Rechercher Formules

Veuillez saisir au moins trois caractères pour commencer à rechercher des formules .

Sélectionner un filtre

Affinez vos résultats de recherche à l’aide de ces filtres.

50 Formules correspondantes trouvées !

Vitesse linéaire moyenne

La formule de la Vitesse linéaire moyenne est définie comme la Vitesse moyenne d'un objet subissant un mouvement circulaire, fournissant une mesure de sa Vitesse de rotation, essentielle dans l'analyse des diagrammes de moment de rotation et des systèmes de volant d'inertie.

v=v1+v22

Vitesse angulaire moyenne

La formule de la Vitesse angulaire moyenne est définie comme la moyenne de deux Vitesses angulaires, fournissant une valeur unique qui représente le mouvement de rotation global d'un objet ou d'un système, couramment utilisée dans l'analyse des diagrammes de moment de rotation et des systèmes de volant d'inertie.

ω=ω1+ω22

Vitesse angulaire des particules dans le champ magnétique

La Vitesse angulaire d'une particule dans un champ magnétique est calculée lorsqu'une particule de masse m et de charge q se déplace dans un champ magnétique constant B.

ωp=qpHmp

Vitesse de l'électron en orbite compte tenu de la Vitesse angulaire

La Vitesse de l'électron en orbite étant donné la Vitesse angulaire est une quantité vectorielle (elle a à la fois une magnitude et une direction) et est la Vitesse de changement de position (d'une particule).

ve_AV=ωrorbit

Vitesse de l'électron donnée Période de temps de l'électron

La Vitesse de l'électron étant donné la période de temps de l'électron est une quantité vectorielle (elle a à la fois une amplitude et une direction) et est la Vitesse de changement de position (d'une particule).

velectron=2πrorbitT

Vitesse du petit élément pour la vibration longitudinale

La formule de la Vitesse d'un petit élément pour une vibration longitudinale est définie comme une mesure de la Vitesse d'un petit élément dans une vibration longitudinale, qui est affectée par l'inertie de la contrainte, et est utilisée pour analyser les vibrations dans divers systèmes mécaniques.

vs=xVlongitudinall

Vitesse angulaire de l'arbre

La formule de la Vitesse angulaire de l'arbre est définie comme une mesure de la Vitesse de rotation d'un arbre dans un système mécanique, généralement utilisée pour analyser et comprendre les vibrations et oscillations de torsion dans les machines rotatives.

ω=qrId

Vitesse angulaire de l'élément

La formule de la Vitesse angulaire d'un élément est définie comme une mesure de la Vitesse de rotation d'un élément dans un système de vibrations de torsion, décrivant le taux de changement du déplacement angulaire par rapport au temps, fournissant des informations sur le comportement dynamique du système.

ω=ωfxl

Vitesse angulaire de l'extrémité libre utilisant l'énergie cinétique de contrainte

La formule de la Vitesse angulaire de l'extrémité libre utilisant l'énergie cinétique de la contrainte est définie comme une mesure de la Vitesse de rotation d'une extrémité libre dans un système de vibration de torsion, qui est influencée par l'énergie cinétique de la contrainte et le moment d'inertie du système.

ωf=6KEIc

Vitesse derrière le choc normal

La Vitesse derrière le choc normal calcule la Vitesse d'un fluide en aval d'une onde de choc normale. Cette formule intègre des paramètres tels que la Vitesse en amont du choc, le rapport des chaleurs spécifiques du fluide et le nombre de Mach du débit. Il fournit des informations précieuses sur le changement de Vitesse résultant du passage de l’onde de choc.

V2=V1γ+1(γ-1)+2M2

Vitesse radiale à n'importe quel rayon

La Vitesse radiale à n'importe quel rayon dans un champ d'écoulement décrit la rapidité avec laquelle le fluide se rapproche ou s'éloigne du centre, donnant une image claire de l'écoulement sans s'appuyer sur des équations spécifiques.

Vr=q2πr1

Vitesse du rouleau compte tenu de la production de compactage par l'équipement de compactage

La formule Vitesse du rouleau donnée par production de compactage par équipement de compactage est définie comme la Vitesse à laquelle l'équipement de compactage, tel que les rouleaux, fonctionne pendant le processus de compactage. Des Vitesses efficaces contribuent à une productivité plus élevée dans les projets de construction, car l'équipement peut couvrir plus de surface en moins de temps sans compromettre la qualité.

S=yP16WLPRE

Vitesse donnée Pull-down Manoeuvre Rayon

La Vitesse donnée (Pull-down Maneuver Radius) est la Vitesse requise pour qu'un avion maintienne un rayon de virage spécifique pendant une manœuvre de pull-down. Cette formule calcule la Vitesse en fonction du rayon de virage, de l'accélération gravitationnelle et du facteur de charge. Comprendre et appliquer cette formule est crucial pour les pilotes et les ingénieurs afin de garantir des manœuvres de pulldown sûres et contrôlées.

Vpull-down=R[g](n+1)

Vitesse pour un taux de manœuvre de pull-down donné

La Vitesse pour un taux de manœuvre de descente donné dépend du facteur de charge et du taux de virage de l'avion, cette formule fournit une approximation simplifiée de la Vitesse nécessaire pour maintenir le taux de descente souhaité pendant la manœuvre de descente.

Vpull-down=[g]1+nωpull-down

Vitesse à la section 1 pour un débit constant

La formule de Vitesse à la section 1 pour un débit constant est définie comme la Vitesse d'écoulement à un point particulier du cours d'eau.

u01=QAcsρ1

Vitesse à la section 2 donnée Débit à la section 1 pour un débit constant

La Vitesse à la section 2, compte tenu du débit à la section 1 pour la formule de débit constant, est définie comme la Vitesse d'écoulement à un point particulier du flux.

u02=QAcsρ2

Vitesse à la section pour la décharge à travers la section pour le fluide incompressible stable

La Vitesse à la section pour la décharge à travers la section pour le fluide incompressible stable est définie comme la Vitesse d'écoulement dans la section transversale.

uFluid=QAcs

Vitesse d'écoulement à l'entrée volume de liquide donné

La Vitesse d'écoulement à l'entrée d'un volume donné de liquide est définie comme la Vitesse à laquelle un liquide s'écoule dans une pompe centrifuge, ce qui est un paramètre critique pour déterminer les performances et l'efficacité de la pompe, et est influencé par le volume de liquide pompé et les paramètres géométriques de la pompe.

Vf1=QπD1B1

Vitesse d'écoulement à la sortie d'un volume de liquide donné

La Vitesse d'écoulement à la sortie d'un volume donné de formule liquide est définie comme la Vitesse à laquelle un liquide s'écoule hors d'une pompe centrifuge, influencée par les paramètres géométriques et de débit de la pompe, fournissant des informations précieuses sur les performances et l'efficacité de la pompe.

Vf2=QπD2B2

Vitesse radiale

La formule de Vitesse radiale est définie par rapport à un point donné, c'est le taux de changement de la distance entre l'objet et le point.

vr=fdλ2

Vitesse de coupe moyenne

La Vitesse moyenne de coupe est utilisée pour déterminer la moyenne temporelle de la Vitesse de coupe à laquelle le matériau est retiré de la pièce. Il nous donne des informations utiles sur le temps estimé nécessaire pour terminer l’opération d’usinage.

Vt=nπdw+dm2

Vitesse Freestream pour le coefficient de portance dans un cylindre rotatif avec circulation

La Vitesse Freestream pour le coefficient de portance dans un cylindre rotatif avec formule de circulation est connue en tenant compte du rapport de circulation sur le rayon du cylindre et du coefficient de portance.

V=ΓcRC'

Vitesse du flux libre

La formule de Vitesse Freestream est définie comme la viscosité dynamique du fluide divisée par le produit du carré de l'émissivité, de la densité du flux libre et du rayon du nez.

V=μviscosityε2ρrnose

Vitesse d'écoulement selon la formule de Chezy

La Vitesse d'écoulement selon la formule de Chezy est définie comme la Vitesse d'écoulement de l'eau dans un canal ouvert, calculée à l'aide de la constante de Chezy et de la pente hydraulique.

Vc=CScm

Vitesse d'écoulement selon la formule de Manning

La Vitesse d'écoulement selon la formule de Manning est définie comme la Vitesse à laquelle le fluide se déplace dans un canal ou un tuyau, généralement mesurée en mètres par seconde (m/s) ou en pieds par seconde (ft/s).

Vm=(1n)(m)23s

Vitesse d'écoulement par sertissage et formule de Burge

La Vitesse d'écoulement selon la formule de Crimp et Burge est définie comme la Vitesse à laquelle le fluide se déplace dans un canal ou un tuyau, généralement mesurée en mètres par seconde (m/s) ou en pieds par seconde (ft/s).

Vcb=83.5(m)23s

Vitesse d'écoulement selon la formule de William Hazen

La Vitesse d'écoulement selon la formule de William Hazen est définie comme la Vitesse à laquelle un fluide se déplace dans un canal ou un tuyau, généralement mesurée en mètres par seconde (m/s) ou en pieds par seconde (ft/s).

Vwh=0.85CH(m)0.63(s)0.54

Vitesse superficielle d'Ergun étant donné le nombre de Reynolds

La Vitesse superficielle d'Ergun étant donnée la formule du nombre de Reynolds est définie comme le débit volumétrique de ce fluide divisé par l'aire de la section transversale.

Ub=Repbμ(1-)Deffρ

Vitesse critique compte tenu de l'énergie totale au point critique

La formule de Vitesse critique étant donné l’énergie totale au point critique est définie comme la Vitesse à laquelle le flux passe du statut sous-critique à supercritique, en tenant compte de l’énergie totale au point critique.

Vc=2g(Ec-(dc+hf))

Vitesse critique compte tenu de la perte de charge

La formule de Vitesse critique étant donné la perte de charge est définie comme la mesure de la Vitesse à laquelle le flux passe d'un état sous-critique à un état supercritique. Dans un écoulement en canal ouvert, la Vitesse critique se produit lorsque l'énergie cinétique de l'écoulement est égale à l'énergie potentielle, étant donné que nous disposons de l'information préalable sur la perte de charge.

Vc=(hf2g0.1)12

Vitesse du fluide donnée Poussée exercée perpendiculairement à la plaque

La Vitesse du fluide donnée Poussée exercée normale à la plaque est définie comme le taux de changement de sa position par rapport à un cadre de référence et est une fonction du temps.

vjet=Fp[g]γfAJet(sin(∠D))

Vitesse du fluide donné Poussée parallèle au jet

La Vitesse du fluide donnée poussée parallèlement au jet est le taux de changement de sa position par rapport à un cadre de référence et est une fonction du temps.

vjet=FX[g]γfAJet(sin(∠D))2

Vitesse du fluide donné Poussée normale au jet

la Vitesse du fluide donnée Poussée normale au jet est le taux de changement de sa position par rapport à un cadre de référence et est une fonction du temps.

vjet=FY[g]γfAJet(sin(∠D))cos(∠D)

Vitesse pour la longueur d'onde de l'onde

La formule Vitesse pour la longueur d'onde de l'onde est définie comme la Vitesse à laquelle l'onde se propage dans un milieu, calculée comme le produit de sa fréquence et de sa longueur d'onde.

C=(λf)

Vitesse de l'onde sonore

La formule de la Vitesse de l’onde sonore est définie comme étant la Vitesse, bien que, proprement dite, la Vitesse implique à la fois la Vitesse et la direction. La Vitesse d'une onde est égale au produit de sa longueur d'onde et de sa fréquence (nombre de vibrations par seconde) et est indépendante de son intensité.

C=20.05T

Vitesse de l'onde sonore compte tenu de l'intensité sonore

La formule de Vitesse de l'onde sonore étant donné l'intensité sonore est définie comme la Vitesse, bien que, proprement, la Vitesse implique à la fois la Vitesse et la direction. La Vitesse d'une onde est égale au produit de sa longueur d'onde et de sa fréquence (nombre de vibrations par seconde) et est indépendante de son intensité.

C=Prms2Iρ

Vitesse à l'entrée pour la masse de l'aube de frappe de fluide par seconde

La Vitesse à l'entrée pour la masse de l'aube de frappe de fluide par seconde est le taux de changement de sa position par rapport au cadre de référence et est fonction du temps.

v=mfGγfAJet

Vitesse absolue de surtension se déplaçant vers la droite

La formule Vitesse absolue de surtension se déplaçant vers la droite est définie comme la Vitesse de surtension quel que soit le milieu.

vabs=V1h 1-V2D2h 1-D2

Vitesse en profondeur donnée Vitesse absolue de poussée se déplaçant vers la droite

La formule de Vitesse en profondeur étant donné la Vitesse absolue de surtension se déplaçant vers la droite est définie comme la Vitesse résultante des particules de fluide tenant compte du mouvement de surtension.

VNegativesurges=(vabs(h 1-D2))+(V2D2)h 1

Vitesse absolue de surtension se déplaçant vers la droite dans les surtensions négatives

La formule de la Vitesse absolue de surtension se déplaçant vers la droite dans les surtensions négatives est définie comme la Vitesse de propagation des ondes défavorables vers la droite.

vabs=V1+[g]D2(D2+h 1)2h 1

Vitesse à la profondeur1 lorsque la hauteur de la surtension est négligeable

La formule de la Vitesse à Depth1 lorsque la hauteur de la surtension est négligeable est définie comme la Vitesse de la pointe d'écoulement en un point.

VNegativesurges=(Hch[g]Cw)+V2

Vitesse des particules abrasives

La Vitesse des particules abrasives fait référence à la Vitesse à laquelle ces particules se déplacent vers la surface de la pièce lors des processus d'usinage abrasif tels que l'usinage par jet abrasif (AJM) ou le meulage. Il s'agit d'un paramètre critique car il influence directement le taux d'enlèvement de matière, l'efficacité de coupe et l'état de surface.

V=(ZwA0Ndmean3(ρ12hb)34)23

Vitesse de la plaque mobile en termes de viscosité absolue

La formule de la Vitesse de déplacement de la plaque en termes de viscosité absolue est définie comme le rapport du produit de la force tangentielle et de l'épaisseur du film au produit de la viscosité absolue et de la surface.

Vm=PhμoApo

Vitesse initiale du système compte tenu de l'énergie cinétique absorbée par les freins

La formule de la Vitesse initiale du système compte tenu de l'énergie cinétique absorbée par les freins est définie comme la Vitesse du corps lorsque le temps T = 0.

u=(2KEm)+v2

Vitesse finale donnée Énergie cinétique absorbée par les freins

La Vitesse finale donnée par l'énergie cinétique absorbée par les freins est la Vitesse qu'elle atteint après que les freins ont absorbé l'énergie cinétique, qui peut être calculée en fonction de l'énergie dissipée et de la masse du véhicule.

v=u2-(2KEm)

Vitesse angulaire initiale du corps compte tenu de l'énergie cinétique du corps en rotation

La formule de Vitesse angulaire initiale du corps compte tenu de l'énergie cinétique du corps en rotation est définie comme la Vitesse angulaire du système lorsque le système est au temps T = 0.

ω1=(2KEI)+ω22

Vitesse angulaire finale du corps compte tenu de l'énergie cinétique du corps en rotation

La Vitesse angulaire finale du corps étant donné l'énergie cinétique du corps en rotation est la Vitesse de rotation à laquelle l'énergie associée au mouvement du corps est égale à l'énergie cinétique, calculée à l'aide du moment d'inertie.

ω2=ω12-(2KEI)

Vitesse du journal en termes de Sommerfeld Nombre de roulements

La Vitesse du journal en termes de formule du nombre de paliers de Sommerfeld est définie comme le rapport du produit du nombre de Sommerfeld et de la pression de palier unitaire au produit du carré du rapport du rayon du palier au jeu radial et à la viscosité du lubrifiant.

ns=2πSp((rc)2)μl

Vitesse du vent compte tenu de la hauteur de vague pleinement développée

La formule de la Vitesse du vent compte tenu de la hauteur de vague entièrement développée est définie comme une quantité atmosphérique fondamentale causée par le déplacement de l'air d'une haute à une basse pression, généralement en raison de changements de température.

U=H[g]λ

Vitesse sans dimension du roi

King's Dimensionless Velocity , résolvait les mêmes équations mais incluait l'effet de l'inertie; il est possible que le système d'entrée ait une fréquence Helmholtz (ou un mode de pompage, où le bassin oscille uniformément) qui est accordée à la marée océanique forcée et une amplification de la marée de la baie pourrait se produire.

V'm=AavgTVm2πaoAb

Comment trouver Formules ?

Voici quelques conseils pour obtenir de meilleurs résultats de recherche.
Soyez précis : Plus votre requête est spécifique, meilleurs sont vos résultats.
Utilisez plusieurs mots clés : Combinez plusieurs mots clés pour affiner les résultats.
Expérimentez avec des synonymes : Différents termes peuvent donner des résultats différents.
Recherche générique : Utilisez l'opérateur * (astérisque). NOTEZ que cet opérateur ne fonctionne qu'à la fin d'un mot. Exemple : Bio*, Zone*, etc.

Vous pouvez également parcourir les sous-catégories de pour vous concentrer sur les formules qui vous intéressent.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!