Buscar Fórmulas

Ingrese un mínimo de 3 caracteres para comenzar a buscar fórmulas de .

Seleccionar filtro

Limite los resultados de su búsqueda con la ayuda de estos filtros.

50 ¡Se encontraron fórmulas coincidentes!

Velocidad angular del electrón

La Velocidad angular de un electrón es la relación entre la Velocidad de ese electrón y el radio de la órbita.

ωvel=verorbit

Velocidad de partículas de fluido

La Velocidad de la partícula de fluido en la terminología de dinámica de fluidos se utiliza para describir matemáticamente el movimiento de un continuo.

vf=dta

Velocidad máxima del seguidor durante la carrera de retorno a aceleración uniforme dado el tiempo de carrera

La fórmula de Velocidad máxima del seguidor durante la carrera de retorno con aceleración uniforme dado el tiempo de carrera se define como la Velocidad más alta alcanzada por el seguidor durante su movimiento de retorno bajo aceleración uniforme, que es un parámetro crítico en el diseño y optimización de sistemas mecánicos.

Vm=2StR

Velocidad máxima del seguidor durante la carrera con aceleración uniforme

La fórmula de Velocidad máxima del seguidor durante la carrera de salida con aceleración uniforme se define como la Velocidad más alta alcanzada por el seguidor durante su movimiento hacia afuera bajo aceleración constante, que normalmente se observa en sistemas mecánicos como motores y bombas.

Vm=2Sωθo

Velocidad máxima del seguidor durante la carrera de salida con aceleración uniforme dado el tiempo de carrera de salida

La fórmula de Velocidad máxima del seguidor durante la carrera de salida con aceleración uniforme dado el tiempo de carrera de salida se define como la Velocidad máxima alcanzada por el seguidor durante la fase de carrera de salida de un sistema mecánico bajo aceleración uniforme, lo que proporciona información sobre el comportamiento cinemático del sistema.

Vm=2Sto

Velocidad media del seguidor durante la carrera de retorno con aceleración uniforme

La fórmula de Velocidad media del seguidor durante la carrera de retorno con aceleración uniforme se define como la Velocidad promedio del seguidor durante su carrera de retorno cuando la aceleración es uniforme, lo cual es un parámetro crítico en el diseño y análisis de sistemas de levas y seguidores.

Vmean=StR

Velocidad media del seguidor durante la carrera con aceleración uniforme

La fórmula de Velocidad media del seguidor durante la carrera de salida con aceleración uniforme se define como la Velocidad promedio del seguidor durante la fase de carrera de salida cuando la aceleración es uniforme, lo que proporciona información sobre la cinemática de los sistemas de levas y seguidores en ingeniería mecánica.

Vmean=Sto

Velocidad inicial dada el tiempo de vuelo del chorro de líquido

La fórmula de Velocidad inicial dado el tiempo de vuelo de un chorro de líquido se define como un método para determinar la Velocidad inicial de un chorro de líquido en función de su tiempo de vuelo y el ángulo de proyección. Este concepto es crucial en la mecánica de fluidos para analizar la dinámica de los chorros.

Vo=Tgsin(Θ)

Velocidad inicial dada Tiempo para alcanzar el punto más alto de líquido

La fórmula de la Velocidad inicial en función del tiempo necesario para alcanzar el punto más alto del líquido se define como un método para determinar la Velocidad inicial necesaria para que un chorro de líquido alcance su altura máxima. Este concepto es esencial en mecánica de fluidos para analizar el comportamiento de las proyecciones de líquidos bajo la influencia de la gravedad.

Vo=T'gsin(Θ)

Velocidad inicial del chorro de líquido dada la elevación vertical máxima

La fórmula de Velocidad inicial de un chorro de líquido dada la elevación vertical máxima se define como un método para determinar la Velocidad necesaria de un chorro de líquido para alcanzar una altura específica. Este concepto es esencial en mecánica de fluidos para comprender la dinámica de los chorros y optimizar el flujo de fluidos en diversas aplicaciones.

Vo=H2gsin(Θ)sin(Θ)

Velocidad angular dada la inercia y la energía cinética

La fórmula de la Velocidad angular dada la inercia y la energía cinética es una variación de la fórmula KE. La energía cinética de un objeto giratorio se puede expresar como la mitad del producto de la Velocidad angular del objeto y el momento de inercia alrededor del eje de rotación. Así obtenemos la relación entre la Velocidad angular, el momento de inercia y KE

ω2=2KEI

Velocidad de deriva de electrones del canal en el transistor NMOS

La Velocidad de deriva de electrones del canal en el transistor NMOS se debe al campo eléctrico que, a su vez, hace que los electrones del canal se desplacen hacia el drenaje con una Velocidad.

vd=μnEL

Velocidad angular de la bomba de paletas dada la descarga teórica

La Velocidad angular de la bomba de paletas dada la fórmula de descarga teórica se define como la Velocidad de rotación de la bomba de paletas que se calcula teóricamente en función de los parámetros de diseño de la bomba y las condiciones de operación, lo que proporciona un valor idealizado para el rendimiento de la bomba.

N1=2Qvpπewvp(dc+dr)

Velocidad de despegue para una Velocidad de pérdida dada

La Velocidad de despegue para una Velocidad de pérdida dada es una medida de la Velocidad mínima requerida para que una aeronave despegue, calculada multiplicando la Velocidad de pérdida por un factor de seguridad de 1,2, lo que garantiza un margen seguro por encima de la Velocidad de pérdida para evitar fallas del motor o pérdida de control. durante las fases críticas del vuelo.

VLO=1.2Vstall

Velocidad de pérdida para una Velocidad de despegue dada

La Velocidad de pérdida para una Velocidad de despegue dada es la Velocidad mínima a la que una aeronave puede mantener un vuelo nivelado, calculada dividiendo la Velocidad de despegue por 1,2.

Vstall=VLO1.2

Velocidad de despegue para un peso dado

La Velocidad de despegue para un peso determinado es una medida de la Velocidad mínima requerida para que un objeto se levante del suelo, calculada en función del peso, la densidad de la corriente libre, el área de referencia y el coeficiente de elevación máximo.

VLO=1.2(2WρSCL,max)

Velocidad de pérdida para un peso dado

La Velocidad de pérdida para un peso dado es una medida de la Velocidad a la que el ala de un avión entra en pérdida, calculada como una función del peso, la densidad de la corriente libre, el área de referencia y el coeficiente de sustentación máximo, lo que proporciona un umbral de Velocidad crítico para operaciones de vuelo seguras.

Vstall=2WρSCL,max

Velocidad de giro para factor de carga alto

La Velocidad de giro para un factor de carga alto es una medida de la Velocidad a la que una aeronave puede girar mientras experimenta un factor de carga específico. Esta fórmula calcula la Velocidad de giro en función de la aceleración gravitacional, el factor de carga y la Velocidad de la aeronave. Comprender y aplicar esta fórmula es crucial para que los pilotos e ingenieros optimicen la maniobrabilidad de las aeronaves y garanticen la seguridad durante las maniobras con cargas elevadas.

ω=[g]nv

Velocidad para un índice de giro determinado para un factor de carga alto

La Velocidad para una tasa de giro determinada para un factor de carga alto es la Velocidad requerida para que una aeronave mantenga una tasa de giro específica mientras experimenta un factor de carga alto. Esta fórmula calcula la Velocidad en función de la aceleración gravitacional, el factor de carga y la Velocidad de giro. Comprender y aplicar esta fórmula es esencial para que pilotos e ingenieros optimicen la maniobrabilidad de las aeronaves.

v=[g]nω

Velocidad de rotación para el par requerido en el collarín

La Velocidad de rotación para el torque requerido en la fórmula del cojinete de collar se conoce considerando la viscosidad del fluido, el radio interior y exterior del collar, el espesor de la película de aceite y el torque requerido para superar la resistencia viscosa.

N=τtμπ2(R14-R24)

Velocidad en la salida para la pérdida de carga en la salida de la tubería

La Velocidad en la salida para la fórmula de pérdida de carga a la salida de la tubería se conoce considerando la raíz cuadrada de la pérdida de carga a la salida de la tubería y la aceleración gravitacional.

v=ho2[g]

Velocidad del fluido para la pérdida de carga debido a la obstrucción en la tubería

La Velocidad del fluido para la pérdida de carga debido a la obstrucción en la fórmula de la tubería se conoce teniendo en cuenta la pérdida de carga, el coeficiente de contracción, el área de la tubería y el área máxima de la obstrucción.

Vf=Ho2[g](ACc(A-A'))-1

Velocidad del líquido en vena-contracta

La fórmula de Velocidad del líquido en vena-contracta se conoce considerando el área de la tubería y el área máxima de obstrucción en la tubería, el coeficiente de contracción y la Velocidad del fluido en la tubería.

Vc=AVfCc(A-A')

Velocidad del fluido dado el esfuerzo cortante

La fórmula de la Velocidad del fluido dado el esfuerzo cortante se define como una función del esfuerzo cortante, la viscosidad dinámica y la distancia entre las capas de fluido adyacentes.

V=Yτμ

Velocidad tangencial para flujo sin elevación sobre un cilindro circular

La fórmula de Velocidad tangencial para flujo sin elevación sobre cilindro circular es una función de la coordenada radial, la Velocidad de la corriente libre, el radio del cilindro y el ángulo polar.

Vθ=-(1+(Rr)2)Vsin(θ)

Velocidad radial para flujo sin elevación sobre un cilindro circular

La fórmula de Velocidad radial para flujo sin elevación sobre cilindro circular se define como la función de la Velocidad radial, la distancia radial desde el origen, el ángulo polar y la Velocidad de la corriente libre.

Vr=(1-(Rr)2)Vcos(θ)

Velocidad tangencial para flujo de vórtice 2-D

La fórmula de Velocidad tangencial para flujo de vórtice 2-D se define como la función de la fuerza del flujo de vórtice y la distancia radial del punto desde el origen; representa el componente de Velocidad en la dirección circunferencial alrededor del centro del vórtice.

Vθ=-γ2πr

Velocidad radial para elevar el flujo sobre un cilindro circular

La fórmula de la Velocidad radial para levantar el flujo sobre un cilindro circular se define como la función de la fuerza del vórtice, la distancia radial, el ángulo polar y el radio del cilindro.

Vr=(1-(Rr)2)Vcos(θ)

Velocidad tangencial para elevar el flujo sobre un cilindro circular

La fórmula de la Velocidad tangencial para el flujo de elevación sobre un cilindro circular es una función de la coordenada radial, la Velocidad de la corriente libre, el radio del cilindro, la fuerza del vórtice y el ángulo polar.

Vθ=-(1+(Rr)2)Vsin(θ)-Γ2πr

Velocidad de cresta dada Tiempo para aceleración

La fórmula de Velocidad de cresta dada el tiempo de aceleración se define como el producto del tiempo de aceleración y la aceleración del tren. También se la conoce como Velocidad máxima del tren.

Vm=tαα

Velocidad de programación

La fórmula de Velocidad programada se define como la relación entre la distancia recorrida entre dos paradas y el tiempo total de la carrera, incluido el tiempo de parada (tiempo programado).

Vs=DTrun+Tstop

Velocidad de la corriente en la ubicación del instrumento

La fórmula de la Velocidad de la corriente en la ubicación del instrumento se define como la Velocidad del agua en la corriente, y es mayor en el medio de la corriente cerca de la superficie y es más lenta a lo largo del lecho y las orillas de la corriente debido a la fricción.

v=aNs+b

Velocidad del chorro en relación con el movimiento del barco dada la energía cinética

La Velocidad del chorro en relación con el movimiento del barco dada la energía cinética se define como la Velocidad relativa del impacto.

Vr=KE2[g]Wbody

Velocidad absoluta del chorro emisor dada la Velocidad relativa

La Velocidad absoluta del chorro emitido dada la Velocidad relativa del chorro con respecto al barco se utiliza para calcular la Velocidad absoluta de la corriente en chorro.

V=Vr-u

Velocidad del barco en movimiento dada la Velocidad relativa

La Velocidad del barco en movimiento dada la Velocidad relativa se define como la Velocidad real del barco en la hélice genera.

u=Vr-V

Velocidad absoluta del chorro emisor dada la fuerza propulsora

La Velocidad absoluta del chorro de emisión dada la fuerza propulsora se define como la Velocidad del chorro medida con referencia al espacio absoluto.

V=[g]FWWater

Velocidad de flujo dada Empuje en la hélice

La Velocidad de flujo dada por el empuje en la hélice se define como la Velocidad de descarga del fluido en el chorro.

Vf=-(FtρWaterqflow)+V

Velocidad de la partícula después de cierto tiempo

La fórmula de Velocidad de una partícula después de cierto tiempo se define como una medida de la Velocidad de una partícula en un punto específico en el tiempo, considerando la Velocidad inicial, la aceleración y el tiempo transcurrido, proporcionando información sobre el movimiento de la partícula y su Velocidad cambiante a lo largo del tiempo.

vl=u+almt

Velocidad media

La fórmula de Velocidad promedio se define como una medida de la tasa promedio de cambio de la posición de un objeto con respecto al tiempo, proporcionando una comprensión integral del movimiento de un objeto durante un período específico.

vavg=u+vf2

Velocidad final dada el desplazamiento, la aceleración uniforme y la Velocidad inicial de la partícula

La fórmula de Velocidad final dado el desplazamiento, la aceleración uniforme y la Velocidad inicial de la partícula se define como una medida de la Velocidad que alcanza un objeto después de ser desplazado bajo aceleración uniforme, considerando su Velocidad inicial, proporcionando información sobre el movimiento de la partícula y su respuesta a fuerzas externas.

vf=u2+2almd

Velocidad inicial dado el desplazamiento, la aceleración uniforme y la Velocidad final de la partícula

La fórmula de Velocidad inicial dado el desplazamiento, la aceleración uniforme y la Velocidad final de la partícula se define como un enfoque matemático para determinar la Velocidad inicial de una partícula que se mueve bajo aceleración uniforme, considerando el desplazamiento y la Velocidad final de la partícula, proporcionando información valiosa sobre el movimiento de la partícula.

u=vf2-2almd

Velocidad de corte utilizando el aumento de temperatura promedio de la viruta a partir de la deformación secundaria

La Velocidad de corte utilizando el aumento de temperatura promedio de la viruta de la deformación secundaria se define como la Velocidad (generalmente en pies por minuto) de una herramienta cuando está cortando el trabajo.

Vcut=PfCρwpθfacdcut

Velocidad de corte dada la vida útil de la herramienta y Velocidad de corte para la condición de mecanizado de referencia

La Velocidad de corte dada la vida útil de la herramienta y la Velocidad de corte para la condición de mecanizado de referencia es un método para determinar la Velocidad de corte necesaria para una vida útil determinada de la herramienta en una condición de mecanizado en comparación con la condición de referencia.

Vcut=Vrf(TrfTv)x

Velocidad de corte de referencia dada la vida útil de la herramienta, Velocidad de corte en condiciones de mecanizado

La Velocidad de corte de referencia dada la vida útil de la herramienta, la Velocidad de corte en condiciones de mecanizado es un método para determinar la Velocidad de corte requerida para una vida útil de la herramienta de referencia conocida en la condición de mecanizado de referencia en comparación con la condición actual.

Vrf=Vcut(TrfTv)x

Velocidad más probable del gas dada la temperatura

La fórmula de temperatura dada para la Velocidad más probable del gas se define como la relación entre la raíz cuadrada de la temperatura y la masa molar.

CT=2[R]TgMmolar

Velocidad más probable del gas dada la presión y el volumen

La fórmula de la Velocidad más probable del gas dada la presión y el volumen se define como la relación entre la raíz cuadrada de la presión y el volumen y la masa molar del gas en particular.

CP_V=2PgasVMmolar

Velocidad más probable del gas dada la presión y la densidad

La fórmula de presión y densidad de Velocidad más probable del gas dada se define como la relación entre la raíz cuadrada de la presión y la densidad del gas respectivo.

CP_D=2Pgasρgas

Velocidad más probable del gas dada la Velocidad RMS

La fórmula de Velocidad RMS más probable de la Velocidad del gas dada se define como el producto de la raíz cuadrada de la Velocidad media del gas con 0.8166.

Cmp_RMS=(0.8166CRMS)

Velocidad RMS dada la Velocidad más probable

La fórmula de Velocidad RMS dada la Velocidad más probable se define como la relación entre la Velocidad más probable de la molécula gaseosa y la constante numérica de 0,8166.

CRMS=(Cmp0.8166)

Velocidad proporcional dada Velocidad mientras funciona Parcialmente lleno

La Velocidad proporcional dada la Velocidad cuando el tubo funciona parcialmente lleno se define como la relación entre la Velocidad del fluido en un tubo parcialmente lleno y la Velocidad cuando el tubo está completamente lleno.

Pv=VsV

¿Cómo encontrar Fórmulas?

A continuación se ofrecen algunos consejos para obtener mejores resultados de búsqueda.
Sea específico: cuanto más específica sea su consulta, mejores serán los resultados.
Utilice varias palabras clave: combine varias palabras clave para limitar los resultados.
Experimenta con sinónimos: Diferentes términos pueden producir resultados diferentes.
Búsqueda con comodines: utiliza el operador * (asterisco). TENGA EN CUENTA que este operador funciona solo al final de una palabra. Ejemplo: biografía*, área*, etc.

Como alternativa, puede navegar a través de las subcategorías dentro de para concentrarse en las fórmulas de interés.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!