Buscar Fórmulas

Ingrese un mínimo de 3 caracteres para comenzar a buscar fórmulas de .

Seleccionar filtro

Limite los resultados de su búsqueda con la ayuda de estos filtros.

50 ¡Se encontraron fórmulas coincidentes!

Velocidad final del cuerpo

La fórmula de la Velocidad final del cuerpo se define como la Velocidad que alcanza un objeto después de un cierto período de tiempo, considerando su Velocidad inicial, aceleración y tiempo, lo cual es esencial para comprender la cinemática del movimiento y describir el movimiento de los objetos.

vf=u+at

Velocidad promedio del cuerpo dada la Velocidad inicial y final

La fórmula de Velocidad promedio de un cuerpo dada la Velocidad inicial y final se define como una medida de la tasa promedio de cambio de la posición de un objeto con respecto al tiempo, lo que proporciona una comprensión integral del movimiento de un objeto entre dos puntos.

vavg=u+vf2

Velocidad final de un cuerpo en caída libre desde la altura cuando llega al suelo

La fórmula de la Velocidad final de un cuerpo en caída libre desde una altura cuando llega al suelo se define como la Velocidad a la que un objeto cae desde una determinada altura y llega al suelo, influenciada por la aceleración debida a la gravedad y la altura inicial del objeto.

V=2gv

Velocidad angular final dada Velocidad angular inicial Aceleración angular y tiempo

La fórmula de Velocidad angular final dada la Velocidad angular inicial y el tiempo se define como una medida de la Velocidad de rotación de un objeto en un punto específico en el tiempo, teniendo en cuenta su Velocidad angular inicial, aceleración angular y tiempo transcurrido, proporcionando una comprensión integral del movimiento de rotación de un objeto.

ω1=ωo+αt

Velocidad angular dada la Velocidad tangencial

La Velocidad angular dada la fórmula de Velocidad tangencial se define como una medida de la tasa de cambio del desplazamiento angular de un objeto que se mueve en una trayectoria circular, proporcionando un concepto fundamental para comprender el movimiento de rotación y sus aplicaciones en varios campos de la física y la ingeniería.

ω=vtRc

Velocidad de rotación en RPM

La fórmula de Velocidad de rotación en RPM se define como una medida de la Velocidad de rotación de un eje u otro elemento giratorio, generalmente en un sistema mecánico, que es crucial para determinar el rendimiento y la eficiencia del sistema.

Nequillibrium=602πtan(φ)mball

Velocidad de la partícula alfa usando la distancia de aproximación más cercana

La Velocidad de la partícula alfa usando la distancia de aproximación más cercana es la Velocidad a la que una partícula alfa viaja en un núcleo atómico.

v=[Coulomb]Z([Charge-e]2)[Atomic-m]r0

Velocidad angular media de equilibrio

La fórmula de Velocidad angular de equilibrio media se define como una medida de la Velocidad angular promedio de un eje giratorio en un sistema mecánico, normalmente utilizada en mecanismos reguladores para regular la Velocidad de un motor u otra maquinaria.

ωequillibrium=ω1+ω22

Velocidad media de equilibrio en RPM

La fórmula de Velocidad media de equilibrio en RPM se define como la Velocidad de rotación promedio de un regulador en la que la fuerza centrífuga de las bolas equilibra exactamente el peso de las bolas, lo que da como resultado un funcionamiento estable del motor.

Nequillibrium=N1+N22

Velocidad del seguidor para leva tangente del seguidor de rodillo si el contacto es con flancos rectos

La fórmula de Velocidad del seguidor para leva tangente del seguidor de rodillos si el contacto es con flancos rectos se define como una medida de la Velocidad del seguidor en un sistema de leva-seguidor donde el contacto es con flancos rectos, lo que proporciona información sobre la cinemática del sistema y permite el diseño de sistemas mecánicos eficientes.

v=ω(r1+rroller)sin(θ)(cos(θ))2

Velocidad máxima del seguidor para leva tangente con seguidor de rodillo

La fórmula de Velocidad máxima del seguidor para leva tangente con seguidor de rodillos se define como la Velocidad máxima a la que se mueve el seguidor en una leva tangente con un seguidor de rodillos, lo cual es fundamental para diseñar y optimizar los sistemas de leva-seguidor para un rendimiento mecánico eficiente.

Vm=ω(r1+rr)sin(φ)cos(φ)2

Velocidad absoluta del jet Pelton

La Velocidad absoluta de Pelton Jet es la Velocidad a la que el agua sale de la boquilla y golpea los cangilones de la turbina Pelton. Esta Velocidad es crucial ya que influye directamente en la energía cinética transferida a los cangilones de la turbina y generalmente está determinada por la altura y la presión de la fuente de agua que alimenta la turbina.

V1=Cv2[g]H

Velocidad del seguidor de la leva tangente del seguidor del rodillo para contacto con la punta

La fórmula de Velocidad del seguidor de la leva tangente del seguidor de rodillos para contacto con la punta se define como la Velocidad del seguidor en un sistema de leva y seguidor, que es un parámetro crítico para determinar el rendimiento y la eficiencia del sistema, particularmente cuando el seguidor está en contacto con la punta de la leva.

v=ωr(sin(θ1)+rsin(2θ1)2L2-r2(sin(θ1))2)

Velocidad descendente utilizando la relación de Prandtl

La Velocidad descendente utilizando la relación de Prandtl relaciona la Velocidad crítica del sonido con las Velocidades aguas arriba y aguas abajo de una onda de choque.

V2=acr2V1

Velocidad teórica

La fórmula de la Velocidad teórica se define a partir de la ecuación de Bernoulli del flujo a través de un orificio. H es la cabeza del líquido por encima del centro del orificio.

v=29.81Hp

Velocidad para una tasa de giro dada

La Velocidad para un régimen de giro determinado es una medida de la Velocidad de una aeronave durante un giro, calculada en función del factor de carga, la aceleración gravitacional y el régimen de giro.

V=[g]n2-1ω

Velocidad del cuerpo en movimiento armónico simple

La fórmula de la Velocidad del cuerpo en el movimiento armónico simple se define como la Velocidad máxima de un objeto mientras oscila alrededor de su posición de equilibrio, proporcionando una medida de la energía cinética del objeto durante su movimiento vibracional.

V=A'ωcos(ωtsec)

Velocidad para un radio de maniobra de dominada determinado

La Velocidad para un radio de maniobra de pull-up determinado de una aeronave depende del radio de maniobra y del factor de carga de la aeronave; esta fórmula proporciona una aproximación simplificada de la Velocidad necesaria para mantener la Velocidad de descenso deseada durante la maniobra de pull-up.

Vpull-up=R[g](n-1)

Velocidad para una tasa de maniobra de pull-up dada

La Velocidad para una tasa de maniobra de elevación dada es la Velocidad requerida para que una aeronave mantenga una Velocidad de ascenso específica durante una maniobra de elevación. Esta fórmula calcula la Velocidad en función de la aceleración gravitacional, el factor de carga de tracción y la Velocidad de giro. Comprender y aplicar esta fórmula es esencial para que los pilotos e ingenieros garanticen maniobras de pull-up seguras y efectivas.

Vpull-up=[g]npull-up-1ω

Velocidad Máxima del Cuerpo en Movimiento Armónico Simple

La fórmula de Velocidad máxima de un cuerpo en un movimiento armónico simple se define como la Velocidad más alta alcanzada por un objeto en un movimiento armónico simple, que es un tipo de movimiento periódico que ocurre cuando la fuerza neta sobre un objeto es proporcional a su desplazamiento desde su posición de equilibrio.

Vmax=ωA'

Velocidad de Rotación considerando Potencia Absorbida y Torque en Cojinete

La Velocidad de rotación considerando la potencia absorbida y el par en el cojinete liso está determinada por la relación entre la potencia absorbida por el rodamiento y el par que experimenta.

N=P2πτ

Velocidad de rotación para el par requerido en el cojinete de paso a paso

La Velocidad de rotación para la torsión requerida en la fórmula del cojinete con escalón se conoce considerando la viscosidad del aceite o fluido, la torsión requerida para superar la resistencia viscosa, el espesor y el radio del eje.

N=τtμπ2(Ds2)4

Velocidad de la sección de prueba del túnel de viento

La fórmula de Velocidad de la sección de prueba del túnel de viento se obtiene del principio de Bernoulli y es función de la diferencia de presión entre el yacimiento y la sección de prueba.

V2=2(P1-P2)ρ0(1-1Alift2)

Velocidad de la sección de prueba por altura manométrica para túnel de viento

La fórmula de Velocidad de la sección de prueba por altura manométrica para túnel de viento se define como una función de la relación de contracción, la densidad del fluido en el túnel de viento y el peso por volumen de fluido manométrico y la diferencia de altura entre dos lados del manómetro.

VT=2𝑤Δhρ0(1-1Alift2)

Velocidad de corte resultante

La Velocidad de corte resultante es la Velocidad resultante de la Velocidad de la herramienta primaria y la Velocidad de avance simultáneas, dada a la herramienta durante el mecanizado. En condiciones ideales, se considera que es lo mismo que la Velocidad de corte.

Vr=vccos((η))

Velocidad de flujo libre según el teorema de Kutta-Joukowski

La fórmula del teorema de Velocidad de corriente libre de Kutta-Joukowski se define como la función de elevación por unidad de tramo, circulación y densidad de corriente libre.

V=L'ρΓ

Velocidad angular del cuerpo que se mueve en círculo

La fórmula de Velocidad angular de un cuerpo que se mueve en un círculo se define como una medida de qué tan rápido gira o rota un objeto cuando se mueve en una trayectoria circular, describiendo la tasa de cambio de su desplazamiento angular con respecto al tiempo.

ω=θcmtcm

Velocidad angular dada Velocidad lineal

La fórmula de Velocidad angular dada la Velocidad lineal se define como una medida de la tasa de cambio del desplazamiento angular de un objeto con respecto al tiempo, proporcionando una forma de cuantificar el movimiento de rotación de un objeto en términos de su Velocidad lineal y radio.

ω=vcmr

Velocidad crítica considerando el flujo en canales abiertos

La fórmula de la Velocidad crítica considerando el flujo en canales abiertos se conoce con la raíz cuadrada de la gravedad y la profundidad crítica.

Vc=[g]hc

Velocidad angular final

La fórmula de Velocidad angular final se define como la medida de la Velocidad de rotación de un objeto al final de un período de tiempo, describiendo el cambio en su desplazamiento angular con respecto al tiempo, considerando la Velocidad angular inicial y la aceleración angular.

ωfi=ωin+αcmtcm

Velocidad angular inicial

La fórmula de Velocidad angular inicial se define como la medida de la tasa de cambio del desplazamiento angular de un objeto con respecto al tiempo, describiendo el movimiento de rotación de un objeto alrededor de un eje fijo y proporcionando información sobre la cinemática rotacional del objeto.

ωin=ωfi-αcmtcm

Velocidad angular promedio

La fórmula de Velocidad angular promedio se define como el valor medio de la Velocidad angular de un objeto que experimenta un movimiento de rotación y proporciona una medida de la tasa de cambio de su desplazamiento angular durante un período de tiempo específico.

ω=ωin+ωfi2

Velocidad de onda en medio

La fórmula Wave Velocity in Medium se define porque muestra la Velocidad de cualquier onda utilizada para la transmisión cuando pasa a través de un medio específico.

V=V0RI

Velocidad de onda en vacío

La fórmula Wave Velocity in Vacuum se define como la Velocidad de la onda que viaja en el vacío. Un vacío es un espacio desprovisto de materia. La palabra proviene del adjetivo latino 'vacuus' para "vacante" o "vacío".

V0=VRI

Velocidad media de flujo dada Velocidad de flujo sin gradiente de presión

La Velocidad media de flujo dada la Velocidad de flujo sin gradiente de presión se define como la Velocidad promedio del fluido en la tubería.

Vmean=DR

Velocidad media del flujo dado el esfuerzo cortante

La Velocidad media de flujo dado el esfuerzo cortante se define como la Velocidad promedio que fluye a lo largo de la tubería en la corriente.

Vmean=(𝜏+dp|dr(0.5D-R))(Dμ)

Velocidad media del flujo en la sección

La fórmula de la Velocidad media del flujo en la sección se define como la Velocidad promedio en el canal con una pendiente del lecho inclinada en un ángulo particular con respecto a la horizontal.

Vmean=γfdh|dx(dsectionR-R2)μ

Velocidad media usando la ley de Darcy

La Velocidad media utilizando la fórmula de la ley de Darcy se define como la Velocidad promedio de un fluido u objeto durante un período de tiempo o distancia determinado, que es directamente proporcional tanto al gradiente hidráulico como al coeficiente de permeabilidad.

Vmean=kH

Velocidad superficial de la pieza de trabajo dada Tasa de remoción de metal durante el rectificado

La Velocidad superficial de la pieza de trabajo dada La tasa de eliminación de metal durante el rectificado es la Velocidad de la superficie de la pieza de trabajo dada la tasa de eliminación de metal durante las operaciones de rectificado. Determina la Velocidad de rotación de la superficie con respecto a la herramienta de rectificado mediante la Velocidad de eliminación de material, el avance y el ancho de la trayectoria de rectificado.

vw=Zmfiap

Velocidad de la superficie de la pieza dado el número de revoluciones de la pieza

Velocidad de la superficie de la pieza de trabajo dado el número de revoluciones de la pieza de trabajo" es la superficie de la pieza de trabajo que se mueve en relación con la herramienta de rectificado en función del número de revoluciones, el parámetro de eliminación de la pieza de trabajo, la rigidez efectiva y el ancho de la trayectoria de rectificado.

vw=mΛWSe2ap

Velocidad crítica dada la descarga máxima

La fórmula de Velocidad crítica dada la descarga máxima se define como la Velocidad a la que el flujo pasa de ser subcrítico a supercrítico. En el flujo en canal abierto, la Velocidad crítica ocurre cuando la energía cinética del flujo es igual a la energía potencial, considerando el flujo máximo de descarga.

Vc=(QpWtdc)

Velocidad de corte de referencia dada la tasa de aumento del ancho de la zona de desgaste

La Velocidad de corte de referencia dada la tasa de aumento del ancho de la superficie de desgaste en el mecanizado de metales se refiere a la Velocidad lineal deseada del filo de la herramienta de corte en relación con la superficie de la pieza de trabajo, establecida teniendo en cuenta la Velocidad a la que el ancho de la superficie de desgaste sobre la superficie de corte. La herramienta aumenta durante el mecanizado.

Vref=V(VrTrefw)n

Velocidad de corte dada la tasa de aumento del ancho de la zona de desgaste

La Velocidad de corte dada la tasa de aumento del ancho de la superficie de desgaste, denominada Velocidad de corte, es un parámetro crítico que influye directamente en el desgaste de la herramienta y el rendimiento del mecanizado. La tasa de aumento del ancho de la superficie de desgaste, por otro lado, describe qué tan rápido aumenta el ancho de la superficie desgastada en la herramienta de corte con el tiempo durante el proceso de mecanizado.

V=Vref(VrTrefw)n

Velocidad de flujo en el tanque de aceite

La Velocidad de flujo en el tanque de aceite se define como la Velocidad a la que se mueve el fluido o el aceite en el tanque debido a la aplicación de la fuerza del pistón.

uOiltank=(dp|dr0.5RR-CHRμ)-(vpistonRCH)

Velocidad del pistón dada Velocidad de flujo en el tanque de aceite

La Velocidad del pistón dada la Velocidad de flujo en el tanque de aceite se define como la Velocidad a la que el pistón desciende con respecto a la distancia vertical.

vpiston=((0.5dp|drRR-CHRμ)-uOiltank)(CHR)

Velocidad de los pistones para la caída de presión sobre la longitud del pistón

La Velocidad de los pistones para la caída de presión sobre la longitud del pistón se define como la Velocidad a la que el pistón se mueve hacia abajo.

vpiston=ΔPf(6μLPCR3)(0.5D+CR)

Velocidad del pistón para fuerza vertical ascendente en el pistón

La Velocidad del pistón para la fuerza ascendente vertical sobre el pistón se define como la Velocidad promedio con la que se mueve el aceite o el pistón en el tanque.

vpiston=FvLPπμ(0.75((DCR)3)+1.5((DCR)2))

Velocidad en la entrada Torque dado por el fluido

La Velocidad en la entrada dada por el torque del fluido es la tasa de cambio de su posición con respecto a un marco de referencia y es una función del tiempo en la entrada de cualquier objeto.

vf=(τGwf)+(vr)rO

Velocidad en la salida Torque dado por el fluido

La Velocidad a la salida dada por el torque del fluido es la tasa de cambio de su posición con respecto a un marco de referencia y es una función del tiempo a la salida de cualquier objeto.

v=(τGwf)-(vfr)rO

Velocidad angular para el trabajo realizado en la rueda por segundo

La Velocidad angular del trabajo realizado en la rueda por segundo es la cantidad de cambio del desplazamiento angular de la partícula en un período de tiempo determinado.

ω=wGwf(vfr+vrO)

¿Cómo encontrar Fórmulas?

A continuación se ofrecen algunos consejos para obtener mejores resultados de búsqueda.
Sea específico: cuanto más específica sea su consulta, mejores serán los resultados.
Utilice varias palabras clave: combine varias palabras clave para limitar los resultados.
Experimenta con sinónimos: Diferentes términos pueden producir resultados diferentes.
Búsqueda con comodines: utiliza el operador * (asterisco). TENGA EN CUENTA que este operador funciona solo al final de una palabra. Ejemplo: biografía*, área*, etc.

Como alternativa, puede navegar a través de las subcategorías dentro de para concentrarse en las fórmulas de interés.

Copied!