Buscar Fórmulas

Ingrese un mínimo de 3 caracteres para comenzar a buscar fórmulas de .

Seleccionar filtro

Limite los resultados de su búsqueda con la ayuda de estos filtros.

50 ¡Se encontraron fórmulas coincidentes!

Velocidad del electrón

La Velocidad del electrón se refiere a su Velocidad y dirección de movimiento y está determinada por el principio de conservación de la energía. Básicamente dice que el cambio en la energía cinética del electrón es igual al cambio en la energía potencial que experimenta debido al campo eléctrico.

Vv=2[Charge-e]V[Mass-e]

Velocidad de onda de presión en fluidos

La fórmula de Velocidad de las ondas de presión en fluidos se define como la Velocidad a la que se propagan las ondas de presión a través de un medio fluido. Esta Velocidad está influenciada por el módulo volumétrico y la densidad del fluido, y desempeña un papel crucial en la comprensión de la dinámica de fluidos y el comportamiento de las ondas en diversas aplicaciones de ingeniería.

C=Kρ

Velocidad del electrón en campos de fuerza

La Velocidad de los electrones en los campos de fuerza se utiliza para calcular la Velocidad de una partícula cargada en un campo en el que están presentes tanto el campo eléctrico como el magnético.

Vef=EIH

Velocidad angular del electrón en el campo magnético

La Velocidad angular del electrón en el campo magnético se calcula cuando una partícula con masa m y carga q se mueve en un campo magnético constante B.

ωe=[Charge-e]H[Mass-e]

Velocidad síncrona dada la Velocidad del motor

Velocidad síncrona dada La Velocidad del motor es la Velocidad de revolución del campo magnético en el devanado del estator del motor. Es la Velocidad a la que la máquina alterna produce la fuerza electromotriz.

Ns=Nm1-s

Velocidad sónica o acústica local en condiciones de aire ambiente

La fórmula de Velocidad acústica o sónica local en condiciones ambientales se define como la Velocidad del sonido en el aire en condiciones ambientales, que es un parámetro crítico en los sistemas de refrigeración y aire acondicionado, ya que afecta el rendimiento y el diseño de compresores, ventiladores y otros equipos.

a=(γ[R]TiMW)0.5

Velocidad inicial usando el tiempo de vuelo

La Velocidad inicial utilizando la fórmula del tiempo de vuelo se define como una medida de la Velocidad inicial de un objeto bajo la única influencia de la gravedad, considerando el tiempo de vuelo y el ángulo de proyección, proporcionando información valiosa sobre la cinemática del movimiento.

u=Tg2sin(θpr)

Velocidad inicial dada la altura máxima

La fórmula de Velocidad inicial dada la altura máxima se define como una medida de la Velocidad inicial de un objeto bajo la única influencia de la gravedad, considerando la altura máxima que puede alcanzar y el ángulo de proyección, proporcionando información valiosa sobre la cinemática del movimiento.

u=Hmax2gsin(θpr)

Velocidad inicial usando rango

La Velocidad inicial utilizando la fórmula de rango se define como la Velocidad de un objeto al inicio de su movimiento, que es un parámetro crucial para comprender la cinemática del movimiento, particularmente para describir la trayectoria de los proyectiles bajo la influencia de la gravedad.

u=gRmotionsin(2θpr)

Velocidad síncrona del motor síncrono

La Velocidad síncrona del motor síncrono dada por la fórmula ka se define como una Velocidad definida para una máquina de corriente alterna que depende de la frecuencia del circuito de suministro porque el elemento giratorio pasa por un par de polos por cada alternancia de la corriente alterna.

Ns=120fP

Velocidad del fluido dada la presión dinámica

La fórmula de la Velocidad del fluido dada la presión dinámica se define como una relación que expresa la Velocidad del flujo del fluido en función de la presión dinámica y la densidad del fluido. Es esencial para comprender la dinámica de fluidos y analizar el comportamiento de los fluidos en varios sistemas mecánicos.

uFluid=Pdynamic2LD

Velocidad angular de la molécula diatómica

La fórmula de la Velocidad angular de la molécula diatómica es una medida de la Velocidad de rotación. Se refiere al desplazamiento angular por unidad de tiempo. Una revolución es igual a 2 * pi radianes, por lo que la Velocidad angular (ω) es igual al producto de la frecuencia de rotación (f) y la constante 2pi {es decir, ω = 2 * pi * f}.

ω3=2πνrot

Velocidad angular dada la energía cinética

La fórmula de energía cinética de Velocidad angular dada es una ecuación de energía cinética general con la Velocidad de las partículas igual a su distancia desde el centro de masa multiplicada por la Velocidad angular del sistema (ω). La energía cinética del sistema, KE, es la suma de la energía cinética de cada masa que se escribe numéricamente como la mitad * masa * cuadrado de la Velocidad de un objeto dado.

ω3=2KE(m1(R12))+(m2(R22))

Velocidad resultante para dos componentes de Velocidad

La Velocidad resultante para dos componentes de Velocidad se conoce a partir del flujo cinemático al considerar los componentes de Velocidad uyv en la relación entre la función de corriente y la función de potencial de Velocidad.

V=(u2)+(v2)

Velocidad angular de vórtice usando profundidad de parábola

La Velocidad angular del vórtice usando la profundidad de la parábola se define a partir de la ecuación del flujo de vórtice forzado considerando la profundidad de la parábola formada en la superficie libre del agua y el radio del tanque.

ω=Z29.81r12

Velocidad de flujo libre dada la potencia requerida

La Velocidad de flujo libre dada la potencia requerida se refiere a la Velocidad del fluido (como aire o agua) aguas arriba de un objeto o dentro de un campo de flujo no perturbado; es un parámetro crucial que se utiliza para caracterizar las condiciones de flujo que afectan el rendimiento aerodinámico del objeto.

V=PT

Velocidad de flujo usando la fórmula de Manning

La Velocidad del flujo usando la fórmula de Manning se define como la Velocidad del flujo de agua cuando tenemos información previa del coeficiente de rugosidad del material de la tubería utilizada, la pérdida de energía debida a la misma y el radio hidráulico.

Vf=CrH23S12nc

Velocidad constante bajo presión y temperatura constantes para una reacción de orden cero

La constante de Velocidad a presión y temperatura constantes para la fórmula de reacción de orden cero se define como el progreso de la reacción gaseosa que se puede controlar midiendo la presión total a un volumen y temperatura fijos. Como la constante de Velocidad es para la reacción de orden cero, el orden de la reacción (n) debe sustituirse por cero.

k=(2.303t)log10(P0(n-1)(nP0)-Pt)

Velocidad específica de la bomba

La fórmula de Velocidad específica de la bomba se define como una cantidad adimensional que caracteriza el rendimiento de una bomba, proporcionando una forma de clasificar y comparar diferentes bombas en función de sus características de funcionamiento, como la Velocidad de rotación, el caudal y la altura, lo que permite un diseño y una selección eficientes de bombas para diversas aplicaciones.

Ns=ωQHm34

Velocidad específica de la turbina

La fórmula de la Velocidad específica de la turbina se define como un índice utilizado para predecir el rendimiento deseado de la bomba o la turbina. es decir, predice la forma general del impulsor de una bomba.

Ns=NPHeff54

Velocidad unitaria de la turbomáquina

La Velocidad unitaria de la turbomáquina es la Velocidad a la que funciona la máquina cuando el flujo, la altura y la potencia se reducen a sus valores unitarios adimensionales correspondientes, que normalmente se utilizan para comparar diferentes máquinas independientemente de su tamaño. Ayuda a normalizar las características de rendimiento y es crucial en leyes de similitud y modelos de escala para turbomáquinas.

Nu=NHeff

Velocidad de aterrizaje

La Velocidad de aterrizaje es la Velocidad a la que aterriza un avión. Esta fórmula calcula la Velocidad de aterrizaje en función del peso de la aeronave, la densidad de corriente libre, el área de referencia y el coeficiente de sustentación máximo. Comprender y aplicar esta fórmula es esencial para que pilotos e ingenieros garanticen aterrizajes seguros y controlados, optimizando la aproximación y el rendimiento del aterrizaje.

VT=1.3(2WρSCL,max)

Velocidad angular dada la Velocidad específica de la bomba

La fórmula de Velocidad angular dada la Velocidad específica de la bomba se define como una medida de la Velocidad de rotación de una bomba, que es un parámetro crítico en el diseño y el funcionamiento de la bomba, que caracteriza la capacidad de la bomba para transferir energía al fluido que se bombea.

ω=Ns(Hm34)Q

Velocidad de toma de contacto para una Velocidad de pérdida determinada

La Velocidad de aterrizaje para una Velocidad de pérdida dada es una medida de la Velocidad máxima que una aeronave puede tener durante el aterrizaje, calculada multiplicando la Velocidad de pérdida por un factor de seguridad de 1,3 para garantizar un aterrizaje estable y controlado.

VT=1.3Vstall

Velocidad angular de la turbina dada la Velocidad específica

La Velocidad angular de la turbina dada la fórmula de Velocidad específica se define como la tasa de cambio del desplazamiento angular de la turbina.

N=NsHeff54P

Velocidad de pérdida para una Velocidad de toma de contacto dada

La Velocidad de pérdida para una Velocidad de aterrizaje dada es la Velocidad a la que la aeronave ya no puede mantener la sustentación y entrará en una condición de pérdida. Esta ecuación que usted proporcionó parece estimar la Velocidad de pérdida de una aeronave durante el aterrizaje dividiendo la Velocidad de aterrizaje por un factor. de 1.3.

Vstall=VT1.3

Velocidad de flujo libre del flujo laminar de placa plana dado el factor de fricción

La Velocidad de corriente libre del flujo laminar de placa plana dada la fórmula del factor de fricción se define como la Velocidad de un fluido que está lejos de una placa plana, no afectado por la presencia de la placa, y se utiliza para calcular la tasa de transferencia de masa en procesos de transferencia de masa convectiva.

u=8kL(Sc0.67)f

Velocidad de flujo libre de placa plana con flujo turbulento laminar combinado

La Velocidad de corriente libre de una placa plana que tiene una fórmula de flujo turbulento laminar combinado se define como la Velocidad del fluido que se aproxima a la placa plana, que está influenciada por los regímenes de flujo laminar y turbulento, y es un parámetro crítico en los procesos de transferencia de masa convectiva.

u=kL(Sc0.67)(Re0.2)0.0286

Velocidad angular constante dada la ecuación de la superficie libre del líquido

La fórmula de Velocidad angular constante dada por la ecuación de superficie libre de líquido se define como la Velocidad con la que gira el fluido.

ω=h2[g]d'2

Velocidad de flujo libre de placa plana con flujo combinado dado coeficiente de arrastre

La Velocidad de la corriente libre de una placa plana que tiene un flujo combinado dada la fórmula del coeficiente de arrastre se define como la Velocidad de un fluido que fluye paralelo a una placa plana, influenciada por el coeficiente de arrastre, que afecta la tasa de transferencia de masa en los procesos de transferencia de masa convectiva.

u=2kL(Sc0.67)CD

Velocidad de flujo libre de placa plana en flujo turbulento interno

La fórmula de Velocidad de corriente libre de una placa plana en flujo turbulento interno se define como la Velocidad del fluido que se aproxima a la placa plana en un régimen de flujo turbulento, que es un parámetro crítico en los procesos de transferencia de masa convectiva, particularmente en aplicaciones industriales como intercambiadores de calor y reactores químicos.

u=8kL(Sc0.67)f

Velocidad angular del cilindro exterior en el método del cilindro giratorio

Velocidad angular del cilindro exterior en el método del cilindro giratorio, la Velocidad angular del cilindro exterior es la Velocidad a la que gira el cilindro exterior. Se utiliza para calcular la Velocidad de corte y determinar la viscosidad del fluido en función de la resistencia que encuentra el fluido a medida que gira el cilindro.

N=2(r2-r1)Cτπr12μ(4HiCr2+r12(r2-r1))

Velocidad de corte para flujo turbulento en tuberías

La Velocidad de corte para flujo turbulento en tuberías, también conocida como Velocidad de fricción (u*), es un parámetro clave que se utiliza para caracterizar la intensidad de la tensión de corte cerca de la pared de la tubería. Representa la Velocidad a la que las capas de fluido adyacentes a la pared de la tubería se mueven entre sí.

V'=𝜏ρf

Velocidad de aproximación en impacto indirecto del cuerpo con plano fijo

La fórmula de Velocidad de aproximación en el impacto indirecto del cuerpo con plano fijo se define como el producto de la Velocidad inicial del cuerpo y el cos del ángulo entre la Velocidad inicial y la línea de impacto.

vapp=ucos(θi)

Velocidad de flujo libre para el coeficiente de arrastre local

La Velocidad de Freestream para el coeficiente de arrastre local se conoce considerando la raíz cuadrada del esfuerzo cortante a la mitad de la densidad del fluido y el coeficiente de arrastre local.

V=𝜏12ρfCD*

Velocidad máxima para evitar el vuelco del vehículo a lo largo de la trayectoria circular nivelada

La fórmula de Velocidad máxima para evitar el vuelco del vehículo a lo largo de una trayectoria circular nivelada se define como la Velocidad a la que un vehículo puede viajar alrededor de una trayectoria circular sin volcar, teniendo en cuenta la fuerza de la gravedad, el radio de la trayectoria y la distribución del peso del vehículo.

v=[g]rdw2G

Velocidad máxima para evitar derrapar el vehículo a lo largo de una trayectoria circular nivelada

La fórmula de Velocidad máxima para evitar el derrape del vehículo a lo largo de una trayectoria circular nivelada se define como la Velocidad a la que un vehículo puede desplazarse por una trayectoria circular sobre una superficie horizontal sin derrapar ni perder tracción, teniendo en cuenta la fuerza de fricción y el radio de la trayectoria circular.

v=μ[g]r

Velocidad en cualquier punto del elemento cilíndrico

La Velocidad en cualquier punto de la fórmula del elemento cilíndrico se define como la Velocidad a la que el fluido ingresa a la tubería formando un perfil parabólico.

vFluid=-(14μ)dp|dr((R2)-(dradial2))

Velocidad en la salida de la boquilla para caudal máximo de fluido

La Velocidad en la salida de la boquilla para un caudal máximo de fluido es crucial para determinar la eficiencia y el rendimiento de los sistemas de dinámica de fluidos. Se correlaciona directamente con la relación de presión a través de la boquilla, la densidad del fluido y las características de diseño de la boquilla, lo que influye en el caudal y la eficiencia de la propulsión en aplicaciones como motores de cohetes y sistemas de pulverización industriales. Comprender y optimizar esta Velocidad es esencial para lograr los resultados operativos deseados en aplicaciones tecnológicas y de ingeniería.

Vf=2yP1(y+1)ρa

Velocidad RMS dada temperatura y masa molar

La fórmula de la Velocidad RMS dada la temperatura y la masa molar se define como la relación entre la raíz cuadrada de la temperatura del gas y la masa molar.

CRMS=3[R]TgMmolar

Velocidad RMS dada la presión y el volumen de gas

La fórmula de la Velocidad RMS dada la presión y el volumen de gas se define como la proporción directa de la raíz cuadrada media de la Velocidad con la raíz cuadrada de la presión y el volumen y la proporción inversa de la raíz cuadrada media con la raíz cuadrada de la masa molar.

CRMS=3PgasVMmolar

Velocidad RMS dada presión y densidad

La fórmula de Velocidad RMS dada presión y densidad se define como la proporción directa de la Velocidad cuadrática media con la raíz cuadrada de la presión y la proporción inversa de la Velocidad cuadrática media con la raíz cuadrada de la masa molar.

CRMS=3Pgasρgas

Velocidad más probable del gas dada la temperatura

La fórmula de temperatura dada para la Velocidad más probable del gas se define como la relación entre la raíz cuadrada de la temperatura y la masa molar.

CT=2[R]TgMmolar

Velocidad más probable del gas dada la presión y el volumen

La fórmula de la Velocidad más probable del gas dada la presión y el volumen se define como la relación entre la raíz cuadrada de la presión y el volumen y la masa molar del gas en particular.

CP_V=2PgasVMmolar

Velocidad más probable del gas dada la presión y la densidad

La fórmula de presión y densidad de Velocidad más probable del gas dada se define como la relación entre la raíz cuadrada de la presión y la densidad del gas respectivo.

CP_D=2Pgasρgas

Velocidad más probable del gas dada la Velocidad RMS

La fórmula de Velocidad RMS más probable de la Velocidad del gas dada se define como el producto de la raíz cuadrada de la Velocidad media del gas con 0.8166.

Cmp_RMS=(0.8166CRMS)

Velocidad RMS dada la Velocidad más probable

La fórmula de Velocidad RMS dada la Velocidad más probable se define como la relación entre la Velocidad más probable de la molécula gaseosa y la constante numérica de 0,8166.

CRMS=(Cmp0.8166)

Velocidad proporcional dado el ángulo central

La Velocidad proporcional dado el ángulo central se define como la relación entre la Velocidad del fluido en una tubería parcialmente llena y la Velocidad cuando la tubería está completamente llena.

Pv=(1-(360π180)sin(central)2πcentral)23

Velocidad proporcional cuando el coeficiente de rugosidad no varía con la profundidad

La Velocidad proporcional cuando el coeficiente de rugosidad no varía con la profundidad calcula la Velocidad proporcional cuando tenemos información previa de otros parámetros

Pv=(rpfRrf)23

Velocidad durante el funcionamiento Parcialmente lleno dada la descarga

La Velocidad cuando el alcantarillado está parcialmente lleno dada la descarga se define como la Velocidad del flujo cuando el alcantarillado no está completamente lleno, influenciada por la profundidad y la pendiente.

Vs=qa

¿Cómo encontrar Fórmulas?

A continuación se ofrecen algunos consejos para obtener mejores resultados de búsqueda.
Sea específico: cuanto más específica sea su consulta, mejores serán los resultados.
Utilice varias palabras clave: combine varias palabras clave para limitar los resultados.
Experimenta con sinónimos: Diferentes términos pueden producir resultados diferentes.
Búsqueda con comodines: utiliza el operador * (asterisco). TENGA EN CUENTA que este operador funciona solo al final de una palabra. Ejemplo: biografía*, área*, etc.

Como alternativa, puede navegar a través de las subcategorías dentro de para concentrarse en las fórmulas de interés.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!