Buscar Fórmulas

Ingrese un mínimo de 3 caracteres para comenzar a buscar fórmulas de .

Seleccionar filtro

Limite los resultados de su búsqueda con la ayuda de estos filtros.

50 ¡Se encontraron fórmulas coincidentes!

Fuerza normal para el freno de zapata si la línea de acción de la Fuerza tangencial pasa por debajo del punto de apoyo (antirreloj)

La fórmula de Fuerza Normal para Freno de Zapata si la Línea de Acción de la Fuerza Tangencial Pasa por Debajo del Punto de Apoyo (En Sentido Antihorario) se define como la Fuerza que ejerce la zapata de freno sobre la rueda giratoria para reducir su velocidad o detenerla, considerando que la línea de acción de la Fuerza tangencial pasa por debajo del punto de apoyo en sentido antihorario.

Fn=Plx-μbrakeashift

Fuerza normal para el freno de zapata si la línea de acción de la Fuerza tangencial pasa por debajo del punto de apoyo (en el sentido de las agujas del reloj)

La fórmula de Fuerza normal para freno de zapata si la línea de acción de la Fuerza tangencial pasa por debajo del fulcro (en el sentido de las agujas del reloj) se define como la Fuerza ejercida por la zapata de freno sobre la rueda giratoria para reducir su velocidad, que depende de la Fuerza tangencial, el punto de pivote y la eficiencia del freno, y es crucial para diseñar sistemas de frenado efectivos en vehículos y maquinaria.

Fn=Plx+μbrakeashift

Fuerza normal para el freno de zapata si la línea de acción de la Fuerza tangencial pasa por encima del punto de apoyo (antirreloj)

La fórmula de Fuerza Normal para Freno de Zapata si la Línea de Acción de la Fuerza Tangencial Pasa por Arriba del Punto de Apoyo (En Sentido Antihorario) se define como la Fuerza ejercida por el freno de zapata sobre la rueda cuando la línea de acción de la Fuerza tangencial pasa por encima del punto de apoyo en sentido antihorario, lo cual es esencial para determinar la eficiencia de frenado de un vehículo.

Fn=Plx+μbrakeashift

Fuerza normal para el freno de zapata si la línea de acción de la Fuerza tangencial pasa por encima del punto de apoyo (en el sentido de las agujas del reloj)

La fórmula de Fuerza Normal para Freno de Zapata si la Línea de Acción de la Fuerza Tangencial Pasa por Arriba del Punto de Apoyo (en el Sentido de las Agujas del Reloj) se define como la Fuerza ejercida por el freno de zapata sobre la rueda giratoria cuando la línea de acción de la Fuerza tangencial pasa por encima del punto de apoyo en el sentido de las agujas del reloj, lo cual es esencial para determinar la eficiencia de frenado y la estabilidad del sistema.

Fn=Plx-μbrakeashift

Fuerza normal presionando el bloque de freno en la rueda para freno de zapata

La fórmula de Fuerza normal que presiona el bloque de freno sobre la rueda para el freno de zapata se define como la Fuerza ejercida por el bloque de freno sobre la rueda en un sistema de freno de zapata, que es un componente crítico en el mecanismo de frenado de los vehículos, que influye en la potencia de frenado general y la seguridad del vehículo.

Fn=Plx

Fuerza de frenado tangencial que actúa en la superficie de contacto del bloque y la rueda para el freno de zapata

La fórmula de la Fuerza de frenado tangencial que actúa en la superficie de contacto del bloque y la rueda para el freno de zapata se define como la Fuerza ejercida por la zapata de freno sobre la rueda giratoria para reducir su velocidad, que depende de la Fuerza de reacción normal y del coeficiente de fricción entre la zapata de freno y la rueda.

Ft=μbrakeRN

Fuerza restauradora

La fórmula de Fuerza de restauración se define como una medida de la Fuerza que restaura un objeto a su posición original después de haber sido desplazado de su posición de equilibrio, a menudo observada en movimientos oscilatorios, y es un concepto crucial para comprender la dinámica de los sistemas vibratorios.

Fre=-sconstrainsbody

Fuerza de restauración usando el peso del cuerpo

La fórmula de Fuerza de restauración utilizando el peso del cuerpo se define como la Fuerza que restaura un objeto a su posición original después de haber sido desplazado de su posición de equilibrio, teniendo en cuenta el peso del cuerpo y las restricciones que actúan sobre él, y es un concepto crucial para comprender la frecuencia natural de las vibraciones longitudinales libres.

Fre=W-(sconstrain(δ+sbody))

Fuerza aceleradora

La fórmula de Fuerza de aceleración se define como una medida de la Fuerza que hace que un objeto gire o se retuerza alrededor de un eje central, lo que produce vibraciones torsionales, y es un parámetro crítico en el análisis del movimiento de rotación y la vibración en sistemas mecánicos.

F=Idα

Fuerza lateral total que actúa en la dirección de cada uno de los ejes principales

La fórmula de la Fuerza lateral total que actúa en la dirección de cada uno de los ejes principales calcula la Fuerza lateral total o el corte de la base cuando tenemos una información previa de la carga muerta total.

V=CsW

Fuerza necesaria para retirar la viruta y actuar sobre la cara de la herramienta

La Fuerza necesaria para eliminar la viruta y actuar sobre la cara de la herramienta es la cantidad de Fuerza necesaria para eliminar la viruta de la superficie del metal.

Fr=Frc-Fp

Fuerza de planchado después del dibujo

La Fuerza de planchado después del estirado es la Fuerza utilizada para reducir el espesor de la pared de la copa después del estirado.

F=πd1tfSavgln(t0tf)

Fuerza propulsora

La Fuerza propulsora se define como la Fuerza generada por un chorro en el barco debido a la rotación del motor aplicada por el fluido.

F=WWaterV[g]

Fuerza de fricción en el cuerpo A

Fuerza de fricción sobre un cuerpo Una fórmula se define como la medida de la Fuerza ejercida por una superficie sobre un objeto mientras se mueve o intenta moverse a lo largo de esa superficie, oponiéndose al movimiento, y está influenciada por el coeficiente de fricción estática máxima, la masa del objeto, la aceleración debida a la gravedad y el ángulo de inclinación.

FA=μcmma[g]cos(α1)

Fuerza de fricción en el cuerpo B

La fórmula de Fuerza de fricción sobre un cuerpo B se define como la medida de la Fuerza ejercida sobre un objeto debido a la resistencia de fricción entre el objeto y la superficie con la que está en contacto, teniendo en cuenta el coeficiente de fricción estática máxima, la masa del objeto, la aceleración debida a la gravedad y el coseno del ángulo de inclinación.

FB=μcmmb[g]cos(α2)

Fuerza de pelado

La Fuerza de desforre es la Fuerza necesaria para pelar o retirar la pieza perforada de la chapa y se calcula como el producto de la constante de desforre, el perímetro del corte del punzonado y el espesor del material durante el desforre.

Ps=KLcuttblank

Fuerza de corte máxima dada Corte aplicado al punzón o matriz

La Fuerza de corte máxima dada la Fuerza de corte aplicada al punzón o matriz es la Fuerza que se requiere para cortar la parte dada del blanco cuando se aplica corte al punzón.

Fs=Lcttstktstkptsh

Fuerza de flexión

Se requiere Fuerza de flexión para deformar y doblar el componente en la forma deseada durante una operación de flexión.

FB=KbdLbσuttblank2w

Fuerza de giro en el anillo elemental

La fórmula de Fuerza de giro sobre un anillo elemental se define como una representación del par de torsión ejercido sobre un eje circular hueco. Ilustra la relación entre la tensión de corte, el radio y las dimensiones del anillo, lo que proporciona información sobre el comportamiento mecánico de los sistemas giratorios.

Tf=4π𝜏max(r2)brdouter

Fuerza axial dada la tensión de tracción en el eje

La fórmula de Fuerza axial dada la tensión de tracción en el eje se define como una medida de la Fuerza ejercida a lo largo del eje longitudinal de un eje, lo cual es esencial en el diseño del eje para garantizar que el eje pueda soportar la tensión y la carga sin fallar, evitando así daños a la máquina o sus componentes.

Pax=σtπd24

Fuerza centrífuga que actúa sobre el vehículo

La fórmula de la Fuerza centrífuga que actúa sobre el vehículo se define como una Fuerza que surge de la inercia del cuerpo, que parece actuar sobre un cuerpo que se mueve en una trayectoria circular y se aleja del centro alrededor del cual se mueve el cuerpo.

Fc=WV2gRCurve

Fuerza resultante por paralelogramo de Fuerzas

La Fuerza resultante por paralelogramo de Fuerzas se describe como la cantidad total de Fuerza que actúa sobre el objeto o cuerpo junto con la dirección del cuerpo.

Pn=dH2+dv2

Fuerza horizontal dada la dirección de la Fuerza resultante

La Fuerza horizontal dada la dirección de la Fuerza resultante se define como la presión que actúa sobre un miembro particular en dirección horizontal debido al relleno.

dH=dvtan(θ)

Fuerza de tracción que actúa sobre el perno dada la tensión de tracción

La Fuerza de tracción que actúa sobre el perno dada la fórmula de tensión de tracción se refiere a una Fuerza que intenta separar o estirar un perno.

P=σtπdc'24

Fuerza ejercida por la placa estacionaria en el chorro

La Fuerza ejercida por la placa estacionaria sobre el chorro se define como la Fuerza inducida por el fluido sobre la placa estacionaria del chorro.

FSt,⊥p=γfAJet(vjet2)[g]

Fuerza de resistencia del cilindro a lo largo de la sección longitudinal por mm de longitud

La Fuerza de resistencia del cilindro a lo largo de la sección longitudinal por mm de longitud es la suma vectorial de numerosas Fuerzas, cuya dirección es opuesta al movimiento de un cuerpo.

F=(σc2Lcylindert)

Fuerza de resistencia del cable por cm de longitud

La fórmula Fuerza de resistencia del alambre por cm de longitud se define como la suma vectorial de numerosas Fuerzas, cuya dirección es opuesta al movimiento de un cuerpo.

F=LπGwireσw2

Fuerza de campo en el centro

La fórmula de intensidad de campo en el centro (H) se define como un campo vectorial que describe la influencia magnética en cargas eléctricas en movimiento, corrientes eléctricas y materiales magnéticos.

H=NIcos(θ)L

Fuerzas gravitacionales sobre partículas

La fórmula de las Fuerzas gravitacionales sobre partículas se define como los aspectos cuantitativos de la ley de atracción gravitacional entre dos cuerpos de masa m1 y m2.

Fg=[g](m1m2r2)

Fuerza vertical total dada la tensión normal vertical en la cara aguas abajo

La Fuerza vertical total dada la tensión vertical normal en la cara aguas abajo se define como Fuerza neta en dirección vertical.

Fv=σz(1144T)(1+(6edT))

Fuerza vertical total para la tensión normal vertical en la cara aguas arriba

La Fuerza vertical total para la tensión normal vertical en la cara aguas arriba se define como la Fuerza neta en dirección vertical.

Fv=σz(1144T)(1-(6euT))

Fuerza ascendente debida al agua de filtración dado el peso de la unidad sumergida

La Fuerza ascendente debida a la filtración de agua dado el peso unitario sumergido se define como el valor de la Fuerza ascendente cuando tenemos información previa de otros parámetros utilizados.

Fu=σn-(ySz(cos(iπ180))2)

Fuerza cortante dada la deflexión debida al corte en la presa Arch

La Fuerza de corte dada la deflexión debida al corte en la presa de arco se refiere a la Fuerza interna que es perpendicular al eje longitudinal de la presa y se genera debido a la deflexión causada por las Fuerzas de corte aplicadas, como la presión del agua.

Fs=δEK3

Fuerza cortante dada la rotación debido al corte en la presa Arch

La fórmula de la Fuerza cortante dada la rotación debida al corte en el arco de la presa se define como la Fuerza que actúa a lo largo del miembro o a lo largo del estribo de la presa.

Fs=ΦEtK5

Fuerza de flotación de un cuerpo sumergido en un fluido

La fórmula de la Fuerza de flotación del cuerpo sumergido en un fluido se define como la Fuerza que hace que los objetos floten. Es una Fuerza ejercida sobre un objeto que está parcial o totalmente sumergido en un fluido.

FB=ρ[g]

Fuerza de arrastre para cuerpo en movimiento en fluido

La Fuerza de arrastre para un cuerpo en movimiento en la fórmula de un fluido se define como la Fuerza que actúa de manera opuesta al movimiento relativo de cualquier objeto que se mueve con respecto a un fluido circundante.

FD'=CD'ApMw(v)2Vw2

Fuerza de sustentación para cuerpo en movimiento en fluido

La fórmula Fuerza de sustentación para un cuerpo que se mueve en un fluido se define como la suma de todas las Fuerzas sobre un cuerpo que lo Fuerzan a moverse perpendicularmente a la dirección del flujo.

FL'=CLApMw(v2)Vw2

Fuerza ejercida por el cuerpo en el plano supersónico.

La Fuerza ejercida por el cuerpo en la fórmula del plano supersónico se define como un empujón o un tirón sobre un objeto resultante de la interacción del objeto con otro objeto.

F=(ρ(ΔL2)(v2))(μdρvΔL)(Kρv2)

Fuerza total ejercida por el fluido sobre el cuerpo.

La fórmula de Fuerza total ejercida por el fluido sobre el cuerpo se define como la Fuerza ejercida por el fluido sobre el cuerpo perpendicular a la superficie del cuerpo.

F=(CD'Apρv22)+(CLApρv22)

Fuerza de flotación que actúa sobre una bola esférica

La fórmula de Fuerza de flotación que actúa sobre una bola esférica se define como la Fuerza hacia arriba que ejerce un fluido sobre un objeto. El principio de Arquímedes es el hecho de que la Fuerza de flotación es igual al peso del fluido desplazado.

FB'=ρwatergVb

Fuerza de fricción ejercida por la empaquetadura blanda en la varilla de movimiento alternativo

La Fuerza de fricción ejercida por el empaque blando en la fórmula de la varilla recíproca se define como la Fuerza que resiste el movimiento cuando la superficie de un objeto entra en contacto con la superficie de otro.

Ffriction=.005pd

Fuerza que actúa sobre la parte superior del pistón debido a la presión del gas para un par máximo en el cigüeñal central

La Fuerza que actúa sobre la parte superior del pistón debido a la presión del gas para un par máximo en el centro del cigüeñal es la cantidad de Fuerza ejercida sobre la parte superior del pistón por los gases debido a la combustión del combustible, donde el cigüeñal está diseñado para un par máximo sobre él.

P=πD2p'4

Fuerza que actúa sobre la parte superior del pistón debido a la presión del gas dada la Fuerza de empuje sobre la biela

La Fuerza que actúa sobre la parte superior del pistón debido a la presión del gas dada la Fuerza de empuje sobre la biela es la Fuerza que actúa sobre la parte superior del pistón debido a la presión de los gases de combustión.

P=Pcrcos(φ)

Fuerza sobre la biela dada la componente radial de la Fuerza en la muñequilla

La Fuerza sobre la biela dada la componente radial de la Fuerza en la muñequilla es la Fuerza de empuje sobre la biela transmitida desde el pistón a la biela. La cabeza del pistón está sujeta a la Fuerza ejercida por la presión del gas.

Pcr=Prcos(φ+θ)

Fuerza sobre la biela dada la componente tangencial de la Fuerza en la muñequilla

La Fuerza sobre la biela dada la componente tangencial de la Fuerza en la muñequilla es la Fuerza de empuje sobre la biela transmitida desde el pistón a la biela. La cabeza del pistón está sujeta a la Fuerza ejercida por la presión del gas.

Pcr=Ptsin(φ+θ)

Fuerza que actúa sobre la varilla de empuje del motor dadas sus dimensiones y esfuerzos generados

La Fuerza que actúa sobre la varilla de empuje del motor dadas sus dimensiones y el esfuerzo generado es la cantidad de Fuerza que actúa sobre el extremo de una varilla de empuje que está equipada con un elevador, sobre el cual hace contacto el árbol de levas. El lóbulo del árbol de levas mueve el elevador hacia arriba, lo que mueve la varilla de empuje.

P=σcπ4(do2-di2)1+a(l2do2+di216)

Fuerza que actúa sobre la varilla de empuje del motor

La Fuerza que actúa sobre la varilla de empuje del motor es la cantidad de Fuerza que actúa sobre el extremo de una varilla de empuje que está equipada con un elevador, sobre el cual hace contacto el árbol de levas. El lóbulo del árbol de levas mueve el elevador hacia arriba, lo que mueve la varilla de empuje.

P=σcAr1+a(lkG)2

Fuerza que actúa sobre la varilla de empuje del motor de acero

La Fuerza que actúa sobre la varilla de empuje del motor hecha de acero es la cantidad de Fuerza que actúa sobre el extremo de una varilla de empuje que está equipada con un elevador, sobre el cual hace contacto el árbol de levas. El lóbulo del árbol de levas mueve el elevador hacia arriba, lo que mueve la varilla de empuje.

P=σcAr1+17500(lkG)2

Fuerza del campo magnético externo

La Fuerza del Campo Magnético Externo se produce por el movimiento de cargas eléctricas y los momentos magnéticos intrínsecos de las partículas elementales asociadas con una propiedad cuántica fundamental, su espín.

B=(sqno(sqno+1))([hP]23.14)

Fuerza sobre la chaveta dado el esfuerzo cortante en la chaveta

La Fuerza sobre la chaveta dado el esfuerzo cortante en la chaveta es la cantidad de Fuerza cortante que actúa sobre la chaveta de la junta de chaveta en un esfuerzo cortante particular generado en ella.

L=2tcbτco

¿Cómo encontrar Fórmulas?

A continuación se ofrecen algunos consejos para obtener mejores resultados de búsqueda.
Sea específico: cuanto más específica sea su consulta, mejores serán los resultados.
Utilice varias palabras clave: combine varias palabras clave para limitar los resultados.
Experimenta con sinónimos: Diferentes términos pueden producir resultados diferentes.
Búsqueda con comodines: utiliza el operador * (asterisco). TENGA EN CUENTA que este operador funciona solo al final de una palabra. Ejemplo: biografía*, área*, etc.

Como alternativa, puede navegar a través de las subcategorías dentro de para concentrarse en las fórmulas de interés.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!