Buscar Fórmulas

Ingrese un mínimo de 3 caracteres para comenzar a buscar fórmulas de .

Seleccionar filtro

Limite los resultados de su búsqueda con la ayuda de estos filtros.

50 ¡Se encontraron fórmulas coincidentes!

Fuerza magnética

La fórmula de la Fuerza magnética se define como una medida de la Fuerza ejercida sobre un cable portador de corriente en un campo magnético, que es un concepto fundamental para comprender la interacción entre la electricidad y el magnetismo, y tiene numerosas aplicaciones en ingeniería, física y tecnología.

Fmm=|I|Lrod(Bsin(θ2))

Fuerza de empuje hacia arriba

La fórmula de Fuerza de empuje se define como la Fuerza ascendente ejercida por un fluido sobre un objeto parcial o totalmente sumergido en él, resultante de la diferencia de presión entre la parte superior e inferior del objeto, y es un concepto clave para comprender la dinámica de fluidos y la flotabilidad.

Ft=Vi[g]ρ

Fuerza cortante usando energía de deformación

La Fuerza cortante usando la fórmula de energía de deformación se define como una Fuerza que tiende a producir una falla por deslizamiento en un material a lo largo de un plano paralelo a la dirección de la Fuerza.

V=2UAGTorsionL

Fuerza viscosa utilizando la pérdida de carga debido al flujo laminar

La fórmula de Fuerza viscosa que utiliza la pérdida de carga debido al flujo laminar se define como una representación de la resistencia que encuentra un fluido al fluir por una tubería debido a su viscosidad. Esta Fuerza está influenciada por factores como las propiedades del fluido, las dimensiones de la tubería y el caudal.

μ=hfγπdpipe4128Qs

Fuerza que actúa normal a la cara inclinada dada la Fuerza de corte y la Fuerza de empuje

La Fuerza que actúa normal a la cara de inclinación dada la Fuerza de corte y la Fuerza de empuje y la fórmula del ángulo de inclinación normal se define como el producto de la Fuerza de corte y la función coseno del ángulo de inclinación normal, restado por el producto de la Fuerza de empuje y la función seno del ángulo de inclinación normal.

FN=F'ccos(α'N)-F'tsin(α'N)

Fuerza de corte dada la Fuerza de empuje y el ángulo de ataque normal

La Fuerza de corte dada la fórmula de la Fuerza de empuje y el ángulo de inclinación normal se define como la relación entre la Fuerza normal más la Fuerza de empuje que actúa sobre la pieza de trabajo y el cos del ángulo de inclinación normal.

Fc=FN+FTsin(αo)cos(αo)

Fuerza de empuje dada la Fuerza de corte y el ángulo de ataque normal

La Fuerza de empuje dada la fórmula de la Fuerza de corte y el ángulo de inclinación normal se define como la relación entre la Fuerza de corte restada de la Fuerza normal y el seno del ángulo de inclinación.

Ft=Fccos(αN)-FNsin(αN)

Fuerza cortante que actúa en el plano cortante para un esfuerzo cortante y un área del plano cortante dados

La Fuerza de corte que actúa en el plano de corte para una tensión de corte y un área del plano de corte dados es el producto de la tensión de corte promedio en el plano de corte y el área del plano de corte.

Fshear=𝜏shearAshear

Fuerza de corte de corte dado el espesor de la viruta sin cortar y el ángulo de corte

La Fuerza de cizallamiento dado el espesor de la viruta sin cortar y el ángulo de cizallamiento es la Fuerza que hace que se produzca una deformación por cizallamiento en el plano de cizallamiento.

Fs=τshrwcuttchipsin(ϕ)

Fuerza normal a la Fuerza cortante para el esfuerzo cortante normal medio dado y el área del plano cortante

La Fuerza normal a la Fuerza cortante para el esfuerzo cortante normal medio dado y la fórmula del área del plano cortante se define como la Fuerza que es normal a la Fuerza cortante. Se obtiene por el producto del esfuerzo cortante normal medio y el área del plano de corte.

FN=𝜏A

Fuerza restauradora en SHM

La Fuerza restauradora en la fórmula SHM se define como una medida de la Fuerza responsable de restaurar un objeto a su posición de equilibrio en movimiento armónico simple, proporcional al desplazamiento desde la posición media y dirigida hacia la posición media.

Frestoring=-(K)S

Fuerza ejercida sobre la superficie dada la presión estática

La fórmula de la Fuerza ejercida sobre la superficie dada la presión estática se define como el producto del área del flujo que impacta el cambio de presión.

F=A(p-pstatic)

Fuerza de elevación para un ángulo de deslizamiento determinado

La ecuación de la Fuerza de sustentación para un ángulo de planeo dado se deriva de la relación entre la Fuerza de sustentación, la Fuerza de arrastre y el ángulo de planeo en vuelo planeado. Muestra que la Fuerza de sustentación es proporcional a la Fuerza de arrastre e inversamente proporcional a la tangente del ángulo de planeo; utilizando esta ecuación, puede determinar la Fuerza de sustentación requerida para mantener un ángulo de planeo particular durante el vuelo sin motor.

FL=FDtan(θ)

Fuerza cortante para sección rectangular

La fórmula de Fuerza cortante para sección rectangular se define como una medida de las Fuerzas internas que ocurren en una sección rectangular de una viga, resultantes de las cargas externas aplicadas, que pueden provocar que la viga se deforme o incluso falle.

V=2I𝜏d24-σ2

Fuerza axial sobre el embrague dado el radio de fricción

La Fuerza axial sobre el embrague dado el radio de fricción se define como la Fuerza que actúa sobre el embrague de fricción en la dirección axial cuando el embrague está acoplado.

Pa=MTμRf

Fuerza de peso del explosivo usando carga sugerida en la fórmula de Langefors

La resistencia al peso del explosivo utilizando la carga sugerida en la fórmula de Langefors se define como la resistencia al peso del explosivo cuando se conocen la carga y otros factores.

s=(33BLdb)2(EVcDfDp)

Fuerza de corte dada la tasa de consumo de energía durante el mecanizado

La Fuerza de corte dada la tasa de consumo de energía durante el mecanizado es la Fuerza en la dirección de corte, la misma dirección que la velocidad de corte v.

Fc=QcVc

Fuerza de flotación en los núcleos del área de Chaplet

La Fuerza de flotación sobre los núcleos del área de la corona es la Fuerza hacia arriba ejercida sobre el núcleo por el metal fundido durante el vertido del molde. Esta Fuerza es causada por el desplazamiento del metal fundido por el núcleo.

Fb =a29+cA

Fuerza de corte dada la energía de corte específica en el mecanizado

La Fuerza de corte dada la energía de corte específica en el mecanizado es la Fuerza en la dirección del corte, la misma dirección que la velocidad de corte.

Fc=QscAcs

Fuerzas metalostáticas que actúan sobre los matraces de moldeo

Las Fuerzas metalostáticas que actúan sobre los matraces de moldeo se deben a la cabeza con la que el metal entra en la cavidad del molde. Esta Fuerza, Fm, se puede estimar tomando el área de la sección transversal de la fundición sobre la que actúa.

Fm=[g]ρcmApH

Fuerza de la fuente para flujo de fuente incompresible 2-D

La intensidad de la fuente para flujo de fuente incompresible 2-D representa la velocidad a la que el fluido emana de la fuente por unidad de longitud en dos dimensiones; es una medida de la velocidad de flujo por unidad de longitud a lo largo de la línea de fuente.

Λ=2πrVr

Fuerza de diseño permitida

La Resistencia de Diseño Permitida se define como la resistencia máxima de un miembro considerado para el diseño. La resistencia de diseño permisible se determina dividiendo la resistencia nominal por un factor de seguridad.

Ra=Rnfs

Fuerza de unión fibra-matriz dada la longitud crítica de la fibra

La Fuerza de unión fibra-matriz dada la longitud crítica de la fibra indica que la Fuerza de unión entre la fibra y la matriz es inversamente proporcional a la longitud crítica de la fibra. En otras palabras, las fibras más cortas suelen presentar una unión más fuerte con la matriz en comparación con las fibras más largas.

τ=σfd2lc

Fuerza de arrastre ejercida por el agua que fluye

La Fuerza de arrastre ejercida por el agua que fluye es la Fuerza de resistencia causada por el movimiento de un cuerpo a través de un fluido, como el agua o el aire.

FD=γw(G-1)(1-n)tsin(αi)

Fuerza de arrastre o intensidad de la Fuerza de tracción

La Fuerza de arrastre o intensidad de la Fuerza de tracción se define como la Fuerza de resistencia causada por el movimiento de un cuerpo a través de un fluido, como el agua o el aire.

FD=γwm

Fuerza que actúa sobre el resorte dada la tensión resultante

La fórmula de Fuerza que actúa sobre un resorte dada la tensión resultante se define como la medida de la Fuerza ejercida sobre un resorte cuando está sujeto a una tensión resultante, lo que proporciona una forma de calcular la Fuerza en función de las dimensiones del resorte y las propiedades del material, lo cual es crucial para diseñar y analizar sistemas basados en resortes.

P=𝜏πd3K8D

Fuerza aplicada en el resorte dada la deflexión en el resorte

La fórmula de Fuerza aplicada al resorte dada la deflexión en el resorte se define como la medida de la Fuerza ejercida sobre un resorte cuando se desvía de su posición original, lo cual es un parámetro crítico para determinar la tensión y las deflexiones en los resortes, y es esencial para diseñar y analizar sistemas basados en resortes.

P=δGd48(D3)Na

Fuerza aplicada en primavera dada la energía de deformación almacenada en primavera

La fórmula de Fuerza aplicada sobre un resorte dada la energía de deformación almacenada en el resorte se define como la medida de la Fuerza ejercida sobre un resorte cuando se comprime o se estira, que es directamente proporcional a la energía de deformación almacenada en el resorte e inversamente proporcional a la deformación del resorte.

P=2Uhδ

Fuerza ejercida por un chorro con velocidad relativa

La Fuerza ejercida por el chorro con velocidad relativa se define como la Fuerza inducida por el fluido en la placa estacionaria del chorro.

Fs=(γfAJetVabsolute(Vabsolute-v)G)(1+acos(θ))

Fuerza aplicada al final de la ballesta

La Fuerza aplicada al final de la fórmula del resorte plano se define como la cantidad neta de Fuerza que actúa sobre el resorte en su posición de equilibrio.

P=Pg+Pf

Fuerza tomada por las hojas de longitud graduada dada la Fuerza aplicada al final del resorte

La Fuerza ejercida por las hojas de longitud graduada dada la Fuerza aplicada al final del resorte se define como la medida de la Fuerza ejercida por las hojas de una balanza de resorte cuando se aplica una Fuerza en el extremo del resorte, proporcionando una lectura precisa de la Fuerza aplicada.

Pg=P-Pf

Fuerza tomada por hojas de cuerpo entero que reciben Fuerza al final de la primavera

La fórmula de Fuerza ejercida por las hojas en toda su longitud dada la Fuerza al final del resorte se define como la medida de la Fuerza ejercida por las hojas en toda su longitud cuando se aplica una Fuerza en el extremo de un resorte, lo cual es crucial para comprender las propiedades mecánicas de las hojas y su respuesta a las Fuerzas externas.

Pf=P-Pg

Fuerza tomada por hojas de longitud graduada en términos de Fuerza aplicada al final de la primavera

La fórmula de Fuerza tomada por hojas de longitud graduada en términos de Fuerza aplicada al final del resorte se define como una medida de la Fuerza ejercida por hojas de longitud graduada en respuesta a la Fuerza aplicada al final de un resorte, lo que proporciona información sobre el comportamiento mecánico de los sistemas basados en resortes.

Pg=2ngP3nf+2ng

Fuerza aplicada al final de la primavera dada Fuerza tomada por longitud graduada Hojas

La fórmula de Fuerza aplicada al final del resorte dada la Fuerza tomada por las hojas de longitud graduada se define como una medida de la Fuerza ejercida al final de un resorte cuando se toma una longitud graduada de hojas, lo que proporciona una forma de cuantificar la relación entre la Fuerza y la longitud de las hojas.

P=Pg3nf+2ng2ng

Fuerza tomada por hojas extra de longitud completa dada Fuerza aplicada al final de la primavera

La Fuerza ejercida por hojas adicionales de longitud completa dada la fórmula de Fuerza aplicada al final del resorte se define como la medida de la Fuerza ejercida por hojas adicionales de longitud completa cuando se aplica una Fuerza en el extremo de un resorte, lo que proporciona información sobre la distribución de la Fuerza en sistemas basados en resortes con hojas adicionales.

Pf=3nfP3nf+2ng

Fuerza aplicada al final del resorte dado Fuerza tomada por hojas adicionales de longitud completa

La fórmula de Fuerza aplicada al final del resorte dada la Fuerza tomada por hojas adicionales de longitud completa se define como una medida de la Fuerza ejercida al final de un resorte cuando se agregan hojas adicionales de longitud completa, teniendo en cuenta la Fuerza tomada por estas hojas y la extensión del resorte resultante.

P=Pf3nf+2ng3nf

Fuerza aplicada al final del resorte dada la tensión de flexión en las hojas de longitud graduada

La fórmula para la Fuerza aplicada en el extremo del resorte dada la tensión de flexión en una longitud graduada se define como una medida de la Fuerza ejercida en el extremo de un resorte cuando está sujeto a una tensión de flexión a lo largo de una longitud graduada, lo cual es fundamental para determinar la capacidad del resorte para soportar cargas y tensiones externas.

P=σbg(3nf+2ng)bt212L

Fuerza aplicada al final del resorte dada la tensión de flexión en hojas de longitud completa extra

La fórmula de Fuerza aplicada al final del resorte dada la tensión de flexión en hojas de longitud completa adicional se define como la medida de la Fuerza ejercida al final de un resorte en hojas de longitud completa adicional, que está influenciada por la tensión de flexión, el número de hojas completas y guía y las dimensiones del resorte, lo que proporciona un valor crítico para el diseño del resorte y las consideraciones de seguridad.

P=σbf(3nf+2ng)bt218L

Fuerza aplicada al final del resorte dada Deflexión al final del resorte

La Fuerza aplicada en el extremo del resorte dada la fórmula de deflexión en el extremo del resorte se define como la medida de la Fuerza ejercida en el extremo de un resorte cuando se deflexiona, lo cual es esencial para comprender el comportamiento del resorte bajo diversas cargas y deformaciones en sistemas mecánicos.

P=δ(3nf+2ng)Ebt3L3

Fuerza hacia abajo sobre la cuña

La fórmula de la Fuerza descendente sobre la cuña se define como el valor de la Fuerza descendente sobre la cuña del suelo considerado cuando tenemos información previa de la intensidad de la carga.

Rv=qB+(γB2tan(φ)(π180)4)

Fuerza vertical en el extremo inferior de la sarta de perforación

La Fuerza vertical en el extremo inferior de la sarta de perforación es una Fuerza vertical ascendente concentrada que se combina con el peso distribuido de la sarta de perforación al cambiar la línea.

fz=ρm[g]AsLWell

Fuerza que actúa sobre la parte superior del pistón debido a la presión del gas para un par máximo en el cigüeñal central

La Fuerza que actúa sobre la parte superior del pistón debido a la presión del gas para un par máximo en el centro del cigüeñal es la cantidad de Fuerza ejercida sobre la parte superior del pistón por los gases debido a la combustión del combustible, donde el cigüeñal está diseñado para un par máximo sobre él.

P=πD2p'4

Fuerza que actúa sobre la parte superior del pistón debido a la presión del gas dada la Fuerza de empuje sobre la biela

La Fuerza que actúa sobre la parte superior del pistón debido a la presión del gas dada la Fuerza de empuje sobre la biela es la Fuerza que actúa sobre la parte superior del pistón debido a la presión de los gases de combustión.

P=Pcrcos(φ)

Fuerza sobre la biela dada la componente radial de la Fuerza en la muñequilla

La Fuerza sobre la biela dada la componente radial de la Fuerza en la muñequilla es la Fuerza de empuje sobre la biela transmitida desde el pistón a la biela. La cabeza del pistón está sujeta a la Fuerza ejercida por la presión del gas.

Pcr=Prcos(φ+θ)

Fuerza sobre la biela dada la componente tangencial de la Fuerza en la muñequilla

La Fuerza sobre la biela dada la componente tangencial de la Fuerza en la muñequilla es la Fuerza de empuje sobre la biela transmitida desde el pistón a la biela. La cabeza del pistón está sujeta a la Fuerza ejercida por la presión del gas.

Pcr=Ptsin(φ+θ)

Fuerza necesaria para evitar la expansión

La fórmula de Fuerza requerida para evitar la expansión se define como el producto del coeficiente de expansión por el aumento de temperatura y el área del riel por el módulo de elasticidad del acero.

F=αtAE

Fuerza para el diseño de un eje basado en flexión pura

La Fuerza para el diseño de un eje basada en la flexión pura se define como una condición de tensión en la que se aplica un momento de flexión a una viga sin la presencia simultánea de Fuerzas axiales, cortantes o de torsión.

Fm=Tm0.75hm

Fuerza de campo de la onda espacial

La fórmula de la Fuerza de campo de la onda espacial viene dada por la ley de la distancia inversa. Sin embargo, debido a que la mayoría de los transmisores están más cerca del suelo, utilizan propagación directa o reflejada en el suelo.

E=4πE0hrhtλDA2

Fuerza de impacto en el vehículo después del accidente

La fórmula de Fuerza de impacto sobre el vehículo después de un choque se define como la medida de la Fuerza promedio ejercida sobre un vehículo durante un choque, que es un parámetro crítico para evaluar la gravedad del impacto y el daño resultante al vehículo y sus ocupantes.

Favg=0.5Mv2d

Fuerza en el Punto 1 usando la Ley de Pascal

La Fuerza en el Punto 1 utilizando la fórmula de la Ley de Pascal se define como la función de la Fuerza en el punto 2 y el área de la sección transversal de ambos puntos. Una consecuencia de que la presión en un fluido permanezca constante en la dirección horizontal es que la presión aplicada a un fluido confinado aumenta la presión en la misma cantidad. Esto se llama la ley de Pascal, en honor a Blaise Pascal (1623-1662). Pascal también sabía que la Fuerza aplicada por un fluido es proporcional al área de la superficie. Se dio cuenta de que se podían conectar dos cilindros hidráulicos de diferentes áreas, y el más grande podía usarse para ejercer una Fuerza proporcionalmente mayor que la aplicada al más pequeño. La “máquina de Pascal” ha sido la fuente de muchos inventos que forman parte de nuestra vida cotidiana, como los frenos hidráulicos y los ascensores. Esto es lo que nos permite levantar un coche fácilmente con un brazo.

F1=F2(A1A2)

¿Cómo encontrar Fórmulas?

A continuación se ofrecen algunos consejos para obtener mejores resultados de búsqueda.
Sea específico: cuanto más específica sea su consulta, mejores serán los resultados.
Utilice varias palabras clave: combine varias palabras clave para limitar los resultados.
Experimenta con sinónimos: Diferentes términos pueden producir resultados diferentes.
Búsqueda con comodines: utiliza el operador * (asterisco). TENGA EN CUENTA que este operador funciona solo al final de una palabra. Ejemplo: biografía*, área*, etc.

Como alternativa, puede navegar a través de las subcategorías dentro de para concentrarse en las fórmulas de interés.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!