Buscar Fórmulas

Ingrese un mínimo de 3 caracteres para comenzar a buscar fórmulas de .

Seleccionar filtro

Limite los resultados de su búsqueda con la ayuda de estos filtros.

50 ¡Se encontraron fórmulas coincidentes!

Velocidad media en RPM

La fórmula de Velocidad media en RPM se define como la Velocidad de rotación promedio de un volante o un eje giratorio en un sistema mecánico, generalmente medida en revoluciones por minuto, que es un parámetro crítico en el análisis de los diagramas de momentos de giro y el rendimiento del volante.

N=N1+N22

Velocidad de onda progresiva

La fórmula de Velocidad de onda progresiva se define como una medida de la Velocidad a la que una onda se propaga a través de un medio, describe la tasa de transmisión de perturbaciones en un sistema físico y es un concepto fundamental para comprender la dinámica de las ondas y sus aplicaciones en diversos campos de la física. .

Vw=λTW

Velocidad del motor dada la eficiencia en el motor de inducción

Velocidad del motor dada La eficiencia en el motor de inducción es la Velocidad a la que gira el rotor y la Velocidad síncrona es la Velocidad del campo magnético del estator en el motor de inducción trifásico.

Nm=ηNs

Velocidad síncrona del motor de inducción dada la eficiencia

Velocidad síncrona del motor de inducción dada La eficiencia es la Velocidad del campo magnético del estator en el motor de inducción trifásico y la Velocidad del motor es la Velocidad a la que gira el rotor.

Ns=Nmη

Velocidad de onda progresiva usando frecuencia

La Velocidad de la onda progresiva utilizando la fórmula de frecuencia se define como una medida de la Velocidad a la que una onda se propaga a través de un medio, lo cual es esencial para comprender diversos fenómenos físicos, como ondas sonoras, ondas de luz y ondas sísmicas, y es crucial en los campos. como física, ingeniería y geología.

Vw=λfw

Velocidad de onda progresiva dada frecuencia angular

La fórmula de Velocidad de onda progresiva dada la frecuencia angular se define como una medida de la Velocidad de una onda que se mueve en una dirección específica, influenciada por la frecuencia angular, y es esencial para comprender el comportamiento de las ondas en varios sistemas físicos, incluidos el sonido y la luz. ondas.

Vw=λωf2π

Velocidad de la onda dado el número de onda

La fórmula de la Velocidad de onda dada el número de onda se define como una medida de la Velocidad a la que una onda se propaga a través de un medio, proporcionando información sobre la frecuencia y longitud de onda de la onda, y es esencial para comprender diversos fenómenos físicos, como las ondas de sonido y luz, en Aplicaciones de la física y la ingeniería.

Vw=ωfk

Velocidad longitudinal del extremo libre para vibración longitudinal

La fórmula de Velocidad longitudinal del extremo libre para vibración longitudinal se define como una medida de la Velocidad del extremo libre de un objeto sometido a vibración longitudinal, que está influenciada por la energía cinética y la masa del objeto restringido, lo que proporciona información sobre el efecto de la inercia en las vibraciones longitudinales y transversales.

Vlongitudinal=6KEmc

Velocidad de elemento pequeño para vibraciones transversales

La fórmula de Velocidad de un elemento pequeño para vibraciones transversales se define como una medida de la Velocidad de un elemento pequeño en una vibración transversal, que se ve afectada por la inercia de la restricción, y se utiliza para analizar el movimiento de partículas en vibraciones longitudinales y transversales.

vs=(3lx2-x3)Vtraverse2l3

Velocidad transversal del extremo libre

La fórmula de la Velocidad transversal del extremo libre se define como una medida de la Velocidad del extremo libre de un sistema vibratorio, influenciada por el efecto de la inercia de la restricción en las vibraciones longitudinales y transversales, proporcionando información sobre el comportamiento dinámico del sistema bajo diversas restricciones.

Vtraverse=280KE33mc

Velocidad de la partícula 1 dada la energía cinética

La fórmula Velocidad de la partícula 1 dada la energía cinética es un método para calcular la Velocidad de una partícula cuando conocemos la Velocidad de otras partículas y la energía cinética total del sistema. Como la energía cinética total es la suma de la energía cinética individual de ambas partículas, nos queda una sola variable, y al resolver la ecuación obtenemos la Velocidad requerida.

v1=(2KE)-(m2v22)m1

Velocidad de la partícula 2 dada la energía cinética

La fórmula Velocidad de la partícula 2 dada la energía cinética es un método para calcular la Velocidad de una partícula cuando conocemos la Velocidad de otra partícula y la energía cinética total del sistema. La energía cinética es el trabajo necesario para acelerar un cuerpo de una masa dada desde el reposo a su Velocidad indicada. Como la energía cinética, KE, es una suma de la energía cinética de cada masa, nos quedamos con una sola variable, y al resolver la ecuación obtenemos la Velocidad requerida.

v2=(2KE)-(m1v12)m2

Velocidad de la partícula 1

La fórmula de la Velocidad de la partícula 1 se define para relacionar la Velocidad con la frecuencia de rotación y el radio. La Velocidad lineal es el radio multiplicado por la Velocidad angular y además la relación de la Velocidad angular con la frecuencia (Velocidad angular = 2 * pi * frecuencia). Entonces, según estas ecuaciones, la Velocidad es 2 * pi multiplicado por el producto del radio y la frecuencia de rotación.

vp1=2πR1νrot

Velocidad de la Partícula 2

La fórmula Velocidad de la Partícula 2 se define para relacionar la Velocidad con la frecuencia de rotación y el radio. La Velocidad lineal es el radio por la Velocidad angular y además la relación de la Velocidad angular con la frecuencia (Velocidad angular = 2*pi* frecuencia). Entonces, según estas ecuaciones, la Velocidad es 2 * pi por el producto del radio y la frecuencia de rotación.

v2=2πR2νrot

Velocidad detrás de choque normal

La Velocidad detrás del choque normal calcula la Velocidad de un fluido aguas abajo de una onda de choque normal. Esta fórmula incorpora parámetros como la Velocidad aguas arriba del choque, la relación de calores específicos del fluido y el número de Mach del flujo. Proporciona información valiosa sobre el cambio de Velocidad resultante del paso de la onda de choque.

V2=V1γ+1(γ-1)+2M2

Velocidad de partícula en SHM

La Velocidad de la partícula en la fórmula SHM se define como una medida de la Velocidad de una partícula que experimenta un movimiento armónico simple, calculada multiplicando la frecuencia angular por la raíz cuadrada de la diferencia entre los cuadrados del desplazamiento máximo y el desplazamiento actual.

V=ωSmax2-S2

Velocidad superficial del río en el método de flotación

La fórmula del método de Velocidad superficial del río en flotación se define como la Velocidad del flujo en la superficie, que se mide mediante un objeto flotante en la superficie del agua.

vsurface=v0.85

Velocidad media del río en el método de flotación

La fórmula del método de Velocidad media del río en flotación se define como una práctica o sistema utilizado para obtener una estimación aproximada de la escorrentía, donde v es la Velocidad del flujo en la superficie, que se mide mediante un objeto flotante en la superficie del agua.

v=0.85vsurface

Velocidad de giro para factor de carga alto

La Velocidad de giro para un factor de carga alto es una medida de la Velocidad a la que una aeronave puede girar mientras experimenta un factor de carga específico. Esta fórmula calcula la Velocidad de giro en función de la aceleración gravitacional, el factor de carga y la Velocidad de la aeronave. Comprender y aplicar esta fórmula es crucial para que los pilotos e ingenieros optimicen la maniobrabilidad de las aeronaves y garanticen la seguridad durante las maniobras con cargas elevadas.

ω=[g]nv

Velocidad para un índice de giro determinado para un factor de carga alto

La Velocidad para una tasa de giro determinada para un factor de carga alto es la Velocidad requerida para que una aeronave mantenga una tasa de giro específica mientras experimenta un factor de carga alto. Esta fórmula calcula la Velocidad en función de la aceleración gravitacional, el factor de carga y la Velocidad de giro. Comprender y aplicar esta fórmula es esencial para que pilotos e ingenieros optimicen la maniobrabilidad de las aeronaves.

v=[g]nω

Velocidad de rotación para el par requerido en el collarín

La Velocidad de rotación para el torque requerido en la fórmula del cojinete de collar se conoce considerando la viscosidad del fluido, el radio interior y exterior del collar, el espesor de la película de aceite y el torque requerido para superar la resistencia viscosa.

N=τtμπ2(R14-R24)

Velocidad de masa del aire por unidad de área

La fórmula de la Velocidad de masa del aire por unidad de área se define como la Velocidad de masa del aire que se mueve por unidad de área por segundo en la humidificación.

G=Zkyln(Ya-Y1Ya-Y2)

Velocidad radial

La fórmula de la Velocidad radial se define con respecto a un punto dado y es la tasa de cambio de la distancia entre el objeto y el punto.

vr=fdλ2

Velocidad de corte media

La Velocidad media de corte se utiliza para determinar el tiempo promedio de la Velocidad de corte mediante el cual se elimina el material de la pieza de trabajo. Nos brinda información útil sobre el tiempo estimado necesario para completar la operación de mecanizado.

Vt=nπdw+dm2

Velocidad del chorro en relación con el movimiento del barco dada la energía cinética

La Velocidad del chorro en relación con el movimiento del barco dada la energía cinética se define como la Velocidad relativa del impacto.

Vr=KE2[g]Wbody

Velocidad absoluta del chorro emisor dada la Velocidad relativa

La Velocidad absoluta del chorro emitido dada la Velocidad relativa del chorro con respecto al barco se utiliza para calcular la Velocidad absoluta de la corriente en chorro.

V=Vr-u

Velocidad del barco en movimiento dada la Velocidad relativa

La Velocidad del barco en movimiento dada la Velocidad relativa se define como la Velocidad real del barco en la hélice genera.

u=Vr-V

Velocidad absoluta del chorro emisor dada la fuerza propulsora

La Velocidad absoluta del chorro de emisión dada la fuerza propulsora se define como la Velocidad del chorro medida con referencia al espacio absoluto.

V=[g]FWWater

Velocidad de flujo dada Empuje en la hélice

La Velocidad de flujo dada por el empuje en la hélice se define como la Velocidad de descarga del fluido en el chorro.

Vf=-(FtρWaterqflow)+V

Velocidad en cualquier punto del elemento cilíndrico

La Velocidad en cualquier punto de la fórmula del elemento cilíndrico se define como la Velocidad a la que el fluido ingresa a la tubería formando un perfil parabólico.

vFluid=-(14μ)dp|dr((R2)-(dradial2))

Velocidad en la salida de la boquilla para caudal máximo de fluido

La Velocidad en la salida de la boquilla para un caudal máximo de fluido es crucial para determinar la eficiencia y el rendimiento de los sistemas de dinámica de fluidos. Se correlaciona directamente con la relación de presión a través de la boquilla, la densidad del fluido y las características de diseño de la boquilla, lo que influye en el caudal y la eficiencia de la propulsión en aplicaciones como motores de cohetes y sistemas de pulverización industriales. Comprender y optimizar esta Velocidad es esencial para lograr los resultados operativos deseados en aplicaciones tecnológicas y de ingeniería.

Vf=2yP1(y+1)ρa

Velocidad RMS dada temperatura y masa molar

La fórmula de la Velocidad RMS dada la temperatura y la masa molar se define como la relación entre la raíz cuadrada de la temperatura del gas y la masa molar.

CRMS=3[R]TgMmolar

Velocidad RMS dada la presión y el volumen de gas

La fórmula de la Velocidad RMS dada la presión y el volumen de gas se define como la proporción directa de la raíz cuadrada media de la Velocidad con la raíz cuadrada de la presión y el volumen y la proporción inversa de la raíz cuadrada media con la raíz cuadrada de la masa molar.

CRMS=3PgasVMmolar

Velocidad RMS dada presión y densidad

La fórmula de Velocidad RMS dada presión y densidad se define como la proporción directa de la Velocidad cuadrática media con la raíz cuadrada de la presión y la proporción inversa de la Velocidad cuadrática media con la raíz cuadrada de la masa molar.

CRMS=3Pgasρgas

Velocidad uniforme de electrones

La Velocidad uniforme de electrones se refiere a la Velocidad a la que un electrón ingresa a la cavidad en el vacío. En el vacío, un electrón tendrá una Velocidad uniforme si está sujeto a un campo eléctrico constante. La Velocidad del electrón dependerá de la fuerza del campo eléctrico y la masa del electrón.

Evo=(2Vo)([Charge-e][Mass-e])

Velocidad de deriva de saturación

La fórmula de Velocidad de deriva de saturación se define como la Velocidad máxima que un portador de carga en un semiconductor, generalmente, alcanza un electrón en presencia de campos eléctricos muy altos. Los portadores de carga normalmente se mueven a una Velocidad de deriva promedio proporcional a la intensidad del campo eléctrico que experimentan temporalmente.

Vsc=LminΓavg

Velocidad de autolimpieza usando la relación de inclinación del lecho

La Velocidad de autolimpieza utilizando la relación de la pendiente del lecho se define como la Velocidad mínima a la que el fluido debe fluir en un alcantarillado para evitar la deposición de sedimentos y mantener un camino despejado.

Vs=V((Nnp)(rpfRrf)23S)

Velocidad cuando se ejecuta lleno usando la relación de inclinación de la cama

La Velocidad cuando el lecho está lleno utilizando la relación de la pendiente del lecho se define como la Velocidad del flujo de fluido en una tubería cuando está completamente llena, influenciada por la pendiente y la rugosidad de la tubería.

V=Vs(Nnp)(rpfRrf)23S

Velocidad de autolimpieza dada la pendiente del lecho para flujo parcial

La fórmula de Velocidad de autolimpieza dada la pendiente del lecho para flujo parcial se define como la Velocidad mínima a la que debe fluir el fluido en una alcantarilla para evitar la deposición de sedimentos y mantener un camino despejado.

Vs=V((Nnp)(rpfRrf)23sss)

Velocidad cuando se ejecuta Full usando Bed Slope para flujo parcial

La Velocidad cuando se llena por completo utilizando la pendiente del lecho para flujo parcial se define como la Velocidad del flujo de fluido en una tubería cuando está completamente llena, influenciada por la pendiente y la rugosidad de la tubería.

V=Vs(Nnp)(rpfRrf)23sss

Velocidad de corte dado lote de producción y condiciones de mecanizado

La Velocidad de corte dado el lote de producción y las condiciones de maquinado es un método para determinar la Velocidad de corte requerida para una vida de herramienta determinada en una condición de maquinado en comparación con la condición de referencia para fabricar un lote de componentes determinado.

V=Vref(LrefNtNbtb)n

Velocidad de alimentación dada Tasa de remoción de metal

La Velocidad de avance dada La tasa de eliminación de metal calcula la Velocidad a la que la muela abrasiva o la herramienta abrasiva avanza contra la pieza de trabajo que se está rectificando cuando sabemos que el MRR es constante durante la operación. Es esencialmente la Velocidad a la que se elimina el material de la superficie de la pieza de trabajo mediante la acción abrasiva de la muela. La Velocidad de avance juega un papel crucial en la eficiencia general de la molienda.

Vf=Zwπdwap

Velocidad mínima de limpieza crítica

La fórmula de Velocidad mínima crítica de socavación se define como la Velocidad más baja a la que el flujo de agua comienza a erosionar el material del lecho en un canal o río. Esta Velocidad es crítica porque representa el umbral en el cual las partículas de sedimento en el lecho son desalojadas y transportadas río abajo, lo que lleva a la socavación.

vmins=(3gDp(G-1))

Velocidad máxima de limpieza crítica

La fórmula de Velocidad máxima crítica de socavación se define como la Velocidad de flujo más alta a la que las partículas de sedimento en el lecho y las orillas de un cuerpo de agua (como un río, canal o estuario) comienzan a ser erosionadas y transportadas por el agua que fluye. Esta Velocidad representa un umbral más allá del cual la estabilidad de los materiales del lecho y del banco se ve comprometida, lo que provoca erosión y posibles daños estructurales.

vmaxs=(4.5gD(G-1))

Velocidad de flujo horizontal dada Distancia en dirección X desde el centro del vertedero

La fórmula de la Velocidad del flujo horizontal dada la distancia en la dirección X desde el centro del vertedero se define como la Velocidad para la cual está diseñado el vertedero cuando tenemos información previa de otros parámetros.

Vh=x2WcCdπ2gy

Velocidad de flujo horizontal dada la mitad del ancho de la parte inferior del vertedero

La fórmula de la Velocidad del flujo horizontal dada la mitad del ancho de la parte inferior del vertedero se define como el valor de la Velocidad a la que el agua fluye horizontalmente sobre un vertedero. Esto se puede calcular utilizando la mitad del ancho de la parte inferior del vertedero (b/2), donde 'b' representa el ancho total de la parte inferior.

Vh=Wh1.467Wc

Velocidad del flujo según la ley de Darcy a distancia radical

La fórmula de la Velocidad del flujo según la ley de Darcy a una distancia radical se define como el volumen de fluido que pasa por unidad de tiempo a una distancia radical.

Vr=K(dhdr)

Velocidad óptima del husillo

La Velocidad óptima del husillo es fundamental para lograr procesos eficientes de mecanizado de metales. Los maquinistas suelen confiar en la experiencia, los datos empíricos, las recomendaciones del fabricante y las simulaciones de mecanizado para determinar la Velocidad óptima del husillo para aplicaciones de mecanizado específicas. El monitoreo y ajuste continuo de la Velocidad del husillo durante todo el proceso de mecanizado ayudan a mantener condiciones de corte óptimas y maximizar el rendimiento del mecanizado.

ωs=(Vs2πRo)((1+n)CtTref(1-Rw)(1-n)(Cttc+Ct)(1-Rw1+nn))n

Velocidad de corte de referencia dada la Velocidad óptima del husillo

La Velocidad de corte de referencia dada la Velocidad óptima del husillo se refiere a la Velocidad lineal deseada en un punto específico del filo de la herramienta cuando se acopla con la pieza de trabajo durante el mecanizado. Esta Velocidad de referencia se elige en función de factores como las propiedades del material, las herramientas y las condiciones de mecanizado, y sirve como objetivo para lograr un rendimiento de mecanizado óptimo.

Vs=ωs2πRo((1-n)(Cttc+Ct)(1-Rw1+nn)(1+n)CtTref(1-Rw))n

Velocidad absoluta para un empuje normal dado paralelo a la dirección del chorro

La Velocidad absoluta para un empuje normal paralelo a la dirección del chorro es la tasa de cambio de su posición con respecto a un marco de referencia y es una función del tiempo.

Vabsolute=FtGγfAJet(∠D(180π))2+v

¿Cómo encontrar Fórmulas?

A continuación se ofrecen algunos consejos para obtener mejores resultados de búsqueda.
Sea específico: cuanto más específica sea su consulta, mejores serán los resultados.
Utilice varias palabras clave: combine varias palabras clave para limitar los resultados.
Experimenta con sinónimos: Diferentes términos pueden producir resultados diferentes.
Búsqueda con comodines: utiliza el operador * (asterisco). TENGA EN CUENTA que este operador funciona solo al final de una palabra. Ejemplo: biografía*, área*, etc.

Como alternativa, puede navegar a través de las subcategorías dentro de para concentrarse en las fórmulas de interés.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!