Buscar Fórmulas

Ingrese un mínimo de 3 caracteres para comenzar a buscar fórmulas de .

Seleccionar filtro

Limite los resultados de su búsqueda con la ayuda de estos filtros.

50 ¡Se encontraron fórmulas coincidentes!

Velocidad espacial del reactor

La Velocidad espacial del reactor nos da el número de volúmenes del reactor que se pueden tratar por unidad de tiempo.

sReactor=voVreactor

Velocidad terminal

La Velocidad terminal es la Velocidad máxima que puede alcanzar un objeto cuando cae a través de un fluido (el aire es el ejemplo más común).

Vterminal=29r2(𝜌1-ρ2)gμviscosity

Velocidad de corte dada la Velocidad angular

Velocidad de corte dada La Velocidad angular se define como la Velocidad a la que se mueve el trabajo con respecto a la herramienta (generalmente medida en pies por minuto).

Vcutting=πdω

Velocidad periférica de proyección del punto P sobre el diámetro para MAS del seguidor

La fórmula de la Velocidad periférica de proyección del punto P sobre el diámetro para el MAS del seguidor se define como la Velocidad a la que el punto P se mueve a lo largo del diámetro del círculo en el movimiento armónico simple del seguidor en un sistema de leva y seguidor, lo cual es crucial para comprender la cinemática del mecanismo.

Ps=πS2to

Velocidad periférica de proyección del punto P' (Proyección del punto P sobre el diámetro) para MAS del seguidor

La fórmula de Velocidad periférica de proyección del punto P' (proyección del punto P sobre el diámetro) para el MAS del seguidor se define como la Velocidad a la que se mueve la proyección de un punto sobre el diámetro de una leva durante el movimiento armónico simple del seguidor en un sistema de leva y seguidor.

Ps=πSω2θo

Velocidad máxima del seguidor en carrera cuando el seguidor se mueve con SHM

La Velocidad máxima del seguidor en la carrera de salida cuando el seguidor se mueve con la fórmula SHM se define como la Velocidad más alta alcanzada por el seguidor durante su movimiento hacia afuera, que es un parámetro crítico para evaluar el rendimiento de un sistema mecánico que involucra un movimiento armónico simple.

Vm=πSω2θo

Velocidad máxima del seguidor en carrera de salida dada la carrera de tiempo

La fórmula de Velocidad máxima del seguidor en la carrera de salida dado el tiempo de carrera se define como la Velocidad más alta alcanzada por el seguidor durante la fase de carrera de salida de un sistema de seguidor de leva, que es un parámetro crítico en el diseño y optimización de sistemas mecánicos, particularmente en aplicaciones de ingeniería automotriz y aeroespacial.

Vm=πS2to

Velocidad máxima del seguidor en la carrera de retorno cuando el seguidor se mueve con SHM

La Velocidad máxima del seguidor en su carrera de retorno cuando el seguidor se mueve con la fórmula SHM se define como la Velocidad más alta alcanzada por el seguidor durante su carrera de retorno mientras se mueve en un movimiento armónico simple, que es un parámetro crítico en el diseño y optimización de sistemas mecánicos.

Vm=πSω2θR

Velocidad inicial dada el tiempo de vuelo del chorro de líquido

La fórmula de Velocidad inicial dado el tiempo de vuelo de un chorro de líquido se define como un método para determinar la Velocidad inicial de un chorro de líquido en función de su tiempo de vuelo y el ángulo de proyección. Este concepto es crucial en la mecánica de fluidos para analizar la dinámica de los chorros.

Vo=Tgsin(Θ)

Velocidad inicial dada Tiempo para alcanzar el punto más alto de líquido

La fórmula de la Velocidad inicial en función del tiempo necesario para alcanzar el punto más alto del líquido se define como un método para determinar la Velocidad inicial necesaria para que un chorro de líquido alcance su altura máxima. Este concepto es esencial en mecánica de fluidos para analizar el comportamiento de las proyecciones de líquidos bajo la influencia de la gravedad.

Vo=T'gsin(Θ)

Velocidad inicial del chorro de líquido dada la elevación vertical máxima

La fórmula de Velocidad inicial de un chorro de líquido dada la elevación vertical máxima se define como un método para determinar la Velocidad necesaria de un chorro de líquido para alcanzar una altura específica. Este concepto es esencial en mecánica de fluidos para comprender la dinámica de los chorros y optimizar el flujo de fluidos en diversas aplicaciones.

Vo=H2gsin(Θ)sin(Θ)

Velocidad angular dada la inercia y la energía cinética

La fórmula de la Velocidad angular dada la inercia y la energía cinética es una variación de la fórmula KE. La energía cinética de un objeto giratorio se puede expresar como la mitad del producto de la Velocidad angular del objeto y el momento de inercia alrededor del eje de rotación. Así obtenemos la relación entre la Velocidad angular, el momento de inercia y KE

ω2=2KEI

Velocidad de deriva de electrones del canal en el transistor NMOS

La Velocidad de deriva de electrones del canal en el transistor NMOS se debe al campo eléctrico que, a su vez, hace que los electrones del canal se desplacen hacia el drenaje con una Velocidad.

vd=μnEL

Velocidad en vuelo acelerado

La Velocidad en vuelo acelerado se refiere a la Velocidad de la aeronave a medida que sufre cambios de Velocidad o dirección para lograr objetivos de vuelo específicos; generalmente se mide como la Velocidad aerodinámica de la aeronave, que es la Velocidad de la aeronave en relación con el aire circundante.

v=(Rcurvaturem(FL+Tsin(σT)-m[g]cos(γ)))12

Velocidad de flujo uniforme para la función de corriente en el punto de flujo combinado

La Velocidad de flujo uniforme para la función de la corriente en el punto de la fórmula de flujo combinado se conoce a partir de la relación de la función de la corriente debido al flujo uniforme y la función de la corriente debido a la fuente considerando el ángulo 'θ' y la distancia desde O en P(x,y) como 'r' en coordenadas polares.

U=ψ-(q2π∠A)A'sin(∠A)

Velocidad usando la ecuación de flujo de agua

La Velocidad usando la ecuación del flujo de agua se define como la Velocidad del flujo cuando se dan el área de la sección transversal de la tubería y el flujo de agua.

Vf=QwAcs

Velocidad de flujo total en alcantarillado

La Velocidad de flujo total en alcantarillado calcula la Velocidad de flujo en alcantarillado cuando tenemos una información previa del coeficiente de rugosidad, diámetro interno de la tubería y pérdida de energía debido a la rugosidad de la superficie.

Vf=0.59di23S12nc

Velocidad angular dada la descarga teórica y el desplazamiento volumétrico

La fórmula de Velocidad angular dada la descarga teórica y el desplazamiento volumétrico se define como una medida de la Velocidad de rotación de una bomba hidráulica, que es crucial para determinar el rendimiento y la eficiencia de la bomba en diversas aplicaciones industriales.

n1=QgpVgp

Velocidad en cualquier radio dado el radio de la tubería y la Velocidad máxima

La Velocidad en cualquier radio dado el radio de la tubería, y la Velocidad máxima está relacionada con la Velocidad máxima y el radio de la tubería. La distribución de Velocidades generalmente varía con el radio, y a menudo sigue un perfil específico según las condiciones del flujo.

V=Vm(1-(rpdo2)2)

Velocidad máxima en cualquier radio usando Velocity

La Velocidad máxima en cualquier radio utilizando la Velocidad en cualquier radio en un sistema giratorio ocurre cuando la fuerza centrípeta se equilibra con la fuerza máxima que se puede aplicar.

Vm=V1-(rpdo2)2

Velocidad de la esfera en el método de resistencia de la esfera descendente

La fórmula del método de resistencia a la Velocidad de la esfera en la caída de la esfera se conoce considerando la viscosidad del fluido o del aceite, el diámetro de la esfera y la fuerza de arrastre.

U=FD3πμd

Velocidad de giro para una carga alar determinada

La Velocidad de giro para una carga alar determinada se refiere a la Velocidad a la que una aeronave puede cambiar su dirección o girar; generalmente se mide en grados por segundo o radianes por segundo; Al combinar estos factores dados, la fórmula se aproxima a la Velocidad de giro, lo que ofrece información sobre las capacidades de maniobra de la aeronave.

ω=[g](ρCLn2WS)

Velocidad específica de succión

La fórmula de Velocidad específica de succión se define como un parámetro adimensional que caracteriza el rendimiento de succión de una bomba, proporcionando una medida relativa de la capacidad de la bomba para manejar un caudal y una altura determinados, lo que permite comparar diferentes diseños de bombas y su idoneidad para aplicaciones específicas.

Nsuc=ωQ(Hsv)34

Velocidad en la sección 1 de la ecuación de Bernoulli

La Velocidad en la sección 1 de la ecuación de Bernoulli se define como la Velocidad en una sección particular de la tubería.

V1=2[g]((P2γf)+(0.5(Vp22[g]))+Z2-Z1-P1γf)

Velocidad de flujo dada Carga de Velocidad para flujo constante no viscoso

La Velocidad de Flujo dada la Carga de Velocidad para Flujo Estable No Viscoso se define como una medida de la Velocidad del fluido en un punto particular y se define como la relación entre la Velocidad del fluido al cuadrado y el doble de la aceleración debida a la gravedad.

V=Vh2[g]

Velocidad tangencial para flujo sin elevación sobre un cilindro circular

La fórmula de Velocidad tangencial para flujo sin elevación sobre cilindro circular es una función de la coordenada radial, la Velocidad de la corriente libre, el radio del cilindro y el ángulo polar.

Vθ=-(1+(Rr)2)Vsin(θ)

Velocidad radial para flujo sin elevación sobre un cilindro circular

La fórmula de Velocidad radial para flujo sin elevación sobre cilindro circular se define como la función de la Velocidad radial, la distancia radial desde el origen, el ángulo polar y la Velocidad de la corriente libre.

Vr=(1-(Rr)2)Vcos(θ)

Velocidad tangencial para flujo de vórtice 2-D

La fórmula de Velocidad tangencial para flujo de vórtice 2-D se define como la función de la fuerza del flujo de vórtice y la distancia radial del punto desde el origen; representa el componente de Velocidad en la dirección circunferencial alrededor del centro del vórtice.

Vθ=-γ2πr

Velocidad radial para elevar el flujo sobre un cilindro circular

La fórmula de la Velocidad radial para levantar el flujo sobre un cilindro circular se define como la función de la fuerza del vórtice, la distancia radial, el ángulo polar y el radio del cilindro.

Vr=(1-(Rr)2)Vcos(θ)

Velocidad tangencial para elevar el flujo sobre un cilindro circular

La fórmula de la Velocidad tangencial para el flujo de elevación sobre un cilindro circular es una función de la coordenada radial, la Velocidad de la corriente libre, el radio del cilindro, la fuerza del vórtice y el ángulo polar.

Vθ=-(1+(Rr)2)Vsin(θ)-Γ2πr

Velocidad de cresta dada Tiempo para aceleración

La fórmula de Velocidad de cresta dada el tiempo de aceleración se define como el producto del tiempo de aceleración y la aceleración del tren. También se la conoce como Velocidad máxima del tren.

Vm=tαα

Velocidad de programación

La fórmula de Velocidad programada se define como la relación entre la distancia recorrida entre dos paradas y el tiempo total de la carrera, incluido el tiempo de parada (tiempo programado).

Vs=DTrun+Tstop

Velocidad de la corriente en la ubicación del instrumento

La fórmula de la Velocidad de la corriente en la ubicación del instrumento se define como la Velocidad del agua en la corriente, y es mayor en el medio de la corriente cerca de la superficie y es más lenta a lo largo del lecho y las orillas de la corriente debido a la fricción.

v=aNs+b

Velocidad del chorro en relación con el movimiento del barco dada la energía cinética

La Velocidad del chorro en relación con el movimiento del barco dada la energía cinética se define como la Velocidad relativa del impacto.

Vr=KE2[g]Wbody

Velocidad absoluta del chorro emisor dada la Velocidad relativa

La Velocidad absoluta del chorro emitido dada la Velocidad relativa del chorro con respecto al barco se utiliza para calcular la Velocidad absoluta de la corriente en chorro.

V=Vr-u

Velocidad del barco en movimiento dada la Velocidad relativa

La Velocidad del barco en movimiento dada la Velocidad relativa se define como la Velocidad real del barco en la hélice genera.

u=Vr-V

Velocidad absoluta del chorro emisor dada la fuerza propulsora

La Velocidad absoluta del chorro de emisión dada la fuerza propulsora se define como la Velocidad del chorro medida con referencia al espacio absoluto.

V=[g]FWWater

Velocidad de flujo dada Empuje en la hélice

La Velocidad de flujo dada por el empuje en la hélice se define como la Velocidad de descarga del fluido en el chorro.

Vf=-(FtρWaterqflow)+V

Velocidad de partícula en caja 3D

La fórmula de la Velocidad de la partícula en la caja 3D se define como una relación del doble de la longitud de la caja rectangular y el tiempo entre la colisión.

u3D=2Lt

Velocidad de la molécula de gas dada la fuerza

La Velocidad de la molécula de gas dada la fórmula de fuerza se define como la raíz cuadrada del producto de la longitud de la caja rectangular y la fuerza por masa de la partícula.

uF=FLm

Velocidad de la molécula de gas en 1D dada la presión

La Velocidad de la molécula de gas en una fórmula de presión dada en 1D se define como la raíz de la relación de la presión del gas multiplicada por el volumen con la masa de la partícula.

up=PgasVboxm

Velocidad cuadrática media de la molécula de gas dada la presión y el volumen de gas

La Velocidad cuadrática media de la molécula de gas dada la fórmula de presión y volumen de gas se define como la raíz cuadrada de la relación de tres veces la presión y el volumen del gas a la masa de cada molécula de gas.

CRMS=3PgasVNmoleculesm

Velocidad del cuerpo dado el momento

La fórmula de la Velocidad de un cuerpo dado el momento se define como una medida de la Velocidad de un objeto en una dirección específica, calculada dividiendo el momento del objeto por su masa, lo que proporciona un concepto fundamental para comprender el movimiento de un objeto y su relación con la fuerza.

v=pmo

Velocidad del proyectil del cono Mach en flujo de fluido compresible

La Velocidad del proyectil del cono de Mach en un flujo de fluido compresible describe la Velocidad a la que viaja el proyectil cuando alcanza o excede la Velocidad del sonido en el medio circundante. Comprender esta Velocidad es crucial en los estudios de aerodinámica y balística, ya que indica la aparición de ondas de choque y los desafíos aerodinámicos asociados con los vuelos supersónicos e hipersónicos.

V=Csin(μ)

Velocidad de la onda sonora considerando el ángulo de Mach en el flujo de un fluido comprimible

La Velocidad de la onda sonora, considerando el ángulo de Mach en el flujo de fluido compresible, es importante para comprender cómo se propaga el sonido a través de un medio cuando la Velocidad del fluido se acerca o excede la Velocidad del sonido. Esta relación ayuda a predecir el comportamiento de las ondas de choque y la transmisión del sonido en diversos entornos, algo fundamental en la ingeniería aeroespacial, la acústica y el estudio de la dinámica de fluidos de alta Velocidad.

C=Vsin(μ)

Velocidad de corte utilizando la vida útil de la herramienta de Taylor y la intercepción

La Velocidad de corte utilizando la vida útil e intercepción de la herramienta de Taylor es un método para encontrar la Velocidad de corte máxima con la que se puede mecanizar la pieza de trabajo cuando se fija el intervalo de tiempo de afilado de la herramienta.

V'cut=XTvx

Velocidad de flujo libre

La fórmula de Velocidad de Freestream se define como la viscosidad dinámica del fluido dividida por el producto del cuadrado de la emisividad, la densidad de freestream y el radio de la nariz.

V=μviscosityε2ρrnose

Velocidad media del flujo dado el factor de fricción

La Velocidad media del flujo dado el factor de fricción se define como la Velocidad promedio que fluye a través del área de la sección de una tubería.

Vmean=64μfρFluidDpipe

Velocidad media del flujo dado el esfuerzo cortante y la densidad

La Velocidad media de flujo dado el esfuerzo cortante y la densidad se define como la Velocidad promedio de un fluido en la tubería.

Vmean=8𝜏ρFluidf

Velocidad de corte

La fórmula de Velocidad de corte se define como la relación entre el esfuerzo cortante y la densidad tomada en forma de raíz y resulta ser la Velocidad por dimensión.

Vshear=Vmeanf8

¿Cómo encontrar Fórmulas?

A continuación se ofrecen algunos consejos para obtener mejores resultados de búsqueda.
Sea específico: cuanto más específica sea su consulta, mejores serán los resultados.
Utilice varias palabras clave: combine varias palabras clave para limitar los resultados.
Experimenta con sinónimos: Diferentes términos pueden producir resultados diferentes.
Búsqueda con comodines: utiliza el operador * (asterisco). TENGA EN CUENTA que este operador funciona solo al final de una palabra. Ejemplo: biografía*, área*, etc.

Como alternativa, puede navegar a través de las subcategorías dentro de para concentrarse en las fórmulas de interés.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!