Buscar Fórmulas

Ingrese un mínimo de 3 caracteres para comenzar a buscar fórmulas de .

Seleccionar filtro

Limite los resultados de su búsqueda con la ayuda de estos filtros.

50 ¡Se encontraron fórmulas coincidentes!

Velocidad periférica de proyección del punto P sobre el diámetro para MAS del seguidor

La fórmula de la Velocidad periférica de proyección del punto P sobre el diámetro para el MAS del seguidor se define como la Velocidad a la que el punto P se mueve a lo largo del diámetro del círculo en el movimiento armónico simple del seguidor en un sistema de leva y seguidor, lo cual es crucial para comprender la cinemática del mecanismo.

Ps=πS2to

Velocidad periférica de proyección del punto P' (Proyección del punto P sobre el diámetro) para MAS del seguidor

La fórmula de Velocidad periférica de proyección del punto P' (proyección del punto P sobre el diámetro) para el MAS del seguidor se define como la Velocidad a la que se mueve la proyección de un punto sobre el diámetro de una leva durante el movimiento armónico simple del seguidor en un sistema de leva y seguidor.

Ps=πSω2θo

Velocidad máxima del seguidor en carrera cuando el seguidor se mueve con SHM

La Velocidad máxima del seguidor en la carrera de salida cuando el seguidor se mueve con la fórmula SHM se define como la Velocidad más alta alcanzada por el seguidor durante su movimiento hacia afuera, que es un parámetro crítico para evaluar el rendimiento de un sistema mecánico que involucra un movimiento armónico simple.

Vm=πSω2θo

Velocidad máxima del seguidor en carrera de salida dada la carrera de tiempo

La fórmula de Velocidad máxima del seguidor en la carrera de salida dado el tiempo de carrera se define como la Velocidad más alta alcanzada por el seguidor durante la fase de carrera de salida de un sistema de seguidor de leva, que es un parámetro crítico en el diseño y optimización de sistemas mecánicos, particularmente en aplicaciones de ingeniería automotriz y aeroespacial.

Vm=πS2to

Velocidad máxima del seguidor en la carrera de retorno cuando el seguidor se mueve con SHM

La Velocidad máxima del seguidor en su carrera de retorno cuando el seguidor se mueve con la fórmula SHM se define como la Velocidad más alta alcanzada por el seguidor durante su carrera de retorno mientras se mueve en un movimiento armónico simple, que es un parámetro crítico en el diseño y optimización de sistemas mecánicos.

Vm=πSω2θR

Velocidad síncrona del motor síncrono dada potencia mecánica

La fórmula de la Velocidad síncrona del motor síncrono dada la potencia mecánica se define como una Velocidad definida para una máquina de corriente alterna que depende de la frecuencia del circuito de suministro porque el elemento giratorio pasa por un par de polos por cada alternancia de la corriente alterna.

Ns=Pmτg

Velocidad radial en cualquier radio

La Velocidad radial en cualquier radio en un campo de flujo describe qué tan rápido el fluido se acerca o se aleja del centro, brindando una imagen clara del flujo sin depender de ecuaciones específicas.

Vr=q2πr1

Velocidad para una tasa de giro dada

La Velocidad para un régimen de giro determinado es una medida de la Velocidad de una aeronave durante un giro, calculada en función del factor de carga, la aceleración gravitacional y el régimen de giro.

V=[g]n2-1ω

Velocidad del cuerpo en movimiento armónico simple

La fórmula de la Velocidad del cuerpo en el movimiento armónico simple se define como la Velocidad máxima de un objeto mientras oscila alrededor de su posición de equilibrio, proporcionando una medida de la energía cinética del objeto durante su movimiento vibracional.

V=A'ωcos(ωtsec)

Velocidad para un radio de maniobra de dominada determinado

La Velocidad para un radio de maniobra de pull-up determinado de una aeronave depende del radio de maniobra y del factor de carga de la aeronave; esta fórmula proporciona una aproximación simplificada de la Velocidad necesaria para mantener la Velocidad de descenso deseada durante la maniobra de pull-up.

Vpull-up=R[g](n-1)

Velocidad para una tasa de maniobra de pull-up dada

La Velocidad para una tasa de maniobra de elevación dada es la Velocidad requerida para que una aeronave mantenga una Velocidad de ascenso específica durante una maniobra de elevación. Esta fórmula calcula la Velocidad en función de la aceleración gravitacional, el factor de carga de tracción y la Velocidad de giro. Comprender y aplicar esta fórmula es esencial para que los pilotos e ingenieros garanticen maniobras de pull-up seguras y efectivas.

Vpull-up=[g]npull-up-1ω

Velocidad Máxima del Cuerpo en Movimiento Armónico Simple

La fórmula de Velocidad máxima de un cuerpo en un movimiento armónico simple se define como la Velocidad más alta alcanzada por un objeto en un movimiento armónico simple, que es un tipo de movimiento periódico que ocurre cuando la fuerza neta sobre un objeto es proporcional a su desplazamiento desde su posición de equilibrio.

Vmax=ωA'

Velocidad de Rotación considerando Potencia Absorbida y Torque en Cojinete

La Velocidad de rotación considerando la potencia absorbida y el par en el cojinete liso está determinada por la relación entre la potencia absorbida por el rodamiento y el par que experimenta.

N=P2πτ

Velocidad de rotación para el par requerido en el cojinete de paso a paso

La Velocidad de rotación para la torsión requerida en la fórmula del cojinete con escalón se conoce considerando la viscosidad del aceite o fluido, la torsión requerida para superar la resistencia viscosa, el espesor y el radio del eje.

N=τtμπ2(Ds2)4

Velocidad de la punta del impulsor dado el diámetro medio

La Velocidad de la punta del impulsor dado el diámetro medio calcula la Velocidad en la punta del impulsor en función de la Velocidad de rotación y el diámetro medio del impulsor. Esta fórmula deriva la Velocidad de la punta utilizando el diámetro medio y la Velocidad de rotación, considerando la configuración geométrica del impulsor.

Ut=π(2Dm2-Dh2)0.5N60

Velocidad mínima de arranque de la bomba centrífuga

La fórmula de Velocidad mínima para el arranque de una bomba centrífuga se define como la Velocidad más baja requerida para que una bomba centrífuga comience a funcionar de manera eficiente, teniendo en cuenta los parámetros de la bomba, como la eficiencia del motor, el caudal de agua y los diámetros del impulsor, para garantizar una operación de bombeo suave y eficaz.

Nmin=120ηmVw2D2π(D22-D12)(2π60)

Velocidad de la punta del impulsor dado el diámetro del cubo

La Velocidad de la punta del impulsor, dado el diámetro del cubo, calcula la Velocidad en la punta del impulsor en función de la Velocidad de rotación y las dimensiones geométricas del impulsor. Esta fórmula deriva la Velocidad de la punta considerando el diámetro de la punta del impulsor, el diámetro del cubo y la Velocidad de rotación.

Ut=πN60Dt2+Dh22

Velocidad tangencial dada la relación de Velocidad

La fórmula de la relación de Velocidad dada a la Velocidad tangencial se define como el producto de la relación de Velocidad y la raíz cuadrada del doble de la aceleración debida a la gravedad y la altura manométrica.

u2=Ku2[g]Hm

Velocidad de flujo dada la relación de flujo

La fórmula de la Velocidad de flujo dada la relación de flujo se define como la Velocidad del flujo de fluido en la salida de una bomba centrífuga, que es un parámetro crítico para determinar el rendimiento y la eficiencia de la bomba, y está influenciado por factores como la relación de flujo, la aceleración gravitacional y el diseño geométrico de la bomba.

Vf2=Kf2[g]Hm

Velocidad del fluido en la tubería por pérdida de carga en la entrada de la tubería

La Velocidad del fluido en la tubería para la pérdida de carga en la entrada de la fórmula de la tubería se conoce al considerar la pérdida de carga en la entrada de la tubería, que depende de la forma de entrada.

v=hi2[g]0.5

Velocidad de corte resultante

La Velocidad de corte resultante es la Velocidad resultante de la Velocidad de la herramienta primaria y la Velocidad de avance simultáneas, dada a la herramienta durante el mecanizado. En condiciones ideales, se considera que es lo mismo que la Velocidad de corte.

Vr=vccos((η))

Velocidad de flujo libre según el teorema de Kutta-Joukowski

La fórmula del teorema de Velocidad de corriente libre de Kutta-Joukowski se define como la función de elevación por unidad de tramo, circulación y densidad de corriente libre.

V=L'ρΓ

Velocidad a la distancia radial r1 dado Torque ejercido sobre el fluido

La Velocidad a la distancia radial r1 dado el par ejercido sobre el fluido se define como el par ejercido sobre el fluido, lo que da como resultado un movimiento de rotación o flujo.

V1=qflowr2V2-(τΔ)r1qflow

Velocidad a la distancia radial r2 dado Torque ejercido sobre el fluido

La Velocidad a la distancia radial r2 dado el par ejercido sobre el fluido se define como que el par influye en la Velocidad angular, conduce a un cambio correspondiente en la Velocidad del fluido, lo que resulta en un valor específico a la distancia radial dada.

V2=qflowr1V1+(τΔ)qflowr2

Velocidad de flujo libre

La fórmula de Velocidad de Freestream se define como la viscosidad dinámica del fluido dividida por el producto del cuadrado de la emisividad, la densidad de freestream y el radio de la nariz.

V=μviscosityε2ρrnose

Velocidad de flujo por fórmula de Chezy

La Velocidad de flujo según la fórmula de Chezy se define como la Velocidad del flujo de agua en un canal abierto, calculada utilizando la constante de Chezy y la pendiente hidráulica.

Vc=CScm

Velocidad de flujo dada por la constante de Chezy por la fórmula de Chezy

La constante de Chezy dada la Velocidad de flujo según la fórmula de Chezy se define como un coeficiente empírico utilizado para determinar la Velocidad de flujo en canales abiertos, ajustando la rugosidad.

C=VcScm

Velocidad de flujo según la fórmula de Manning

La Velocidad de flujo según la fórmula de Manning se define como la Velocidad a la que el fluido se mueve a través de un canal o tubería, generalmente medida en metros por segundo (m/s) o pies por segundo (ft/s).

Vm=(1n)(m)23s

Velocidad de flujo por engarce y fórmula de Burge

La Velocidad de flujo según la fórmula de Crimp y Burge se define como la Velocidad a la que el fluido se mueve a través de un canal o tubería, generalmente medida en metros por segundo (m/s) o pies por segundo (ft/s).

Vcb=83.5(m)23s

Velocidad de flujo según la fórmula de William Hazen

La Velocidad de flujo según la fórmula de William Hazen se define como la Velocidad a la que el fluido se mueve a través de un canal o tubería, normalmente medida en metros por segundo (m/s) o pies por segundo (ft/s).

Vwh=0.85CH(m)0.63(s)0.54

Velocidad aparente de filtración

La fórmula de la Velocidad aparente de filtración se define como el caudal de agua a través de un medio poroso. Está definido por la Ley de Darcy y se calcula como el caudal volumétrico por unidad de área del medio. El diseño de estructuras hidráulicas como presas, diques e instalaciones de recarga de aguas subterráneas requiere conocimiento de las Velocidades de filtración para garantizar la estabilidad y evitar fallas debido a filtraciones o tuberías incontroladas.

V=K''dhds

Velocidad aparente de filtración cuando se consideran la descarga y el área transversal

La Velocidad aparente de filtración cuando se consideran la descarga y el área de la sección transversal se define como la Velocidad a la que el agua subterránea parece moverse a través de un área de la sección transversal determinada de suelo o roca. Comprender las Velocidades de filtración es crucial en el diseño de presas, diques y otras estructuras hidráulicas para garantizar la estabilidad y evitar fallas debido a una filtración excesiva.

V=Q'A

Velocidad aparente de filtración dado el número de Reynolds de la unidad de valor

La Velocidad aparente de filtración dada la fórmula del número de unidad de valor de Reynolds se define como el caudal volumétrico de fluido por unidad de área a través de un medio poroso. Es una Velocidad conceptual que supone que el fluido se mueve uniformemente a través de toda el área de la sección transversal del medio poroso.

V=Reνstokesda

Velocidad de poro a granel

La fórmula Bulk Pore Velocity se define como la Velocidad real de desplazamiento del agua en el medio poroso. La conductividad hidráulica funciona integrada a partir de la distribución de la Velocidad de los poros.

Va=Vη

Velocidad de corte instantánea dada Avance

La Velocidad de corte instantánea dada es un parámetro crítico en el mecanizado de metales, ya que influye directamente en varios aspectos del proceso de mecanizado, incluidas las tasas de eliminación de material, las tasas de desgaste de las herramientas, las fuerzas de corte y la calidad del acabado superficial. Los maquinistas ajustan las Velocidades de corte en función de factores como el material que se mecaniza, el material y la geometría de la herramienta, los parámetros de corte y los resultados de mecanizado deseados para lograr un rendimiento y una eficiencia óptimos.

V=2πωs(Ro-ωsft)

Velocidad promedio en el canal

La Velocidad media en el canal se define como la Velocidad en cualquier punto de la sección en el canal en un canal abierto.

Vavg=8[g]RHSf

Velocidad promedio en el canal dada la constante Chezy

La Velocidad promedio en el canal dada la constante de Chezy se define como la Velocidad en cualquier punto de la sección del canal en un canal abierto.

Vavg=CRHS

Velocidad media de flujo en canales suaves

La Velocidad media del flujo en canales lisos se define como la Velocidad del flujo turbulento en un canal liso a través del límite.

Vavg(Tur)=Vshear(3.25+5.75log10(RHVshearνTur))

Velocidad media de flujo en canales rugosos

La fórmula de la Velocidad media del flujo en canales rugosos se define como la Velocidad del flujo turbulento en un canal rugoso a través del límite.

Vavg(Tur)=Vshear(6.25+5.75log10(RHRa))

Velocidad del chorro para masa de fluido que golpea la placa

La Velocidad del chorro para la masa de fluido que golpea la placa es la tasa de cambio de su posición con respecto a un marco de referencia, y es una función del tiempo.

v=-((mfGγfAJet)-Vabsolute)

Velocidad absoluta dada el empuje ejercido por el chorro sobre la placa

La Velocidad absoluta dada por el empuje ejercido por el chorro sobre la placa se puede definir como la Velocidad lineal uniforme común de los diversos componentes de un sistema físico, en relación con el espacio absoluto.

Vabsolute=(mfGγfAJet)+v

Velocidad del chorro dado el empuje dinámico ejercido por el chorro sobre la placa

La Velocidad del chorro dado el empuje dinámico ejercido por el chorro sobre la placa es la tasa de cambio de su posición con respecto a un marco de referencia y es una función del tiempo.

v=-(mfGγfAJet-Vabsolute)

Velocidad del trabajo realizado si no hay pérdida de energía

La Velocidad del trabajo realizado si no hay pérdida de energía es la tasa de cambio de su posición con respecto a un marco de referencia y es una función del tiempo.

vf=(w2Gwf)+v2

Velocidad dada Eficiencia del sistema

La Velocidad dada la Eficiencia del Sistema es la tasa de cambio de su posición con respecto a un marco de referencia y es una función del tiempo.

vf=v1-η

Velocidad en el punto dado Eficiencia del sistema

La Velocidad en el Punto dada la Eficiencia del Sistema es la tasa de cambio de su posición con respecto a un marco de referencia y es una función del tiempo.

v=1-ηvf

Velocidad de propagación en relación de dispersión lineal

La Velocidad de propagación en relación de dispersión lineal se define como la Velocidad a la que una onda viaja a través de un medio, lo que indica la tasa de transferencia de energía.

Cv=[g]dtanh(kd)kd

Velocidad de propagación en relación de dispersión lineal dada la longitud de onda

La Velocidad de propagación en relación de dispersión lineal dada la longitud de onda se define como la Velocidad a la que una onda viaja a través de un medio, lo que indica la tasa de transferencia de energía, calculada utilizando la longitud de onda.

Cv=[g]dtanh(2πdλ'')2πdλ''

Velocidad de onda adimensional

La Velocidad de onda adimensional se define como la rapidez con la que viaja la onda y está determinada por las propiedades del medio en el que se mueve la onda.

v=vp'[g]d

Velocidad horizontal a través de la superficie de la Tierra dada la frecuencia de Coriolis

La Velocidad horizontal a través de la superficie de la Tierra dada la frecuencia de Coriolis se define como la Velocidad de un problema de movimiento que trata del movimiento en la dirección x; es decir, de lado a lado, no de arriba a abajo.

U=aCf

Velocidad del viento a una altura de 10 m para el coeficiente de arrastre

La Velocidad del viento a una altura de 10 m para la fórmula del coeficiente de resistencia se define como la Velocidad del viento a diez metros medida diez metros por encima de la parte superior del datum de consideración.

V10=CD-0.000750.000067

¿Cómo encontrar Fórmulas?

A continuación se ofrecen algunos consejos para obtener mejores resultados de búsqueda.
Sea específico: cuanto más específica sea su consulta, mejores serán los resultados.
Utilice varias palabras clave: combine varias palabras clave para limitar los resultados.
Experimenta con sinónimos: Diferentes términos pueden producir resultados diferentes.
Búsqueda con comodines: utiliza el operador * (asterisco). TENGA EN CUENTA que este operador funciona solo al final de una palabra. Ejemplo: biografía*, área*, etc.

Como alternativa, puede navegar a través de las subcategorías dentro de para concentrarse en las fórmulas de interés.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!