Rechercher Formules

Veuillez saisir au moins trois caractères pour commencer à rechercher des formules .

Sélectionner un filtre

Affinez vos résultats de recherche à l’aide de ces filtres.

50 Formules correspondantes trouvées !

Vitesse angulaire

La formule de Vitesse angulaire est définie comme une mesure de la Vitesse à laquelle un objet tourne ou tourne par rapport à un autre point, généralement mesurée en radians par seconde, et constitue un concept fondamental en physique et en ingénierie, utilisé pour décrire le mouvement de rotation d'objets, tels que des roues. , les engrenages et les corps célestes.

ω=θttotal

Vitesse moyenne

La formule de Vitesse moyenne est définie comme une mesure de la distance totale parcourue par un objet sur une période de temps donnée, fournissant une compréhension complète du mouvement et de la Vitesse d'un objet. C'est un concept fondamental en physique, largement utilisé pour calculer la Vitesse des objets. dans divers domaines, notamment les transports, les sports et l'ingénierie.

vavg=Dttotal

Vitesse spatiale du réacteur

La Vitesse spatiale du réacteur nous donne le nombre de volumes de réacteur qui peuvent être traités par unité de temps.

sReactor=voVreactor

Vitesse terminale

La Vitesse terminale est la Vitesse maximale pouvant être atteinte par un objet lorsqu'il tombe à travers un fluide (l'air est l'exemple le plus courant).

Vterminal=29r2(𝜌1-ρ2)gμviscosity

Vitesse de coupe donnée Vitesse angulaire

Vitesse de coupe donnée La Vitesse angulaire est définie comme la Vitesse à laquelle la pièce se déplace par rapport à l'outil (généralement mesurée en pieds par minute).

Vcutting=πdω

Vitesse maximale du suiveur pendant la course de retour pour une accélération uniforme

La formule de la Vitesse maximale du suiveur pendant la course de retour pour une accélération uniforme est définie comme la Vitesse la plus élevée atteinte par le suiveur pendant sa course de retour dans un système mécanique avec une accélération uniforme, où le suiveur se déplace sur une trajectoire circulaire et sa Vitesse varie avec le déplacement angulaire.

Vm=2SωθR

Vitesse angulaire de la machine à courant continu utilisant Kf

La Vitesse angulaire de la machine à courant continu utilisant la formule Kf est définie comme le taux de variation du déplacement angulaire de la machine à courant continu.

ωs=VaKfΦIa

Vitesse angulaire du générateur CC en série compte tenu du couple

La Vitesse angulaire du générateur CC série étant donnée la formule de couple est définie comme la Vitesse angulaire du générateur CC série lorsque la puissance d'entrée est donnée.

ωs=Pinτ

Vitesse angulaire donnée Efficacité électrique du moteur à courant continu

La Vitesse angulaire donnée par la formule de rendement électrique du moteur à courant continu est définie comme le taux de variation du déplacement angulaire du moteur à courant continu.

ωs=ηeVsIaτa

Vitesse derrière le choc normal par l'équation d'impulsion du choc normal

La Vitesse derrière le choc normal par l'équation de l'impulsion de choc normal calcule la Vitesse d'un fluide en aval d'une onde de choc normale à l'aide de l'équation d'impulsion de choc normal. Cette formule intègre des paramètres tels que les pressions statiques avant et derrière le choc, la densité avant le choc et la Vitesse en amont du choc. Il fournit des informations cruciales sur le changement de Vitesse résultant du passage de l’onde de choc.

V2=P1-P2+ρ1V12ρ2

Vitesse avant le choc normal par l'équation d'impulsion du choc normal

L'équation de Vitesse avant le choc normal par impulsion de choc normal calcule la Vitesse d'un fluide avant une onde de choc normale à l'aide de l'équation d'impulsion de choc normal. Cette formule prend en compte des paramètres tels que les pressions statiques devant et derrière le choc, la densité derrière le choc et la Vitesse en aval du choc. Il fournit des informations cruciales sur la Vitesse du fluide avant de rencontrer l’onde de choc, facilitant ainsi l’analyse du comportement de l’écoulement compressible.

V1=P2-P1+ρ2V22ρ1

Vitesse en amont à l'aide de la relation de Prandtl

La Vitesse en amont utilisant la relation de Prandtl calcule la Vitesse d'un fluide en amont d'une onde de choc normale sur la base de la relation de Prandtl. Cette formule utilise la Vitesse critique du son et la Vitesse aval du fluide pour déterminer la Vitesse amont. Il donne un aperçu des conditions d’écoulement en amont de l’onde de choc, facilitant ainsi l’analyse des phénomènes d’écoulement compressible.

V1=acr2V2

Vitesse critique du son à partir de la relation de Prandtl

La Vitesse critique du son d'après la formule de relation de Prandtl est définie comme la racine carrée du produit des Vitesses amont et aval à travers le choc normal.

acr=V2V1

Vitesse du piston pendant l'extension

La formule de la Vitesse du piston pendant l'extension est définie comme la Vitesse de déplacement d'un piston dans un actionneur ou un moteur hydraulique, qui est un paramètre critique pour déterminer les performances et l'efficacité du système, et est influencé par le débit et la surface du piston.

vpiston=QextAp

Vitesse du piston pendant la rétraction

La formule de la Vitesse du piston pendant la phase de rétraction est définie comme la Vitesse de déplacement d'un piston pendant la phase de rétraction dans un système hydraulique, ce qui est essentiel pour déterminer les performances et l'efficacité globales des actionneurs et des moteurs hydrauliques.

vpiston=QretAp-Ar

Vitesse spécifique de la pompe

La formule de la Vitesse spécifique de la pompe est définie comme une quantité sans dimension qui caractérise les performances d'une pompe, offrant un moyen de classer et de comparer différentes pompes en fonction de leurs caractéristiques de fonctionnement, telles que la Vitesse de rotation, le débit et la hauteur manométrique, permettant une conception et une sélection efficaces des pompes pour diverses applications.

Ns=ωQHm34

Vitesse spécifique de la turbine

La formule de Vitesse spécifique de la turbine est définie comme un indice utilisé pour prédire les performances souhaitées de la pompe ou de la turbine. c'est-à-dire qu'il prédit la forme générale de la roue d'une pompe.

Ns=NPHeff54

Vitesse unitaire de la turbomachine

La Vitesse unitaire de la turbomachine est la Vitesse à laquelle la machine fonctionne lorsque le débit, la hauteur et la puissance sont réduits à leurs valeurs unitaires sans dimension correspondantes, généralement utilisées pour comparer différentes machines quelle que soit leur taille. Il contribue à normaliser les caractéristiques de performance et joue un rôle crucial dans les lois de similarité et les modèles d’échelle pour les turbomachines.

Nu=NHeff

Vitesse de toucher des roues

La Vitesse de toucher des roues est la Vitesse à laquelle un avion atterrit. Cette formule calcule la Vitesse d'atterrissage en fonction du poids de l'avion, de la densité du flux libre, de la zone de référence et du coefficient de portance maximal. Comprendre et appliquer cette formule est essentiel pour les pilotes et les ingénieurs afin de garantir des atterrissages sûrs et contrôlés, en optimisant les performances d'approche et d'atterrissage.

VT=1.3(2WρSCL,max)

Vitesse angulaire donnée Vitesse spécifique de la pompe

La formule de la Vitesse angulaire donnée par la Vitesse spécifique de la pompe est définie comme une mesure de la Vitesse de rotation d'une pompe, qui est un paramètre critique dans la conception et le fonctionnement de la pompe, caractérisant la capacité de la pompe à transférer de l'énergie au fluide pompé.

ω=Ns(Hm34)Q

Vitesse de toucher des roues pour une Vitesse de décrochage donnée

La Vitesse de toucher des roues pour une Vitesse de décrochage donnée est une mesure de la Vitesse maximale qu'un avion peut avoir pendant l'atterrissage, calculée en multipliant la Vitesse de décrochage par un facteur de sécurité de 1,3 pour garantir un atterrissage stable et contrôlé.

VT=1.3Vstall

Vitesse angulaire de la turbine compte tenu de la Vitesse spécifique

La Vitesse angulaire de la turbine compte tenu de la formule de Vitesse spécifique est définie comme le taux de variation du déplacement angulaire de la turbine.

N=NsHeff54P

Vitesse de décrochage pour une Vitesse de toucher donnée

La Vitesse de décrochage pour une Vitesse d'atterrissage donnée est la Vitesse à laquelle l'avion n'est plus en mesure de maintenir la portance et entrera en condition de décrochage. Cette équation que vous avez fournie semble estimer la Vitesse de décrochage d'un avion lors de l'atterrissage en divisant la Vitesse d'atterrissage par un facteur. de 1,3.

Vstall=VT1.3

Vitesse radiale

La formule de Vitesse radiale est définie par rapport à un point donné, c'est le taux de changement de la distance entre l'objet et le point.

vr=fdλ2

Vitesse de coupe moyenne

La Vitesse moyenne de coupe est utilisée pour déterminer la moyenne temporelle de la Vitesse de coupe à laquelle le matériau est retiré de la pièce. Il nous donne des informations utiles sur le temps estimé nécessaire pour terminer l’opération d’usinage.

Vt=nπdw+dm2

Vitesse du flux libre selon le théorème de Kutta-Joukowski

La Vitesse Freestream par la formule du théorème de Kutta-Joukowski est définie comme la fonction de la portance par unité de portée, de la circulation et de la densité du courant libre.

V=L'ρΓ

Vitesse le long de l'axe de lacet pour un petit angle d'attaque

La Vitesse le long de l'axe de lacet pour un petit angle d'attaque est une mesure du taux de changement de position d'un objet le long de l'axe de lacet, par rapport à son mouvement dû à un petit angle d'attaque, elle est calculée en multipliant la Vitesse le long de l'axe de roulis par l'angle d'attaque en radians, fournissant un paramètre crucial en aérodynamique et en dynamique de vol.

w=uα

Vitesse Freestream sur plaque plate en utilisant le numéro de Stanton

La Vitesse du courant libre sur une plaque plate à l'aide de la formule du nombre de Stanton est définie comme une mesure de la Vitesse du fluide s'approchant de la plaque plate dans un cas d'écoulement visqueux, ce qui est essentiel pour comprendre les caractéristiques de transfert de chaleur et d'écoulement du fluide sur la plaque.

V=qwStρ(haw-hw)

Vitesse le long de l'axe de roulis pour un petit angle d'attaque

La Vitesse le long de l'axe de roulis pour un petit angle d'attaque est une mesure de la Vitesse de rotation d'un objet autour de son axe de roulis lorsque l'angle d'attaque est relativement petit et est calculée en divisant la Vitesse le long du mouvement de lacet par l'angle d'attaque en radians.

u=wα

Vitesse le long de l’axe de tangage pour un petit angle de dérapage

La Vitesse le long de l'axe de tangage pour un petit angle de dérapage est une mesure de la Vitesse d'un avion ou d'un objet se déplaçant selon un petit angle de dérapage, ce qui est essentiel pour comprendre et prédire sa trajectoire et sa stabilité.

v=βu

Vitesse le long de l’axe de roulis pour un petit angle de dérapage

La Vitesse le long de l'axe de roulis pour un petit angle de dérapage est une mesure de la Vitesse de l'avion dans la direction de l'axe de roulis lorsque l'angle de dérapage est petit, ce qui donne un aperçu de la stabilité et de la réactivité de l'avion pendant le vol.

u=vβ

Vitesse de flux libre sur une plaque plate avec des conditions de flux libre

La formule de la Vitesse du courant libre sur une plaque plate avec des conditions de courant libre est définie comme la Vitesse du fluide s'approchant d'une plaque plate dans un cas d'écoulement visqueux, qui est un concept fondamental en dynamique des fluides et en aérodynamique, utilisé pour analyser le comportement des fluides s'écoulant sur une surface plane.

V=2(h0-h)

Vitesse de flux libre sur une plaque plate en utilisant la force de traînée

La Vitesse du courant libre sur une plaque plate à l'aide de la formule de la force de traînée est définie comme la Vitesse du fluide s'approchant de la plaque plate, qui est affectée par la force de traînée, la densité de l'air, la surface et le coefficient de traînée, et est un paramètre essentiel pour comprendre l'écoulement visqueux sur une plaque plate.

V=FD0.5ρSCD

Vitesse angulaire du corps se déplaçant en cercle

La formule de la Vitesse angulaire d'un corps se déplaçant dans un cercle est définie comme une mesure de la Vitesse à laquelle un objet tourne ou tourne lorsqu'il se déplace sur une trajectoire circulaire, décrivant le taux de changement de son déplacement angulaire par rapport au temps.

ω=θcmtcm

Vitesse angulaire étant donné la Vitesse linéaire

La Vitesse angulaire étant donnée la formule de la Vitesse linéaire est définie comme une mesure du taux de changement du déplacement angulaire d'un objet par rapport au temps, fournissant un moyen de quantifier le mouvement de rotation d'un objet en termes de sa Vitesse linéaire et de son rayon.

ω=vcmr

Vitesse critique compte tenu du débit dans les canaux ouverts

La Vitesse critique en tenant compte de l'écoulement dans la formule des canaux ouverts est connue avec la racine carrée de la gravité et de la profondeur critique.

Vc=[g]hc

Vitesse angulaire finale

La formule de la Vitesse angulaire finale est définie comme la mesure de la Vitesse de rotation d'un objet à la fin d'une période de temps, décrivant le changement de son déplacement angulaire par rapport au temps, en tenant compte de la Vitesse angulaire initiale et de l'accélération angulaire.

ωfi=ωin+αcmtcm

Vitesse angulaire initiale

La formule de la Vitesse angulaire initiale est définie comme la mesure du taux de changement du déplacement angulaire d'un objet par rapport au temps, décrivant le mouvement de rotation d'un objet autour d'un axe fixe, fournissant des informations sur la cinématique de rotation de l'objet.

ωin=ωfi-αcmtcm

Vitesse angulaire moyenne

La formule de la Vitesse angulaire moyenne est définie comme la valeur moyenne de la Vitesse angulaire d'un objet subissant un mouvement de rotation, fournissant une mesure du taux de changement de son déplacement angulaire sur une période de temps spécifique.

ω=ωin+ωfi2

Vitesse moyenne du gaz à une température donnée

La Vitesse moyenne du gaz selon la formule de température est définie comme le rapport de la racine carrée de la température et de la masse molaire du gaz respectif.

Cav=8[R]TgπMmolar

Vitesse moyenne du gaz compte tenu de la pression et du volume

La formule de la Vitesse moyenne du gaz en fonction de la pression et du volume est définie comme le rapport de la racine carrée de la pression et du volume à la masse molaire du gaz respectif.

vavg_P_V=8PgasVπMmolar

Vitesse moyenne du gaz compte tenu de la pression et de la densité

La formule de la Vitesse moyenne du gaz en fonction de la pression et de la densité est définie comme la racine carrée du rapport de la pression du gaz à la densité du gaz.

vavg_P_D=8Pgasπρgas

Vitesse moyenne du gaz donnée Vitesse quadratique moyenne

La Vitesse moyenne du gaz étant donné la formule de la Vitesse quadratique moyenne est définie comme le produit de la Vitesse quadratique moyenne avec 0,9213. La Vitesse moyenne est la Vitesse moyenne de chaque molécule du gaz.

vavg_RMS=(0.9213CRMS_speed)

Vitesse RMS donnée Vitesse moyenne

La formule de Vitesse moyenne donnée par la Vitesse RMS est définie comme le rapport de la Vitesse moyenne du gaz à 0,9213.

CRMS=(Cav0.9213)

Vitesse d'autonettoyage en fonction du facteur de friction

La Vitesse d'auto-nettoyage donnée par le facteur de friction est définie comme la Vitesse minimale à laquelle le fluide doit s'écouler dans un égout pour empêcher le dépôt de sédiments et maintenir un chemin dégagé.

vs=8[g]kd'(G-1)f'

Vitesse d'auto-nettoyage compte tenu du coefficient de rugosité

La Vitesse d'auto-nettoyage étant donné le coefficient de rugosité, elle est définie comme la Vitesse minimale à laquelle le fluide doit s'écouler dans un égout pour éviter le dépôt de sédiments et maintenir un chemin dégagé.

vs=(1n)(m)16kd'(G-1)

Vitesse apparente d'infiltration

La formule de la Vitesse apparente d’infiltration est définie comme le débit d’eau à travers un milieu poreux. Il est défini par la loi de Darcy et est calculé comme le débit volumétrique par unité de surface du milieu. La conception des structures hydrauliques telles que les barrages, les digues et les installations de recharge des eaux souterraines nécessite une connaissance des Vitesses d'infiltration pour garantir la stabilité et éviter les défaillances dues à des infiltrations ou des canalisations incontrôlées.

V=K''dhds

Vitesse apparente d'infiltration lorsque le débit et la section transversale sont pris en compte

La formule de la Vitesse apparente d'infiltration lorsque le débit et la section transversale sont considérés est définie comme la Vitesse à laquelle les eaux souterraines semblent se déplacer à travers une zone transversale donnée de sol ou de roche. Comprendre les Vitesses d'infiltration est crucial dans la conception de barrages, de digues et d'autres structures hydrauliques afin de garantir la stabilité et d'éviter les défaillances dues à une infiltration excessive.

V=Q'A

Vitesse apparente du suintement compte tenu du nombre de Reynolds de l'unité de valeur

La Vitesse apparente d'infiltration étant donné la formule du nombre de Reynolds de valeur unitaire est définie comme le débit volumétrique de fluide par unité de surface à travers un milieu poreux. Il s'agit d'une Vitesse conceptuelle qui suppose que le fluide se déplace uniformément sur toute la section transversale du milieu poreux.

V=Reνstokesda

Vitesse de surface de la pièce compte tenu du nombre de tours de la pièce

La Vitesse de surface de la pièce étant donné le nombre de tours de la pièce à usiner" est la surface de la pièce qui se déplace par rapport à l'outil de meulage en fonction du nombre de tours, du paramètre d'enlèvement de la pièce, de la rigidité effective et de la largeur de la trajectoire de meulage.

vw=mΛWSe2ap

Comment trouver Formules ?

Voici quelques conseils pour obtenir de meilleurs résultats de recherche.
Soyez précis : Plus votre requête est spécifique, meilleurs sont vos résultats.
Utilisez plusieurs mots clés : Combinez plusieurs mots clés pour affiner les résultats.
Expérimentez avec des synonymes : Différents termes peuvent donner des résultats différents.
Recherche générique : Utilisez l'opérateur * (astérisque). NOTEZ que cet opérateur ne fonctionne qu'à la fin d'un mot. Exemple : Bio*, Zone*, etc.

Vous pouvez également parcourir les sous-catégories de pour vous concentrer sur les formules qui vous intéressent.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!