Buscar Fórmulas

Ingrese un mínimo de 3 caracteres para comenzar a buscar fórmulas de .

Seleccionar filtro

Limite los resultados de su búsqueda con la ayuda de estos filtros.

50 ¡Se encontraron fórmulas coincidentes!

Fuerza mínima requerida para deslizar el cuerpo en un plano horizontal rugoso

La fórmula de Fuerza mínima requerida para deslizar un cuerpo sobre un plano horizontal rugoso se define como la menor cantidad de Fuerza necesaria para iniciar el movimiento de deslizamiento de un objeto sobre una superficie horizontal rugosa, teniendo en cuenta el peso del objeto y el ángulo de elevación del plano.

Pmin=Wsin(θe)

Fuerza sobre el elemento actual en el campo magnético

La Fuerza sobre el elemento de corriente en el campo magnético es la Fuerza que se ejerce sobre un conductor que lleva corriente cuando se coloca en un campo magnético.

F=iLBsin(θ)

Fuerza de frenado en el tambor para freno de banda simple

La Fuerza de frenado en el tambor para el freno de banda simple se define como la Fuerza ejercida por el tambor para reducir la velocidad o detener el movimiento de un objeto, que es un componente crítico en el diseño de frenos de banda utilizados en varios sistemas mecánicos.

Fbraking=T1-T2

Fuerza sobre la palanca del freno de banda simple para la rotación del tambor en el sentido de las agujas del reloj

La fórmula de Fuerza sobre la palanca de un freno de banda simple para la rotación en el sentido de las agujas del reloj del tambor se define como la medida de la Fuerza ejercida sobre la palanca de un freno de banda simple cuando el tambor gira en el sentido de las agujas del reloj, lo cual es esencial para comprender la ventaja mecánica del sistema de freno.

P=T1bl

Fuerza sobre la palanca del freno de banda simple para la rotación del tambor en sentido antihorario

La fórmula de Fuerza sobre la palanca de un freno de banda simple para la rotación en sentido antihorario del tambor se define como la medida de la Fuerza ejercida sobre la palanca de un freno de banda simple cuando el tambor gira en sentido antihorario, lo cual es esencial para comprender la ventaja mecánica del sistema de freno.

P=T2bl

Fuerza de frenado total que actúa en las ruedas traseras cuando los frenos se aplican únicamente a las ruedas traseras

La fórmula de Fuerza de frenado total que actúa en las ruedas traseras cuando se aplican los frenos a las ruedas traseras únicamente se define como la Fuerza neta ejercida en las ruedas traseras de un vehículo cuando se aplican los frenos, teniendo en cuenta la masa del vehículo, la aceleración y la inclinación de la superficie.

Fbraking=ma-mgsin(αinclination)

Fuerza cortante en todos los demás soportes

La fórmula de la Fuerza cortante en todos los demás soportes se define como la Fuerza aplicada perpendicular a una superficie, en oposición a una Fuerza desplazada que actúa en la dirección opuesta.

Mt=WloadIn22

Fuerza cortante en los miembros finales en el primer soporte interior

La fórmula de la Fuerza cortante en los extremos en el primer soporte interior se define como la Fuerza aplicada perpendicularmente a una superficie, en oposición a una Fuerza de desplazamiento que actúa en la dirección opuesta.

Mt=1.15WloadIn22

Fuerza de resistencia dada la tensión de compresión

La fórmula de Fuerza de resistencia dada la tensión de compresión se define como la medida de la Fuerza que se opone a la deformación de un material bajo tensión de compresión, proporcionando información sobre la capacidad del material para soportar Fuerzas de aplastamiento y su potencial para fallar bajo carga.

Fresistance=σcA

Fuerza de alimentación

La Fuerza de avance, también conocida como Fuerza de empuje o Fuerza axial, es una de las tres Fuerzas principales que actúan sobre una herramienta de corte durante una operación de corte de metal. Actúa en la dirección del movimiento de avance, empujando la herramienta hacia la pieza de trabajo. Comprender la Fuerza de avance es crucial para optimizar las condiciones de corte, garantizar la longevidad de la herramienta y lograr el acabado superficial y la precisión dimensional deseados.

Ff=Ftcos(ψ)

Fuerza radial

La Fuerza radial es el componente de la Fuerza de corte total que actúa perpendicular a la dirección de la velocidad de corte y paralela a la superficie de la pieza de trabajo. Tiende a empujar la herramienta de corte lejos de la pieza de trabajo.

Fr=Ftsin(ψ)

Fuerza a lo largo de la Fuerza de corte dada la Fuerza de corte y la Fuerza de empuje

La Fuerza a lo largo de la Fuerza de corte dada por la fórmula de la Fuerza de corte y la Fuerza de empuje se define por las Fuerzas que causan la deformación de corte en el plano de corte.

Fshear=fccos(φshr)-fasin(φshr)

Fuerza de corte dada la Fuerza de corte y la Fuerza de empuje

La Fuerza de corte dada por la fórmula de la Fuerza de corte y la Fuerza de empuje es la Fuerza de corte en la dirección de la velocidad de corte.

Fc=Fs+(FTsin(Φ))cos(Φ)

Fuerza normal a la Fuerza de corte para una Fuerza de corte, Fuerza de empuje y ángulo de corte dados

La Fuerza normal a la Fuerza de corte para una Fuerza de corte, Fuerza de empuje y ángulo de corte dados se obtiene a partir del proceso de corte ortogonal utilizando la teoría de Merchant.

FN=Fcsin(ϕ)+Pacos(ϕ)

Fuerza de tracción en las placas dada la tensión de tracción promedio en la soldadura a tope

La Fuerza de tracción en las placas dada la tensión de tracción promedio en la soldadura a tope proporciona la Fuerza de tracción máxima que los cordones de soldadura pueden soportar antes de que se rompa la soldadura. Depende del tipo de soldadura, el material de relleno utilizado y la profundidad de la soldadura. Es un método para determinar la carga de tracción máxima, una estructura soldada puede sobrevivir sin ceder cuando se conoce la eficiencia de la soldadura.

P=σthtL

Fuerza de tracción en placas soldadas a tope dado el espesor de la placa

La Fuerza de tracción en placas soldadas a tope dado el grosor de la placa es una forma de determinar la carga de tracción máxima que un par de placas soldadas con un grosor definido puede resistir sin ceder ni fallar. Brinda la máxima Fuerza de tensión que los Weld Beads pueden soportar antes de que se rompa la soldadura. Depende del tipo de soldadura, el material de relleno utilizado y la profundidad de la soldadura. Es un método para determinar la carga de tracción máxima, una estructura soldada puede sobrevivir sin ceder cuando se conoce la eficiencia de la soldadura.

P=σtLht

Fuerza de tracción en las placas dada la eficiencia de la unión soldada a tope

La Fuerza de tracción en las placas dada la eficiencia de la unión soldada a tope proporciona la Fuerza de tensión máxima que los cordones de soldadura pueden soportar antes de que se rompa la soldadura. Depende del tipo de soldadura, el material de relleno utilizado y la profundidad de la soldadura. Es un método para determinar la carga de tracción máxima, una estructura soldada puede sobrevivir sin ceder cuando se conoce la eficiencia de la soldadura.

P=σttpLη

Fuerza de tracción en una placa de soldadura de filete paralela dada la tensión de corte

La Fuerza de tracción en la placa de soldadura de filete paralelo dado el esfuerzo cortante es la carga y la Fuerza en las placas que la soldadura puede soportar sin fallar.

Pf=𝜏Lhl0.707

Fuerza total ejercida en cualquier sección del contenedor

La fórmula de la Fuerza total ejercida en cualquier sección del contenedor se define como la Fuerza total que actúa sobre las paredes laterales del contenedor cuando el contenedor se mueve con aceleración en dirección horizontal.

FC=0.5yBh2

Fuerza de gravedad dada Suma de Fuerzas totales que influyen en el movimiento del fluido

La Fuerza de gravedad dada la suma de las Fuerzas totales que influyen en el movimiento del fluido se define como la Fuerza ejercida debido a la atracción gravitacional.

Fg=F-(Fp+FC+Fs+Fv+Ft)

Fuerza de presión dada Suma de las Fuerzas totales que influyen en el movimiento del fluido

La fórmula de la Fuerza de presión dada por la suma de las Fuerzas totales que influyen en el movimiento del fluido se define como la Fuerza debida a la presión sobre el flujo del fluido.

Fp=F-(Fg+FC+Fs+Fv+Ft)

Fuerza viscosa dada Suma de Fuerzas totales que influyen en el movimiento del fluido

La fórmula de la Fuerza viscosa dada por la suma de las Fuerzas totales que influyen en el movimiento del fluido se define como la Fuerza que actúa debido a la viscosidad del líquido.

Fv=F-(Fg+Fp+FC+Fs+Ft)

Fuerza de tensión superficial dada la suma de las Fuerzas totales que influyen en el movimiento del fluido

La Fuerza de tensión superficial dada la suma de las Fuerzas totales que influyen en el movimiento de la fórmula del fluido se define como la Fuerza debida a la propiedad de la superficie del líquido o la propiedad de la capa que actúa a través del límite.

Fs=F-(Fg+Fp+FC+Fv+Ft)

Fuerza de compresibilidad dada Suma de las Fuerzas totales que influyen en el movimiento del fluido

La Fuerza de compresibilidad dada la suma de las Fuerzas totales que influyen en el movimiento de la fórmula del fluido se define como la Fuerza debida a la densidad variable del fluido.

FC=F-(Fg+Fp+Fs+Fv+Ft)

Fuerza turbulenta dada la suma de las Fuerzas totales que influyen en el movimiento del fluido

La fórmula de la Fuerza turbulenta dada por la suma de las Fuerzas totales que influyen en el movimiento del fluido se define como la Fuerza debida al comportamiento turbulento del flujo.

Ft=F-(Fg+Fp+FC+Fs+Fv)

Fuerza axial en el embrague de cono de la teoría del desgaste constante dada la presión

Fuerza axial sobre el embrague cónico a partir de la teoría del desgaste constante La fórmula de presión dada se define como una medida de la Fuerza ejercida sobre el embrague cónico, que está influenciada por la presión aplicada y las dimensiones del embrague, lo que proporciona información valiosa sobre el rendimiento del embrague y las características de desgaste.

Pa=πPp(do2)-(di2)4

Fuerza axial en el embrague de cono de la teoría del desgaste constante dada la intensidad de presión permitida

La Fuerza axial sobre el embrague cónico a partir de la teoría del desgaste constante dada la fórmula de intensidad de presión admisible se define como una medida de la Fuerza ejercida sobre el embrague cónico en un sistema mecánico, que está influenciada por la intensidad de presión admisible y las dimensiones del embrague.

Pa=πpadido-di2

Fuerza centrífuga en el embrague

La Fuerza centrífuga en el embrague se define como la Fuerza que actúa sobre los bloques de zapata del embrague centrífugo en dirección radial hacia afuera.

Fc=(M(ω12)rg)

Fuerza de resorte en embrague centrífugo

La Fuerza del resorte en el embrague centrífugo se define como la Fuerza que actúa sobre la zapata del embrague centrífugo debido al resorte utilizado en el embrague centrífugo.

Pspring=M(ω12)rg

Fuerza de fricción en el embrague centrífugo

La Fuerza de fricción en el embrague centrífugo se define como la Fuerza que actúa sobre la placa del embrague de fricción cuando el embrague está acoplado y como resultado de la fricción entre el embrague y las zapatas.

Ffriction=μMrg(ω22-ω12)

Fuerza tangencial en el engranaje debido al par nominal

La Fuerza tangencial sobre el engranaje debido al par nominal se define como la Fuerza que actúa sobre un engranaje recto en la dirección de una tangente a la superficie curva de la circunferencia del engranaje. Esta Fuerza tiende a hacer girar el engranaje recto.

Pt=PtmaxKs

Fuerza de inercia dado el número de Euler

La Fuerza de inercia dada la fórmula del número de Euler se define como cualquier Fuerza invocada por un observador para mantener la validez de la segunda ley del movimiento de Isaac Newton en un sistema de referencia que gira o acelera a un ritmo constante.

Fi=FpEu

Fuerza de presión dado el número de Euler

La Fuerza de presión dada la fórmula del número de Euler se define como la Fuerza por unidad de área perpendicular sobre la que se aplica la Fuerza.

Fp=EuFi

Fuerza de inercia dado el número de Froude

La Fuerza de inercia dada la fórmula del número de Froude se define como cualquier Fuerza invocada por un observador para mantener la validez de la segunda ley del movimiento de Isaac Newton en un sistema de referencia que gira o acelera a un ritmo constante.

Fi=FrFg

Fuerza de gravedad dado el número de Froude

La Fuerza de gravedad dada la fórmula del número de Froude se define como la Fuerza universal de atracción que actúa entre toda la materia.

Fg=FiFr

Fuerza del haz del diente del engranaje

La Fuerza de la viga del diente del engranaje es la Fuerza del diente del oso considerado como una viga en voladizo. La componente tangencial de la Fuerza sobre el diente provoca el momento flector sobre la base del diente. Entonces, en realidad, la Fuerza del haz del valor máximo de la Fuerza tangencial que el diente puede transmitir sin fallar por flexión.

Sb=mbYσb

Fuerza de flotación en prisma vertical

La Fuerza de flotación en el prisma vertical será igual al producto del volumen del sólido, la aceleración de la gravedad y la densidad del agua.

FBuoyant=ωHPressureheadA

Fuerza de flotabilidad dado el volumen del prisma vertical

La Fuerza de flotabilidad dado el volumen del prisma vertical será igual al producto del volumen del sólido, la aceleración debida a la gravedad y la densidad del agua.

FBuoyant=ωV

Fuerza de flotación en todo el cuerpo sumergido

La Fuerza de flotación en todo el cuerpo sumergido será igual al producto del volumen del sólido, la aceleración debida a la gravedad y la densidad del agua.

FBuoyant=ωV

Fuerza de flotación cuando el cuerpo flota entre dos fluidos inmiscibles de pesos específicos

La Fuerza de flotación cuando el cuerpo flota entre dos fluidos inmiscibles de pesos específicos es la Fuerza que hace que los objetos floten. La Fuerza de flotación es la Fuerza hacia arriba ejercida por un fluido que se opone al peso del objeto sumergido en el fluido.

FBuoyant=(ων1+ω1ν2)

Fuerza de flotación total dados los volúmenes de prisma elemental sumergido en fluidos

La Fuerza de flotación total dados los volúmenes de prisma elemental sumergido en fluidos es la Fuerza que hace que los objetos floten. La Fuerza de flotación es la Fuerza ascendente ejercida por un fluido que se opone al peso del objeto sumergido en el fluido.

FBuoyant=(ων1+ω1ν2)

Fuerza de corte primaria en cada perno

La Fuerza de corte primaria en cada fórmula de perno se define como la relación entre la Fuerza externa y el número de pernos. Es la Fuerza que actúa en una dirección paralela a una superficie o a una sección transversal plana de un cuerpo.

P1'=Pen

Fuerza externa en el perno

La Fuerza externa sobre el perno es crucial para garantizar la confiabilidad y seguridad de la unión. La Fuerza externa sobre un perno puede verse influenciada por varios factores, incluidas las cargas aplicadas, la geometría del perno y las propiedades de los materiales involucrados.

Pe=nP1'

Fuerza límite en el perno dada la rigidez y la precarga inicial

La Fuerza límite sobre el perno dada la rigidez y la precarga inicial se define como la cantidad de Fuerza neta que el perno puede soportar hasta la falla. Es el valor límite de la Fuerza.

Fl=Pi(kb'+kc'kc')

Fuerza debida a la presión del fluido en un recipiente cilíndrico delgado

La fórmula de Fuerza debida a la presión del fluido en un recipiente cilíndrico delgado se define como cualquier interacción que, sin oposición, cambiará el movimiento de un objeto.

F=(PiDiLcylinder)

Fuerza debida a la tensión circunferencial en un vaso cilíndrico delgado

La Fuerza debida a la tensión circunferencial en la fórmula de un recipiente cilíndrico delgado se define como cualquier interacción que, cuando no se opone, cambiará el movimiento de un objeto.

F=(2σθLcylindert)

Fuerza iónica utilizando la ley de limitación de Debey-Huckel

La Fuerza iónica que utiliza la fórmula de la ley límite de Debey-Huckel se define como la relación entre el cuadrado completo del logaritmo natural del coeficiente de actividad medio y la constante de la ley límite y el cuadrado del número de carga.

I=(-ln(γ±)A(Zi2))2

Fuerza motriz magneto (MMF)

La fórmula de la Fuerza motriz magnética (MMF) se define como la Fuerza motriz magnética es una cantidad que aparece en la ecuación para el flujo magnético en un circuito magnético, a menudo llamada ley de Ohm para circuitos magnéticos.

mmf=ΦR

Fuerza magnética aparente en longitud l

La fórmula de la Fuerza magnética aparente en la longitud l se define como Fuerza magnética, atracción o repulsión que surge entre partículas cargadas eléctricamente debido a su movimiento en la longitud l.

H1=ILn

Fuerza de pretensado dada una carga uniforme

La Fuerza de pretensado dada la carga uniforme es la Fuerza que actúa directamente sobre el miembro pretensado en el área de la sección transversal considerada.

F=wbL28Ls

¿Cómo encontrar Fórmulas?

A continuación se ofrecen algunos consejos para obtener mejores resultados de búsqueda.
Sea específico: cuanto más específica sea su consulta, mejores serán los resultados.
Utilice varias palabras clave: combine varias palabras clave para limitar los resultados.
Experimenta con sinónimos: Diferentes términos pueden producir resultados diferentes.
Búsqueda con comodines: utiliza el operador * (asterisco). TENGA EN CUENTA que este operador funciona solo al final de una palabra. Ejemplo: biografía*, área*, etc.

Como alternativa, puede navegar a través de las subcategorías dentro de para concentrarse en las fórmulas de interés.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!