Rechercher Formules

Veuillez saisir au moins trois caractères pour commencer à rechercher des formules .

Sélectionner un filtre

Affinez vos résultats de recherche à l’aide de ces filtres.

50 Formules correspondantes trouvées !

Vitesse synchrone dans le moteur à induction

La Vitesse synchrone dans le moteur à induction est la Vitesse du champ magnétique du stator dans le moteur à induction triphasé.

Ns=120fn

Vitesse du moteur dans le moteur à induction

La Vitesse du moteur dans le moteur à induction est la Vitesse à laquelle le rotor d'un moteur à induction tourne.

Nm=Ns(1-s)

Vitesse périphérique de projection du point P sur diamètre pour SHM du suiveur

La formule de la Vitesse périphérique de projection du point P sur le diamètre du SHM du suiveur est définie comme la Vitesse à laquelle le point P se déplace le long du diamètre du cercle dans un mouvement harmonique simple du suiveur dans un système à came et suiveur, ce qui est crucial pour comprendre la cinématique du mécanisme.

Ps=πS2to

Vitesse Périphérique de Projection du Point P' (Projection du Point P sur Dia) pour SHM du Suiveur

La formule de la Vitesse périphérique de projection du point P' (projection du point P sur le diamètre) pour la SHM du suiveur est définie comme la Vitesse à laquelle la projection d'un point sur le diamètre d'une came se déplace pendant le mouvement harmonique simple du suiveur dans un système à came et suiveur.

Ps=πSω2θo

Vitesse maximale du suiveur en sortie lorsque le suiveur se déplace avec SHM

La Vitesse maximale du suiveur lors de la course extérieure lorsque le suiveur se déplace avec la formule SHM est définie comme la Vitesse la plus élevée atteinte par le suiveur pendant son mouvement vers l'extérieur, ce qui est un paramètre critique dans l'évaluation des performances d'un système mécanique impliquant un mouvement harmonique simple.

Vm=πSω2θo

Vitesse maximale du suiveur en sortie de course compte tenu du temps de course

Vitesse maximale du suiveur lors de la course extérieure en fonction du temps La formule de course est définie comme la Vitesse la plus élevée atteinte par le suiveur pendant la phase de course extérieure d'un système suiveur de came, ce qui est un paramètre critique dans la conception et l'optimisation des systèmes mécaniques, en particulier dans les applications d'ingénierie automobile et aérospatiale.

Vm=πS2to

Vitesse maximale du suiveur lors de la course de retour lorsque le suiveur se déplace avec SHM

La Vitesse maximale du suiveur lors de la course de retour lorsque le suiveur se déplace avec la formule SHM est définie comme la Vitesse la plus élevée atteinte par le suiveur lors de sa course de retour tout en se déplaçant dans un mouvement harmonique simple, ce qui est un paramètre critique dans la conception et l'optimisation des systèmes mécaniques.

Vm=πSω2θR

Vitesse synchrone du moteur synchrone

La Vitesse synchrone du moteur synchrone donnée ka formule est définie comme une Vitesse définie pour une machine à courant alternatif qui dépend de la fréquence du circuit d'alimentation car l'élément rotatif passe une paire de pôles pour chaque alternance du courant alternatif.

Ns=120fP

Vitesse du fluide compte tenu de la pression dynamique

La formule de la Vitesse d'un fluide en fonction de la pression dynamique est définie comme une relation qui exprime la Vitesse d'écoulement du fluide en fonction de la pression dynamique et de la densité du fluide. Elle est essentielle pour comprendre la dynamique des fluides et analyser le comportement des fluides dans divers systèmes mécaniques.

uFluid=Pdynamic2LD

Vitesse angulaire de la pompe à palettes compte tenu du débit théorique

La Vitesse angulaire de la pompe à palettes donnée par la formule de décharge théorique est définie comme la Vitesse de rotation de la pompe à palettes qui est théoriquement calculée en fonction des paramètres de conception de la pompe et des conditions de fonctionnement, fournissant une valeur idéalisée pour les performances de la pompe.

N1=2Qvpπewvp(dc+dr)

Vitesse de décollage pour une Vitesse de décrochage donnée

La Vitesse de décollage pour une Vitesse de décrochage donnée est une mesure de la Vitesse minimale requise pour qu'un avion décolle, calculée en multipliant la Vitesse de décrochage par un facteur de sécurité de 1,2, garantissant une marge de sécurité au-dessus de la Vitesse de décrochage pour éviter une panne moteur ou une perte de contrôle. pendant les phases critiques du vol.

VLO=1.2Vstall

Vitesse de décrochage pour une Vitesse de décollage donnée

La Vitesse de décrochage pour une Vitesse de décollage donnée est la Vitesse minimale à laquelle un avion peut maintenir un vol en palier, calculée en divisant la Vitesse de décollage par 1,2.

Vstall=VLO1.2

Vitesse de décollage pour un poids donné

La Vitesse de décollage pour un poids donné est une mesure de la Vitesse minimale requise pour qu'un objet décolle du sol, calculée en fonction du poids, de la densité du flux libre, de la zone de référence et du coefficient de portance maximal.

VLO=1.2(2WρSCL,max)

Vitesse de décrochage pour un poids donné

La Vitesse de décrochage pour une masse donnée est une mesure de la Vitesse à laquelle une aile d'avion décroche, calculée en fonction du poids, de la densité du flux libre, de la zone de référence et du coefficient de portance maximale, fournissant un seuil de Vitesse critique pour des opérations aériennes sûres.

Vstall=2WρSCL,max

Vitesse pour un taux de virage donné pour un facteur de charge élevé

La Vitesse pour un taux de virage donné pour un facteur de charge élevé est la Vitesse requise pour qu'un avion maintienne un taux de virage spécifique tout en connaissant un facteur de charge élevé. Cette formule calcule la Vitesse en fonction de l'accélération gravitationnelle, du facteur de charge et du taux de virage. Comprendre et appliquer cette formule est essentiel pour les pilotes et les ingénieurs afin d'optimiser la manœuvrabilité des avions.

v=[g]nω

Vitesse de rotation pour le couple requis dans le roulement à collerette

La Vitesse de rotation pour le couple requis dans la formule de palier à collier est connue tout en considérant la viscosité du fluide, le rayon intérieur et extérieur du collier, l'épaisseur du film d'huile et le couple requis pour surmonter la résistance visqueuse.

N=τtμπ2(R14-R24)

Vitesse à la sortie pour la perte de charge à la sortie du tuyau

La Vitesse en sortie pour la formule de perte de charge en sortie de conduite est connue en considérant la racine carrée de la perte de charge en sortie de conduite et l'accélération gravitationnelle.

v=ho2[g]

Vitesse du fluide pour la perte de charge due à une obstruction dans le tuyau

La Vitesse du fluide pour la perte de charge due à l'obstruction dans la formule du tuyau est connue en tenant compte de la perte de charge, du coefficient de contraction, de la surface du tuyau et de la surface maximale de l'obstruction.

Vf=Ho2[g](ACc(A-A'))-1

Vitesse du liquide à vena-contracta

La formule de la Vitesse du liquide à la veine-contracta est connue en considérant la surface du tuyau et la zone maximale d'obstruction dans le tuyau, le coefficient de contraction et la Vitesse du fluide dans le tuyau.

Vc=AVfCc(A-A')

Vitesse du fluide compte tenu de la contrainte de cisaillement

La formule de la Vitesse du fluide en fonction de la contrainte de cisaillement est définie en fonction de la contrainte de cisaillement, de la viscosité dynamique et de la distance entre les couches de fluide adjacentes.

V=Yτμ

Vitesse moyenne dans les cours d'eau modérément profonds

La formule de la Vitesse moyenne dans les cours d'eau moyennement profonds est définie comme le volume de fluide par unité de temps s'écoulant au-delà d'un point à travers la zone A.

v=v0.2+v0.82

Vitesse moyenne obtenue en utilisant le facteur de réduction

La Vitesse moyenne obtenue en utilisant la formule du facteur de réduction est définie comme le déplacement total divisé par le temps total pris. En d’autres termes, c’est la Vitesse à laquelle un objet change de position d’un endroit à un autre.

v=Kvs

Vitesse de flux moyenne en fonction du poids minimum

La formule de Vitesse moyenne du ruisseau compte tenu du poids minimum est définie comme la Vitesse de l'eau dans le ruisseau. Les unités sont la distance par temps. La Vitesse du cours d'eau est la plus élevée au milieu du cours d'eau, près de la surface, et est la plus lente le long du lit et des berges du cours d'eau en raison de la friction.

v=N50d

Vitesse de surface

La formule de Vitesse de surface est définie comme la direction et la Vitesse avec lesquelles l'eau se déplace, mesurées en pieds par seconde (ft/s) ou en mètres par seconde (m/s).

vs=St

Vitesse du bateau en mouvement

La formule de Vitesse du bateau en mouvement est définie comme un courantomètre à hélice qui est libre de se déplacer autour d'un axe vertical et est remorqué dans un bateau à une certaine Vitesse.

vb=Vcos(θ)

Vitesse résultante donnée Vitesse du bateau en mouvement

La formule de Vitesse résultante donnée par la Vitesse du bateau en mouvement est définie comme la Vitesse enregistrée dans le courantomètre à hélice qui est libre de se déplacer autour d'un axe vertical remorqué dans un bateau à une certaine Vitesse.

V=vbcos(θ)

Vitesse résultante en fonction de la Vitesse d'écoulement

La formule de Vitesse résultante donnée par la Vitesse d'écoulement est définie comme la Vitesse enregistrée dans le courantomètre à hélice qui est libre de se déplacer autour d'un axe vertical remorqué dans un bateau à une certaine Vitesse.

V=Vfsin(θ)

Vitesse du bateau en mouvement étant donné la largeur entre deux verticales

La formule de Vitesse du bateau en mouvement étant donné la largeur entre deux verticales est définie comme le mouvement combiné du bateau par rapport à l'eau et le mouvement de l'eau par rapport au rivage.

vb=WΔt

Vitesse de surface donnée Moyenne de la Vitesse

La formule de Vitesse de surface donnée par la moyenne de la Vitesse est définie comme la Vitesse dans la direction et la Vitesse avec lesquelles l'eau se déplace.

vs=vK

Vitesse de déplacement dans la rectifieuse plane à broche horizontale et verticale étant donné le MRR

La Vitesse de déplacement dans les meuleuses de surface à broche horizontale et verticale étant donné le MRR, est une méthode permettant de déterminer le mouvement de va-et-vient de la table de travail par rapport à la meule lorsque la quantité de MRR requise est connue. La Vitesse de déplacement est donnée en fonction de différents paramètres tels que l'état de surface souhaité, les différentes tailles de grains de la meule, etc.

Vtrav=Zwfdcut

Vitesse de déplacement pour rectifieuse cylindrique et interne compte tenu du MRR

La Vitesse de déplacement pour les meuleuses cylindriques et internes compte tenu du MRR est une méthode permettant de déterminer le mouvement de va-et-vient de la table de travail par rapport à la meule lorsque la quantité de MRR requise est connue. La Vitesse de déplacement est donnée en fonction de différents paramètres tels que l'état de surface souhaité, les différentes tailles de grains de la meule, etc.

Utrav=ZwπfDm

Vitesse en tout point de l'élément cylindrique

La Vitesse à tout point de la formule de l'élément cylindrique est définie comme la Vitesse à laquelle le fluide pénètre dans le tuyau formant un profil parabolique.

vFluid=-(14μ)dp|dr((R2)-(dradial2))

Vitesse à la sortie de la buse pour un débit maximal de fluide

La Vitesse à la sortie de la buse pour un débit maximal de fluide est cruciale pour déterminer l'efficacité et les performances des systèmes de dynamique des fluides. Il est directement corrélé au rapport de pression à travers la buse, à la densité du fluide et aux caractéristiques de conception de la buse, influençant le débit et l'efficacité de la propulsion dans des applications telles que les moteurs de fusée et les systèmes de pulvérisation industriels. Comprendre et optimiser cette Vitesse est essentiel pour atteindre les résultats opérationnels souhaités dans les applications d’ingénierie et technologiques.

Vf=2yP1(y+1)ρa

Vitesse dans le drain en fonction du temps d'écoulement du canal

La formule de Vitesse dans le drain étant donné le temps d'écoulement du canal est définie comme la Vitesse de l'eau s'écoulant à travers le drain.

V=LTm/f

Vitesse du courant libre étant donné le coefficient de frottement local

La formule de la Vitesse du courant libre, donnée par le coefficient de frottement local, est définie comme la Vitesse d'un fluide lorsqu'il est loin d'une limite ou d'un mur, non affecté par la présence du mur, et constitue un paramètre critique pour comprendre le comportement de l'écoulement du fluide sur une plaque plate.

u=2τwρCfx

Vitesse uniforme des électrons

La Vitesse uniforme des électrons fait référence à la Vitesse à laquelle un électron pénètre dans la cavité dans le vide. Dans le vide, un électron aura une Vitesse uniforme s'il est soumis à un champ électrique constant. La Vitesse de l'électron dépendra de la force du champ électrique et de la masse de l'électron.

Evo=(2Vo)([Charge-e][Mass-e])

Vitesse de sédimentation par rapport au diamètre de la particule

La formule de la Vitesse de sédimentation par rapport au diamètre des particules est définie comme la Vitesse à laquelle une particule se dépose dans un fluide sous l'influence de la gravité. Cette Vitesse est influencée par la taille, la forme et la densité des particules.

Vsd=(g(G-1)(Dp)1.613.88(ν)0.6)0.714

Vitesse de stabilisation pour la stabilisation turbulente

La formule de Vitesse de sédimentation pour la sédimentation turbulente est définie comme le calcul de la Vitesse de sédimentation pendant le mouvement turbulent.

Vst=(1.8g(G-1)Dp)

Vitesse de stabilisation pour l'équation de Hazen modifiée

La formule de la Vitesse de sédimentation pour l'équation de Hazen modifiée est définie comme le calcul de la Vitesse de sédimentation lorsque nous disposons d'informations préalables sur d'autres paramètres.

Vsm=(60.6Dp(G-1)((3T)+70100))

Vitesse de sédimentation des solides inorganiques

La Vitesse de sédimentation des solides inorganiques (également appelée «Vitesse de sédimentation») est définie comme la Vitesse terminale d'une particule dans un fluide immobile.

vs(in)=(Dp((3T)+70))

Vitesse de sédimentation de la matière organique

La Vitesse de sédimentation de la matière organique (également appelée «Vitesse de sédimentation») est définie comme la Vitesse terminale d'une particule dans un fluide immobile.

vs(o)=0.12Dp((3T)+70)

Vitesse d'avance en broyage

La Vitesse d'avance dans la rectification est la quantité d'avance donnée par rapport à une pièce par unité de temps dans la rectification.

VF=Vi-(dT2)

Vitesse d'avance machine donnée Vitesse d'avance en Rectification

La Vitesse d'avance de la machine donnée. La Vitesse d'avance en meulage est définie comme la Vitesse de rotation de la broche de la rectifieuse ajustée pour s'adapter à la Vitesse d'avance spécifiée pendant le processus de meulage.

Vi=VF+(dT2)

Vitesse moyenne du gaz compte tenu de la pression et de la densité en 2D

La Vitesse moyenne du gaz étant donné la pression et la densité en 2D est la moyenne arithmétique des Vitesses des différentes molécules d'un gaz à une température donnée en 2 dimensions.

vavg_P_D=πPgas2ρgas

Vitesse moyenne du gaz étant donné la Vitesse quadratique moyenne en 2D

La Vitesse moyenne du gaz donnée Vitesse quadratique moyenne en 2D est la moyenne arithmétique des Vitesses de différentes molécules d'un gaz à une température donnée en 2 dimensions.

vavg_RMS=(0.8862CRMS_speed)

Vitesse moyenne du gaz compte tenu de la pression et du volume en 2D

La Vitesse moyenne du gaz à pression et volume donnés en 2D est la moyenne arithmétique des Vitesses de différentes molécules d'un gaz à une température donnée en 2 dimensions.

vavg_P_V=πPgasV2Mmolar

Vitesse moyenne du gaz à température donnée en 2D

La Vitesse moyenne du gaz à température donnée en 2D est la moyenne arithmétique des Vitesses de différentes molécules d'un gaz à une température donnée en 2 dimensions.

vavg_T=π[R]Tg2Mmolar

Vitesse quadratique moyenne de la molécule de gaz compte tenu de la pression et du volume de gaz en 2D

La Vitesse quadratique moyenne de la molécule de gaz étant donné la pression et le volume de gaz dans la formule 2D est définie comme le carré entier de la moyenne quadratique de la molécule de gaz en 2D.

CRMS_2D=2PgasVNmoleculesm

Vitesse la plus probable du gaz compte tenu de la pression et de la densité en 2D

La Vitesse la plus probable du gaz compte tenu de la pression et de la densité dans la formule 2D est définie comme le rapport de la racine carrée de la pression à la densité du gaz respectif.

CP_D=Pgasρgas

Vitesse la plus probable du gaz compte tenu de la pression et du volume en 2D

La Vitesse la plus probable du gaz étant donné la pression et le volume dans la formule 2D est définie comme le rapport de la racine carrée de la pression et du volume à la masse molaire du gaz particulier.

CP_V=PgasVMmolar

Comment trouver Formules ?

Voici quelques conseils pour obtenir de meilleurs résultats de recherche.
Soyez précis : Plus votre requête est spécifique, meilleurs sont vos résultats.
Utilisez plusieurs mots clés : Combinez plusieurs mots clés pour affiner les résultats.
Expérimentez avec des synonymes : Différents termes peuvent donner des résultats différents.
Recherche générique : Utilisez l'opérateur * (astérisque). NOTEZ que cet opérateur ne fonctionne qu'à la fin d'un mot. Exemple : Bio*, Zone*, etc.

Vous pouvez également parcourir les sous-catégories de pour vous concentrer sur les formules qui vous intéressent.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!