d'un avion dépend du rayon de manœuvre et du facteur de charge de l'avion, cette formule fournit une approximation simplifiée de la Vitesse nécessaire pour maintenir le taux de descente souhaité pendant la manœuvre de traction.

Vpull-up=R[g](n-1)

Vitesse pour un taux de manœuvre de traction donné

La Vitesse pour un taux de manœuvre de traction donné est la Vitesse requise pour qu'un avion maintienne un taux de montée spécifique pendant une manœuvre de traction. Cette formule calcule la Vitesse en fonction de l'accélération gravitationnelle, du facteur de charge de traction et du taux de virage. Comprendre et appliquer cette formule est essentiel pour les pilotes et les ingénieurs afin de garantir des manœuvres de traction sûres et efficaces.

Vpull-up=[g]npull-up-1ω

Vitesse maximale du corps en mouvement harmonique simple

La formule de la Vitesse maximale du corps dans un mouvement harmonique simple est définie comme la Vitesse la plus élevée atteinte par un objet dans un mouvement harmonique simple, qui est un type de mouvement périodique qui se produit lorsque la force nette sur un objet est proportionnelle à son déplacement par rapport à sa position d'équilibre.

Vmax=ωA'

Vitesse de rotation compte tenu de la puissance absorbée et du couple dans le palier lisse

La Vitesse de rotation prenant en compte la puissance absorbée et le couple dans le roulement à billes est déterminée par la relation entre la puissance absorbée par le roulement et le couple qu'il subit.

N=P2πτ

Vitesse de rotation pour le couple requis dans le palier Foot-Step

La Vitesse de rotation pour le couple requis dans la formule de roulement à pas de pied est connue tout en considérant la viscosité de l'huile ou du fluide, le couple requis pour surmonter la résistance visqueuse, l'épaisseur et le rayon de l'arbre.

N=τtμπ2(Ds2)4

Vitesse de la section d'essai en soufflerie

La formule de Vitesse de la section d'essai en soufflerie est obtenue à partir du principe de Bernoulli et est fonction de la différence de pression entre le réservoir et la section d'essai.

V2=2(P1-P2)ρ0(1-1Alift2)

Vitesse de la section d'essai par hauteur manométrique pour soufflerie

La formule de Vitesse de section d'essai par hauteur manométrique pour soufflerie est définie en fonction du taux de contraction, de la densité du fluide dans la soufflerie et du poids par volume de fluide manométrique et de la différence de hauteur entre les deux côtés du manomètre.

VT=2𝑤Δhρ0(1-1Alift2)

Vitesse statique au point de transition

La formule de la Vitesse statique au point de transition est définie comme la Vitesse à laquelle l'écoulement passe du laminaire au turbulent, caractérisant le comportement de la couche limite sur une plaque plate en écoulement visqueux, fournissant des informations sur la dynamique des fluides et les mécanismes de transfert de chaleur.

ue=Retμeρext

Vitesse du son dans l'eau compte tenu du temps écoulé du signal ultrasonique envoyé par A

La Vitesse du son dans l'eau en fonction du temps écoulé du signal ultrasonique envoyé par une formule est définie comme la Vitesse du son dans l'eau circulant dans le canal.

C=(Lt1)-vp

Vitesse moyenne le long du chemin AB à une certaine hauteur au-dessus du lit

La formule de Vitesse moyenne le long du chemin AB à une certaine hauteur au-dessus du lit est définie comme la Vitesse moyenne de l'écoulement à travers la section transversale à une hauteur au-dessus du lit du canal.

vavg=((L2)cos(θ))((1t1)-(1t2))

Vitesse statique utilisant l'épaisseur de moment de la couche limite

La formule de la Vitesse statique utilisant l'épaisseur de la quantité de mouvement de la couche limite est définie comme une mesure de la Vitesse au bord de la couche limite dans une plaque plate, ce qui est essentiel pour comprendre les caractéristiques de l'écoulement visqueux et les forces de traînée qui en résultent.

ue=Reμeρeθt

Vitesse le long de l'axe de lacet pour un petit angle d'attaque

La Vitesse le long de l'axe de lacet pour un petit angle d'attaque est une mesure du taux de changement de position d'un objet le long de l'axe de lacet, par rapport à son mouvement dû à un petit angle d'attaque, elle est calculée en multipliant la Vitesse le long de l'axe de roulis par l'angle d'attaque en radians, fournissant un paramètre crucial en aérodynamique et en dynamique de vol.

w=uα

Vitesse Freestream sur plaque plate en utilisant le numéro de Stanton

La Vitesse du courant libre sur une plaque plate à l'aide de la formule du nombre de Stanton est définie comme une mesure de la Vitesse du fluide s'approchant de la plaque plate dans un cas d'écoulement visqueux, ce qui est essentiel pour comprendre les caractéristiques de transfert de chaleur et d'écoulement du fluide sur la plaque.

V=qwStρ(haw-hw)

Vitesse le long de l'axe de roulis pour un petit angle d'attaque

La Vitesse le long de l'axe de roulis pour un petit angle d'attaque est une mesure de la Vitesse de rotation d'un objet autour de son axe de roulis lorsque l'angle d'attaque est relativement petit et est calculée en divisant la Vitesse le long du mouvement de lacet par l'angle d'attaque en radians.

u=wα

Vitesse le long de l’axe de tangage pour un petit angle de dérapage

La Vitesse le long de l'axe de tangage pour un petit angle de dérapage est une mesure de la Vitesse d'un avion ou d'un objet se déplaçant selon un petit angle de dérapage, ce qui est essentiel pour comprendre et prédire sa trajectoire et sa stabilité.

v=βu

Vitesse le long de l’axe de roulis pour un petit angle de dérapage

La Vitesse le long de l'axe de roulis pour un petit angle de dérapage est une mesure de la Vitesse de l'avion dans la direction de l'axe de roulis lorsque l'angle de dérapage est petit, ce qui donne un aperçu de la stabilité et de la réactivité de l'avion pendant le vol.

u=vβ

Vitesse de flux libre sur une plaque plate avec des conditions de flux libre

La formule de la Vitesse du courant libre sur une plaque plate avec des conditions de courant libre est définie comme la Vitesse du fluide s'approchant d'une plaque plate dans un cas d'écoulement visqueux, qui est un concept fondamental en dynamique des fluides et en aérodynamique, utilisé pour analyser le comportement des fluides s'écoulant sur une surface plane.

V=2(h0-h)

Vitesse de flux libre sur une plaque plate en utilisant la force de traînée

La Vitesse du courant libre sur une plaque plate à l'aide de la formule de la force de traînée est définie comme la Vitesse du fluide s'approchant de la plaque plate, qui est affectée par la force de traînée, la densité de l'air, la surface et le coefficient de traînée, et est un paramètre essentiel pour comprendre l'écoulement visqueux sur une plaque plate.

V=FD0.5ρSCD

Vitesse proportionnelle donnée à l'angle central

La Vitesse proportionnelle donnée par l'angle central est définie comme le rapport entre la Vitesse du fluide dans un tuyau partiellement rempli et la Vitesse lorsque le tuyau est entièrement rempli.

Pv=(1-(360π180)sin(central)2πcentral)23

Vitesse proportionnelle lorsque le coefficient de rugosité ne varie pas avec la profondeur

La Vitesse proportionnelle lorsque le coefficient de rugosité ne varie pas avec la profondeur calcule la Vitesse proportionnelle lorsque nous avons des informations préalables sur d'autres paramètres

Pv=(rpfRrf)23

Vitesse en cours d'exécution Partiellement pleine donnée Décharge

La Vitesse lors d'un fonctionnement partiellement plein donné est définie comme la Vitesse d'écoulement lorsque l'égout n'est pas complètement rempli, influencée par la profondeur et la pente.

Vs=qa

Vitesse lors de l'exécution complète de la décharge donnée

La Vitesse pendant le fonctionnement à pleine capacité donnée est définie comme la Vitesse du fluide se déplaçant à travers un tuyau ou un canal entièrement rempli, généralement à capacité maximale.

V=QA

Vitesse pendant le fonctionnement partiellement complet compte tenu de la décharge proportionnelle

La Vitesse lors d'un fonctionnement partiellement plein compte tenu d'un débit proportionnel est définie comme la Vitesse d'écoulement lorsque l'égout n'est pas complètement rempli, influencée par la profondeur et la pente.

Vs=PqVAa

Vitesse pendant le fonctionnement à pleine charge, compte tenu de la décharge proportionnelle

La Vitesse pendant le fonctionnement à plein débit proportionnel est définie comme la Vitesse d'écoulement du fluide dans un tuyau lorsqu'il est complètement rempli, influencée par la pente et la rugosité du tuyau.

V=VsaPqA

Vitesse de surface de la roue compte tenu du nombre de copeaux produits par temps

La Vitesse de surface de la meule étant donné le nombre de copeaux produits par temps est définie comme la Vitesse à laquelle le bord extérieur de la meule se déplace par rapport à la surface de la pièce, influençant la formation de copeaux et le taux d'enlèvement de matière pendant les opérations de meulage.

vT=NcApcg

Vitesse de surface de la meule donnée constante pour la meule

La Vitesse de surface de la meule, donnée constante pour la meule, est définie comme la Vitesse à laquelle le bord extérieur de la meule se déplace pendant le fonctionnement, garantissant des performances de coupe et une finition de surface constantes, quels que soient d'autres facteurs tels que le diamètre de la meule ou la Vitesse de la machine.

VT=KVwfinacmax2

Vitesse de surface de la pièce donnée constante pour la meule

La Vitesse de surface de la pièce, donnée constante pour la meule, est définie comme la Vitesse à laquelle un point de sa surface dépasse un point de référence fixe par unité de temps.

vw=(acMax2)VtKgfi

Vitesse de coupe pour un temps de production minimum

La Vitesse de coupe pour le temps de production minimum est une méthode pour déterminer la Vitesse de coupe requise pour opérer sur une pièce à usiner de telle sorte que le temps de production pour un lot donné soit minimum.

Vp=Vref((nmptLref(1-nmpt)tct)nmpt)

Vitesse de coupe de référence en utilisant le temps de production minimum

La Vitesse de coupe de référence utilisant le temps de production minimum est une méthode pour déterminer la Vitesse de coupe optimale requise pour une taille de lot donnée dans une condition d'usinage de référence pour fabriquer de sorte que le temps de production total soit minimum.

Vref=Vp(nmptLref(1-nmpt)tct)nmpt

Vitesse de coupe pour un temps de production minimum compte tenu du coût de changement d'outil

La Vitesse de coupe pour un temps de production minimum compte tenu du coût de changement d'outil est une méthode permettant de déterminer la Vitesse de coupe nécessaire pour opérer sur une pièce de sorte que le temps de production pour un lot donné soit minimum.

Vp=Vref((nmptMminLref(1-nmpt)Cct)nmpt)

Vitesse absolue pour une poussée normale donnée parallèlement à la direction du jet

La Vitesse absolue pour une poussée normale donnée parallèlement à la direction du jet est le taux de changement de sa position par rapport à un cadre de référence et est fonction du temps.

Vabsolute=FtGγfAJet(∠D(180π))2+v

Vitesse du jet donnée Poussée normale parallèle à la direction du jet

La Vitesse du jet donnée pour une poussée normale parallèle à la direction du jet est le taux de changement de sa position par rapport à un cadre de référence et est une fonction du temps.

v=-(FtGγfAJet(∠D(180π))2-Vabsolute)

Vitesse absolue pour une poussée normale donnée Normal à la direction du jet

La Vitesse absolue pour une poussée normale donnée Normal à la direction du jet est le taux de changement de sa position par rapport à un cadre de référence et est fonction du temps.

Vabsolute=(FtGγfAJet(∠D(180π))cos(θ))+v

Vitesse du jet donnée Poussée normale Normale à la direction du jet

La Vitesse du jet donnée à la poussée normale normale à la direction du jet est le taux de changement de sa position par rapport à un cadre de référence et est une fonction du temps.

v=-(FtGγfAJet(∠D(180π))cos(θ))+Vabsolute

Vitesse en virage

La vélocité en virage est définie comme la Vitesse de l'aéronef lors d'un virage ou d'une courbe et est fonction du rayon de la courbe.

VTurning Speed=4.1120RTaxiway0.5

Vitesse seuil donnée Distance de décélération en mode de freinage normal

Vitesse de seuil donnée La distance de décélération en mode de freinage normal est définie comme la Vitesse minimale du courant à laquelle un compteur particulier mesurera sa fiabilité nominale.

Vt=(8S3d+Vex2)0.5+15

Vitesse de seuil donnée Distance requise pour la transition depuis l'atterrissage principal

Vitesse de seuil donnée La distance requise pour la transition depuis le point de contact principal est définie comme la Vitesse minimale du courant à laquelle un courantomètre particulier mesurera à sa fiabilité nominale.

Vth=(S25)+10

Vitesse de débrayage nominale donnée Distance requise pour la décélération en mode de freinage normal

La Vitesse de virage nominale donnée La distance requise pour la décélération en mode de freinage normal est définie comme un paramètre d'influence pris en compte pour le virage de l'aéronef.

Vex=((Vt-15)2)-(8dS3)

Comment trouver Formules ?

Voici quelques conseils pour obtenir de meilleurs résultats de recherche.
Soyez précis : Plus votre requête est spécifique, meilleurs sont vos résultats.
Utilisez plusieurs mots clés : Combinez plusieurs mots clés pour affiner les résultats.
Expérimentez avec des synonymes : Différents termes peuvent donner des résultats différents.
Recherche générique : Utilisez l'opérateur * (astérisque). NOTEZ que cet opérateur ne fonctionne qu'à la fin d'un mot. Exemple : Bio*, Zone*, etc.

Vous pouvez également parcourir les sous-catégories de pour vous concentrer sur les formules qui vous intéressent.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!