Rechercher Formules

Veuillez saisir au moins trois caractères pour commencer à rechercher des formules .

Sélectionner un filtre

Affinez vos résultats de recherche à l’aide de ces filtres.

50 Formules correspondantes trouvées !

Vitesse linéaire moyenne

La formule de la Vitesse linéaire moyenne est définie comme la Vitesse moyenne d'un objet subissant un mouvement circulaire, fournissant une mesure de sa Vitesse de rotation, essentielle dans l'analyse des diagrammes de moment de rotation et des systèmes de volant d'inertie.

v=v1+v22

Vitesse angulaire moyenne

La formule de la Vitesse angulaire moyenne est définie comme la moyenne de deux Vitesses angulaires, fournissant une valeur unique qui représente le mouvement de rotation global d'un objet ou d'un système, couramment utilisée dans l'analyse des diagrammes de moment de rotation et des systèmes de volant d'inertie.

ω=ω1+ω22

Vitesse angulaire des particules dans le champ magnétique

La Vitesse angulaire d'une particule dans un champ magnétique est calculée lorsqu'une particule de masse m et de charge q se déplace dans un champ magnétique constant B.

ωp=qpHmp

Vitesse du moteur du moteur à courant continu Flux donné

Vitesse du moteur du moteur à courant continu donné Le flux est défini comme la Vitesse du rotor du moteur à courant continu par rapport au no. de pôles, de chemins parallèles et de conducteurs.

N=Vs-IaRaKfΦ

Vitesse angulaire du moteur shunt à courant continu donnée Kf

La Vitesse angulaire du moteur à courant continu shunt donnée dans la formule Kf est définie comme le taux de variation du déplacement angulaire dans le moteur à courant continu shunt.

ωs=EbKfΦ

Vitesse angulaire du moteur shunt CC compte tenu de la puissance de sortie

La formule de Vitesse angulaire du moteur shunt à courant continu étant donné la puissance de sortie est définie comme le taux de changement du déplacement angulaire dans le moteur à courant continu shunt.

ωs=Poutτ

Vitesse à vide du moteur à courant continu shunt

La formule de Vitesse à vide du moteur à courant continu shunt est définie comme une référence à la Vitesse à laquelle l'arbre d'un moteur tournera avant que le poids ne lui soit ajouté.

Nnl=NregNfl100+Nfl

Vitesse de pleine charge du moteur à courant continu shunt

La formule de Vitesse à pleine charge du moteur à courant continu shunt est définie comme la Vitesse du moteur à laquelle le moteur est complètement chargé pour fournir son couple maximal pour entraîner la charge.

Nfl=100NnlNreg+100

Vitesse angulaire des vibrations longitudinales libres

La formule de la Vitesse angulaire des vibrations longitudinales libres est définie comme une mesure de la Vitesse d'oscillation d'un système longitudinal vibrant librement, caractérisant la fréquence naturelle du système en termes de rigidité et de masse.

ω=sconstrainmspring

Vitesse du moteur à courant continu série

La formule de Vitesse du moteur à courant continu série est définie comme la Vitesse à laquelle le rotor tourne et la Vitesse synchrone est la Vitesse du champ magnétique du stator dans le moteur à induction triphasé.

N=Vs-Ia(Ra+Rsh)KfΦ

Vitesse angulaire du moteur à courant continu en fonction de la puissance de sortie

La Vitesse angulaire du moteur à courant continu étant donnée la formule de puissance de sortie est définie comme le taux de variation du déplacement angulaire dans le moteur à courant continu.

ωs=Poutτ

Vitesse à la position moyenne

La formule de la Vitesse à la position moyenne est définie comme une mesure de la Vitesse d'un objet à sa position moyenne pendant les vibrations longitudinales libres, donnant un aperçu du comportement oscillatoire de l'objet et de sa fréquence naturelle.

v=(ωfx)cos(ωfttotal)

Vitesse maximale à la position moyenne par la méthode de Rayleigh

La formule de la Vitesse maximale à la position moyenne par la méthode de Rayleigh est définie comme la Vitesse la plus élevée atteinte par un objet à sa position moyenne lors de vibrations longitudinales libres, fournissant des informations précieuses sur le mouvement oscillatoire de l'objet.

Vmax=ωnx

Vitesse angulaire de l'arbre

La formule de la Vitesse angulaire de l'arbre est définie comme une mesure de la Vitesse de rotation d'un arbre dans un système mécanique, généralement utilisée pour analyser et comprendre les vibrations et oscillations de torsion dans les machines rotatives.

ω=qrId

Vitesse angulaire de l'élément

La formule de la Vitesse angulaire d'un élément est définie comme une mesure de la Vitesse de rotation d'un élément dans un système de vibrations de torsion, décrivant le taux de changement du déplacement angulaire par rapport au temps, fournissant des informations sur le comportement dynamique du système.

ω=ωfxl

Vitesse angulaire de l'extrémité libre utilisant l'énergie cinétique de contrainte

La formule de la Vitesse angulaire de l'extrémité libre utilisant l'énergie cinétique de la contrainte est définie comme une mesure de la Vitesse de rotation d'une extrémité libre dans un système de vibration de torsion, qui est influencée par l'énergie cinétique de la contrainte et le moment d'inertie du système.

ωf=6KEIc

Vitesse derrière le choc normal

La Vitesse derrière le choc normal calcule la Vitesse d'un fluide en aval d'une onde de choc normale. Cette formule intègre des paramètres tels que la Vitesse en amont du choc, le rapport des chaleurs spécifiques du fluide et le nombre de Mach du débit. Il fournit des informations précieuses sur le changement de Vitesse résultant du passage de l’onde de choc.

V2=V1γ+1(γ-1)+2M2

Vitesse angulaire de la pompe à palettes compte tenu du débit théorique

La Vitesse angulaire de la pompe à palettes donnée par la formule de décharge théorique est définie comme la Vitesse de rotation de la pompe à palettes qui est théoriquement calculée en fonction des paramètres de conception de la pompe et des conditions de fonctionnement, fournissant une valeur idéalisée pour les performances de la pompe.

N1=2Qvpπewvp(dc+dr)

Vitesse de décollage pour une Vitesse de décrochage donnée

La Vitesse de décollage pour une Vitesse de décrochage donnée est une mesure de la Vitesse minimale requise pour qu'un avion décolle, calculée en multipliant la Vitesse de décrochage par un facteur de sécurité de 1,2, garantissant une marge de sécurité au-dessus de la Vitesse de décrochage pour éviter une panne moteur ou une perte de contrôle. pendant les phases critiques du vol.

VLO=1.2Vstall

Vitesse de décrochage pour une Vitesse de décollage donnée

La Vitesse de décrochage pour une Vitesse de décollage donnée est la Vitesse minimale à laquelle un avion peut maintenir un vol en palier, calculée en divisant la Vitesse de décollage par 1,2.

Vstall=VLO1.2

Vitesse de décollage pour un poids donné

La Vitesse de décollage pour un poids donné est une mesure de la Vitesse minimale requise pour qu'un objet décolle du sol, calculée en fonction du poids, de la densité du flux libre, de la zone de référence et du coefficient de portance maximal.

VLO=1.2(2WρSCL,max)

Vitesse de décrochage pour un poids donné

La Vitesse de décrochage pour une masse donnée est une mesure de la Vitesse à laquelle une aile d'avion décroche, calculée en fonction du poids, de la densité du flux libre, de la zone de référence et du coefficient de portance maximale, fournissant un seuil de Vitesse critique pour des opérations aériennes sûres.

Vstall=2WρSCL,max

Vitesse angulaire de la pompe centrifuge

La formule de la Vitesse angulaire d'une pompe centrifuge est définie comme une mesure de la Vitesse de rotation d'une pompe centrifuge, qui est un paramètre critique pour déterminer les performances et l'efficacité de la pompe dans diverses applications industrielles et d'ingénierie.

ω=2πNr60

Vitesse tangentielle de la roue à aubes à l'entrée

La formule de Vitesse tangentielle de la turbine à l'entrée est définie comme le produit de pi, du diamètre de la turbine à l'entrée et de la Vitesse de la turbine (tr/min) divisé par 60.

u1=πD1ω60

Vitesse donnée au rayon de braquage pour un facteur de charge élevé

La Vitesse donnée par le rayon de virage pour des conditions de facteur de charge élevé est la Vitesse requise pour qu'un avion maintienne un rayon de virage spécifique tout en subissant un facteur de charge important. Cette formule calcule la Vitesse en fonction du rayon de virage, du facteur de charge et de l'accélération gravitationnelle. Comprendre et appliquer cette formule est crucial pour les pilotes et les ingénieurs afin d'optimiser la maniabilité des avions et d'assurer la sécurité lors des manœuvres à charge élevée.

v=Rn[g]

Vitesse tangentielle de la roue à la sortie

La formule de Vitesse tangentielle de la roue à la sortie est définie comme le produit de pi, le diamètre de la roue à la sortie et la Vitesse de la roue (tr / min) divisé par 60.

u2=πD2ω60

Vitesse à la section 1 pour un débit constant

La formule de Vitesse à la section 1 pour un débit constant est définie comme la Vitesse d'écoulement à un point particulier du cours d'eau.

u01=QAcsρ1

Vitesse à la section 2 donnée Débit à la section 1 pour un débit constant

La Vitesse à la section 2, compte tenu du débit à la section 1 pour la formule de débit constant, est définie comme la Vitesse d'écoulement à un point particulier du flux.

u02=QAcsρ2

Vitesse à la section pour la décharge à travers la section pour le fluide incompressible stable

La Vitesse à la section pour la décharge à travers la section pour le fluide incompressible stable est définie comme la Vitesse d'écoulement dans la section transversale.

uFluid=QAcs

Vitesse d'écoulement à l'entrée volume de liquide donné

La Vitesse d'écoulement à l'entrée d'un volume donné de liquide est définie comme la Vitesse à laquelle un liquide s'écoule dans une pompe centrifuge, ce qui est un paramètre critique pour déterminer les performances et l'efficacité de la pompe, et est influencé par le volume de liquide pompé et les paramètres géométriques de la pompe.

Vf1=QπD1B1

Vitesse d'écoulement à la sortie d'un volume de liquide donné

La Vitesse d'écoulement à la sortie d'un volume donné de formule liquide est définie comme la Vitesse à laquelle un liquide s'écoule hors d'une pompe centrifuge, influencée par les paramètres géométriques et de débit de la pompe, fournissant des informations précieuses sur les performances et l'efficacité de la pompe.

Vf2=QπD2B2

Vitesse de coupe résultante

La Vitesse de coupe résultante est la Vitesse résultante de la Vitesse de l'outil primaire et de la Vitesse d'avance simultanées, donnée à l'outil pendant l'usinage. Dans des conditions idéales, il est considéré comme identique à la Vitesse de coupe.

Vr=vccos((η))

Vitesse du flux libre selon le théorème de Kutta-Joukowski

La Vitesse Freestream par la formule du théorème de Kutta-Joukowski est définie comme la fonction de la portance par unité de portée, de la circulation et de la densité du courant libre.

V=L'ρΓ

Vitesse du flux libre

La formule de Vitesse Freestream est définie comme la viscosité dynamique du fluide divisée par le produit du carré de l'émissivité, de la densité du flux libre et du rayon du nez.

V=μviscosityε2ρrnose

Vitesse du piston pour la force de cisaillement résistant au mouvement du piston

La Vitesse du piston pour le mouvement de résistance à la force de cisaillement du piston est définie comme la Vitesse moyenne à laquelle le piston se déplace.

vpiston=FsπμLP(1.5(DCR)2+4(DCR))

Vitesse du fluide

La Vitesse du fluide est définie comme la Vitesse à laquelle le fluide ou l'huile dans le réservoir se déplace en raison de l'application de la force du piston.

uOiltank=dp|dr0.5RR-CHRμ

Vitesse du piston pour la réduction de la pression sur la longueur du piston

La Vitesse du piston pour la réduction de la pression sur la longueur du piston est définie comme la Vitesse à laquelle le piston descend.

vpiston=ΔPf(3μLPCR3)(D)

Vitesse du piston compte tenu de la contrainte de cisaillement

La Vitesse du piston compte tenu de la contrainte de cisaillement est définie comme la Vitesse moyenne dans le réservoir due au mouvement du piston.

vpiston=𝜏1.5DμCHCH

Vitesse pour la longueur d'onde de l'onde

La formule Vitesse pour la longueur d'onde de l'onde est définie comme la Vitesse à laquelle l'onde se propage dans un milieu, calculée comme le produit de sa fréquence et de sa longueur d'onde.

C=(λf)

Vitesse de l'onde sonore

La formule de la Vitesse de l’onde sonore est définie comme étant la Vitesse, bien que, proprement dite, la Vitesse implique à la fois la Vitesse et la direction. La Vitesse d'une onde est égale au produit de sa longueur d'onde et de sa fréquence (nombre de vibrations par seconde) et est indépendante de son intensité.

C=20.05T

Vitesse de l'onde sonore compte tenu de l'intensité sonore

La formule de Vitesse de l'onde sonore étant donné l'intensité sonore est définie comme la Vitesse, bien que, proprement, la Vitesse implique à la fois la Vitesse et la direction. La Vitesse d'une onde est égale au produit de sa longueur d'onde et de sa fréquence (nombre de vibrations par seconde) et est indépendante de son intensité.

C=Prms2Iρ

Vitesse à l'entrée pour la masse de l'aube de frappe de fluide par seconde

La Vitesse à l'entrée pour la masse de l'aube de frappe de fluide par seconde est le taux de changement de sa position par rapport au cadre de référence et est fonction du temps.

v=mfGγfAJet

Vitesse à la profondeur1 donnée Vitesse absolue de surtension se déplaçant vers la droite

La Vitesse à la profondeur1 étant donné la formule de Vitesse absolue de surtension se déplaçant vers la droite est définie comme la Vitesse résultante à une profondeur spécifique due à la combinaison de la surtension et du mouvement horizontal.

VNegativesurges=(vabs(D2-h 1))+(V2D2)h 1

Vitesse en profondeur2 donnée Vitesse absolue des surtensions se déplaçant vers la droite

La formule de Vitesse à la profondeur 2 étant donné la Vitesse absolue des surtensions se déplaçant vers la droite est définie comme la Vitesse résultante à la profondeur 2 en tenant compte du mouvement de surtension.

V2=(vabs(h 1-D2))+(VNegativesurgesh 1)D2

Vitesse à la profondeur1 lorsque la Vitesse absolue de la montée subite lorsque le débit est complètement arrêté

La formule Vitesse à la profondeur 1 lorsque la Vitesse absolue de montée subite lorsque le débit est complètement arrêté est définie comme la Vitesse initiale de l'eau lors d'un arrêt brusque.

VNegativesurges=vabs(D2-h 1)h 1

Vitesse à la profondeur1 lorsque la hauteur de surtension pour la hauteur de surtension est négligeable Profondeur d'écoulement

La Vitesse à la profondeur1 lorsque la hauteur de la surtension pour la hauteur de la surtension est une formule de profondeur de flux négligeable est définie comme la Vitesse de la surtension au point.

VNegativesurges=(Hch[g]Cw)+V2

Vitesse absolue des surtensions

La formule de la Vitesse absolue des surtensions est définie comme une Vitesse sans cadre de référence dans le flux des surtensions.

vabs=[g]df-vm

Vitesse d'écoulement donnée Vitesse absolue des surtensions

La Vitesse d'écoulement étant donné la Vitesse absolue des surtensions est définie comme la Vitesse résultante du mouvement du fluide tenant compte des effets de surtension.

vm=[g]df-vabs

Vitesse absolue des surtensions pour une profondeur d'écoulement donnée

La Vitesse absolue des surtensions pour une profondeur d'écoulement donnée est définie comme la Vitesse de surtension sans égard à la direction.

vabs=Cw+vm

Vitesse d'écoulement donnée Profondeur d'écoulement

La Vitesse d'écoulement étant donné la profondeur d'écoulement est définie comme la Vitesse moyenne avec l'eau se déplaçant dans le canal.

vm=[g]h 1-vabs

Comment trouver Formules ?

Voici quelques conseils pour obtenir de meilleurs résultats de recherche.
Soyez précis : Plus votre requête est spécifique, meilleurs sont vos résultats.
Utilisez plusieurs mots clés : Combinez plusieurs mots clés pour affiner les résultats.
Expérimentez avec des synonymes : Différents termes peuvent donner des résultats différents.
Recherche générique : Utilisez l'opérateur * (astérisque). NOTEZ que cet opérateur ne fonctionne qu'à la fin d'un mot. Exemple : Bio*, Zone*, etc.

Vous pouvez également parcourir les sous-catégories de pour vous concentrer sur les formules qui vous intéressent.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!