Buscar Fórmulas

Ingrese un mínimo de 3 caracteres para comenzar a buscar fórmulas de .

Seleccionar filtro

Limite los resultados de su búsqueda con la ayuda de estos filtros.

50 ¡Se encontraron fórmulas coincidentes!

Fuerza de flotación

La fórmula de la Fuerza de flotabilidad se define como la Fuerza ascendente ejercida por un fluido sobre un objeto parcial o totalmente sumergido en él, resultante de la diferencia de presión entre la parte superior e inferior del objeto, y es un concepto fundamental en la dinámica de fluidos hidrostáticos.

Fb=YVo

Fuerza de fricción en la transmisión por correa en V

La fórmula de Fuerza de fricción en la transmisión por correa trapezoidal se define como la medida de la Fuerza que se opone al movimiento entre la correa y la polea en un sistema de transmisión por correa trapezoidal, que está influenciada por el coeficiente de fricción de la correa, el radio de la polea y el ángulo de la correa trapezoidal.

Ff=μbRcosec(β2)

Fuerza tangencial en el eje del engranaje

La fórmula de Fuerza tangencial sobre el eje del engranaje se define como la medida de la Fuerza ejercida tangencialmente sobre el eje del engranaje, que es un parámetro crítico para determinar la eficiencia y el rendimiento de los sistemas de engranajes, particularmente en aplicaciones de transmisión de potencia mecánica y rotación.

Pt=Fcos(Φgear)

Fuerza normal en el eje del engranaje

La fórmula de Fuerza normal sobre el eje del engranaje se define como la medida de la Fuerza ejercida sobre el eje del engranaje debido al peso del engranaje y las Fuerzas externas que actúan sobre él, lo cual es esencial para determinar la estabilidad y la eficiencia del sistema de engranajes en diversas aplicaciones mecánicas.

Fn=Fsin(Φgear)

Fuerza de control para el gobernador de Porter

La fórmula de Fuerza de control del gobernador Porter se define como la Fuerza que regula el movimiento de las bolas del gobernador en un gobernador Porter, manteniendo el equilibrio y controlando la velocidad del motor al equilibrar la Fuerza centrífuga con el peso de las bolas.

F=mbωe2rr

Fuerza de control para el gobernador Porter dado el radio de rotación de la posición media

La fórmula de Fuerza de control para el gobernador Porter dado el radio de rotación de la posición media se define como la Fuerza que regula el movimiento del gobernador, manteniendo un equilibrio entre la Fuerza centrífuga y el peso de las bolas, asegurando un funcionamiento estable del motor.

F=mb(2πNe60)2rr

Fuerza radial en cada bola en el gobernador de Porter

La fórmula de Fuerza radial en cada bola en el regulador Porter se define como la Fuerza ejercida sobre cada bola en el regulador Porter, un dispositivo mecánico utilizado para regular la velocidad de un motor, que depende de la Fuerza del resorte, el radio y la altura del regulador.

FB=FS(1+q)r2h

Fuerza radial correspondiente requerida en cada bola para gobernadores cargados por resorte

La fórmula de la Fuerza radial correspondiente requerida en cada bola para reguladores con resorte se define como la Fuerza requerida en cada bola de un regulador con resorte para mantener el equilibrio, lo cual es crucial para comprender el funcionamiento de los reguladores en sistemas mecánicos, particularmente para controlar la velocidad del motor.

FB=FSy2xball arm

Fuerza cortante en todos los demás soportes

La fórmula de la Fuerza cortante en todos los demás soportes se define como la Fuerza aplicada perpendicular a una superficie, en oposición a una Fuerza desplazada que actúa en la dirección opuesta.

Mt=WloadIn22

Fuerza cortante en los miembros finales en el primer soporte interior

La fórmula de la Fuerza cortante en los extremos en el primer soporte interior se define como la Fuerza aplicada perpendicularmente a una superficie, en oposición a una Fuerza de desplazamiento que actúa en la dirección opuesta.

Mt=1.15WloadIn22

Fuerza cortante en la sección para cara de pared vertical

La fórmula de la Fuerza de corte en la sección para la cara vertical de la pared se define como la Fuerza transversal a la viga en una sección dada que tiende a provocar que se corte en esa sección.

Fshear=V1+(Mbd)tan(θ)

Fuerza centrífuga en vuelo acelerado

La Fuerza centrífuga en vuelo acelerado es una Fuerza ficticia que parece actuar sobre objetos que se mueven en una trayectoria circular. Surge de la inercia y es percibida por un observador en un marco de referencia giratorio; esta Fuerza actúa perpendicular a la dirección del vector velocidad.

Fc=FL+Tsin(σT)-m[g]cos(γ)

Fuerza que actúa dada la tensión de corte inducida en un plano que está inclinado en un ángulo theta

La Fuerza que actúa dada la tensión de corte inducida en un plano que está inclinado en la fórmula del ángulo theta se define como la carga o la Fuerza que actúa sobre la soldadura, que es la razón de la tensión de corte inducida.

Pd=𝜏hlLsin(θ)(sin(θ)+cos(θ))

Fuerza cortante total por herramienta

La Fuerza cortante total por herramienta es la Fuerza cortante resultante real aplicada por la herramienta a la pieza de trabajo.

Fs=(Fccos(ϕ))+(Ftsin(ϕ))

Fuerza de arrastre sobre placa plana

La fórmula de Fuerza de arrastre sobre una placa plana se define como una medida de la resistencia al movimiento de una placa plana que se mueve a través de un fluido, como aire o agua, debido a los efectos viscosos del fluido, que depende de la densidad y la velocidad del fluido, así como del área de superficie y el coeficiente de arrastre de la placa.

FD=0.5ρV2SCD

Fuerza de arrastre ofrecida por fluido

La fórmula de Fuerza de arrastre ofrecida por un fluido se define como la Fuerza de resistencia causada por el movimiento del cuerpo a través de un fluido, como el agua o el aire.

Fd=(CDAρwater(v)22)

Fuerza de corte primaria en cada perno

La Fuerza de corte primaria en cada fórmula de perno se define como la relación entre la Fuerza externa y el número de pernos. Es la Fuerza que actúa en una dirección paralela a una superficie o a una sección transversal plana de un cuerpo.

P1'=Pen

Fuerza externa en el perno

La Fuerza externa sobre el perno es crucial para garantizar la confiabilidad y seguridad de la unión. La Fuerza externa sobre un perno puede verse influenciada por varios factores, incluidas las cargas aplicadas, la geometría del perno y las propiedades de los materiales involucrados.

Pe=nP1'

Fuerza límite en el perno dada la rigidez y la precarga inicial

La Fuerza límite sobre el perno dada la rigidez y la precarga inicial se define como la cantidad de Fuerza neta que el perno puede soportar hasta la falla. Es el valor límite de la Fuerza.

Fl=Pi(kb'+kc'kc')

Fuerza debida a la presión del fluido en un recipiente cilíndrico delgado

La fórmula de Fuerza debida a la presión del fluido en un recipiente cilíndrico delgado se define como cualquier interacción que, sin oposición, cambiará el movimiento de un objeto.

F=(PiDiLcylinder)

Fuerza debida a la tensión circunferencial en un vaso cilíndrico delgado

La Fuerza debida a la tensión circunferencial en la fórmula de un recipiente cilíndrico delgado se define como cualquier interacción que, cuando no se opone, cambiará el movimiento de un objeto.

F=(2σθLcylindert)

Fuerza de Van der Waals entre dos esferas

La Fuerza de Van der Waals entre dos esferas es un término general utilizado para definir la atracción de Fuerzas intermoleculares entre moléculas.

FVWaals=AR1R2(R1+R2)6(r2)

Fuerza de pretensado después de la pérdida inmediata dado el pretensado inicial

La Fuerza de pretensado después de la pérdida inmediata dada la pretensión inicial se define como la relación entre la Fuerza de pretensado inicial en la sección y la Fuerza inmediatamente después de la pérdida de tensión.

Po=PiAPre tensionAPretension

Fuerza de corte por unidad de área o tensión de corte

La Fuerza Cortante Por Unidad de Área o Esfuerzo Cortante se define cuando la placa superior se mueve con una velocidad V con respecto a la otra placa. Newton postuló que la velocidad entre las placas era lineal y que la Fuerza necesaria para sostener el movimiento era proporcional al esfuerzo cortante.

σ=μdu/dy

Fuerza en prototipo

La Fuerza sobre el prototipo se utiliza para indicar la relación entre el prototipo, la cantidad y el modelo.

Fp=αFFm

Fuerza final hidrostática dada la carga del perno en condiciones de funcionamiento

La Fuerza final hidrostática dada la fórmula de la carga del perno en condiciones de funcionamiento se define como la Fuerza resultante causada por la carga de presión de un líquido que actúa sobre el perno.

H=Wm1-(2bgπGmP)

Fuerza de contacto hidrostática dada la carga del perno en condiciones de funcionamiento

La Fuerza de contacto hidrostática dada la fórmula de la carga del perno en condiciones de funcionamiento se define como la Fuerza normal ejercida por un líquido por unidad de área de la superficie en contacto.

Hp=Wm1-((π4)(G)2P)

Fuerza máxima que actúa sobre el cojinete del pasador del pistón

La Fuerza máxima que actúa sobre el cojinete del pasador del pistón es la cantidad máxima de Fuerza que actúa sobre el cojinete utilizada en el montaje del pasador del pistón, el pistón y la biela.

Pp=πDi2pmax4

Fuerza máxima que actúa sobre el cojinete del pasador del pistón dada la presión de cojinete permitida

La Fuerza máxima que actúa sobre el cojinete del pasador del pistón dada la presión del cojinete permitida es la cantidad máxima de Fuerza que actúa sobre el cojinete utilizada en el ensamblaje del pasador del pistón, el pistón y la biela.

Pp=dplppb

Fuerza máxima que actúa sobre el cojinete del pasador del cigüeñal dada la presión de cojinete permitida

La Fuerza máxima que actúa sobre el cojinete del pasador del cigüeñal dada la presión del cojinete permitida es la cantidad máxima de Fuerza que actúa sobre el cojinete utilizada en el ensamblaje del pasador del cigüeñal, el cigüeñal y la biela.

Pc=dcplcpb

Fuerza de inercia en los pernos de la biela

La Fuerza de inercia sobre los pernos de la biela es la Fuerza que actúa sobre los pernos de la biela y la junta de la tapa debido a la Fuerza sobre la cabeza del pistón y su movimiento alternativo.

Pic=mrω2rc(cos(θ)+cos(2θ)n)

Fuerza de inercia máxima en los pernos de la biela

La Fuerza máxima de inercia sobre los pernos de la biela se define como la Fuerza máxima que actúa sobre los pernos de la biela y la junta de la tapa debido a la Fuerza sobre la cabeza del pistón y su movimiento alternativo.

Pimax=mrω2rc(1+1n)

Fuerza de inercia máxima sobre los pernos de la biela dada la tensión de tracción admisible de los pernos

La Fuerza de inercia máxima sobre los pernos de la biela dada la tensión de tracción admisible de los pernos es la Fuerza máxima que actúa sobre los pernos de la biela y la junta de la tapa debido a la Fuerza sobre la cabeza del pistón y su movimiento alternativo.

Pi=πdc2σt2

Fuerza de resorte en la válvula cuando está asentada

La Fuerza del resorte sobre la válvula cuando está asentada es la Fuerza ejercida sobre la válvula debido a la compresión y expansión del resorte unido a ella.

Ps=σtt21-2ds3dp1.4

Fuerza de inercia hacia abajo en la válvula de escape a medida que se mueve hacia arriba

La Fuerza de inercia hacia abajo sobre la válvula de escape a medida que se mueve hacia arriba es la pseudo Fuerza que actúa sobre la válvula de escape en dirección opuesta a su dirección de desplazamiento cuando se abre.

P=mav

Fuerza inicial del resorte en la válvula de escape

La Fuerza inicial del resorte en la válvula de escape es la cantidad de Fuerza ejercida por el resorte sobre la válvula de escape durante su apertura.

Psr=πPsmaxdv24

Fuerza total sobre el balancín de la válvula de escape

La Fuerza total sobre el balancín de la válvula de escape es la Fuerza total que actúa sobre el balancín de la válvula de escape debido a la carga de gas, la Fuerza de inercia y la Fuerza del resorte.

Pe=Pg+P+Psr

Fuerza inicial del resorte en la válvula de escape dada la Fuerza total en el balancín de la válvula de escape

La Fuerza inicial del resorte sobre la válvula de escape dada la Fuerza total sobre el balancín de la válvula de escape es la cantidad de Fuerza ejercida por el resorte sobre la válvula de escape durante su apertura.

Psr=Pe-(P+Pg)

Fuerza de inercia hacia abajo en la válvula de escape dada la Fuerza total en el balancín de la válvula de escape

La Fuerza de inercia hacia abajo en la válvula de escape dada la Fuerza total en el balancín de la válvula de escape es la pseudo Fuerza que actúa sobre la válvula de escape en dirección opuesta a su dirección de desplazamiento cuando se abre.

P=Pe-(Psr+Pg)

Fuerza total sobre el balancín de la válvula de entrada

La Fuerza total sobre el balancín de la válvula de entrada es la Fuerza total que actúa sobre el balancín de la válvula de entrada debido a la carga de gas, la Fuerza de inercia y la Fuerza del resorte.

Pi=P+Psr

Fuerza de inercia hacia abajo en la válvula dada la Fuerza total en el balancín de la válvula de entrada

La Fuerza de inercia hacia abajo sobre la válvula, dada la Fuerza total sobre el balancín de la válvula de entrada, es la pseudoFuerza que actúa sobre la válvula de entrada opuesta a su dirección de desplazamiento cuando se abre.

P=Pi-Psr

Fuerza de resorte inicial en la válvula dada Fuerza total en el balancín de la válvula de entrada

La Fuerza inicial del resorte sobre la válvula dada la Fuerza total sobre el balancín de la válvula de entrada es la cantidad de Fuerza ejercida por el resorte sobre la válvula de entrada durante su apertura.

Psr=Pi-P

Fuerza total sobre el balancín de la válvula de escape dada la presión de succión

La Fuerza total sobre el balancín de la válvula de escape dada la presión de succión es la Fuerza total que actúa sobre el balancín de la válvula de escape debido a la carga de gas, la Fuerza de inercia y la Fuerza del resorte.

Pe=πPbdv24+mav+πPsmaxdv24

Fuerza total sobre el balancín de la válvula de entrada dada la presión de succión

La Fuerza total sobre el balancín de la válvula de entrada dada la presión de succión es la Fuerza total que actúa sobre el balancín de la válvula de entrada debido a la carga de gas, la Fuerza de inercia y la Fuerza del resorte.

Pi=mav+πPsmaxdv24

Fuerza de campo de la onda espacial

La fórmula de la Fuerza de campo de la onda espacial viene dada por la ley de la distancia inversa. Sin embargo, debido a que la mayoría de los transmisores están más cerca del suelo, utilizan propagación directa o reflejada en el suelo.

E=4πE0hrhtλDA2

Fuerza de frenado en el tambor de freno en carretera nivelada

La fórmula de la Fuerza de frenado en el tambor de freno en una carretera nivelada se define como la Fuerza que actúa sobre el tambor de freno por la zapata de freno cuando el conductor aplica los frenos.

F=Wgf

Fuerza del tambor del freno de descenso gradiente

La fórmula de la Fuerza del tambor de freno de descenso en pendiente se define como la Fuerza que actúa sobre el tambor de freno cuando se presiona el pedal del freno y el vehículo se mueve cuesta abajo.

F=Wgf+Wsin(αinc)

Fuerza normal en el punto de contacto de la zapata de freno

La fórmula de la Fuerza normal en el punto de contacto de las zapatas de freno se define como la Fuerza que actúa sobre las pastillas de freno de las zapatas de freno y que surge debido a las Fuerzas de accionamiento.

P=Fr8μfα

Fuerza de campo para ionización de supresión de barrera

La fórmula de intensidad de campo para la ionización con supresión de barrera se define como una relación en la que, si el campo aplicado es de intensidad suficiente para deprimir el punto de silla desarrollado por debajo del potencial de ionización, el electrón ya no ve una barrera al continuo y escapa libremente del sistema.

FBSI=([Permitivity-vacuum]2)([hP]2)(IP2)([Charge-e]3)[Mass-e][Bohr-r]Z

Fuerza centrípeta o Fuerza centrífuga para velocidad angular y radio de curvatura dados

La Fuerza centrípeta o Fuerza centrífuga para una velocidad angular y un radio de curvatura determinados se define como la Fuerza que mantiene un objeto en movimiento en una trayectoria circular y se dirige hacia el centro del círculo, oponiéndose a la inercia del objeto que tiende a moverse en línea recta.

Fc=Massflight pathω2Rc

¿Cómo encontrar Fórmulas?

A continuación se ofrecen algunos consejos para obtener mejores resultados de búsqueda.
Sea específico: cuanto más específica sea su consulta, mejores serán los resultados.
Utilice varias palabras clave: combine varias palabras clave para limitar los resultados.
Experimenta con sinónimos: Diferentes términos pueden producir resultados diferentes.
Búsqueda con comodines: utiliza el operador * (asterisco). TENGA EN CUENTA que este operador funciona solo al final de una palabra. Ejemplo: biografía*, área*, etc.

Como alternativa, puede navegar a través de las subcategorías dentro de para concentrarse en las fórmulas de interés.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!