Buscar Fórmulas

Ingrese un mínimo de 3 caracteres para comenzar a buscar fórmulas de .

Seleccionar filtro

Limite los resultados de su búsqueda con la ayuda de estos filtros.

50 ¡Se encontraron fórmulas coincidentes!

Velocidad angular

La fórmula de Velocidad angular se define como una medida de la rapidez con la que un objeto gira o gira en relación con otro punto, generalmente medida en radianes por segundo, y es un concepto fundamental en física e ingeniería, que se utiliza para describir el movimiento de rotación de objetos, como las ruedas. , engranajes y cuerpos celestes.

ω=θttotal

Velocidad media

La fórmula de Velocidad promedio se define como una medida de la distancia total recorrida por un objeto durante un período de tiempo determinado, proporcionando una comprensión integral del movimiento y la Velocidad de un objeto, es un concepto fundamental en física, ampliamente utilizado para calcular la Velocidad de los objetos. en diversos campos, incluidos el transporte, los deportes y la ingeniería.

vavg=Dttotal

Velocidad angular dada Velocidad en RPM

La fórmula de Velocidad angular dada la Velocidad en RPM se define como una medida de la tasa de cambio del desplazamiento angular con respecto al tiempo, que describe el movimiento de rotación de un objeto, particularmente útil en el contexto de la cinética del movimiento.

ω=2πNA60

Velocidad de la polea guía

La fórmula de Velocidad de la polea guía se define como una medida de la Velocidad de rotación de la polea guía en un sistema mecánico, que es crucial para determinar el movimiento del sistema, particularmente en el contexto de la cinética del movimiento, donde la Velocidad de la polea guía afecta el rendimiento general y la eficiencia del sistema.

NP=NDdd1

Velocidad final de los cuerpos A y B después de la colisión inelástica

La fórmula de Velocidad final de los cuerpos A y B después de una colisión inelástica se define como la Velocidad de dos o más objetos después de colisionar y fusionarse en un solo objeto, donde el momento total antes de la colisión es igual al momento total después de la colisión.

v=m1u1+m2u2m1+m2

Velocidad del objeto en movimiento circular

La fórmula de Velocidad de un objeto en movimiento circular se define como la Velocidad a la que un objeto se mueve a lo largo de una trayectoria circular, influenciada por el radio del círculo y la frecuencia de rotación, lo que proporciona un concepto fundamental para comprender el movimiento circular y sus aplicaciones en física e ingeniería. .

V=2πrf

Velocidad del electrón

La Velocidad del electrón se refiere a su Velocidad y dirección de movimiento y está determinada por el principio de conservación de la energía. Básicamente dice que el cambio en la energía cinética del electrón es igual al cambio en la energía potencial que experimenta debido al campo eléctrico.

Vv=2[Charge-e]V[Mass-e]

Velocidad de onda de presión en fluidos

La fórmula de Velocidad de las ondas de presión en fluidos se define como la Velocidad a la que se propagan las ondas de presión a través de un medio fluido. Esta Velocidad está influenciada por el módulo volumétrico y la densidad del fluido, y desempeña un papel crucial en la comprensión de la dinámica de fluidos y el comportamiento de las ondas en diversas aplicaciones de ingeniería.

C=Kρ

Velocidad del electrón en campos de fuerza

La Velocidad de los electrones en los campos de fuerza se utiliza para calcular la Velocidad de una partícula cargada en un campo en el que están presentes tanto el campo eléctrico como el magnético.

Vef=EIH

Velocidad angular del electrón en el campo magnético

La Velocidad angular del electrón en el campo magnético se calcula cuando una partícula con masa m y carga q se mueve en un campo magnético constante B.

ωe=[Charge-e]H[Mass-e]

Velocidad síncrona dada la Velocidad del motor

Velocidad síncrona dada La Velocidad del motor es la Velocidad de revolución del campo magnético en el devanado del estator del motor. Es la Velocidad a la que la máquina alterna produce la fuerza electromotriz.

Ns=Nm1-s

Velocidad síncrona del motor síncrono

La Velocidad síncrona del motor síncrono dada por la fórmula ka se define como una Velocidad definida para una máquina de corriente alterna que depende de la frecuencia del circuito de suministro porque el elemento giratorio pasa por un par de polos por cada alternancia de la corriente alterna.

Ns=120fP

Velocidad del fluido dada la presión dinámica

La fórmula de la Velocidad del fluido dada la presión dinámica se define como una relación que expresa la Velocidad del flujo del fluido en función de la presión dinámica y la densidad del fluido. Es esencial para comprender la dinámica de fluidos y analizar el comportamiento de los fluidos en varios sistemas mecánicos.

uFluid=Pdynamic2LD

Velocidad angular dada la inercia y la energía cinética

La fórmula de la Velocidad angular dada la inercia y la energía cinética es una variación de la fórmula KE. La energía cinética de un objeto giratorio se puede expresar como la mitad del producto de la Velocidad angular del objeto y el momento de inercia alrededor del eje de rotación. Así obtenemos la relación entre la Velocidad angular, el momento de inercia y KE

ω2=2KEI

Velocidad de deriva de electrones del canal en el transistor NMOS

La Velocidad de deriva de electrones del canal en el transistor NMOS se debe al campo eléctrico que, a su vez, hace que los electrones del canal se desplacen hacia el drenaje con una Velocidad.

vd=μnEL

Velocidad en vuelo acelerado

La Velocidad en vuelo acelerado se refiere a la Velocidad de la aeronave a medida que sufre cambios de Velocidad o dirección para lograr objetivos de vuelo específicos; generalmente se mide como la Velocidad aerodinámica de la aeronave, que es la Velocidad de la aeronave en relación con el aire circundante.

v=(Rcurvaturem(FL+Tsin(σT)-m[g]cos(γ)))12

Velocidad de la aeronave a un régimen de ascenso dado

La Velocidad de la aeronave a una tasa de ascenso determinada es la Velocidad requerida para que una aeronave alcance una tasa de ascenso específica. Esta fórmula calcula la Velocidad dividiendo la Velocidad de ascenso por el seno del ángulo de la trayectoria de vuelo durante el ascenso. Comprender y aplicar esta fórmula es crucial para que los pilotos e ingenieros optimicen el rendimiento en ascenso.

v=RCsin(γ)

Velocidad de flujo uniforme para medio cuerpo Rankine

La Velocidad de flujo uniforme para el medio cuerpo de Rankine se refiere a la Velocidad de la corriente libre en el infinito, donde el flujo se acerca a la forma de medio cuerpo de Rankine. Esta forma es un modelo teórico en dinámica de fluidos donde se considera el flujo alrededor de una placa plana semiinfinita colocada en un campo de flujo uniforme.

U=q2y(1-∠Aπ)

Velocidad al nivel del mar dado el coeficiente de elevación

La Velocidad al nivel del mar dado el coeficiente de sustentación es una medida que calcula la Velocidad de un objeto al nivel del mar, teniendo en cuenta el peso corporal, la densidad del aire al nivel del mar, el área de referencia y el coeficiente de sustentación, proporcionando un parámetro crucial en aerodinámica y diseño de aeronaves. .

V0=2Wbody[Std-Air-Density-Sea]SCL

Velocidad en altitud

La Velocidad en altitud es una medida de la Velocidad de un objeto a una altura específica sobre la superficie de la Tierra, teniendo en cuenta el peso del cuerpo, la densidad del aire, el área de referencia y el coeficiente de sustentación, esta fórmula permite calcular la Velocidad en sistemas aerodinámicos. proporcionando conocimientos valiosos para ingenieros e investigadores en los campos de la aeroespacial y la aerodinámica.

Valt=2Wbodyρ0SCL

Velocidad a la altitud dada Velocidad al nivel del mar

Velocidad a la altitud dada La Velocidad al nivel del mar es una medida de la Velocidad de un objeto a una determinada altitud, calculada multiplicando la Velocidad al nivel del mar por la raíz cuadrada de la relación entre la densidad del aire estándar al nivel del mar y la densidad del aire. a la altitud dada.

Valt=V0[Std-Air-Density-Sea]ρ0

Velocidad del motor del motor de CC

La fórmula de la Velocidad del motor del motor de CC se define como la Velocidad del rotor del motor de CC con respecto al no. de polos, caminos paralelos y conductores.

N=60n||EbZnΦ

Velocidad de rotación para fuerza cortante en cojinete de deslizamiento

La Velocidad de rotación de la fuerza cortante en el cojinete liso está influenciada por la fuerza cortante experimentada en el cojinete. Las fuerzas de corte más altas generalmente requieren ajustes en la Velocidad para mantener el rendimiento óptimo del rodamiento y evitar el desgaste excesivo.

N=Fstμπ2Ds2L

Velocidad de giro para un coeficiente de elevación determinado

La Velocidad de giro para un coeficiente de elevación determinado de una aeronave se refiere a la Velocidad a la que la aeronave gira en el aire; generalmente se mide en radianes por segundo (rad/s) o grados por segundo (deg/s).

ω=[g](SρCLn2W)

Velocidad periférica de la hoja en la salida correspondiente al diámetro

La Velocidad periférica de la pala a la salida correspondiente a la fórmula del diámetro se define como π por el producto de la Velocidad del rotor y el diámetro, dividido por 60.

u2=πDeN60

Velocidad periférica de la hoja en la entrada correspondiente al diámetro

La Velocidad periférica de la pala en la entrada correspondiente a la fórmula del diámetro se define como π por el producto de la Velocidad del rotor y el diámetro, dividido por 60.

u1=πDiN60

Velocidad de vibraciones causadas por voladuras

La Velocidad de Vibraciones causadas por la Voladura se define como la tasa de cambio de desplazamiento en el trabajo de vibración.

V=(λvf)

Velocidad de partículas perturbadas por vibraciones

La fórmula de la Velocidad de las partículas perturbadas por vibraciones se define como la Velocidad de las partículas influenciadas por las vibraciones, expresando la Velocidad y dirección de su movimiento en respuesta a la perturbación.

v=(2πfA)

Velocidad de la partícula uno a la distancia de la explosión

La Velocidad de la partícula uno a una distancia de la explosión se define como la Velocidad de una partícula desde el punto de explosión a una distancia específica.

v1=v2(D2D1)1.5

Velocidad de la Partícula Dos a la distancia de la Explosión

La Velocidad de la partícula dos a la distancia de la explosión se define como la tasa de cambio del desplazamiento de la partícula.

v2=v1(D1D2)1.5

Velocidad específica de succión

La fórmula de Velocidad específica de succión se define como un parámetro adimensional que caracteriza el rendimiento de succión de una bomba, proporcionando una medida relativa de la capacidad de la bomba para manejar un caudal y una altura determinados, lo que permite comparar diferentes diseños de bombas y su idoneidad para aplicaciones específicas.

Nsuc=ωQ(Hsv)34

Velocidad en la sección 1 de la ecuación de Bernoulli

La Velocidad en la sección 1 de la ecuación de Bernoulli se define como la Velocidad en una sección particular de la tubería.

V1=2[g]((P2γf)+(0.5(Vp22[g]))+Z2-Z1-P1γf)

Velocidad de flujo dada Carga de Velocidad para flujo constante no viscoso

La Velocidad de Flujo dada la Carga de Velocidad para Flujo Estable No Viscoso se define como una medida de la Velocidad del fluido en un punto particular y se define como la relación entre la Velocidad del fluido al cuadrado y el doble de la aceleración debida a la gravedad.

V=Vh2[g]

Velocidad del fluido para el número de Reynold

La fórmula de la Velocidad del fluido para el número de Reynold se conoce considerando la relación del número de Reynolds y la viscosidad del fluido con la densidad del líquido y la longitud de la placa.

V=ReμρfL

Velocidad de separación después del impacto

La fórmula de la Velocidad de separación después del impacto se define como el producto del coeficiente de restitución y la diferencia entre la Velocidad inicial del primer cuerpo y la Velocidad inicial del segundo cuerpo.

vsep=e(u1-u2)

Velocidad de aproximación

La fórmula de la Velocidad de aproximación se define como la relación entre la diferencia entre la Velocidad final del segundo cuerpo y la Velocidad final del primer cuerpo y el coeficiente de restitución.

vapp=v2-v1e

Velocidad tangencial del cilindro con coeficiente de sustentación

La fórmula de la Velocidad tangencial del cilindro con coeficiente de sustentación se conoce al considerar los términos coeficiente de sustentación y la Velocidad de flujo libre.

vt=C'V2π

Velocidad de flujo libre para el coeficiente de elevación con Velocidad tangencial

La Velocidad de Freestream para el coeficiente de sustentación con la fórmula de Velocidad tangencial se conoce al considerar la relación entre la Velocidad tangencial del cilindro con dos pi y el coeficiente de sustentación.

V=2πvtC'

Velocidad de flujo libre para un solo punto de estancamiento

La Velocidad de flujo libre para la fórmula del punto de estancamiento único se conoce al considerar la relación de circulación a cuatro pi del radio del cilindro.

V=Γc4πR

Velocidad tangencial para un solo punto de estancamiento

La fórmula de Velocidad tangencial para un solo punto de estancamiento se conoce como el doble de la Velocidad de corriente libre presente en el cilindro.

vt=2V

Velocidad del perfil aerodinámico para la circulación desarrollada en el perfil aerodinámico

La Velocidad del perfil aerodinámico para la circulación desarrollada en la fórmula del perfil aerodinámico se conoce teniendo en cuenta la relación entre la circulación y la longitud de la cuerda y el ángulo de ataque.

U=ΓπCsin(α)

Velocidad del pistón

La fórmula de Velocidad del pistón se define como la Velocidad a la que se mueve el pistón en una bomba alternativa, que es un componente crítico en diversas aplicaciones industriales y es un factor clave para determinar el rendimiento y la eficiencia generales de la bomba.

vpiston=ωrsin(ωtsec)

Velocidad del líquido en la tubería

La fórmula de Velocidad del líquido en una tubería se define como la tasa de flujo de líquido a través de una tubería en un sistema de bomba alternativa, influenciada por factores como el área de la sección transversal de la tubería, la Velocidad angular, el radio y el tiempo, que colectivamente impactan el movimiento y la presión del líquido.

vl=Aaωrsin(ωts)

Velocidad de flujo dada Tasa de flujo a través de la hélice

La Velocidad de flujo dada la tasa de flujo a través de la hélice se define como la Velocidad del fluido que entra en el chorro.

Vf=(8qflowπD2)-V

Velocidad del chorro dada la potencia de salida

La Velocidad del chorro dada por la potencia de salida se define como la Velocidad real del agua que llega al chorro en rotación.

V=(PoutρWaterqflowVf)+Vf

Velocidad de flujo dada Pérdida de energía

La Velocidad de flujo dada la potencia perdida se define como la Velocidad de la corriente que llega a la hélice del chorro.

Vf=V-(PlossρFluidqflow0.5)

Velocidad de chorro dada la eficiencia de propulsión teórica

La Velocidad del chorro dada la eficiencia de propulsión teórica se define como la Velocidad del chorro que emite cerca del motor.

V=(2η-1)Vf

Velocidad de flujo dada Eficiencia de propulsión teórica

La Velocidad de flujo dada la eficiencia de propulsión teórica se define como la Velocidad de flujo de la corriente en el punto de chorro.

Vf=V2η-1

Velocidad en cualquier punto del elemento cilíndrico

La Velocidad en cualquier punto de la fórmula del elemento cilíndrico se define como la Velocidad a la que el fluido ingresa a la tubería formando un perfil parabólico.

vFluid=-(14μ)dp|dr((R2)-(dradial2))

Velocidad en la salida de la boquilla para caudal máximo de fluido

La Velocidad en la salida de la boquilla para un caudal máximo de fluido es crucial para determinar la eficiencia y el rendimiento de los sistemas de dinámica de fluidos. Se correlaciona directamente con la relación de presión a través de la boquilla, la densidad del fluido y las características de diseño de la boquilla, lo que influye en el caudal y la eficiencia de la propulsión en aplicaciones como motores de cohetes y sistemas de pulverización industriales. Comprender y optimizar esta Velocidad es esencial para lograr los resultados operativos deseados en aplicaciones tecnológicas y de ingeniería.

Vf=2yP1(y+1)ρa

¿Cómo encontrar Fórmulas?

A continuación se ofrecen algunos consejos para obtener mejores resultados de búsqueda.
Sea específico: cuanto más específica sea su consulta, mejores serán los resultados.
Utilice varias palabras clave: combine varias palabras clave para limitar los resultados.
Experimenta con sinónimos: Diferentes términos pueden producir resultados diferentes.
Búsqueda con comodines: utiliza el operador * (asterisco). TENGA EN CUENTA que este operador funciona solo al final de una palabra. Ejemplo: biografía*, área*, etc.

Como alternativa, puede navegar a través de las subcategorías dentro de para concentrarse en las fórmulas de interés.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!