Buscar Fórmulas

Ingrese un mínimo de 3 caracteres para comenzar a buscar fórmulas de .

Seleccionar filtro

Limite los resultados de su búsqueda con la ayuda de estos filtros.

50 ¡Se encontraron fórmulas coincidentes!

Velocidad angular

La fórmula de Velocidad angular se define como una medida de la rapidez con la que un objeto gira o gira en relación con otro punto, generalmente medida en radianes por segundo, y es un concepto fundamental en física e ingeniería, que se utiliza para describir el movimiento de rotación de objetos, como las ruedas. , engranajes y cuerpos celestes.

ω=θttotal

Velocidad media

La fórmula de Velocidad promedio se define como una medida de la distancia total recorrida por un objeto durante un período de tiempo determinado, proporcionando una comprensión integral del movimiento y la Velocidad de un objeto, es un concepto fundamental en física, ampliamente utilizado para calcular la Velocidad de los objetos. en diversos campos, incluidos el transporte, los deportes y la ingeniería.

vavg=Dttotal

Velocidad síncrona en motor de inducción

La Velocidad síncrona en el motor de inducción es la Velocidad del campo magnético del estator en el motor de inducción trifásico.

Ns=120fn

Velocidad del motor en motor de inducción

La Velocidad del motor en el motor de inducción es la Velocidad a la que gira el rotor de un motor de inducción.

Nm=Ns(1-s)

Velocidad máxima del seguidor durante la carrera de retorno para una aceleración uniforme

La fórmula de Velocidad máxima del seguidor durante su carrera de retorno para aceleración uniforme se define como la Velocidad más alta alcanzada por el seguidor durante su carrera de retorno en un sistema mecánico con aceleración uniforme, donde el seguidor se mueve en una trayectoria circular y su Velocidad varía con el desplazamiento angular.

Vm=2SωθR

Velocidad angular de la máquina DC usando Kf

La Velocidad angular de la máquina de CC utilizando la fórmula Kf se define como la tasa de cambio del desplazamiento angular de la máquina de CC.

ωs=VaKfΦIa

Velocidad angular del generador de CC en serie dado par

La Velocidad angular del generador de CC en serie dada la fórmula de par se define como la Velocidad angular del generador de CC en serie cuando se proporciona potencia de entrada.

ωs=Pinτ

Velocidad angular dada la eficiencia eléctrica del motor de CC

La Velocidad angular dada la eficiencia eléctrica de la fórmula del motor de CC se define como la tasa de cambio del desplazamiento angular del motor de CC.

ωs=ηeVsIaτa

Velocidad angular dada la cantidad de movimiento angular y la inercia

La Velocidad angular dada la fórmula del momento angular y la inercia es solo una reorganización de la fórmula del momento angular (L = Iω). El momento angular se expresa como producto de la inercia y la Velocidad angular.

ω2=LI

Velocidad del sonido

La Velocidad del sonido es la Velocidad a la que pequeñas perturbaciones de presión u ondas sonoras se propagan a través de un medio. Representa la Velocidad a la que estas perturbaciones viajan a través del medio, transfiriendo energía e información.

a=γ[R-Dry-Air]Ts

Velocidad del vehículo dada Longitud mínima de espiral

La fórmula Velocidad del vehículo dada la longitud mínima de la espiral se define como la cantidad de distancia recorrida por un vehículo en un tiempo determinado.

Vv=(LRtac3.15)13

Velocidad constante bajo presión y temperatura constantes para una reacción de orden cero

La constante de Velocidad a presión y temperatura constantes para la fórmula de reacción de orden cero se define como el progreso de la reacción gaseosa que se puede controlar midiendo la presión total a un volumen y temperatura fijos. Como la constante de Velocidad es para la reacción de orden cero, el orden de la reacción (n) debe sustituirse por cero.

k=(2.303t)log10(P0(n-1)(nP0)-Pt)

Velocidad dada Radio de maniobra desplegable

La Velocidad dada el radio de maniobra de descenso es la Velocidad requerida para que una aeronave mantenga un radio de giro específico durante una maniobra de descenso. Esta fórmula calcula la Velocidad en función del radio de giro, la aceleración gravitacional y el factor de carga. Comprender y aplicar esta fórmula es crucial para que los pilotos e ingenieros garanticen maniobras de descenso seguras y controladas.

Vpull-down=R[g](n+1)

Velocidad para una determinada tasa de maniobra de descenso

La Velocidad para una tasa de maniobra de descenso dada depende del factor de carga y la Velocidad de giro de la aeronave; esta fórmula proporciona una aproximación simplificada de la Velocidad necesaria para mantener la tasa de descenso deseada durante la maniobra de descenso.

Vpull-down=[g]1+nωpull-down

Velocidad en la Sección 1 para Flujo Estacionario

La fórmula Velocidad en la Sección 1 para Flujo Estable se define como la Velocidad del flujo en un punto particular de la corriente.

u01=QAcsρ1

Velocidad en la Sección 2 dado Flujo en la Sección 1 para Flujo Estacionario

La Velocidad en la Sección 2 dado el Flujo en la Sección 1 para la fórmula de Flujo Estable se define como la Velocidad del flujo en un punto particular de la corriente.

u02=QAcsρ2

Velocidad en la sección para descarga a través de la sección para fluido incompresible estable

La Velocidad en la sección de descarga a través de la sección de fluido incompresible estable se define como la Velocidad del flujo en el área de la sección transversal.

uFluid=QAcs

Velocidad de flujo en la entrada dado un volumen de líquido

La Velocidad de flujo en la entrada dado el volumen de líquido se define como la Velocidad a la que un líquido fluye hacia una bomba centrífuga, que es un parámetro crítico para determinar el rendimiento y la eficiencia de la bomba, y está influenciado por el volumen de líquido que se bombea y los parámetros geométricos de la bomba.

Vf1=QπD1B1

Velocidad de flujo en la salida dado el volumen de líquido

La Velocidad de flujo en la salida dada la fórmula del volumen de líquido se define como la Velocidad a la que un líquido sale de una bomba centrífuga, influenciada por los parámetros geométricos y de flujo de la bomba, lo que proporciona información valiosa sobre el rendimiento y la eficiencia de la bomba.

Vf2=QπD2B2

Velocidad tangencial para flujo sin elevación sobre un cilindro circular

La fórmula de Velocidad tangencial para flujo sin elevación sobre cilindro circular es una función de la coordenada radial, la Velocidad de la corriente libre, el radio del cilindro y el ángulo polar.

Vθ=-(1+(Rr)2)Vsin(θ)

Velocidad radial para flujo sin elevación sobre un cilindro circular

La fórmula de Velocidad radial para flujo sin elevación sobre cilindro circular se define como la función de la Velocidad radial, la distancia radial desde el origen, el ángulo polar y la Velocidad de la corriente libre.

Vr=(1-(Rr)2)Vcos(θ)

Velocidad tangencial para flujo de vórtice 2-D

La fórmula de Velocidad tangencial para flujo de vórtice 2-D se define como la función de la fuerza del flujo de vórtice y la distancia radial del punto desde el origen; representa el componente de Velocidad en la dirección circunferencial alrededor del centro del vórtice.

Vθ=-γ2πr

Velocidad radial para elevar el flujo sobre un cilindro circular

La fórmula de la Velocidad radial para levantar el flujo sobre un cilindro circular se define como la función de la fuerza del vórtice, la distancia radial, el ángulo polar y el radio del cilindro.

Vr=(1-(Rr)2)Vcos(θ)

Velocidad tangencial para elevar el flujo sobre un cilindro circular

La fórmula de la Velocidad tangencial para el flujo de elevación sobre un cilindro circular es una función de la coordenada radial, la Velocidad de la corriente libre, el radio del cilindro, la fuerza del vórtice y el ángulo polar.

Vθ=-(1+(Rr)2)Vsin(θ)-Γ2πr

Velocidad de cresta dada Tiempo para aceleración

La fórmula de Velocidad de cresta dada el tiempo de aceleración se define como el producto del tiempo de aceleración y la aceleración del tren. También se la conoce como Velocidad máxima del tren.

Vm=tαα

Velocidad de programación

La fórmula de Velocidad programada se define como la relación entre la distancia recorrida entre dos paradas y el tiempo total de la carrera, incluido el tiempo de parada (tiempo programado).

Vs=DTrun+Tstop

Velocidad de la corriente en la ubicación del instrumento

La fórmula de la Velocidad de la corriente en la ubicación del instrumento se define como la Velocidad del agua en la corriente, y es mayor en el medio de la corriente cerca de la superficie y es más lenta a lo largo del lecho y las orillas de la corriente debido a la fricción.

v=aNs+b

Velocidad del chorro en relación con el movimiento del barco dada la energía cinética

La Velocidad del chorro en relación con el movimiento del barco dada la energía cinética se define como la Velocidad relativa del impacto.

Vr=KE2[g]Wbody

Velocidad absoluta del chorro emisor dada la Velocidad relativa

La Velocidad absoluta del chorro emitido dada la Velocidad relativa del chorro con respecto al barco se utiliza para calcular la Velocidad absoluta de la corriente en chorro.

V=Vr-u

Velocidad del barco en movimiento dada la Velocidad relativa

La Velocidad del barco en movimiento dada la Velocidad relativa se define como la Velocidad real del barco en la hélice genera.

u=Vr-V

Velocidad absoluta del chorro emisor dada la fuerza propulsora

La Velocidad absoluta del chorro de emisión dada la fuerza propulsora se define como la Velocidad del chorro medida con referencia al espacio absoluto.

V=[g]FWWater

Velocidad de flujo dada Empuje en la hélice

La Velocidad de flujo dada por el empuje en la hélice se define como la Velocidad de descarga del fluido en el chorro.

Vf=-(FtρWaterqflow)+V

Velocidad en cualquier punto del elemento cilíndrico

La Velocidad en cualquier punto de la fórmula del elemento cilíndrico se define como la Velocidad a la que el fluido ingresa a la tubería formando un perfil parabólico.

vFluid=-(14μ)dp|dr((R2)-(dradial2))

Velocidad en la salida de la boquilla para caudal máximo de fluido

La Velocidad en la salida de la boquilla para un caudal máximo de fluido es crucial para determinar la eficiencia y el rendimiento de los sistemas de dinámica de fluidos. Se correlaciona directamente con la relación de presión a través de la boquilla, la densidad del fluido y las características de diseño de la boquilla, lo que influye en el caudal y la eficiencia de la propulsión en aplicaciones como motores de cohetes y sistemas de pulverización industriales. Comprender y optimizar esta Velocidad es esencial para lograr los resultados operativos deseados en aplicaciones tecnológicas y de ingeniería.

Vf=2yP1(y+1)ρa

Velocidad en el drenaje dado el tiempo de flujo del canal

La fórmula de Velocidad en el drenaje dada la fórmula del tiempo de flujo del canal se define como la Velocidad del agua que fluye a través del drenaje.

V=LTm/f

Velocidad de la corriente libre dado el coeficiente de fricción local

La fórmula del coeficiente de fricción local dada la Velocidad de la corriente libre se define como la Velocidad de un fluido cuando está lejos de un límite o pared, sin verse afectado por la presencia de la pared, y es un parámetro crítico para comprender el comportamiento del flujo de fluido sobre una placa plana.

u=2τwρCfx

Velocidad uniforme de electrones

La Velocidad uniforme de electrones se refiere a la Velocidad a la que un electrón ingresa a la cavidad en el vacío. En el vacío, un electrón tendrá una Velocidad uniforme si está sujeto a un campo eléctrico constante. La Velocidad del electrón dependerá de la fuerza del campo eléctrico y la masa del electrón.

Evo=(2Vo)([Charge-e][Mass-e])

Velocidad de asentamiento con respecto al diámetro de la partícula

La fórmula de la Velocidad de sedimentación con respecto al diámetro de la partícula se define como la Velocidad a la que una partícula se sedimenta en un fluido bajo la influencia de la gravedad. Esta Velocidad está influenciada por el tamaño, la forma y la densidad de la partícula.

Vsd=(g(G-1)(Dp)1.613.88(ν)0.6)0.714

Velocidad de asentamiento para asentamiento turbulento

La fórmula de Velocidad de asentamiento para asentamiento turbulento se define como el cálculo de la Velocidad de asentamiento durante el movimiento turbulento.

Vst=(1.8g(G-1)Dp)

Velocidad de asentamiento para la ecuación de Hazen modificada

La fórmula de Velocidad de sedimentación para la ecuación de Hazen modificada se define como el cálculo de la Velocidad de sedimentación cuando tenemos información previa de otros parámetros.

Vsm=(60.6Dp(G-1)((3T)+70100))

Velocidad de sedimentación para sólidos inorgánicos

La Velocidad de sedimentación de los sólidos inorgánicos (también denominada "Velocidad de sedimentación") se define como la Velocidad terminal de una partícula en un fluido en reposo.

vs(in)=(Dp((3T)+70))

Velocidad de sedimentación de materia orgánica

La Velocidad de sedimentación de la materia orgánica (también denominada "Velocidad de sedimentación") se define como la Velocidad terminal de una partícula en un fluido en reposo.

vs(o)=0.12Dp((3T)+70)

Velocidad de avance en molienda

La Velocidad de alimentación en el rectificado es la cantidad de alimentación dada contra una pieza de trabajo por unidad de tiempo en el rectificado.

VF=Vi-(dT2)

Velocidad de alimentación de la máquina dada Velocidad de alimentación en Rectificado

La Velocidad de alimentación de la máquina dada la Velocidad de alimentación en el rectificado se define como la Velocidad de rotación del husillo de la máquina rectificadora ajustada para adaptarse a la Velocidad de avance especificada durante el proceso de rectificado.

Vi=VF+(dT2)

Velocidad más probable del gas dada la Velocidad RMS en 2D

La Velocidad más probable del gas dada la Velocidad RMS en la fórmula 2D se define como el producto de la raíz cuadrada de la Velocidad media del gas con 0.7071.

Cmp_RMS=(0.7071CRMS)

Velocidad más probable del gas dada la temperatura en 2D

La Velocidad más probable del gas dada la temperatura en la fórmula 2D se define como la relación entre la raíz cuadrada de la temperatura y la masa molar.

CT=[R]TgMmolar

Velocidad RMS dada la Velocidad más probable en 2D

La Velocidad RMS dada la Velocidad más probable en la fórmula 2D se define como el producto de la Velocidad más probable de la molécula gaseosa por la raíz cuadrada de 2.

CRMS=(Cmp2)

Velocidad RMS dada Presión y Densidad en 2D

La Velocidad RMS dada la presión y la densidad en 2D se define como la proporción directa de la raíz cuadrática media de la Velocidad con la raíz cuadrada de la presión y la proporción inversa de la raíz cuadrática media con la raíz cuadrada de la masa molar.

CRMS=2Pgasρgas

Velocidad RMS dada la presión y el volumen de gas en 2D

La Velocidad RMS dada la presión y el volumen de gas en la fórmula 2D se define como la proporción directa de la Velocidad cuadrática media con la raíz cuadrada de la presión y el volumen y la proporción inversa de la raíz cuadrática media con la raíz cuadrada de la masa molar.

CRMS=2PgasVMmolar

Velocidad RMS dada temperatura y masa molar en 2D

La Velocidad RMS dada la temperatura y la masa molar en la fórmula 2D se define como la relación entre la raíz cuadrada de la temperatura del gas y la masa molar.

CRMS=2[R]TgMmolar

¿Cómo encontrar Fórmulas?

A continuación se ofrecen algunos consejos para obtener mejores resultados de búsqueda.
Sea específico: cuanto más específica sea su consulta, mejores serán los resultados.
Utilice varias palabras clave: combine varias palabras clave para limitar los resultados.
Experimenta con sinónimos: Diferentes términos pueden producir resultados diferentes.
Búsqueda con comodines: utiliza el operador * (asterisco). TENGA EN CUENTA que este operador funciona solo al final de una palabra. Ejemplo: biografía*, área*, etc.

Como alternativa, puede navegar a través de las subcategorías dentro de para concentrarse en las fórmulas de interés.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!