Buscar Fórmulas

Ingrese un mínimo de 3 caracteres para comenzar a buscar fórmulas de .

Seleccionar filtro

Limite los resultados de su búsqueda con la ayuda de estos filtros.

50 ¡Se encontraron fórmulas coincidentes!

Velocidad angular del electrón

La Velocidad angular de un electrón es la relación entre la Velocidad de ese electrón y el radio de la órbita.

ωvel=verorbit

Velocidad de partículas de fluido

La Velocidad de la partícula de fluido en la terminología de dinámica de fluidos se utiliza para describir matemáticamente el movimiento de un continuo.

vf=dta

Velocidad máxima del seguidor durante la carrera de retorno a aceleración uniforme dado el tiempo de carrera

La fórmula de Velocidad máxima del seguidor durante la carrera de retorno con aceleración uniforme dado el tiempo de carrera se define como la Velocidad más alta alcanzada por el seguidor durante su movimiento de retorno bajo aceleración uniforme, que es un parámetro crítico en el diseño y optimización de sistemas mecánicos.

Vm=2StR

Velocidad máxima del seguidor durante la carrera con aceleración uniforme

La fórmula de Velocidad máxima del seguidor durante la carrera de salida con aceleración uniforme se define como la Velocidad más alta alcanzada por el seguidor durante su movimiento hacia afuera bajo aceleración constante, que normalmente se observa en sistemas mecánicos como motores y bombas.

Vm=2Sωθo

Velocidad máxima del seguidor durante la carrera de salida con aceleración uniforme dado el tiempo de carrera de salida

La fórmula de Velocidad máxima del seguidor durante la carrera de salida con aceleración uniforme dado el tiempo de carrera de salida se define como la Velocidad máxima alcanzada por el seguidor durante la fase de carrera de salida de un sistema mecánico bajo aceleración uniforme, lo que proporciona información sobre el comportamiento cinemático del sistema.

Vm=2Sto

Velocidad media del seguidor durante la carrera de retorno con aceleración uniforme

La fórmula de Velocidad media del seguidor durante la carrera de retorno con aceleración uniforme se define como la Velocidad promedio del seguidor durante su carrera de retorno cuando la aceleración es uniforme, lo cual es un parámetro crítico en el diseño y análisis de sistemas de levas y seguidores.

Vmean=StR

Velocidad media del seguidor durante la carrera con aceleración uniforme

La fórmula de Velocidad media del seguidor durante la carrera de salida con aceleración uniforme se define como la Velocidad promedio del seguidor durante la fase de carrera de salida cuando la aceleración es uniforme, lo que proporciona información sobre la cinemática de los sistemas de levas y seguidores en ingeniería mecánica.

Vmean=Sto

Velocidad inicial dada el tiempo de vuelo del chorro de líquido

La fórmula de Velocidad inicial dado el tiempo de vuelo de un chorro de líquido se define como un método para determinar la Velocidad inicial de un chorro de líquido en función de su tiempo de vuelo y el ángulo de proyección. Este concepto es crucial en la mecánica de fluidos para analizar la dinámica de los chorros.

Vo=Tgsin(Θ)

Velocidad inicial dada Tiempo para alcanzar el punto más alto de líquido

La fórmula de la Velocidad inicial en función del tiempo necesario para alcanzar el punto más alto del líquido se define como un método para determinar la Velocidad inicial necesaria para que un chorro de líquido alcance su altura máxima. Este concepto es esencial en mecánica de fluidos para analizar el comportamiento de las proyecciones de líquidos bajo la influencia de la gravedad.

Vo=T'gsin(Θ)

Velocidad inicial del chorro de líquido dada la elevación vertical máxima

La fórmula de Velocidad inicial de un chorro de líquido dada la elevación vertical máxima se define como un método para determinar la Velocidad necesaria de un chorro de líquido para alcanzar una altura específica. Este concepto es esencial en mecánica de fluidos para comprender la dinámica de los chorros y optimizar el flujo de fluidos en diversas aplicaciones.

Vo=H2gsin(Θ)sin(Θ)

Velocidad angular dada la inercia y la energía cinética

La fórmula de la Velocidad angular dada la inercia y la energía cinética es una variación de la fórmula KE. La energía cinética de un objeto giratorio se puede expresar como la mitad del producto de la Velocidad angular del objeto y el momento de inercia alrededor del eje de rotación. Así obtenemos la relación entre la Velocidad angular, el momento de inercia y KE

ω2=2KEI

Velocidad de deriva de electrones del canal en el transistor NMOS

La Velocidad de deriva de electrones del canal en el transistor NMOS se debe al campo eléctrico que, a su vez, hace que los electrones del canal se desplacen hacia el drenaje con una Velocidad.

vd=μnEL

Velocidad de escape ideal dada la caída de entalpía

La Velocidad de escape ideal dada la fórmula de caída de entalpía se define como la Velocidad de los gases que se expanden perfectamente en la boquilla.

Cideal=2Δhnozzle

Velocidad del chorro dada la caída de temperatura

La fórmula de caída de temperatura dada por la Velocidad del chorro se define como la raíz cuadrada de 2 veces el producto del calor específico a presión constante y caída de temperatura.

Cideal=2CpΔT

Velocidad de flujo libre dada la fuerza de arrastre total

La Velocidad de corriente libre dada la fuerza de arrastre total representa la Velocidad del fluido aguas arriba de un objeto o dentro de un campo de flujo no perturbado, es igual a la relación entre la potencia requerida y la fuerza de arrastre total de una aeronave.

V=PFD

Velocidad en cualquier radio dado el radio de la tubería y la Velocidad máxima

La Velocidad en cualquier radio dado el radio de la tubería, y la Velocidad máxima está relacionada con la Velocidad máxima y el radio de la tubería. La distribución de Velocidades generalmente varía con el radio, y a menudo sigue un perfil específico según las condiciones del flujo.

V=Vm(1-(rpdo2)2)

Velocidad máxima en cualquier radio usando Velocity

La Velocidad máxima en cualquier radio utilizando la Velocidad en cualquier radio en un sistema giratorio ocurre cuando la fuerza centrípeta se equilibra con la fuerza máxima que se puede aplicar.

Vm=V1-(rpdo2)2

Velocidad de giro para un coeficiente de elevación determinado

La Velocidad de giro para un coeficiente de elevación determinado de una aeronave se refiere a la Velocidad a la que la aeronave gira en el aire; generalmente se mide en radianes por segundo (rad/s) o grados por segundo (deg/s).

ω=[g](SρCLn2W)

Velocidad periférica de la hoja en la salida correspondiente al diámetro

La Velocidad periférica de la pala a la salida correspondiente a la fórmula del diámetro se define como π por el producto de la Velocidad del rotor y el diámetro, dividido por 60.

u2=πDeN60

Velocidad periférica de la hoja en la entrada correspondiente al diámetro

La Velocidad periférica de la pala en la entrada correspondiente a la fórmula del diámetro se define como π por el producto de la Velocidad del rotor y el diámetro, dividido por 60.

u1=πDiN60

Velocidad de vibraciones causadas por voladuras

La Velocidad de Vibraciones causadas por la Voladura se define como la tasa de cambio de desplazamiento en el trabajo de vibración.

V=(λvf)

Velocidad de partículas perturbadas por vibraciones

La fórmula de la Velocidad de las partículas perturbadas por vibraciones se define como la Velocidad de las partículas influenciadas por las vibraciones, expresando la Velocidad y dirección de su movimiento en respuesta a la perturbación.

v=(2πfA)

Velocidad de la partícula uno a la distancia de la explosión

La Velocidad de la partícula uno a una distancia de la explosión se define como la Velocidad de una partícula desde el punto de explosión a una distancia específica.

v1=v2(D2D1)1.5

Velocidad de la Partícula Dos a la distancia de la Explosión

La Velocidad de la partícula dos a la distancia de la explosión se define como la tasa de cambio del desplazamiento de la partícula.

v2=v1(D1D2)1.5

Velocidad específica de succión

La fórmula de Velocidad específica de succión se define como un parámetro adimensional que caracteriza el rendimiento de succión de una bomba, proporcionando una medida relativa de la capacidad de la bomba para manejar un caudal y una altura determinados, lo que permite comparar diferentes diseños de bombas y su idoneidad para aplicaciones específicas.

Nsuc=ωQ(Hsv)34

Velocidad en la sección 1 de la ecuación de Bernoulli

La Velocidad en la sección 1 de la ecuación de Bernoulli se define como la Velocidad en una sección particular de la tubería.

V1=2[g]((P2γf)+(0.5(Vp22[g]))+Z2-Z1-P1γf)

Velocidad de flujo dada Carga de Velocidad para flujo constante no viscoso

La Velocidad de Flujo dada la Carga de Velocidad para Flujo Estable No Viscoso se define como una medida de la Velocidad del fluido en un punto particular y se define como la relación entre la Velocidad del fluido al cuadrado y el doble de la aceleración debida a la gravedad.

V=Vh2[g]

Velocidad del fluido para el número de Reynold

La fórmula de la Velocidad del fluido para el número de Reynold se conoce considerando la relación del número de Reynolds y la viscosidad del fluido con la densidad del líquido y la longitud de la placa.

V=ReμρfL

Velocidad de separación después del impacto

La fórmula de la Velocidad de separación después del impacto se define como el producto del coeficiente de restitución y la diferencia entre la Velocidad inicial del primer cuerpo y la Velocidad inicial del segundo cuerpo.

vsep=e(u1-u2)

Velocidad de aproximación

La fórmula de la Velocidad de aproximación se define como la relación entre la diferencia entre la Velocidad final del segundo cuerpo y la Velocidad final del primer cuerpo y el coeficiente de restitución.

vapp=v2-v1e

Velocidad transversal en amoladora de superficie de husillo horizontal y vertical dado MRR

La Velocidad transversal en la amoladora de superficie de husillo horizontal y vertical dada la MRR es un método para determinar el movimiento hacia adelante y hacia atrás de la mesa de trabajo en relación con la muela abrasiva cuando se conoce la cantidad de MRR requerida. La Velocidad transversal se determina según diferentes parámetros, como el acabado superficial deseado, el diferente tamaño de grano de la muela, etc.

Vtrav=Zwfdcut

Velocidad transversal para rectificadora cilíndrica e interna dado MRR

La Velocidad transversal para amoladora cilíndrica e interna dada MRR es un método para determinar el movimiento hacia adelante y hacia atrás de la mesa de trabajo en relación con la muela abrasiva cuando se conoce la cantidad de MRR requerida. La Velocidad transversal se determina según diferentes parámetros, como el acabado superficial deseado, el diferente tamaño de grano de la muela abrasiva, etc.

Utrav=ZwπfDm

Velocidad en cualquier punto del elemento cilíndrico

La Velocidad en cualquier punto de la fórmula del elemento cilíndrico se define como la Velocidad a la que el fluido ingresa a la tubería formando un perfil parabólico.

vFluid=-(14μ)dp|dr((R2)-(dradial2))

Velocidad en la salida de la boquilla para caudal máximo de fluido

La Velocidad en la salida de la boquilla para un caudal máximo de fluido es crucial para determinar la eficiencia y el rendimiento de los sistemas de dinámica de fluidos. Se correlaciona directamente con la relación de presión a través de la boquilla, la densidad del fluido y las características de diseño de la boquilla, lo que influye en el caudal y la eficiencia de la propulsión en aplicaciones como motores de cohetes y sistemas de pulverización industriales. Comprender y optimizar esta Velocidad es esencial para lograr los resultados operativos deseados en aplicaciones tecnológicas y de ingeniería.

Vf=2yP1(y+1)ρa

Velocidad proporcional dada Velocidad mientras funciona Parcialmente lleno

La Velocidad proporcional dada la Velocidad cuando el tubo funciona parcialmente lleno se define como la relación entre la Velocidad del fluido en un tubo parcialmente lleno y la Velocidad cuando el tubo está completamente lleno.

Pv=VsV

Velocidad mientras funciona Parcialmente lleno dada la Velocidad proporcional

La Velocidad cuando el tubo está parcialmente lleno dada la Velocidad proporcional se define como el caudal de fluido en una tubería cuando no está completamente llena, afectada por la profundidad y la Velocidad.

Vs=VPv

Velocidad mientras se ejecuta Full Velocidad proporcional dada

La Velocidad durante el funcionamiento a máxima capacidad dada la Velocidad proporcional se define como la Velocidad del flujo de fluido en una tubería cuando está completamente llena, influenciada por la pendiente y la rugosidad de la tubería.

V=VsPv

Velocidad proporcional dada Coeficiente de rugosidad

La Velocidad Proporcional dado el Coeficiente de Rugosidad calcula la Velocidad proporcional cuando tenemos información previa de otros parámetros utilizados.

Pv=(Nnp)(rpfrpf)23

Velocidad de asentamiento con respecto al diámetro de la partícula

La fórmula de la Velocidad de sedimentación con respecto al diámetro de la partícula se define como la Velocidad a la que una partícula se sedimenta en un fluido bajo la influencia de la gravedad. Esta Velocidad está influenciada por el tamaño, la forma y la densidad de la partícula.

Vsd=(g(G-1)(Dp)1.613.88(ν)0.6)0.714

Velocidad de asentamiento para asentamiento turbulento

La fórmula de Velocidad de asentamiento para asentamiento turbulento se define como el cálculo de la Velocidad de asentamiento durante el movimiento turbulento.

Vst=(1.8g(G-1)Dp)

Velocidad de asentamiento para la ecuación de Hazen modificada

La fórmula de Velocidad de sedimentación para la ecuación de Hazen modificada se define como el cálculo de la Velocidad de sedimentación cuando tenemos información previa de otros parámetros.

Vsm=(60.6Dp(G-1)((3T)+70100))

Velocidad de sedimentación para sólidos inorgánicos

La Velocidad de sedimentación de los sólidos inorgánicos (también denominada "Velocidad de sedimentación") se define como la Velocidad terminal de una partícula en un fluido en reposo.

vs(in)=(Dp((3T)+70))

Velocidad de sedimentación de materia orgánica

La Velocidad de sedimentación de la materia orgánica (también denominada "Velocidad de sedimentación") se define como la Velocidad terminal de una partícula en un fluido en reposo.

vs(o)=0.12Dp((3T)+70)

Velocidad de avance en molienda

La Velocidad de alimentación en el rectificado es la cantidad de alimentación dada contra una pieza de trabajo por unidad de tiempo en el rectificado.

VF=Vi-(dT2)

Velocidad de alimentación de la máquina dada Velocidad de alimentación en Rectificado

La Velocidad de alimentación de la máquina dada la Velocidad de alimentación en el rectificado se define como la Velocidad de rotación del husillo de la máquina rectificadora ajustada para adaptarse a la Velocidad de avance especificada durante el proceso de rectificado.

Vi=VF+(dT2)

Velocidad más probable del gas dada la Velocidad RMS en 2D

La Velocidad más probable del gas dada la Velocidad RMS en la fórmula 2D se define como el producto de la raíz cuadrada de la Velocidad media del gas con 0.7071.

Cmp_RMS=(0.7071CRMS)

Velocidad más probable del gas dada la temperatura en 2D

La Velocidad más probable del gas dada la temperatura en la fórmula 2D se define como la relación entre la raíz cuadrada de la temperatura y la masa molar.

CT=[R]TgMmolar

Velocidad RMS dada la Velocidad más probable en 2D

La Velocidad RMS dada la Velocidad más probable en la fórmula 2D se define como el producto de la Velocidad más probable de la molécula gaseosa por la raíz cuadrada de 2.

CRMS=(Cmp2)

Velocidad RMS dada Presión y Densidad en 2D

La Velocidad RMS dada la presión y la densidad en 2D se define como la proporción directa de la raíz cuadrática media de la Velocidad con la raíz cuadrada de la presión y la proporción inversa de la raíz cuadrática media con la raíz cuadrada de la masa molar.

CRMS=2Pgasρgas

Velocidad RMS dada la presión y el volumen de gas en 2D

La Velocidad RMS dada la presión y el volumen de gas en la fórmula 2D se define como la proporción directa de la Velocidad cuadrática media con la raíz cuadrada de la presión y el volumen y la proporción inversa de la raíz cuadrática media con la raíz cuadrada de la masa molar.

CRMS=2PgasVMmolar

¿Cómo encontrar Fórmulas?

A continuación se ofrecen algunos consejos para obtener mejores resultados de búsqueda.
Sea específico: cuanto más específica sea su consulta, mejores serán los resultados.
Utilice varias palabras clave: combine varias palabras clave para limitar los resultados.
Experimenta con sinónimos: Diferentes términos pueden producir resultados diferentes.
Búsqueda con comodines: utiliza el operador * (asterisco). TENGA EN CUENTA que este operador funciona solo al final de una palabra. Ejemplo: biografía*, área*, etc.

Como alternativa, puede navegar a través de las subcategorías dentro de para concentrarse en las fórmulas de interés.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!