Rechercher Formules

Veuillez saisir au moins trois caractères pour commencer à rechercher des formules .

Sélectionner un filtre

Affinez vos résultats de recherche à l’aide de ces filtres.

50 Formules correspondantes trouvées !

Vitesse de l'électron en orbite compte tenu de la Vitesse angulaire

La Vitesse de l'électron en orbite étant donné la Vitesse angulaire est une quantité vectorielle (elle a à la fois une magnitude et une direction) et est la Vitesse de changement de position (d'une particule).

ve_AV=ωrorbit

Vitesse de l'électron donnée Période de temps de l'électron

La Vitesse de l'électron étant donné la période de temps de l'électron est une quantité vectorielle (elle a à la fois une amplitude et une direction) et est la Vitesse de changement de position (d'une particule).

velectron=2πrorbitT

Vitesse du petit élément pour la vibration longitudinale

La formule de la Vitesse d'un petit élément pour une vibration longitudinale est définie comme une mesure de la Vitesse d'un petit élément dans une vibration longitudinale, qui est affectée par l'inertie de la contrainte, et est utilisée pour analyser les vibrations dans divers systèmes mécaniques.

vs=xVlongitudinall

Vitesse angulaire de l'arbre

La formule de la Vitesse angulaire de l'arbre est définie comme une mesure de la Vitesse de rotation d'un arbre dans un système mécanique, généralement utilisée pour analyser et comprendre les vibrations et oscillations de torsion dans les machines rotatives.

ω=qrId

Vitesse angulaire de l'élément

La formule de la Vitesse angulaire d'un élément est définie comme une mesure de la Vitesse de rotation d'un élément dans un système de vibrations de torsion, décrivant le taux de changement du déplacement angulaire par rapport au temps, fournissant des informations sur le comportement dynamique du système.

ω=ωfxl

Vitesse angulaire de l'extrémité libre utilisant l'énergie cinétique de contrainte

La formule de la Vitesse angulaire de l'extrémité libre utilisant l'énergie cinétique de la contrainte est définie comme une mesure de la Vitesse de rotation d'une extrémité libre dans un système de vibration de torsion, qui est influencée par l'énergie cinétique de la contrainte et le moment d'inertie du système.

ωf=6KEIc

Vitesse derrière le choc normal

La Vitesse derrière le choc normal calcule la Vitesse d'un fluide en aval d'une onde de choc normale. Cette formule intègre des paramètres tels que la Vitesse en amont du choc, le rapport des chaleurs spécifiques du fluide et le nombre de Mach du débit. Il fournit des informations précieuses sur le changement de Vitesse résultant du passage de l’onde de choc.

V2=V1γ+1(γ-1)+2M2

Vitesse des particules dans SHM

La Vitesse des particules dans la formule SHM est définie comme une mesure de la Vitesse d'une particule subissant un mouvement harmonique simple, calculée en multipliant la fréquence angulaire par la racine carrée de la différence entre les carrés du déplacement maximal et le déplacement actuel.

V=ωSmax2-S2

Vitesse du rouleau compte tenu de la production de compactage par l'équipement de compactage

La formule Vitesse du rouleau donnée par production de compactage par équipement de compactage est définie comme la Vitesse à laquelle l'équipement de compactage, tel que les rouleaux, fonctionne pendant le processus de compactage. Des Vitesses efficaces contribuent à une productivité plus élevée dans les projets de construction, car l'équipement peut couvrir plus de surface en moins de temps sans compromettre la qualité.

S=yP16WLPRE

Vitesse pour un rayon de virage donné

La Vitesse pour un rayon de virage donné est une mesure de la Vitesse d'un objet lorsqu'il tourne sur une trajectoire circulaire, en fonction du rayon de virage, de l'accélération gravitationnelle et du facteur de charge.

V=R[g](n2-1)

Vitesse de la section d'essai en soufflerie

La formule de Vitesse de la section d'essai en soufflerie est obtenue à partir du principe de Bernoulli et est fonction de la différence de pression entre le réservoir et la section d'essai.

V2=2(P1-P2)ρ0(1-1Alift2)

Vitesse de la section d'essai par hauteur manométrique pour soufflerie

La formule de Vitesse de section d'essai par hauteur manométrique pour soufflerie est définie en fonction du taux de contraction, de la densité du fluide dans la soufflerie et du poids par volume de fluide manométrique et de la différence de hauteur entre les deux côtés du manomètre.

VT=2𝑤Δhρ0(1-1Alift2)

Vitesse de coupe résultante

La Vitesse de coupe résultante est la Vitesse résultante de la Vitesse de l'outil primaire et de la Vitesse d'avance simultanées, donnée à l'outil pendant l'usinage. Dans des conditions idéales, il est considéré comme identique à la Vitesse de coupe.

Vr=vccos((η))

Vitesse du flux libre selon le théorème de Kutta-Joukowski

La Vitesse Freestream par la formule du théorème de Kutta-Joukowski est définie comme la fonction de la portance par unité de portée, de la circulation et de la densité du courant libre.

V=L'ρΓ

Vitesse du flux libre

La formule de Vitesse Freestream est définie comme la viscosité dynamique du fluide divisée par le produit du carré de l'émissivité, de la densité du flux libre et du rayon du nez.

V=μviscosityε2ρrnose

Vitesse moyenne du gaz à une température donnée

La Vitesse moyenne du gaz selon la formule de température est définie comme le rapport de la racine carrée de la température et de la masse molaire du gaz respectif.

Cav=8[R]TgπMmolar

Vitesse moyenne du gaz compte tenu de la pression et du volume

La formule de la Vitesse moyenne du gaz en fonction de la pression et du volume est définie comme le rapport de la racine carrée de la pression et du volume à la masse molaire du gaz respectif.

vavg_P_V=8PgasVπMmolar

Vitesse moyenne du gaz compte tenu de la pression et de la densité

La formule de la Vitesse moyenne du gaz en fonction de la pression et de la densité est définie comme la racine carrée du rapport de la pression du gaz à la densité du gaz.

vavg_P_D=8Pgasπρgas

Vitesse moyenne du gaz donnée Vitesse quadratique moyenne

La Vitesse moyenne du gaz étant donné la formule de la Vitesse quadratique moyenne est définie comme le produit de la Vitesse quadratique moyenne avec 0,9213. La Vitesse moyenne est la Vitesse moyenne de chaque molécule du gaz.

vavg_RMS=(0.9213CRMS_speed)

Vitesse RMS donnée Vitesse moyenne

La formule de Vitesse moyenne donnée par la Vitesse RMS est définie comme le rapport de la Vitesse moyenne du gaz à 0,9213.

CRMS=(Cav0.9213)

Vitesse d'autonettoyage en fonction du facteur de friction

La Vitesse d'auto-nettoyage donnée par le facteur de friction est définie comme la Vitesse minimale à laquelle le fluide doit s'écouler dans un égout pour empêcher le dépôt de sédiments et maintenir un chemin dégagé.

vs=8[g]kd'(G-1)f'

Vitesse d'auto-nettoyage compte tenu du coefficient de rugosité

La Vitesse d'auto-nettoyage étant donné le coefficient de rugosité, elle est définie comme la Vitesse minimale à laquelle le fluide doit s'écouler dans un égout pour éviter le dépôt de sédiments et maintenir un chemin dégagé.

vs=(1n)(m)16kd'(G-1)

Vitesse à travers l'écran compte tenu de la perte de charge à travers l'écran

La Vitesse à travers l'écran compte tenu de la perte de charge à travers l'écran est le taux de changement de sa position par rapport à un cadre de référence et est une fonction du temps.

v=(hL0.0729)+u2

Vitesse au-dessus de l'écran compte tenu de la perte de charge à travers l'écran

La Vitesse au-dessus de l'écran compte tenu de la perte de charge à travers l'écran est le taux de changement de sa position par rapport à un cadre de référence et est une fonction du temps.

u=v2-(hL0.0729)

Vitesse de sédimentation des particules sphériques

La formule de la Vitesse de sédimentation des particules sphériques est définie comme la Vitesse constante à laquelle une particule sphérique tombe à travers un fluide sous l'influence de la gravité.

Vsp=(g18)(G-1)((Dp)2ν)

Vitesse de sédimentation d'une particule sphérique compte tenu du nombre de Reynold

La Vitesse de sédimentation d'une particule sphérique donnée par la formule du nombre de Reynolds est définie comme la Vitesse à laquelle une particule se dépose dans un fluide, tel que l'eau ou l'air, sous l'influence de la gravité, compte tenu du nombre de Reynolds.

Vsr=RpνDp

Vitesse de chute compte tenu de la force de traînée offerte par le fluide

La formule de la Vitesse de chute donnée par la force de traînée offerte par le fluide est définie comme le calcul de la Vitesse de chute lorsque nous avons des informations préalables sur la force de traînée.

v=2(FdCDAρwater)

Vitesse de sédimentation d'une particule sphérique en fonction du coefficient de traînée

La Vitesse de sédimentation d'une particule sphérique donnée par la formule du coefficient de traînée est définie comme la Vitesse à laquelle une particule se dépose dans un fluide, tel que l'eau ou l'air, sous l'influence de la gravité, en considérant le coefficient de traînée.

Vsc=(43)(γs-γw)DpρwaterCD

Vitesse moyenne dans le canal

La Vitesse moyenne dans le canal est définie comme la Vitesse à n'importe quel point de la section dans le canal dans un canal ouvert.

Vavg=8[g]RHSf

Vitesse moyenne dans le canal en fonction de la constante de Chezy

La Vitesse moyenne dans le canal étant donné la constante Chezy est définie comme la Vitesse en tout point de section du canal dans un canal ouvert.

Vavg=CRHS

Vitesse moyenne d'écoulement dans les canaux lisses

La Vitesse moyenne de l'écoulement dans les canaux lisses est définie comme la Vitesse de l'écoulement turbulent dans un canal lisse à travers la frontière.

Vavg(Tur)=Vshear(3.25+5.75log10(RHVshearνTur))

Vitesse moyenne d'écoulement dans les canaux rugueux

La formule de la Vitesse moyenne d'écoulement dans les canaux rugueux est définie comme la Vitesse de l'écoulement turbulent dans un canal rugueux à travers la limite.

Vavg(Tur)=Vshear(6.25+5.75log10(RHRa))

Vitesse du jet pour la masse de la plaque de frappe fluide

La Vitesse du jet pour la masse de la plaque de frappe fluide est le taux de changement de sa position par rapport à un cadre de référence, et est fonction du temps.

v=-((mfGγfAJet)-Vabsolute)

Vitesse absolue donnée Poussée exercée par Jet on Plate

La Vitesse absolue donnée par poussée exercée par Jet on Plate peut être définie comme la Vitesse linéaire uniforme commune des divers composants d'un système physique, par rapport à l'espace absolu.

Vabsolute=(mfGγfAJet)+v

Vitesse du jet compte tenu de la poussée dynamique exercée par le jet sur la plaque

La Vitesse du jet compte tenu de la poussée dynamique exercée par le jet sur la plaque est le taux de changement de sa position par rapport à un cadre de référence, et est fonction du temps.

v=-(mfGγfAJet-Vabsolute)

Vitesse de virage de l'avion compte tenu du rayon de courbe

La Vitesse de virage de l'aéronef compte tenu du rayon de courbe est définie comme un paramètre influençant la Vitesse de virage pour la conception de la voie de sortie reliant la piste et la voie de circulation principale parallèle.

VTurning Speed=RTaxiwayμFriction125

Vitesse tangentielle à l'extrémité d'entrée de l'aube

La Vitesse tangentielle à l'extrémité d'entrée de l'aube est la composante linéaire de la Vitesse de tout objet se déplaçant le long d'une trajectoire circulaire.

vtangential=(2πΩ60)r

Vitesse de la roue en fonction de la Vitesse tangentielle à l'extrémité d'entrée de l'aube

La Vitesse de la roue étant donnée la Vitesse tangentielle à l'extrémité d'entrée de l'aube tournant autour d'un axe est le nombre de tours de l'objet divisé par le temps, spécifié en tours par minute (rpm).

Ω=vtangential602πr

Vitesse du vent à une hauteur de 10 m compte tenu de la pression du vent

La Vitesse du vent à une hauteur de 10 m étant donné la contrainte du vent est définie comme la Vitesse du vent sur dix mètres mesurée dix mètres au-dessus du sommet de la référence considérée.

V10=τoCDρ

Vitesse horizontale sur la surface de la Terre compte tenu de la composante horizontale de l'accélération de Coriolis

La Vitesse horizontale sur la surface de la Terre compte tenu de la composante horizontale de l'accélération de Coriolis est définie comme la Vitesse d'un problème de mouvement qui traite du mouvement dans la direction x ; c'est-à-dire côte à côte, pas de haut en bas.

U=aC2ΩEsin(λe)

Vitesse maximale de l'onde solitaire

La Vitesse maximale d'une onde solitaire est définie comme la Vitesse d'une onde, égale au produit de sa longueur d'onde et de sa fréquence (nombre de vibrations par seconde) et est indépendante de son intensité.

umax=CN1+cos(MyDw)

Vitesse de stabilisation donnée en degrés Celsius

La formule de la Vitesse de sédimentation donnée en degrés Celsius est définie comme la Vitesse terminale d'une particule dans un fluide immobile.

vs=418(Gs-Gw)d2(3t+70100)

Vitesse du vent donnée Temps requis pour le passage des vagues Fetch sous la Vitesse du vent

La Vitesse du vent compte tenu du temps requis pour les vagues traversant la formule Fetch sous la Vitesse du vent est définie comme une quantité atmosphérique fondamentale causée par le déplacement de l'air de haute à basse pression, généralement en raison de changements de température.

U=(77.23X0.67tx,u[g]0.33)10.34

Vitesse de l'aube à l'entrée compte tenu du rapport de Vitesse Francis Turbine

La Vitesse de l'aube à l'entrée de la Vitesse donnée Ratio turbine Francis est définie comme la Vitesse de l'aube à l'entrée de la turbine.

u1=Ku2gHi

Vitesse d'écoulement à l'entrée compte tenu du rapport d'écoulement dans la turbine Francis

La Vitesse d'écoulement à l'entrée donnée Le rapport de débit dans la formule de la turbine Francis est défini comme le champ vectoriel utilisé pour décrire le mouvement du fluide de manière mathématique.

Vf1=Kf2gHi

Vitesse dans la courbe de lit sec

La formule Velocity in Dry Bed Curve est définie comme l'hypothèse que l'écoulement dans chaque direction se produit sur la moitié de la profondeur.

VDbc=0.45H2[g]d

Vitesse du véhicule compte tenu de la distance de freinage

La Vitesse du véhicule étant donné la formule de distance de freinage est définie comme la Vitesse à laquelle le véhicule se déplace sur la surface de la route.

Vb=(BD(2[g]f))0.5

Vitesse radiale pour flux source incompressible 3D

La formule de Vitesse radiale pour flux source incompressible 3D calcule la Vitesse radiale qui est fonction de la force de la source et de la coordonnée radiale.

Vr=Λ4πr2

Vitesse radiale pour l'écoulement sur la sphère

La formule Radial Velocity for Flow over Sphere calcule la Vitesse radiale à l'emplacement souhaité lorsque le doublet d'écoulement tridimensionnel avec un champ de Vitesse uniforme prend le contrôle d'une sphère.

Vr=-(V-μ2πr3)cos(θ)

Vitesse tangentielle pour l'écoulement sur la sphère

La formule Vitesse tangentielle pour l'écoulement sur sphère calcule la Vitesse tangentielle à l'emplacement souhaité lorsque l'écoulement doublet tridimensionnel avec un champ de Vitesse uniforme prend le dessus sur une sphère.

Vθ=(V+μ4πr3)sin(θ)

Comment trouver Formules ?

Voici quelques conseils pour obtenir de meilleurs résultats de recherche.
Soyez précis : Plus votre requête est spécifique, meilleurs sont vos résultats.
Utilisez plusieurs mots clés : Combinez plusieurs mots clés pour affiner les résultats.
Expérimentez avec des synonymes : Différents termes peuvent donner des résultats différents.
Recherche générique : Utilisez l'opérateur * (astérisque). NOTEZ que cet opérateur ne fonctionne qu'à la fin d'un mot. Exemple : Bio*, Zone*, etc.

Vous pouvez également parcourir les sous-catégories de pour vous concentrer sur les formules qui vous intéressent.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!