Buscar Fórmulas

Ingrese un mínimo de 3 caracteres para comenzar a buscar fórmulas de .

Seleccionar filtro

Limite los resultados de su búsqueda con la ayuda de estos filtros.

50 ¡Se encontraron fórmulas coincidentes!

Fuerza de resistencia aérea

La Fuerza de resistencia del aire, también conocida como Fuerza de arrastre, es la Fuerza ejercida por el aire (o cualquier fluido) que se opone al movimiento de un objeto que se mueve a través de él. Esta Fuerza actúa en dirección opuesta al movimiento del objeto y aumenta con la velocidad del objeto.

Fa=cv'2

Fuerza boyante

Fuerza de flotación es la Fuerza hacia arriba ejercida por cualquier fluido sobre un cuerpo colocado en él.

Fbuoy=pA

Fuerza de Stokes

La fórmula de Fuerza de Stokes se define como una medida de la Fuerza de fricción ejercida sobre un objeto esférico que se mueve a través de un fluido, que es proporcional a la velocidad del objeto y a la viscosidad del fluido, y se utiliza comúnmente para modelar el comportamiento de partículas en fluidos, como el aire o el agua.

Fd=6πRμνf

Fuerza de inercia por unidad de área

La fórmula de Fuerza inercial por unidad de área se define como la medida de la Fuerza ejercida por unidad de área de un fluido debido a su inercia, que es un concepto fundamental en la dinámica de fluidos, particularmente en el estudio del flujo y la presión de fluidos. Es un parámetro importante para comprender el comportamiento de los fluidos en diversas aplicaciones científicas y de ingeniería.

Fi=v2ρ

Fuerza corporal

La fórmula de Fuerza corporal se define como la medida de la Fuerza ejercida por un fluido sobre un objeto, resultante de la interacción entre el fluido y el objeto, y es un concepto fundamental en mecánica de fluidos, utilizado para analizar y comprender el comportamiento de los fluidos en diversas aplicaciones científicas y de ingeniería.

Fb=FmVm

Fuerza por motor de inducción lineal

La Fuerza del motor de inducción lineal es un factor del voltaje suministrado, la cantidad de deslizamiento y el tamaño del entrehierro, así como la influencia de los efectos finales.

F=PinVs

Fuerza centrífuga que actúa sobre la bola para un peso dado de bola

La fórmula de Fuerza centrífuga que actúa sobre la bola para un peso dado de la bola se define como la Fuerza ejercida sobre una bola cuando gira en una trayectoria circular, que está influenciada por el peso de la bola, el radio de rotación y la altura del regulador en una válvula de motor de vapor y un sistema de engranajes de inversión.

Fc=wRhg

Fuerza centrífuga que actúa sobre la bola para una masa dada de bola

La fórmula de Fuerza centrífuga que actúa sobre la bola para una masa dada de la bola se define como la Fuerza ejercida sobre una bola cuando gira en una trayectoria circular, que está influenciada por la masa de la bola, la Fuerza gravitacional, el radio de rotación y la altura del regulador en una máquina de vapor.

Fc=mballgRhg

Fuerza en el brazo del gobernador Porter dado el peso de la carga central y la bola

La fórmula de Fuerza en el brazo del gobernador Porter dado el peso de la carga central y la bola se define como una medida de la Fuerza ejercida sobre el brazo de un gobernador Porter, que es un tipo de gobernador centrífugo utilizado en máquinas de vapor, teniendo en cuenta el peso de la carga central y la bola.

T1=Wc+w2cos(α)

Fuerza en el brazo del gobernador Porter dada la masa de la carga central y la bola

La fórmula de Fuerza en el brazo del gobernador Porter dada la masa de la carga central y la bola se define como la medida de la Fuerza ejercida por la carga central y la bola en el brazo de un gobernador Porter, un dispositivo mecánico utilizado para regular la velocidad de un motor.

T1=Mg+mbg2cos(α)

Fuerza en Enlace de Porter Gobernador dada Masa de Carga Central

La fórmula de Fuerza en el enlace del gobernador Porter dada la masa de la carga central se define como una medida de la Fuerza ejercida en el enlace de un gobernador Porter, un dispositivo mecánico utilizado en máquinas de vapor, que depende de la masa de la carga central y otros parámetros, proporcionando un aspecto crucial en el funcionamiento del gobernador.

T2=Mg2cos(β)

Fuerza en el enlace del gobernador Porter dado el peso de la carga central

La fórmula de Fuerza en el enlace del gobernador Porter dado el peso de la carga central se define como una medida de la Fuerza ejercida sobre el enlace del gobernador Porter, que es un dispositivo mecánico utilizado en las máquinas de vapor para regular la velocidad del motor, y depende del peso de la carga central.

T2=Wc2cos(β)

Fuerza en el brazo del gobernador Porter dada la Fuerza centrífuga en la bola

La Fuerza en el brazo del gobernador Porter dada la fórmula de la Fuerza centrífuga sobre la bola se define como una medida de la Fuerza ejercida por la bola sobre el brazo del gobernador Porter, que es un tipo de gobernador centrífugo utilizado en máquinas de vapor para regular la velocidad del motor.

T1=F′c-T2sin(β)sin(α)

Fuerza de frenado máxima que actúa en las ruedas delanteras cuando los frenos se aplican únicamente a las ruedas delanteras

La fórmula de Fuerza de frenado máxima que actúa en las ruedas delanteras cuando los frenos se aplican solo a las ruedas delanteras se define como la Fuerza máxima ejercida por las ruedas delanteras de un vehículo cuando los frenos se aplican solo a las ruedas delanteras, lo cual es un parámetro crítico para comprender la potencia de frenado y la seguridad del vehículo.

Fbraking=μbrakeRA

Fuerza de frenado total que actúa en las ruedas delanteras (cuando los frenos se aplican únicamente a las ruedas delanteras)

La fórmula de Fuerza de frenado total que actúa en las ruedas delanteras (cuando los frenos se aplican solo a las ruedas delanteras) se define como la Fuerza neta ejercida en las ruedas delanteras de un vehículo cuando se aplican los frenos, teniendo en cuenta la masa del vehículo, la aceleración y la inclinación de la carretera.

Fbraking=ma-mgsin(αinclination)

Fuerza de resistencia dada la tensión de compresión

La fórmula de Fuerza de resistencia dada la tensión de compresión se define como la medida de la Fuerza que se opone a la deformación de un material bajo tensión de compresión, proporcionando información sobre la capacidad del material para soportar Fuerzas de aplastamiento y su potencial para fallar bajo carga.

Fresistance=σcA

Fuerza de alimentación

La Fuerza de avance, también conocida como Fuerza de empuje o Fuerza axial, es una de las tres Fuerzas principales que actúan sobre una herramienta de corte durante una operación de corte de metal. Actúa en la dirección del movimiento de avance, empujando la herramienta hacia la pieza de trabajo. Comprender la Fuerza de avance es crucial para optimizar las condiciones de corte, garantizar la longevidad de la herramienta y lograr el acabado superficial y la precisión dimensional deseados.

Ff=Ftcos(ψ)

Fuerza radial

La Fuerza radial es el componente de la Fuerza de corte total que actúa perpendicular a la dirección de la velocidad de corte y paralela a la superficie de la pieza de trabajo. Tiende a empujar la herramienta de corte lejos de la pieza de trabajo.

Fr=Ftsin(ψ)

Fuerza a lo largo de la Fuerza de corte dada la Fuerza de corte y la Fuerza de empuje

La Fuerza a lo largo de la Fuerza de corte dada por la fórmula de la Fuerza de corte y la Fuerza de empuje se define por las Fuerzas que causan la deformación de corte en el plano de corte.

Fshear=fccos(φshr)-fasin(φshr)

Fuerza de corte dada la Fuerza de corte y la Fuerza de empuje

La Fuerza de corte dada por la fórmula de la Fuerza de corte y la Fuerza de empuje es la Fuerza de corte en la dirección de la velocidad de corte.

Fc=Fs+(FTsin(Φ))cos(Φ)

Fuerza normal a la Fuerza de corte para una Fuerza de corte, Fuerza de empuje y ángulo de corte dados

La Fuerza normal a la Fuerza de corte para una Fuerza de corte, Fuerza de empuje y ángulo de corte dados se obtiene a partir del proceso de corte ortogonal utilizando la teoría de Merchant.

FN=Fcsin(ϕ)+Pacos(ϕ)

Fuerza de resistencia durante el balanceo de suelo

La Fuerza de resistencia durante el balanceo en tierra es una medida de la Fuerza que se opone al movimiento de una aeronave durante la fase de balanceo en tierra del despegue o aterrizaje, calculada multiplicando el coeficiente de fricción de rodadura por el peso de la aeronave menos la Fuerza de sustentación.

R=μr(W-FL)

Fuerza de elevación en el cilindro para circulación

La fórmula de la Fuerza de elevación en el cilindro para la circulación se conoce teniendo en cuenta la densidad, la longitud del cilindro, la velocidad de la corriente libre y la circulación.

FL=ρIΓcV

Fuerza de arrastre sobre placa plana

La fórmula de Fuerza de arrastre sobre una placa plana se define como una medida de la resistencia al movimiento de una placa plana que se mueve a través de un fluido, como aire o agua, debido a los efectos viscosos del fluido, que depende de la densidad y la velocidad del fluido, así como del área de superficie y el coeficiente de arrastre de la placa.

FD=0.5ρV2SCD

Fuerza de tracción axial dada la tensión de tracción en el eje hueco

La fórmula de Fuerza de tracción axial dada la tensión de tracción en un eje hueco se define como la cantidad máxima de Fuerza de tracción que un eje hueco puede soportar sin sufrir deformación, lo cual es crucial en el diseño de ejes huecos para garantizar su integridad estructural y confiabilidad en diversas aplicaciones mecánicas.

Pax hollow=σtpπ4(do2-di2)

Fuerza de corte primaria en cada perno

La Fuerza de corte primaria en cada fórmula de perno se define como la relación entre la Fuerza externa y el número de pernos. Es la Fuerza que actúa en una dirección paralela a una superficie o a una sección transversal plana de un cuerpo.

P1'=Pen

Fuerza externa en el perno

La Fuerza externa sobre el perno es crucial para garantizar la confiabilidad y seguridad de la unión. La Fuerza externa sobre un perno puede verse influenciada por varios factores, incluidas las cargas aplicadas, la geometría del perno y las propiedades de los materiales involucrados.

Pe=nP1'

Fuerza límite en el perno dada la rigidez y la precarga inicial

La Fuerza límite sobre el perno dada la rigidez y la precarga inicial se define como la cantidad de Fuerza neta que el perno puede soportar hasta la falla. Es el valor límite de la Fuerza.

Fl=Pi(kb'+kc'kc')

Fuerza debida a la presión del fluido en un recipiente cilíndrico delgado

La fórmula de Fuerza debida a la presión del fluido en un recipiente cilíndrico delgado se define como cualquier interacción que, sin oposición, cambiará el movimiento de un objeto.

F=(PiDiLcylinder)

Fuerza debida a la tensión circunferencial en un vaso cilíndrico delgado

La Fuerza debida a la tensión circunferencial en la fórmula de un recipiente cilíndrico delgado se define como cualquier interacción que, cuando no se opone, cambiará el movimiento de un objeto.

F=(2σθLcylindert)

Fuerza dada Momento de flexión debido a esa Fuerza

Fuerza dada Momento de flexión Debido a que la fórmula de Fuerza se define como una medida de la Fuerza ejercida sobre un resorte en espiral, que es directamente proporcional al momento de flexión e inversamente proporcional al radio del resorte, lo que proporciona un parámetro crucial en el diseño de resortes y aplicaciones de ingeniería.

P=Mr

Fuerza impulsora

La Fuerza impulsora se define como la Fuerza y el peso efectivo de la partícula en un fluido. Si se conocen todos los demás valores, se puede determinar cualquier cosa.

F=(ρm-ρf)[g]Vp

Fuerza de actuación dada la capacidad de par del freno de disco

La Fuerza de actuación dada por la capacidad de torsión de la fórmula del freno de disco se define como la Fuerza que actúa en ese punto sobre las pastillas de freno.

F=MtμRf

Fuerza de actuación

La fórmula de la Fuerza de actuación se define como la Fuerza necesaria para ajustar el mecanismo de actuación.

F=PaA

Fuerza tangencial al final de cada brazo de la polea dada la torsión transmitida por la polea

La Fuerza tangencial en el extremo de cada brazo de la polea, dada la fórmula del par transmitido por la polea, se define como la cantidad de Fuerza presente en el extremo de cada brazo de la polea.

P=MtR(N2)

Fuerza tangencial en el extremo de cada brazo de la polea dado el momento de flexión en el brazo

La Fuerza tangencial en el extremo de cada brazo de la polea, dada la fórmula del momento de flexión en el brazo, se define como la cantidad de Fuerza que actúa en el extremo de los brazos perpendicular al brazo de la polea.

P=MbR

Fuerza de corte por unidad de área o tensión de corte

La Fuerza Cortante Por Unidad de Área o Esfuerzo Cortante se define cuando la placa superior se mueve con una velocidad V con respecto a la otra placa. Newton postuló que la velocidad entre las placas era lineal y que la Fuerza necesaria para sostener el movimiento era proporcional al esfuerzo cortante.

σ=μdu/dy

Fuerza en prototipo

La Fuerza sobre el prototipo se utiliza para indicar la relación entre el prototipo, la cantidad y el modelo.

Fp=αFFm

Fuerza que actúa sobre la parte superior del pistón debido a la presión del gas para un par máximo en el cigüeñal central

La Fuerza que actúa sobre la parte superior del pistón debido a la presión del gas para un par máximo en el centro del cigüeñal es la cantidad de Fuerza ejercida sobre la parte superior del pistón por los gases debido a la combustión del combustible, donde el cigüeñal está diseñado para un par máximo sobre él.

P=πD2p'4

Fuerza que actúa sobre la parte superior del pistón debido a la presión del gas dada la Fuerza de empuje sobre la biela

La Fuerza que actúa sobre la parte superior del pistón debido a la presión del gas dada la Fuerza de empuje sobre la biela es la Fuerza que actúa sobre la parte superior del pistón debido a la presión de los gases de combustión.

P=Pcrcos(φ)

Fuerza sobre la biela dada la componente radial de la Fuerza en la muñequilla

La Fuerza sobre la biela dada la componente radial de la Fuerza en la muñequilla es la Fuerza de empuje sobre la biela transmitida desde el pistón a la biela. La cabeza del pistón está sujeta a la Fuerza ejercida por la presión del gas.

Pcr=Prcos(φ+θ)

Fuerza sobre la biela dada la componente tangencial de la Fuerza en la muñequilla

La Fuerza sobre la biela dada la componente tangencial de la Fuerza en la muñequilla es la Fuerza de empuje sobre la biela transmitida desde el pistón a la biela. La cabeza del pistón está sujeta a la Fuerza ejercida por la presión del gas.

Pcr=Ptsin(φ+θ)

Fuerza cortante transversal dada Esfuerzo cortante longitudinal máximo en el alma de una viga en I

La Fuerza cortante transversal dada la tensión cortante longitudinal máxima en el alma de la viga I se define como la Fuerza cortante que causa tensiones cortantes tanto longitudinales como transversales en la viga I. Cuando se aplica una Fuerza cortante transversal, tiende a causar deformación de la sección transversal.

V=τmaxlongitudinalbw8I(bf(D2-dw2))+(bw(dw2))

Fuerza máxima en el resorte de la válvula del motor dada la compresión máxima en el resorte

La Fuerza máxima sobre el resorte de la válvula del motor dada la compresión máxima en el resorte es la cantidad total de Fuerza que actúa sobre el resorte de la válvula para que la válvula se abra para su funcionamiento.

P=Gdw4x8ND3

Fuerza para el diseño de un eje basado en flexión pura

La Fuerza para el diseño de un eje basada en la flexión pura se define como una condición de tensión en la que se aplica un momento de flexión a una viga sin la presencia simultánea de Fuerzas axiales, cortantes o de torsión.

Fm=Tm0.75hm

Fuerza de campo de la onda espacial

La fórmula de la Fuerza de campo de la onda espacial viene dada por la ley de la distancia inversa. Sin embargo, debido a que la mayoría de los transmisores están más cerca del suelo, utilizan propagación directa o reflejada en el suelo.

E=4πE0hrhtλDA2

Fuerza de impacto en el vehículo después del accidente

La fórmula de Fuerza de impacto sobre el vehículo después de un choque se define como la medida de la Fuerza promedio ejercida sobre un vehículo durante un choque, que es un parámetro crítico para evaluar la gravedad del impacto y el daño resultante al vehículo y sus ocupantes.

Favg=0.5Mv2d

Fuerza en el Punto 1 usando la Ley de Pascal

La Fuerza en el Punto 1 utilizando la fórmula de la Ley de Pascal se define como la función de la Fuerza en el punto 2 y el área de la sección transversal de ambos puntos. Una consecuencia de que la presión en un fluido permanezca constante en la dirección horizontal es que la presión aplicada a un fluido confinado aumenta la presión en la misma cantidad. Esto se llama la ley de Pascal, en honor a Blaise Pascal (1623-1662). Pascal también sabía que la Fuerza aplicada por un fluido es proporcional al área de la superficie. Se dio cuenta de que se podían conectar dos cilindros hidráulicos de diferentes áreas, y el más grande podía usarse para ejercer una Fuerza proporcionalmente mayor que la aplicada al más pequeño. La “máquina de Pascal” ha sido la fuente de muchos inventos que forman parte de nuestra vida cotidiana, como los frenos hidráulicos y los ascensores. Esto es lo que nos permite levantar un coche fácilmente con un brazo.

F1=F2(A1A2)

Fuerza en el Punto 2 usando la Ley de Pascal

La Fuerza en el Punto 2 utilizando la fórmula de la Ley de Pascal se define como la función de la Fuerza en el punto 1 y el área de la sección transversal de ambos puntos. Una consecuencia de que la presión en un fluido permanezca constante en la dirección horizontal es que la presión aplicada a un fluido confinado aumenta la presión en la misma cantidad. Esto se llama la ley de Pascal, en honor a Blaise Pascal (1623-1662). Pascal también sabía que la Fuerza aplicada por un fluido es proporcional al área de la superficie. Se dio cuenta de que se podían conectar dos cilindros hidráulicos de diferentes áreas, y el más grande podía usarse para ejercer una Fuerza proporcionalmente mayor que la aplicada al más pequeño. La “máquina de Pascal” ha sido la fuente de muchos inventos que forman parte de nuestra vida cotidiana, como los frenos hidráulicos y los ascensores. Esto es lo que nos permite levantar un coche fácilmente con un brazo.

F2=F1(A2A1)

Fuerza de campo para ionización de supresión de barrera

La fórmula de intensidad de campo para la ionización con supresión de barrera se define como una relación en la que, si el campo aplicado es de intensidad suficiente para deprimir el punto de silla desarrollado por debajo del potencial de ionización, el electrón ya no ve una barrera al continuo y escapa libremente del sistema.

FBSI=([Permitivity-vacuum]2)([hP]2)(IP2)([Charge-e]3)[Mass-e][Bohr-r]Z

¿Cómo encontrar Fórmulas?

A continuación se ofrecen algunos consejos para obtener mejores resultados de búsqueda.
Sea específico: cuanto más específica sea su consulta, mejores serán los resultados.
Utilice varias palabras clave: combine varias palabras clave para limitar los resultados.
Experimenta con sinónimos: Diferentes términos pueden producir resultados diferentes.
Búsqueda con comodines: utiliza el operador * (asterisco). TENGA EN CUENTA que este operador funciona solo al final de una palabra. Ejemplo: biografía*, área*, etc.

Como alternativa, puede navegar a través de las subcategorías dentro de para concentrarse en las fórmulas de interés.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!