Buscar Fórmulas

Ingrese un mínimo de 3 caracteres para comenzar a buscar fórmulas de .

Seleccionar filtro

Limite los resultados de su búsqueda con la ayuda de estos filtros.

50 ¡Se encontraron fórmulas coincidentes!

Fuerza magnética

La fórmula de la Fuerza magnética se define como una medida de la Fuerza ejercida sobre un cable portador de corriente en un campo magnético, que es un concepto fundamental para comprender la interacción entre la electricidad y el magnetismo, y tiene numerosas aplicaciones en ingeniería, física y tecnología.

Fmm=|I|Lrod(Bsin(θ2))

Fuerza de frenado tangencial dada la Fuerza normal en el bloque de freno

La Fuerza de frenado tangencial dada la fórmula de Fuerza normal sobre el bloque de freno se define como la Fuerza ejercida por el bloque de freno sobre la rueda para reducir la velocidad o detener el vehículo, que depende de la Fuerza normal aplicada, la fricción del freno y el radio de la rueda, desempeñando un papel crucial en la seguridad y el control del vehículo.

Ft=μbrakeRNrwheel

Fuerza de restauración usando la rigidez del eje

La fórmula de restauración de Fuerza mediante la rigidez del eje se define como una medida de la Fuerza que tiende a devolver un objeto a su posición original después de haber sido desplazado de su posición de equilibrio, típicamente observada en sistemas mecánicos como resortes y ejes.

F=-ssbody

Fuerza cortante de diseño total dada la tensión cortante nominal

La Fuerza cortante de diseño total dada la fórmula del esfuerzo cortante nominal se define como la resistencia cortante total de la estructura que puede resistir.

V=vuφhd

Fuerza transmitida

La fórmula de Fuerza transmitida se define como una medida de la Fuerza máxima que se puede transmitir a un sistema mecánico en movimiento vibracional, teniendo en cuenta la rigidez del sistema, el coeficiente de amortiguamiento y la frecuencia angular, proporcionando un parámetro crítico en el diseño y análisis de sistemas mecánicos propensos a vibraciones.

FT=Kk2+(cω)2

Fuerza transmitida dada la relación de transmisibilidad

La fórmula de la relación de transmisibilidad dada la Fuerza transmitida se define como una medida de la Fuerza transmitida a través de un sistema mecánico, que es un parámetro crítico en las vibraciones mecánicas, que permite a los ingenieros analizar y diseñar sistemas que minimicen las vibraciones no deseadas y garanticen un funcionamiento suave.

FT=εFa

Fuerza aplicada dada la relación de transmisibilidad

La fórmula de la relación de transmisibilidad dada la Fuerza aplicada se define como una medida de la Fuerza aplicada a un sistema en vibraciones mecánicas, que depende de la relación de transmisibilidad y de la Fuerza transmitida, lo que proporciona un parámetro crucial para comprender la dinámica de los sistemas vibracionales.

Fa=FTε

Fuerza aplicada dada la relación de transmisibilidad y el desplazamiento máximo de vibración

La fórmula de Fuerza aplicada dada la relación de transmisibilidad y el desplazamiento máximo de vibración se define como una medida de la Fuerza aplicada a un sistema en vibraciones mecánicas, que está influenciada por la relación de transmisibilidad y el desplazamiento máximo de vibración, y es un parámetro crítico para comprender el comportamiento dinámico de los sistemas vibratorios.

Fa=Kk2+(cω)2ε

Fuerza axial máxima

La fórmula de la Fuerza axial máxima se define como el producto de la tensión en la dirección de la Fuerza y el área de la sección transversal.

Paxial=σA

Fuerza de corte para una Fuerza dada a lo largo de la Fuerza de corte, corte, fricción y ángulos de ataque normales

La Fuerza de corte para una Fuerza dada a lo largo de la Fuerza de corte, corte, fricción y ángulos de ataque normales se define como el producto de la Fuerza a lo largo del plano de corte por la relación del coseno de la diferencia de fricción y ángulos de ataque por el coseno de la suma del ángulo de corte. a la diferencia de fricción y ángulos de ataque.

Fc=Fscos(β-α)cos(Φ+β-α)

Fuerza de corte para tensión de corte, ancho de corte, espesor de viruta sin cortar, fricción, inclinación y ángulos de corte

La Fuerza de corte para el esfuerzo cortante, el ancho de corte, el espesor de la viruta sin cortar, la fricción, la inclinación y los ángulos de corte se define como el producto del esfuerzo cortante promedio a lo largo de los planos de corte, el espesor de la viruta sin cortar y el ancho del corte por la relación del coseno de la diferencia. de los ángulos de rozamiento y de ataque al coseno del ángulo de corte sumado a la diferencia de los ángulos de rozamiento y de ataque.

Fc=τwtcos(β-α)cos(Φ+β-α)

Fuerza de flexión resultante a lo largo de la dirección xey

La fórmula de la Fuerza de flexión resultante a lo largo de las direcciones xey es conocida por encontrar la Fuerza total que actúa mientras se consideran todas las Fuerzas de los ejes xey.

FR=(Fx2)+(Fy2)

Fuerza neta que actúa en dirección vertical hacia arriba del tanque

La fórmula de Fuerza neta que actúa en la dirección vertical ascendente del tanque se define como la Fuerza total que actúa sobre la masa del líquido.

F=MAαv

Fuerza de gravedad dada Suma de Fuerzas totales que influyen en el movimiento del fluido

La Fuerza de gravedad dada la suma de las Fuerzas totales que influyen en el movimiento del fluido se define como la Fuerza ejercida debido a la atracción gravitacional.

Fg=F-(Fp+FC+Fs+Fv+Ft)

Fuerza de presión dada Suma de las Fuerzas totales que influyen en el movimiento del fluido

La fórmula de la Fuerza de presión dada por la suma de las Fuerzas totales que influyen en el movimiento del fluido se define como la Fuerza debida a la presión sobre el flujo del fluido.

Fp=F-(Fg+FC+Fs+Fv+Ft)

Fuerza viscosa dada Suma de Fuerzas totales que influyen en el movimiento del fluido

La fórmula de la Fuerza viscosa dada por la suma de las Fuerzas totales que influyen en el movimiento del fluido se define como la Fuerza que actúa debido a la viscosidad del líquido.

Fv=F-(Fg+Fp+FC+Fs+Ft)

Fuerza de tensión superficial dada la suma de las Fuerzas totales que influyen en el movimiento del fluido

La Fuerza de tensión superficial dada la suma de las Fuerzas totales que influyen en el movimiento de la fórmula del fluido se define como la Fuerza debida a la propiedad de la superficie del líquido o la propiedad de la capa que actúa a través del límite.

Fs=F-(Fg+Fp+FC+Fv+Ft)

Fuerza de compresibilidad dada Suma de las Fuerzas totales que influyen en el movimiento del fluido

La Fuerza de compresibilidad dada la suma de las Fuerzas totales que influyen en el movimiento de la fórmula del fluido se define como la Fuerza debida a la densidad variable del fluido.

FC=F-(Fg+Fp+Fs+Fv+Ft)

Fuerza turbulenta dada la suma de las Fuerzas totales que influyen en el movimiento del fluido

La fórmula de la Fuerza turbulenta dada por la suma de las Fuerzas totales que influyen en el movimiento del fluido se define como la Fuerza debida al comportamiento turbulento del flujo.

Ft=F-(Fg+Fp+FC+Fs+Fv)

Fuerza de arrastre en la placa

La Fuerza de arrastre en la placa se conoce considerando el ancho de la placa, la viscosidad y la velocidad del fluido, y el número de Reynolds en la placa.

FD=0.73bμVRe

Fuerza de fricción

La fórmula de la Fuerza de fricción se define como la medida de la Fuerza que se opone al movimiento entre dos superficies que están en contacto, resultante de la interacción entre las superficies, y depende de la Fuerza normal, el coeficiente de fricción y el ángulo de inclinación.

Ffri=μhsm2[g]cos(θp)

Fuerza de empuje dado el parámetro de remoción de la pieza

La Fuerza de empuje dado el parámetro de extracción de la pieza de trabajo es la Fuerza de empuje aplicada en la dirección de la muela hacia la pieza de trabajo, cuando conocemos el parámetro de extracción de la pieza de trabajo específico del material de la pieza de trabajo. Es esencialmente la Fuerza que usas para presionar la rueda contra el material. Esta Fuerza juega un papel clave en la eliminación de material y la eficiencia del rectificado. Fuerzas de empuje más altas pueden aumentar la eliminación de material, pero también provocar un desgaste más rápido de las ruedas y posibles daños a la pieza de trabajo.

Ft=ZgΛw+Ft0

Fuerza dada Momento de flexión debido a esa Fuerza

Fuerza dada Momento de flexión Debido a que la fórmula de Fuerza se define como una medida de la Fuerza ejercida sobre un resorte en espiral, que es directamente proporcional al momento de flexión e inversamente proporcional al radio del resorte, lo que proporciona un parámetro crucial en el diseño de resortes y aplicaciones de ingeniería.

P=Mr

Fuerza vertical en el extremo inferior de la sarta de perforación

La Fuerza vertical en el extremo inferior de la sarta de perforación es una Fuerza vertical ascendente concentrada que se combina con el peso distribuido de la sarta de perforación al cambiar la línea.

fz=ρm[g]AsLWell

Fuerza que actúa en la dirección x en la ecuación del momento

La fórmula de la ecuación de Fuerza que actúa en la dirección x en el momento se define como la Fuerza neta ejercida en la dirección x sobre un volumen de control en un fluido hidrostático, resultante de la combinación del flujo de momento y las Fuerzas de presión que actúan sobre el volumen.

Fx=ρlQ(V1-V2cos(θ))+P1A1-(P2A2cos(θ))

Fuerza cortante para una viga simplemente apoyada que lleva udl a una distancia x del soporte izquierdo

La Fuerza cortante para una viga simplemente apoyada que lleva udl a una distancia x del soporte izquierdo es una Fuerza que actúa en una dirección paralela a (sobre la parte superior) una superficie o sección transversal de una viga simplemente apoyada con una carga uniformemente distribuida desde el soporte izquierdo.

Fs=(w'l2)-(w'x)

Fuerza que actúa sobre la varilla de empuje del motor dadas sus dimensiones y esfuerzos generados

La Fuerza que actúa sobre la varilla de empuje del motor dadas sus dimensiones y el esfuerzo generado es la cantidad de Fuerza que actúa sobre el extremo de una varilla de empuje que está equipada con un elevador, sobre el cual hace contacto el árbol de levas. El lóbulo del árbol de levas mueve el elevador hacia arriba, lo que mueve la varilla de empuje.

P=σcπ4(do2-di2)1+a(l2do2+di216)

Fuerza que actúa sobre la varilla de empuje del motor

La Fuerza que actúa sobre la varilla de empuje del motor es la cantidad de Fuerza que actúa sobre el extremo de una varilla de empuje que está equipada con un elevador, sobre el cual hace contacto el árbol de levas. El lóbulo del árbol de levas mueve el elevador hacia arriba, lo que mueve la varilla de empuje.

P=σcAr1+a(lkG)2

Fuerza que actúa sobre la varilla de empuje del motor de acero

La Fuerza que actúa sobre la varilla de empuje del motor hecha de acero es la cantidad de Fuerza que actúa sobre el extremo de una varilla de empuje que está equipada con un elevador, sobre el cual hace contacto el árbol de levas. El lóbulo del árbol de levas mueve el elevador hacia arriba, lo que mueve la varilla de empuje.

P=σcAr1+17500(lkG)2

Fuerza del campo magnético externo

La Fuerza del Campo Magnético Externo se produce por el movimiento de cargas eléctricas y los momentos magnéticos intrínsecos de las partículas elementales asociadas con una propiedad cuántica fundamental, su espín.

B=(sqno(sqno+1))([hP]23.14)

Fuerza sobre la chaveta dado el esfuerzo cortante en la chaveta

La Fuerza sobre la chaveta dado el esfuerzo cortante en la chaveta es la cantidad de Fuerza cortante que actúa sobre la chaveta de la junta de chaveta en un esfuerzo cortante particular generado en ella.

L=2tcbτco

Fuerza de frenado en el tambor de freno en carretera nivelada

La fórmula de la Fuerza de frenado en el tambor de freno en una carretera nivelada se define como la Fuerza que actúa sobre el tambor de freno por la zapata de freno cuando el conductor aplica los frenos.

F=Wgf

Fuerza del tambor del freno de descenso gradiente

La fórmula de la Fuerza del tambor de freno de descenso en pendiente se define como la Fuerza que actúa sobre el tambor de freno cuando se presiona el pedal del freno y el vehículo se mueve cuesta abajo.

F=Wgf+Wsin(αinc)

Fuerza normal en el punto de contacto de la zapata de freno

La fórmula de la Fuerza normal en el punto de contacto de las zapatas de freno se define como la Fuerza que actúa sobre las pastillas de freno de las zapatas de freno y que surge debido a las Fuerzas de accionamiento.

P=Fr8μfα

Fuerza de campo para ionización de supresión de barrera

La fórmula de intensidad de campo para la ionización con supresión de barrera se define como una relación en la que, si el campo aplicado es de intensidad suficiente para deprimir el punto de silla desarrollado por debajo del potencial de ionización, el electrón ya no ve una barrera al continuo y escapa libremente del sistema.

FBSI=([Permitivity-vacuum]2)([hP]2)(IP2)([Charge-e]3)[Mass-e][Bohr-r]Z

Fuerza centrípeta

La fórmula de la Fuerza centrípeta se define como la Fuerza neta necesaria para mantener un objeto en movimiento en una trayectoria circular, resultante de la interacción entre la masa, la velocidad y el radio de la trayectoria circular del objeto, y es esencial para comprender el movimiento circular y la rotación en física. .

FC=Mv2r

Fuerza de Stokes

La fórmula de Fuerza de Stokes se define como una medida de la Fuerza de fricción ejercida sobre un objeto esférico que se mueve a través de un fluido, que es proporcional a la velocidad del objeto y a la viscosidad del fluido, y se utiliza comúnmente para modelar el comportamiento de partículas en fluidos, como el aire o el agua.

Fd=6πRμνf

Fuerza de inercia por unidad de área

La fórmula de Fuerza inercial por unidad de área se define como la medida de la Fuerza ejercida por unidad de área de un fluido debido a su inercia, que es un concepto fundamental en la dinámica de fluidos, particularmente en el estudio del flujo y la presión de fluidos. Es un parámetro importante para comprender el comportamiento de los fluidos en diversas aplicaciones científicas y de ingeniería.

Fi=v2ρ

Fuerza corporal

La fórmula de Fuerza corporal se define como la medida de la Fuerza ejercida por un fluido sobre un objeto, resultante de la interacción entre el fluido y el objeto, y es un concepto fundamental en mecánica de fluidos, utilizado para analizar y comprender el comportamiento de los fluidos en diversas aplicaciones científicas y de ingeniería.

Fb=FmVm

Fuerza por motor de inducción lineal

La Fuerza del motor de inducción lineal es un factor del voltaje suministrado, la cantidad de deslizamiento y el tamaño del entrehierro, así como la influencia de los efectos finales.

F=PinVs

Fuerza en la dirección del chorro que golpea la placa vertical estacionaria

La fórmula de Fuerza en la dirección del chorro que golpea una placa vertical estacionaria se define como la medida de la Fuerza del fluido ejercida sobre una placa vertical estacionaria cuando un chorro de fluido la golpea, que está influenciada por la densidad del fluido, el área de la sección transversal del chorro y la velocidad del chorro.

F=ρAcνj2

Fuerza de corte máxima requerida para punzonar

La fórmula de Fuerza de corte máxima requerida para punzonado se define como la Fuerza máxima requerida para perforar un orificio en un material, que es un parámetro crítico en el diseño de operaciones de punzonado y está influenciado por la resistencia al corte del material y el proceso de punzonado.

Fs=asτu

Fuerza sobre el elemento actual en el campo magnético

La Fuerza sobre el elemento de corriente en el campo magnético es la Fuerza que se ejerce sobre un conductor que lleva corriente cuando se coloca en un campo magnético.

F=iLBsin(θ)

Fuerza de frenado en el tambor para freno de banda simple

La Fuerza de frenado en el tambor para el freno de banda simple se define como la Fuerza ejercida por el tambor para reducir la velocidad o detener el movimiento de un objeto, que es un componente crítico en el diseño de frenos de banda utilizados en varios sistemas mecánicos.

Fbraking=T1-T2

Fuerza sobre la palanca del freno de banda simple para la rotación del tambor en el sentido de las agujas del reloj

La fórmula de Fuerza sobre la palanca de un freno de banda simple para la rotación en el sentido de las agujas del reloj del tambor se define como la medida de la Fuerza ejercida sobre la palanca de un freno de banda simple cuando el tambor gira en el sentido de las agujas del reloj, lo cual es esencial para comprender la ventaja mecánica del sistema de freno.

P=T1bl

Fuerza sobre la palanca del freno de banda simple para la rotación del tambor en sentido antihorario

La fórmula de Fuerza sobre la palanca de un freno de banda simple para la rotación en sentido antihorario del tambor se define como la medida de la Fuerza ejercida sobre la palanca de un freno de banda simple cuando el tambor gira en sentido antihorario, lo cual es esencial para comprender la ventaja mecánica del sistema de freno.

P=T2bl

Fuerza de frenado total que actúa en las ruedas traseras cuando los frenos se aplican únicamente a las ruedas traseras

La fórmula de Fuerza de frenado total que actúa en las ruedas traseras cuando se aplican los frenos a las ruedas traseras únicamente se define como la Fuerza neta ejercida en las ruedas traseras de un vehículo cuando se aplican los frenos, teniendo en cuenta la masa del vehículo, la aceleración y la inclinación de la superficie.

Fbraking=ma-mgsin(αinclination)

Fuerza centrífuga resultante

La Fuerza centrífuga resultante se obtiene de las componentes horizontal y vertical de la Fuerza centrífuga.

Fc=ΣH2+ΣV2

Fuerza de compresión total dada el área y el esfuerzo de tracción del acero

La Fuerza de compresión total dada el área y la tensión de tracción del acero se define como la Fuerza de compresión total es igual a la Fuerza de tracción total, que es producto de la tensión en el acero de tracción y el área del acero de tracción.

C=AfTS

Fuerza a lo largo de la Fuerza de corte para R dada del círculo comercial, corte, fricción y ángulos de ataque normales

La Fuerza a lo largo de la Fuerza de corte para la fórmula dada R del círculo comercial, corte, fricción y ángulos de ataque normales se define como el coseno de la Fuerza resultante en la herramienta.

Fsp=Rfcos(φshr+βfr-αrk)

¿Cómo encontrar Fórmulas?

A continuación se ofrecen algunos consejos para obtener mejores resultados de búsqueda.
Sea específico: cuanto más específica sea su consulta, mejores serán los resultados.
Utilice varias palabras clave: combine varias palabras clave para limitar los resultados.
Experimenta con sinónimos: Diferentes términos pueden producir resultados diferentes.
Búsqueda con comodines: utiliza el operador * (asterisco). TENGA EN CUENTA que este operador funciona solo al final de una palabra. Ejemplo: biografía*, área*, etc.

Como alternativa, puede navegar a través de las subcategorías dentro de para concentrarse en las fórmulas de interés.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!