Buscar Fórmulas

Ingrese un mínimo de 3 caracteres para comenzar a buscar fórmulas de .

Seleccionar filtro

Limite los resultados de su búsqueda con la ayuda de estos filtros.

50 ¡Se encontraron fórmulas coincidentes!

Velocidad de deriva dada el área de la sección transversal

La fórmula de la Velocidad de deriva dada el área de la sección transversal se define como una medida de la Velocidad promedio de los portadores de carga en un conductor, que es crucial para comprender el flujo de corriente eléctrica y está influenciada por el área de la sección transversal del conductor y la carga. densidad de los portadores.

Vd=Ie-[Charge-e]A

Velocidad de deriva

La fórmula de Velocidad de deriva se define como una medida de la Velocidad promedio de los electrones en un conductor, que está influenciada por el campo eléctrico y las propiedades del conductor, lo que proporciona información sobre el comportamiento de los electrones en los circuitos eléctricos.

Vd=E𝛕[Charge-e]2[Mass-e]

Velocidad del seguidor para leva tangente del seguidor de rodillo si el contacto es con flancos rectos

La fórmula de Velocidad del seguidor para leva tangente del seguidor de rodillos si el contacto es con flancos rectos se define como una medida de la Velocidad del seguidor en un sistema de leva-seguidor donde el contacto es con flancos rectos, lo que proporciona información sobre la cinemática del sistema y permite el diseño de sistemas mecánicos eficientes.

v=ω(r1+rroller)sin(θ)(cos(θ))2

Velocidad máxima del seguidor para leva tangente con seguidor de rodillo

La fórmula de Velocidad máxima del seguidor para leva tangente con seguidor de rodillos se define como la Velocidad máxima a la que se mueve el seguidor en una leva tangente con un seguidor de rodillos, lo cual es fundamental para diseñar y optimizar los sistemas de leva-seguidor para un rendimiento mecánico eficiente.

Vm=ω(r1+rr)sin(φ)cos(φ)2

Velocidad absoluta del jet Pelton

La Velocidad absoluta de Pelton Jet es la Velocidad a la que el agua sale de la boquilla y golpea los cangilones de la turbina Pelton. Esta Velocidad es crucial ya que influye directamente en la energía cinética transferida a los cangilones de la turbina y generalmente está determinada por la altura y la presión de la fuente de agua que alimenta la turbina.

V1=Cv2[g]H

Velocidad del seguidor de la leva tangente del seguidor del rodillo para contacto con la punta

La fórmula de Velocidad del seguidor de la leva tangente del seguidor de rodillos para contacto con la punta se define como la Velocidad del seguidor en un sistema de leva y seguidor, que es un parámetro crítico para determinar el rendimiento y la eficiencia del sistema, particularmente cuando el seguidor está en contacto con la punta de la leva.

v=ωr(sin(θ1)+rsin(2θ1)2L2-r2(sin(θ1))2)

Velocidad constante bajo presión y temperatura constantes para una reacción de orden cero

La constante de Velocidad a presión y temperatura constantes para la fórmula de reacción de orden cero se define como el progreso de la reacción gaseosa que se puede controlar midiendo la presión total a un volumen y temperatura fijos. Como la constante de Velocidad es para la reacción de orden cero, el orden de la reacción (n) debe sustituirse por cero.

k=(2.303t)log10(P0(n-1)(nP0)-Pt)

Velocidad para radio de giro dado

La Velocidad para un radio de giro dado es una medida de la Velocidad de un objeto cuando gira en una trayectoria circular, dependiendo del radio de giro, la aceleración gravitacional y el factor de carga.

V=R[g](n2-1)

Velocidad de la punta del impulsor dado el diámetro medio

La Velocidad de la punta del impulsor dado el diámetro medio calcula la Velocidad en la punta del impulsor en función de la Velocidad de rotación y el diámetro medio del impulsor. Esta fórmula deriva la Velocidad de la punta utilizando el diámetro medio y la Velocidad de rotación, considerando la configuración geométrica del impulsor.

Ut=π(2Dm2-Dh2)0.5N60

Velocidad mínima de arranque de la bomba centrífuga

La fórmula de Velocidad mínima para el arranque de una bomba centrífuga se define como la Velocidad más baja requerida para que una bomba centrífuga comience a funcionar de manera eficiente, teniendo en cuenta los parámetros de la bomba, como la eficiencia del motor, el caudal de agua y los diámetros del impulsor, para garantizar una operación de bombeo suave y eficaz.

Nmin=120ηmVw2D2π(D22-D12)(2π60)

Velocidad de la punta del impulsor dado el diámetro del cubo

La Velocidad de la punta del impulsor, dado el diámetro del cubo, calcula la Velocidad en la punta del impulsor en función de la Velocidad de rotación y las dimensiones geométricas del impulsor. Esta fórmula deriva la Velocidad de la punta considerando el diámetro de la punta del impulsor, el diámetro del cubo y la Velocidad de rotación.

Ut=πN60Dt2+Dh22

Velocidad tangencial dada la relación de Velocidad

La fórmula de la relación de Velocidad dada a la Velocidad tangencial se define como el producto de la relación de Velocidad y la raíz cuadrada del doble de la aceleración debida a la gravedad y la altura manométrica.

u2=Ku2[g]Hm

Velocidad de flujo dada la relación de flujo

La fórmula de la Velocidad de flujo dada la relación de flujo se define como la Velocidad del flujo de fluido en la salida de una bomba centrífuga, que es un parámetro crítico para determinar el rendimiento y la eficiencia de la bomba, y está influenciado por factores como la relación de flujo, la aceleración gravitacional y el diseño geométrico de la bomba.

Vf2=Kf2[g]Hm

Velocidad del fluido en la tubería por pérdida de carga en la entrada de la tubería

La Velocidad del fluido en la tubería para la pérdida de carga en la entrada de la fórmula de la tubería se conoce al considerar la pérdida de carga en la entrada de la tubería, que depende de la forma de entrada.

v=hi2[g]0.5

Velocidad teórica en la sección 2 en medidor de orificio

La fórmula de Velocidad teórica en la sección 2 del medidor de orificio se define como la Velocidad calculada del flujo de fluido a medida que pasa a través del orificio estrecho, determinada utilizando la ecuación de Bernoulli y el principio de conservación de energía.

Vp2=2[g]hventuri+V12

Velocidad teórica en la sección 1 en medidor de orificio

La fórmula de Velocidad teórica en la sección 1 del medidor de orificio se define como la Velocidad calculada del flujo de fluido justo antes de que ingrese a la placa de orificio, determinada en función de las propiedades del fluido y la diferencia de presión a través del orificio y se utiliza para calcular el caudal a través del medidor.

V1=(Vp22)-(2[g]hventuri)

Velocidad real dada Velocidad teórica en la Sección 2

La Velocidad real dada la Velocidad teórica en la fórmula de la Sección 2 se define como la Velocidad medida para el valor real.

v=CvVp2

Velocidad de corte utilizando la tasa de consumo de energía durante el mecanizado

La Velocidad de corte utilizando la tasa de consumo de energía durante el mecanizado se define como la Velocidad a la que se mueve el trabajo con respecto a la herramienta (generalmente medida en pies por minuto).

Vcut=PmFc

Velocidad real en la sección 2 dado el coeficiente de contracción

La Velocidad real en la sección 2, dada la fórmula del coeficiente de contracción, se define como la Velocidad medida a través de un medidor de orificio.

v=Cv2[g]hventuri+(Vp2CcaoAi)2

Velocidad de avance para la operación de torneado dado el tiempo de mecanizado

La Velocidad de Avance para la Operación de Torneado dado el Tiempo de Mecanizado sirve para determinar el avance máximo que se puede dar en una pieza de trabajo para completar una Operación de Torneado en un tiempo dado.

fr=Lcuttmω

Velocidad en un punto del perfil aerodinámico para un coeficiente de presión y una Velocidad de flujo libre determinados

La Velocidad en el punto de la superficie aerodinámica para el coeficiente de presión dado y la fórmula de Velocidad de flujo libre es el producto de la Velocidad de flujo libre en la raíz cuadrada de uno menos el coeficiente de presión en flujo incompresible.

V=u2(1-Cp)

Velocidad radial para flujo fuente incompresible 2-D

La fórmula de Velocidad radial para flujo fuente incompresible 2-D establece que la Velocidad radial en cualquier punto del campo de flujo es directamente proporcional a la intensidad de la fuente e inversamente proporcional a la distancia radial desde el punto fuente, esto significa que la Velocidad disminuye a medida que alejarse de la fuente, y su magnitud depende de la fuerza de la fuente. Esta fórmula se deriva de la teoría del flujo potencial, que es un modelo simplificado que se utiliza para describir el comportamiento de fluidos no viscosos e incompresibles.

Vr=Λ2πr

Velocidad estática en el punto de transición

La fórmula de Velocidad estática en el punto de transición se define como la Velocidad a la que el flujo pasa de laminar a turbulento, caracterizando el comportamiento de la capa límite en una placa plana en flujo viscoso, proporcionando información sobre la dinámica de fluidos y los mecanismos de transferencia de calor.

ue=Retμeρext

Velocidad del sonido en el agua dado el tiempo transcurrido de la señal ultrasónica enviada por A

La Velocidad del sonido en el agua dado el tiempo transcurrido de la señal ultrasónica enviada por una fórmula se define como la Velocidad del sonido en el agua que fluye en el canal.

C=(Lt1)-vp

Velocidad promedio a lo largo del camino AB a cierta altura sobre el lecho

La fórmula de la Velocidad promedio a lo largo del camino AB a cierta altura sobre el lecho se define como la Velocidad promedio del flujo a través de la sección transversal a una altura sobre el lecho del canal.

vavg=((L2)cos(θ))((1t1)-(1t2))

Velocidad estática usando el espesor del momento de la capa límite

La fórmula de Velocidad estática utilizando el espesor del momento de la capa límite se define como una medida de la Velocidad en el borde de la capa límite en una placa plana, lo cual es esencial para comprender las características del flujo viscoso y las fuerzas de arrastre resultantes.

ue=Reμeρeθt

Velocidad a la distancia radial r1 dado Torque ejercido sobre el fluido

La Velocidad a la distancia radial r1 dado el par ejercido sobre el fluido se define como el par ejercido sobre el fluido, lo que da como resultado un movimiento de rotación o flujo.

V1=qflowr2V2-(τΔ)r1qflow

Velocidad a la distancia radial r2 dado Torque ejercido sobre el fluido

La Velocidad a la distancia radial r2 dado el par ejercido sobre el fluido se define como que el par influye en la Velocidad angular, conduce a un cambio correspondiente en la Velocidad del fluido, lo que resulta en un valor específico a la distancia radial dada.

V2=qflowr1V1+(τΔ)qflowr2

Velocidad de flujo libre

La fórmula de Velocidad de Freestream se define como la viscosidad dinámica del fluido dividida por el producto del cuadrado de la emisividad, la densidad de freestream y el radio de la nariz.

V=μviscosityε2ρrnose

Velocidad promedio del gas dada la temperatura

La fórmula de temperatura de la Velocidad media del gas dada se define como la relación entre la raíz cuadrada de la temperatura y la masa molar del gas respectivo.

Cav=8[R]TgπMmolar

Velocidad promedio de gas dada la presión y el volumen

La fórmula de la Velocidad promedio del gas dada la presión y el volumen se define como la relación entre la raíz cuadrada de la presión y el volumen y la masa molar del gas respectivo.

vavg_P_V=8PgasVπMmolar

Velocidad promedio del gas dada la presión y la densidad

La fórmula de la Velocidad promedio del gas dada la presión y la densidad se define como la raíz cuadrada de la relación entre la presión del gas y la densidad del gas.

vavg_P_D=8Pgasπρgas

Velocidad promedio del gas dada la Velocidad cuadrática media raíz

La Velocidad promedio del gas dada la fórmula de la raíz cuadrática media de la Velocidad se define como el producto de la raíz cuadrática media de la Velocidad con 0.9213. La Velocidad media es la Velocidad media de cada molécula del gas.

vavg_RMS=(0.9213CRMS_speed)

Velocidad RMS dada Velocidad promedio

La fórmula de Velocidad media dada por la Velocidad RMS se define como la relación entre la Velocidad media del gas y 0,9213.

CRMS=(Cav0.9213)

Velocidad de autolimpieza

La Velocidad de autolimpieza se define como la Velocidad mínima a la que debe fluir el fluido en un alcantarillado para evitar la deposición de sedimentos y mantener un camino despejado.

vs=Ckd'(G-1)

Velocidad de autolimpieza dada constante de Chezy

La constante de Chezy dada la Velocidad de autolimpieza se define como la resistencia al flujo en canales abiertos, relacionando la Velocidad del flujo con el radio hidráulico y la pendiente del canal.

C=vskd'(G-1)

Velocidad a través de la pantalla dada Pérdida de carga a través de la pantalla

La Velocidad a través de la pantalla dada la pérdida de cabeza a través de la pantalla es la tasa de cambio de su posición con respecto a un marco de referencia y es una función del tiempo.

v=(hL0.0729)+u2

Velocidad sobre la malla dada la pérdida de carga a través de la malla

La Velocidad sobre la pantalla dada la pérdida de cabeza a través de la pantalla es la tasa de cambio de su posición con respecto a un marco de referencia y es una función del tiempo.

u=v2-(hL0.0729)

Velocidad de sedimentación de partículas esféricas

La fórmula de Velocidad de sedimentación de una partícula esférica se define como la Velocidad constante a la que una partícula esférica cae a través de un fluido bajo la influencia de la gravedad.

Vsp=(g18)(G-1)((Dp)2ν)

Velocidad de sedimentación de partículas esféricas dado el número de Reynold

La fórmula de la Velocidad de sedimentación de una partícula esférica dada el número de Reynolds se define como la Velocidad a la que una partícula se sedimenta en un fluido, como agua o aire, bajo la influencia de la gravedad, considerando el número de Reynolds.

Vsr=RpνDp

Velocidad de caída dada la fuerza de arrastre ofrecida por el fluido

La fórmula de Velocidad de caída dada la fuerza de arrastre ofrecida por el fluido se define como el cálculo de la Velocidad de caída cuando tenemos información previa de la fuerza de arrastre.

v=2(FdCDAρwater)

Velocidad de asentamiento de partículas esféricas dado el coeficiente de arrastre

La fórmula de Velocidad de sedimentación de una partícula esférica dada el coeficiente de arrastre se define como la Velocidad a la que una partícula se sedimenta en un fluido, como agua o aire, bajo la influencia de la gravedad, considerando el coeficiente de arrastre.

Vsc=(43)(γs-γw)DpρwaterCD

Velocidad suavizada

La fórmula Smoothed Velocity es la estimación suavizada de la Velocidad actual del objetivo sobre la base de las detecciones anteriores realizadas por el radar de vigilancia de seguimiento durante la exploración.

vs=vs(n-1)+βTs(xn-xpn)

Velocidad objetivo

La fórmula de Velocidad del objetivo se define como la Velocidad del objetivo que se mueve con la frecuencia Doppler en relación con la fuente de onda.

vt=Δfdλ2

Velocidad del cilindro exterior dado el gradiente de Velocidad

La fórmula del gradiente de Velocidad dada la Velocidad del cilindro exterior se define como la Velocidad a la que gira el cilindro en revoluciones por minuto.

Ω=VGπr230(r2-r1)

Velocidad del cilindro exterior dada la viscosidad dinámica del fluido

La Velocidad del cilindro exterior dada la fórmula de viscosidad dinámica del fluido se define como la Velocidad en revoluciones por minuto del cilindro.

Ω=15T(r2-r1)ππr1r1r2hμ

Velocidad del cilindro exterior dado Torque ejercido sobre el cilindro exterior

La fórmula de Velocidad del cilindro exterior dada la torsión ejercida sobre el cilindro exterior se define como la torsión aplicada a este, siguiendo la relación entre la torsión, la inercia rotacional y la aceleración angular.

Ω=Toππμr1460C

Velocidad del cilindro exterior dada la torsión total

La fórmula de Velocidad del cilindro exterior dada el par total se define como la Velocidad del cilindro en revoluciones por minuto.

Ω=ΤTorqueVcμ

Velocidad promedio en el canal

La Velocidad media en el canal se define como la Velocidad en cualquier punto de la sección en el canal en un canal abierto.

Vavg=8[g]RHSf

Velocidad promedio en el canal dada la constante Chezy

La Velocidad promedio en el canal dada la constante de Chezy se define como la Velocidad en cualquier punto de la sección del canal en un canal abierto.

Vavg=CRHS

¿Cómo encontrar Fórmulas?

A continuación se ofrecen algunos consejos para obtener mejores resultados de búsqueda.
Sea específico: cuanto más específica sea su consulta, mejores serán los resultados.
Utilice varias palabras clave: combine varias palabras clave para limitar los resultados.
Experimenta con sinónimos: Diferentes términos pueden producir resultados diferentes.
Búsqueda con comodines: utiliza el operador * (asterisco). TENGA EN CUENTA que este operador funciona solo al final de una palabra. Ejemplo: biografía*, área*, etc.

Como alternativa, puede navegar a través de las subcategorías dentro de para concentrarse en las fórmulas de interés.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!