Buscar Fórmulas

Ingrese un mínimo de 3 caracteres para comenzar a buscar fórmulas de .

Seleccionar filtro

Limite los resultados de su búsqueda con la ayuda de estos filtros.

50 ¡Se encontraron fórmulas coincidentes!

Velocidad angular

La fórmula de Velocidad angular se define como una medida de la rapidez con la que un objeto gira o gira en relación con otro punto, generalmente medida en radianes por segundo, y es un concepto fundamental en física e ingeniería, que se utiliza para describir el movimiento de rotación de objetos, como las ruedas. , engranajes y cuerpos celestes.

ω=θttotal

Velocidad media

La fórmula de Velocidad promedio se define como una medida de la distancia total recorrida por un objeto durante un período de tiempo determinado, proporcionando una comprensión integral del movimiento y la Velocidad de un objeto, es un concepto fundamental en física, ampliamente utilizado para calcular la Velocidad de los objetos. en diversos campos, incluidos el transporte, los deportes y la ingeniería.

vavg=Dttotal

Velocidad espacial del reactor

La Velocidad espacial del reactor nos da el número de volúmenes del reactor que se pueden tratar por unidad de tiempo.

sReactor=voVreactor

Velocidad terminal

La Velocidad terminal es la Velocidad máxima que puede alcanzar un objeto cuando cae a través de un fluido (el aire es el ejemplo más común).

Vterminal=29r2(𝜌1-ρ2)gμviscosity

Velocidad de corte dada la Velocidad angular

Velocidad de corte dada La Velocidad angular se define como la Velocidad a la que se mueve el trabajo con respecto a la herramienta (generalmente medida en pies por minuto).

Vcutting=πdω

Velocidad del seguidor para leva tangente del seguidor de rodillo si el contacto es con flancos rectos

La fórmula de Velocidad del seguidor para leva tangente del seguidor de rodillos si el contacto es con flancos rectos se define como una medida de la Velocidad del seguidor en un sistema de leva-seguidor donde el contacto es con flancos rectos, lo que proporciona información sobre la cinemática del sistema y permite el diseño de sistemas mecánicos eficientes.

v=ω(r1+rroller)sin(θ)(cos(θ))2

Velocidad máxima del seguidor para leva tangente con seguidor de rodillo

La fórmula de Velocidad máxima del seguidor para leva tangente con seguidor de rodillos se define como la Velocidad máxima a la que se mueve el seguidor en una leva tangente con un seguidor de rodillos, lo cual es fundamental para diseñar y optimizar los sistemas de leva-seguidor para un rendimiento mecánico eficiente.

Vm=ω(r1+rr)sin(φ)cos(φ)2

Velocidad absoluta del jet Pelton

La Velocidad absoluta de Pelton Jet es la Velocidad a la que el agua sale de la boquilla y golpea los cangilones de la turbina Pelton. Esta Velocidad es crucial ya que influye directamente en la energía cinética transferida a los cangilones de la turbina y generalmente está determinada por la altura y la presión de la fuente de agua que alimenta la turbina.

V1=Cv2[g]H

Velocidad del seguidor de la leva tangente del seguidor del rodillo para contacto con la punta

La fórmula de Velocidad del seguidor de la leva tangente del seguidor de rodillos para contacto con la punta se define como la Velocidad del seguidor en un sistema de leva y seguidor, que es un parámetro crítico para determinar el rendimiento y la eficiencia del sistema, particularmente cuando el seguidor está en contacto con la punta de la leva.

v=ωr(sin(θ1)+rsin(2θ1)2L2-r2(sin(θ1))2)

Velocidad descendente utilizando la relación de Prandtl

La Velocidad descendente utilizando la relación de Prandtl relaciona la Velocidad crítica del sonido con las Velocidades aguas arriba y aguas abajo de una onda de choque.

V2=acr2V1

Velocidad teórica

La fórmula de la Velocidad teórica se define a partir de la ecuación de Bernoulli del flujo a través de un orificio. H es la cabeza del líquido por encima del centro del orificio.

v=29.81Hp

Velocidad resultante para dos componentes de Velocidad

La Velocidad resultante para dos componentes de Velocidad se conoce a partir del flujo cinemático al considerar los componentes de Velocidad uyv en la relación entre la función de corriente y la función de potencial de Velocidad.

V=(u2)+(v2)

Velocidad angular de vórtice usando profundidad de parábola

La Velocidad angular del vórtice usando la profundidad de la parábola se define a partir de la ecuación del flujo de vórtice forzado considerando la profundidad de la parábola formada en la superficie libre del agua y el radio del tanque.

ω=Z29.81r12

Velocidad de flujo libre dada la potencia requerida

La Velocidad de flujo libre dada la potencia requerida se refiere a la Velocidad del fluido (como aire o agua) aguas arriba de un objeto o dentro de un campo de flujo no perturbado; es un parámetro crucial que se utiliza para caracterizar las condiciones de flujo que afectan el rendimiento aerodinámico del objeto.

V=PT

Velocidad de flujo usando la fórmula de Manning

La Velocidad del flujo usando la fórmula de Manning se define como la Velocidad del flujo de agua cuando tenemos información previa del coeficiente de rugosidad del material de la tubería utilizada, la pérdida de energía debida a la misma y el radio hidráulico.

Vf=CrH23S12nc

Velocidad para una tasa de giro dada

La Velocidad para un régimen de giro determinado es una medida de la Velocidad de una aeronave durante un giro, calculada en función del factor de carga, la aceleración gravitacional y el régimen de giro.

V=[g]n2-1ω

Velocidad del cuerpo en movimiento armónico simple

La fórmula de la Velocidad del cuerpo en el movimiento armónico simple se define como la Velocidad máxima de un objeto mientras oscila alrededor de su posición de equilibrio, proporcionando una medida de la energía cinética del objeto durante su movimiento vibracional.

V=A'ωcos(ωtsec)

Velocidad para un radio de maniobra de dominada determinado

La Velocidad para un radio de maniobra de pull-up determinado de una aeronave depende del radio de maniobra y del factor de carga de la aeronave; esta fórmula proporciona una aproximación simplificada de la Velocidad necesaria para mantener la Velocidad de descenso deseada durante la maniobra de pull-up.

Vpull-up=R[g](n-1)

Velocidad para una tasa de maniobra de pull-up dada

La Velocidad para una tasa de maniobra de elevación dada es la Velocidad requerida para que una aeronave mantenga una Velocidad de ascenso específica durante una maniobra de elevación. Esta fórmula calcula la Velocidad en función de la aceleración gravitacional, el factor de carga de tracción y la Velocidad de giro. Comprender y aplicar esta fórmula es esencial para que los pilotos e ingenieros garanticen maniobras de pull-up seguras y efectivas.

Vpull-up=[g]npull-up-1ω

Velocidad Máxima del Cuerpo en Movimiento Armónico Simple

La fórmula de Velocidad máxima de un cuerpo en un movimiento armónico simple se define como la Velocidad más alta alcanzada por un objeto en un movimiento armónico simple, que es un tipo de movimiento periódico que ocurre cuando la fuerza neta sobre un objeto es proporcional a su desplazamiento desde su posición de equilibrio.

Vmax=ωA'

Velocidad de Rotación considerando Potencia Absorbida y Torque en Cojinete

La Velocidad de rotación considerando la potencia absorbida y el par en el cojinete liso está determinada por la relación entre la potencia absorbida por el rodamiento y el par que experimenta.

N=P2πτ

Velocidad de rotación para el par requerido en el cojinete de paso a paso

La Velocidad de rotación para la torsión requerida en la fórmula del cojinete con escalón se conoce considerando la viscosidad del aceite o fluido, la torsión requerida para superar la resistencia viscosa, el espesor y el radio del eje.

N=τtμπ2(Ds2)4

Velocidad de la sección de prueba del túnel de viento

La fórmula de Velocidad de la sección de prueba del túnel de viento se obtiene del principio de Bernoulli y es función de la diferencia de presión entre el yacimiento y la sección de prueba.

V2=2(P1-P2)ρ0(1-1Alift2)

Velocidad de la sección de prueba por altura manométrica para túnel de viento

La fórmula de Velocidad de la sección de prueba por altura manométrica para túnel de viento se define como una función de la relación de contracción, la densidad del fluido en el túnel de viento y el peso por volumen de fluido manométrico y la diferencia de altura entre dos lados del manómetro.

VT=2𝑤Δhρ0(1-1Alift2)

Velocidad de corte resultante

La Velocidad de corte resultante es la Velocidad resultante de la Velocidad de la herramienta primaria y la Velocidad de avance simultáneas, dada a la herramienta durante el mecanizado. En condiciones ideales, se considera que es lo mismo que la Velocidad de corte.

Vr=vccos((η))

Velocidad de flujo libre para coeficiente de sustentación en cilindro giratorio con circulación

La Velocidad de corriente libre para el coeficiente de sustentación en un cilindro giratorio con fórmula de circulación se conoce teniendo en cuenta la relación entre la circulación y el radio del cilindro y el coeficiente de sustentación.

V=ΓcRC'

Velocidad de partícula en caja 3D

La fórmula de la Velocidad de la partícula en la caja 3D se define como una relación del doble de la longitud de la caja rectangular y el tiempo entre la colisión.

u3D=2Lt

Velocidad de la molécula de gas dada la fuerza

La Velocidad de la molécula de gas dada la fórmula de fuerza se define como la raíz cuadrada del producto de la longitud de la caja rectangular y la fuerza por masa de la partícula.

uF=FLm

Velocidad de la molécula de gas en 1D dada la presión

La Velocidad de la molécula de gas en una fórmula de presión dada en 1D se define como la raíz de la relación de la presión del gas multiplicada por el volumen con la masa de la partícula.

up=PgasVboxm

Velocidad cuadrática media de la molécula de gas dada la presión y el volumen de gas

La Velocidad cuadrática media de la molécula de gas dada la fórmula de presión y volumen de gas se define como la raíz cuadrada de la relación de tres veces la presión y el volumen del gas a la masa de cada molécula de gas.

CRMS=3PgasVNmoleculesm

Velocidad del cuerpo dado el momento

La fórmula de la Velocidad de un cuerpo dado el momento se define como una medida de la Velocidad de un objeto en una dirección específica, calculada dividiendo el momento del objeto por su masa, lo que proporciona un concepto fundamental para comprender el movimiento de un objeto y su relación con la fuerza.

v=pmo

Velocidad del proyectil del cono Mach en flujo de fluido compresible

La Velocidad del proyectil del cono de Mach en un flujo de fluido compresible describe la Velocidad a la que viaja el proyectil cuando alcanza o excede la Velocidad del sonido en el medio circundante. Comprender esta Velocidad es crucial en los estudios de aerodinámica y balística, ya que indica la aparición de ondas de choque y los desafíos aerodinámicos asociados con los vuelos supersónicos e hipersónicos.

V=Csin(μ)

Velocidad de la onda sonora considerando el ángulo de Mach en el flujo de un fluido comprimible

La Velocidad de la onda sonora, considerando el ángulo de Mach en el flujo de fluido compresible, es importante para comprender cómo se propaga el sonido a través de un medio cuando la Velocidad del fluido se acerca o excede la Velocidad del sonido. Esta relación ayuda a predecir el comportamiento de las ondas de choque y la transmisión del sonido en diversos entornos, algo fundamental en la ingeniería aeroespacial, la acústica y el estudio de la dinámica de fluidos de alta Velocidad.

C=Vsin(μ)

Velocidad de corte utilizando la vida útil de la herramienta de Taylor y la intercepción

La Velocidad de corte utilizando la vida útil e intercepción de la herramienta de Taylor es un método para encontrar la Velocidad de corte máxima con la que se puede mecanizar la pieza de trabajo cuando se fija el intervalo de tiempo de afilado de la herramienta.

V'cut=XTvx

Velocidad angular del cuerpo que se mueve en círculo

La fórmula de Velocidad angular de un cuerpo que se mueve en un círculo se define como una medida de qué tan rápido gira o rota un objeto cuando se mueve en una trayectoria circular, describiendo la tasa de cambio de su desplazamiento angular con respecto al tiempo.

ω=θcmtcm

Velocidad angular dada Velocidad lineal

La fórmula de Velocidad angular dada la Velocidad lineal se define como una medida de la tasa de cambio del desplazamiento angular de un objeto con respecto al tiempo, proporcionando una forma de cuantificar el movimiento de rotación de un objeto en términos de su Velocidad lineal y radio.

ω=vcmr

Velocidad crítica considerando el flujo en canales abiertos

La fórmula de la Velocidad crítica considerando el flujo en canales abiertos se conoce con la raíz cuadrada de la gravedad y la profundidad crítica.

Vc=[g]hc

Velocidad angular final

La fórmula de Velocidad angular final se define como la medida de la Velocidad de rotación de un objeto al final de un período de tiempo, describiendo el cambio en su desplazamiento angular con respecto al tiempo, considerando la Velocidad angular inicial y la aceleración angular.

ωfi=ωin+αcmtcm

Velocidad angular inicial

La fórmula de Velocidad angular inicial se define como la medida de la tasa de cambio del desplazamiento angular de un objeto con respecto al tiempo, describiendo el movimiento de rotación de un objeto alrededor de un eje fijo y proporcionando información sobre la cinemática rotacional del objeto.

ωin=ωfi-αcmtcm

Velocidad angular promedio

La fórmula de Velocidad angular promedio se define como el valor medio de la Velocidad angular de un objeto que experimenta un movimiento de rotación y proporciona una medida de la tasa de cambio de su desplazamiento angular durante un período de tiempo específico.

ω=ωin+ωfi2

Velocidad a través de la pantalla dada Pérdida de carga a través de la pantalla

La Velocidad a través de la pantalla dada la pérdida de cabeza a través de la pantalla es la tasa de cambio de su posición con respecto a un marco de referencia y es una función del tiempo.

v=(hL0.0729)+u2

Velocidad sobre la malla dada la pérdida de carga a través de la malla

La Velocidad sobre la pantalla dada la pérdida de cabeza a través de la pantalla es la tasa de cambio de su posición con respecto a un marco de referencia y es una función del tiempo.

u=v2-(hL0.0729)

Velocidad de sedimentación de partículas esféricas

La fórmula de Velocidad de sedimentación de una partícula esférica se define como la Velocidad constante a la que una partícula esférica cae a través de un fluido bajo la influencia de la gravedad.

Vsp=(g18)(G-1)((Dp)2ν)

Velocidad de sedimentación de partículas esféricas dado el número de Reynold

La fórmula de la Velocidad de sedimentación de una partícula esférica dada el número de Reynolds se define como la Velocidad a la que una partícula se sedimenta en un fluido, como agua o aire, bajo la influencia de la gravedad, considerando el número de Reynolds.

Vsr=RpνDp

Velocidad de caída dada la fuerza de arrastre ofrecida por el fluido

La fórmula de Velocidad de caída dada la fuerza de arrastre ofrecida por el fluido se define como el cálculo de la Velocidad de caída cuando tenemos información previa de la fuerza de arrastre.

v=2(FdCDAρwater)

Velocidad de asentamiento de partículas esféricas dado el coeficiente de arrastre

La fórmula de Velocidad de sedimentación de una partícula esférica dada el coeficiente de arrastre se define como la Velocidad a la que una partícula se sedimenta en un fluido, como agua o aire, bajo la influencia de la gravedad, considerando el coeficiente de arrastre.

Vsc=(43)(γs-γw)DpρwaterCD

Velocidad suavizada

La fórmula Smoothed Velocity es la estimación suavizada de la Velocidad actual del objetivo sobre la base de las detecciones anteriores realizadas por el radar de vigilancia de seguimiento durante la exploración.

vs=vs(n-1)+βTs(xn-xpn)

Velocidad objetivo

La fórmula de Velocidad del objetivo se define como la Velocidad del objetivo que se mueve con la frecuencia Doppler en relación con la fuente de onda.

vt=Δfdλ2

Velocidad de corte instantánea dada Avance

La Velocidad de corte instantánea dada es un parámetro crítico en el mecanizado de metales, ya que influye directamente en varios aspectos del proceso de mecanizado, incluidas las tasas de eliminación de material, las tasas de desgaste de las herramientas, las fuerzas de corte y la calidad del acabado superficial. Los maquinistas ajustan las Velocidades de corte en función de factores como el material que se mecaniza, el material y la geometría de la herramienta, los parámetros de corte y los resultados de mecanizado deseados para lograr un rendimiento y una eficiencia óptimos.

V=2πωs(Ro-ωsft)

Velocidad absoluta para la masa de fluido golpeando la placa

La Velocidad absoluta para la masa de la placa de impacto del fluido se puede definir como la Velocidad lineal uniforme común de varios componentes de un sistema físico, en relación con el espacio absoluto.

Vabsolute=(mfGγfAJet)+v

¿Cómo encontrar Fórmulas?

A continuación se ofrecen algunos consejos para obtener mejores resultados de búsqueda.
Sea específico: cuanto más específica sea su consulta, mejores serán los resultados.
Utilice varias palabras clave: combine varias palabras clave para limitar los resultados.
Experimenta con sinónimos: Diferentes términos pueden producir resultados diferentes.
Búsqueda con comodines: utiliza el operador * (asterisco). TENGA EN CUENTA que este operador funciona solo al final de una palabra. Ejemplo: biografía*, área*, etc.

Como alternativa, puede navegar a través de las subcategorías dentro de para concentrarse en las fórmulas de interés.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!