Buscar Fórmulas

Ingrese un mínimo de 3 caracteres para comenzar a buscar fórmulas de .

Seleccionar filtro

Limite los resultados de su búsqueda con la ayuda de estos filtros.

50 ¡Se encontraron fórmulas coincidentes!

Velocidad síncrona dada potencia mecánica

La Velocidad síncrona dada la potencia mecánica es la Velocidad de revolución del campo magnético en el devanado del estator del motor. Es la Velocidad a la que la máquina alterna produce la fuerza electromotriz.

Ns=60Pm2πτg

Velocidad del motor dada Velocidad síncrona

La Velocidad del motor, dada la Velocidad síncrona, es la Velocidad a la que gira el rotor. Con esta fórmula podemos encontrar fácilmente la Velocidad del motor cuando se da la Velocidad síncrona del rotor.

Nm=Ns(1-s)

Velocidad teórica para tubo Pitot

La fórmula de Velocidad teórica para el tubo de Pitot se define como la Velocidad de un fluido que fluye a través de un tubo de Pitot, que es un dispositivo utilizado para medir la Velocidad de los fluidos en sistemas hidrostáticos, proporcionando lecturas precisas de los caudales de fluidos en diversas aplicaciones industriales y de ingeniería.

Vth=2[g]hd

Velocidad de fricción

La fórmula de Velocidad de fricción se define como una medida de la Velocidad a la que la fricción del fluido influye en las características de flujo de un chorro de líquido. Ayuda a comprender la relación entre la dinámica de fluidos y la resistencia que se encuentra debido a la fricción en diversas aplicaciones mecánicas.

Vf=Vf8

Velocidad sónica o acústica local en condiciones de aire ambiente

La fórmula de Velocidad acústica o sónica local en condiciones ambientales se define como la Velocidad del sonido en el aire en condiciones ambientales, que es un parámetro crítico en los sistemas de refrigeración y aire acondicionado, ya que afecta el rendimiento y el diseño de compresores, ventiladores y otros equipos.

a=(γ[R]TiMW)0.5

Velocidad inicial usando el tiempo de vuelo

La Velocidad inicial utilizando la fórmula del tiempo de vuelo se define como una medida de la Velocidad inicial de un objeto bajo la única influencia de la gravedad, considerando el tiempo de vuelo y el ángulo de proyección, proporcionando información valiosa sobre la cinemática del movimiento.

u=Tg2sin(θpr)

Velocidad inicial dada la altura máxima

La fórmula de Velocidad inicial dada la altura máxima se define como una medida de la Velocidad inicial de un objeto bajo la única influencia de la gravedad, considerando la altura máxima que puede alcanzar y el ángulo de proyección, proporcionando información valiosa sobre la cinemática del movimiento.

u=Hmax2gsin(θpr)

Velocidad inicial usando rango

La Velocidad inicial utilizando la fórmula de rango se define como la Velocidad de un objeto al inicio de su movimiento, que es un parámetro crucial para comprender la cinemática del movimiento, particularmente para describir la trayectoria de los proyectiles bajo la influencia de la gravedad.

u=gRmotionsin(2θpr)

Velocidad síncrona del motor síncrono dada potencia mecánica

La fórmula de la Velocidad síncrona del motor síncrono dada la potencia mecánica se define como una Velocidad definida para una máquina de corriente alterna que depende de la frecuencia del circuito de suministro porque el elemento giratorio pasa por un par de polos por cada alternancia de la corriente alterna.

Ns=Pmτg

Velocidad angular de la molécula diatómica

La fórmula de la Velocidad angular de la molécula diatómica es una medida de la Velocidad de rotación. Se refiere al desplazamiento angular por unidad de tiempo. Una revolución es igual a 2 * pi radianes, por lo que la Velocidad angular (ω) es igual al producto de la frecuencia de rotación (f) y la constante 2pi {es decir, ω = 2 * pi * f}.

ω3=2πνrot

Velocidad angular dada la energía cinética

La fórmula de energía cinética de Velocidad angular dada es una ecuación de energía cinética general con la Velocidad de las partículas igual a su distancia desde el centro de masa multiplicada por la Velocidad angular del sistema (ω). La energía cinética del sistema, KE, es la suma de la energía cinética de cada masa que se escribe numéricamente como la mitad * masa * cuadrado de la Velocidad de un objeto dado.

ω3=2KE(m1(R12))+(m2(R22))

Velocidad del sonido usando presión y densidad dinámicas

La fórmula de Velocidad del sonido utilizando presión dinámica y densidad se define como una medida de la Velocidad de las ondas sonoras en un medio, que está influenciada por la presión dinámica y la densidad del medio, y es un parámetro importante en el estudio de las relaciones de choque oblicuo y la aerodinámica.

cspeed=YPρ

Velocidad angular de la bomba de paletas dada la descarga teórica

La Velocidad angular de la bomba de paletas dada la fórmula de descarga teórica se define como la Velocidad de rotación de la bomba de paletas que se calcula teóricamente en función de los parámetros de diseño de la bomba y las condiciones de operación, lo que proporciona un valor idealizado para el rendimiento de la bomba.

N1=2Qvpπewvp(dc+dr)

Velocidad de transporte y retorno en millas por hora dado un tiempo variable

La Velocidad de transporte y retorno en millas por hora dada la fórmula de tiempo variable se define como la distancia recorrida por unidad de tiempo.

Smph=Hft+Rft88Tv

Velocidad de acarreo y retorno en kilómetros por hora dado un tiempo variable

La Velocidad de recorrido y regreso en kilómetros por hora dado el tiempo variable se define como la Velocidad cuando tenemos información previa de la distancia de regreso y la distancia de recorrido.

Skmph=hm+Rmeter16.7Tv

Velocidad tangencial del impulsor en la entrada usando Velocidad angular

La Velocidad tangencial del impulsor en la entrada mediante la fórmula de Velocidad angular se define como el producto de la Velocidad angular y el radio del impulsor en la entrada.

u1=ωR1

Velocidad tangencial del impulsor en la salida utilizando la Velocidad angular

La Velocidad tangencial del impulsor en la salida mediante la fórmula de Velocidad angular se define como el producto de la Velocidad angular y el radio del impulsor en la salida de la bomba.

u2=ωR2

Velocidad de pistón o cuerpo para movimiento de pistón en Dash-Pot

La Velocidad del pistón o el cuerpo para el movimiento del pistón en la fórmula del tablero del tablero se conoce considerando el peso, la longitud y el diámetro del pistón, la viscosidad del fluido o el aceite y la holgura entre el tablero del tablero y el pistón.

V=4WbC33πLdp3μ

Velocidad tangencial para flujo sin elevación sobre un cilindro circular

La fórmula de Velocidad tangencial para flujo sin elevación sobre cilindro circular es una función de la coordenada radial, la Velocidad de la corriente libre, el radio del cilindro y el ángulo polar.

Vθ=-(1+(Rr)2)Vsin(θ)

Velocidad radial para flujo sin elevación sobre un cilindro circular

La fórmula de Velocidad radial para flujo sin elevación sobre cilindro circular se define como la función de la Velocidad radial, la distancia radial desde el origen, el ángulo polar y la Velocidad de la corriente libre.

Vr=(1-(Rr)2)Vcos(θ)

Velocidad tangencial para flujo de vórtice 2-D

La fórmula de Velocidad tangencial para flujo de vórtice 2-D se define como la función de la fuerza del flujo de vórtice y la distancia radial del punto desde el origen; representa el componente de Velocidad en la dirección circunferencial alrededor del centro del vórtice.

Vθ=-γ2πr

Velocidad radial para elevar el flujo sobre un cilindro circular

La fórmula de la Velocidad radial para levantar el flujo sobre un cilindro circular se define como la función de la fuerza del vórtice, la distancia radial, el ángulo polar y el radio del cilindro.

Vr=(1-(Rr)2)Vcos(θ)

Velocidad tangencial para elevar el flujo sobre un cilindro circular

La fórmula de la Velocidad tangencial para el flujo de elevación sobre un cilindro circular es una función de la coordenada radial, la Velocidad de la corriente libre, el radio del cilindro, la fuerza del vórtice y el ángulo polar.

Vθ=-(1+(Rr)2)Vsin(θ)-Γ2πr

Velocidad de cresta dada Tiempo para aceleración

La fórmula de Velocidad de cresta dada el tiempo de aceleración se define como el producto del tiempo de aceleración y la aceleración del tren. También se la conoce como Velocidad máxima del tren.

Vm=tαα

Velocidad de programación

La fórmula de Velocidad programada se define como la relación entre la distancia recorrida entre dos paradas y el tiempo total de la carrera, incluido el tiempo de parada (tiempo programado).

Vs=DTrun+Tstop

Velocidad de la corriente en la ubicación del instrumento

La fórmula de la Velocidad de la corriente en la ubicación del instrumento se define como la Velocidad del agua en la corriente, y es mayor en el medio de la corriente cerca de la superficie y es más lenta a lo largo del lecho y las orillas de la corriente debido a la fricción.

v=aNs+b

Velocidad transversal en amoladora de superficie de husillo horizontal y vertical dado MRR

La Velocidad transversal en la amoladora de superficie de husillo horizontal y vertical dada la MRR es un método para determinar el movimiento hacia adelante y hacia atrás de la mesa de trabajo en relación con la muela abrasiva cuando se conoce la cantidad de MRR requerida. La Velocidad transversal se determina según diferentes parámetros, como el acabado superficial deseado, el diferente tamaño de grano de la muela, etc.

Vtrav=Zwfdcut

Velocidad transversal para rectificadora cilíndrica e interna dado MRR

La Velocidad transversal para amoladora cilíndrica e interna dada MRR es un método para determinar el movimiento hacia adelante y hacia atrás de la mesa de trabajo en relación con la muela abrasiva cuando se conoce la cantidad de MRR requerida. La Velocidad transversal se determina según diferentes parámetros, como el acabado superficial deseado, el diferente tamaño de grano de la muela abrasiva, etc.

Utrav=ZwπfDm

Velocidad en cualquier punto del elemento cilíndrico

La Velocidad en cualquier punto de la fórmula del elemento cilíndrico se define como la Velocidad a la que el fluido ingresa a la tubería formando un perfil parabólico.

vFluid=-(14μ)dp|dr((R2)-(dradial2))

Velocidad en la salida de la boquilla para caudal máximo de fluido

La Velocidad en la salida de la boquilla para un caudal máximo de fluido es crucial para determinar la eficiencia y el rendimiento de los sistemas de dinámica de fluidos. Se correlaciona directamente con la relación de presión a través de la boquilla, la densidad del fluido y las características de diseño de la boquilla, lo que influye en el caudal y la eficiencia de la propulsión en aplicaciones como motores de cohetes y sistemas de pulverización industriales. Comprender y optimizar esta Velocidad es esencial para lograr los resultados operativos deseados en aplicaciones tecnológicas y de ingeniería.

Vf=2yP1(y+1)ρa

Velocidad de flujo de la corriente

La Velocidad de flujo de la corriente se define como el flujo de la corriente en la tubería a una tasa promedio en la tasa de flujo de descarga.

v=(γf4μ)dh/dx(Rinclined2-dradial2)

Velocidad máxima entre placas

La Velocidad máxima entre placas se define como la Velocidad máxima o pico en la línea central de las placas en el flujo de fluido.

Vmax=(w2)dp|dr8μ

Velocidad angular media del volante

La fórmula de la Velocidad angular media del volante se define como la Velocidad angular promedio de un volante, que es un dispositivo mecánico giratorio que almacena energía, y se utiliza para determinar la Velocidad de rotación del volante en un sistema mecánico, particularmente en el diseño de volantes.

ω=nmax+nmin2

Velocidad de corte dada la Velocidad del husillo

Velocidad de corte dada La Velocidad del husillo se define como la Velocidad con la que la herramienta de corte corta la pieza de trabajo expresada en m/min.

V=πDN

Velocidad de deriva de saturación

La fórmula de Velocidad de deriva de saturación se define como la Velocidad máxima que un portador de carga en un semiconductor, generalmente, alcanza un electrón en presencia de campos eléctricos muy altos. Los portadores de carga normalmente se mueven a una Velocidad de deriva promedio proporcional a la intensidad del campo eléctrico que experimentan temporalmente.

Vsc=LminΓavg

Velocidad de autolimpieza usando la relación de inclinación del lecho

La Velocidad de autolimpieza utilizando la relación de la pendiente del lecho se define como la Velocidad mínima a la que el fluido debe fluir en un alcantarillado para evitar la deposición de sedimentos y mantener un camino despejado.

Vs=V((Nnp)(rpfRrf)23S)

Velocidad cuando se ejecuta lleno usando la relación de inclinación de la cama

La Velocidad cuando el lecho está lleno utilizando la relación de la pendiente del lecho se define como la Velocidad del flujo de fluido en una tubería cuando está completamente llena, influenciada por la pendiente y la rugosidad de la tubería.

V=Vs(Nnp)(rpfRrf)23S

Velocidad de autolimpieza dada la pendiente del lecho para flujo parcial

La fórmula de Velocidad de autolimpieza dada la pendiente del lecho para flujo parcial se define como la Velocidad mínima a la que debe fluir el fluido en una alcantarilla para evitar la deposición de sedimentos y mantener un camino despejado.

Vs=V((Nnp)(rpfRrf)23sss)

Velocidad cuando se ejecuta Full usando Bed Slope para flujo parcial

La Velocidad cuando se llena por completo utilizando la pendiente del lecho para flujo parcial se define como la Velocidad del flujo de fluido en una tubería cuando está completamente llena, influenciada por la pendiente y la rugosidad de la tubería.

V=Vs(Nnp)(rpfRrf)23sss

Velocidad de corte dado lote de producción y condiciones de mecanizado

La Velocidad de corte dado el lote de producción y las condiciones de maquinado es un método para determinar la Velocidad de corte requerida para una vida de herramienta determinada en una condición de maquinado en comparación con la condición de referencia para fabricar un lote de componentes determinado.

V=Vref(LrefNtNbtb)n

Velocidad de alimentación dada Tasa de remoción de metal

La Velocidad de avance dada La tasa de eliminación de metal calcula la Velocidad a la que la muela abrasiva o la herramienta abrasiva avanza contra la pieza de trabajo que se está rectificando cuando sabemos que el MRR es constante durante la operación. Es esencialmente la Velocidad a la que se elimina el material de la superficie de la pieza de trabajo mediante la acción abrasiva de la muela. La Velocidad de avance juega un papel crucial en la eficiencia general de la molienda.

Vf=Zwπdwap

Velocidad mínima de limpieza crítica

La fórmula de Velocidad mínima crítica de socavación se define como la Velocidad más baja a la que el flujo de agua comienza a erosionar el material del lecho en un canal o río. Esta Velocidad es crítica porque representa el umbral en el cual las partículas de sedimento en el lecho son desalojadas y transportadas río abajo, lo que lleva a la socavación.

vmins=(3gDp(G-1))

Velocidad máxima de limpieza crítica

La fórmula de Velocidad máxima crítica de socavación se define como la Velocidad de flujo más alta a la que las partículas de sedimento en el lecho y las orillas de un cuerpo de agua (como un río, canal o estuario) comienzan a ser erosionadas y transportadas por el agua que fluye. Esta Velocidad representa un umbral más allá del cual la estabilidad de los materiales del lecho y del banco se ve comprometida, lo que provoca erosión y posibles daños estructurales.

vmaxs=(4.5gD(G-1))

Velocidad de flujo horizontal dada Distancia en dirección X desde el centro del vertedero

La fórmula de la Velocidad del flujo horizontal dada la distancia en la dirección X desde el centro del vertedero se define como la Velocidad para la cual está diseñado el vertedero cuando tenemos información previa de otros parámetros.

Vh=x2WcCdπ2gy

Velocidad de flujo horizontal dada la mitad del ancho de la parte inferior del vertedero

La fórmula de la Velocidad del flujo horizontal dada la mitad del ancho de la parte inferior del vertedero se define como el valor de la Velocidad a la que el agua fluye horizontalmente sobre un vertedero. Esto se puede calcular utilizando la mitad del ancho de la parte inferior del vertedero (b/2), donde 'b' representa el ancho total de la parte inferior.

Vh=Wh1.467Wc

Velocidad del flujo según la ley de Darcy a distancia radical

La fórmula de la Velocidad del flujo según la ley de Darcy a una distancia radical se define como el volumen de fluido que pasa por unidad de tiempo a una distancia radical.

Vr=K(dhdr)

Velocidad de la fuerza ejercida por la placa estacionaria en Jet

La Velocidad de la fuerza ejercida por la placa estacionaria sobre el chorro es la tasa de cambio de su posición con respecto a un marco de referencia y es una función del tiempo.

vjet=FSt,⊥p[g]γfAJet

Velocidad media de la esfera dada la viscosidad dinámica

La Velocidad media de la esfera dada la fórmula de viscosidad dinámica se define como la Velocidad con la que se mueve el objeto en el fluido en el canal.

Vmean=(DS218μ)

Velocidad dada Masa de fluido

La Velocidad dada Masa de fluido es la tasa de cambio de su posición con respecto al marco de referencia, y es función del tiempo.

vjet=mpS[g]γfAJet

Velocidad de transporte de masa a segundo orden

La Velocidad de transporte de masa a segundo orden se puede medir como la relación entre el desplazamiento de una partícula y la longitud del intervalo de tiempo correspondiente proporcionado y la contribución de los términos de segundo orden es grande en comparación con la de los términos de primer orden.

Uz=(πHwλ)2Ccosh(4πDZ+dλ)2sinh(2πdλ)2

¿Cómo encontrar Fórmulas?

A continuación se ofrecen algunos consejos para obtener mejores resultados de búsqueda.
Sea específico: cuanto más específica sea su consulta, mejores serán los resultados.
Utilice varias palabras clave: combine varias palabras clave para limitar los resultados.
Experimenta con sinónimos: Diferentes términos pueden producir resultados diferentes.
Búsqueda con comodines: utiliza el operador * (asterisco). TENGA EN CUENTA que este operador funciona solo al final de una palabra. Ejemplo: biografía*, área*, etc.

Como alternativa, puede navegar a través de las subcategorías dentro de para concentrarse en las fórmulas de interés.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!