Buscar Fórmulas

Ingrese un mínimo de 3 caracteres para comenzar a buscar fórmulas de .

Seleccionar filtro

Limite los resultados de su búsqueda con la ayuda de estos filtros.

50 ¡Se encontraron fórmulas coincidentes!

Fuerza de fricción entre el cilindro y la superficie del plano inclinado para rodar sin deslizar

La fórmula de Fuerza de fricción entre un cilindro y una superficie plana inclinada para rodar sin resbalar se define como la medida de la Fuerza que se opone al movimiento de un cilindro que rueda sobre una superficie plana inclinada sin resbalar, influenciada por la masa del cilindro, la aceleración debida a la gravedad y el ángulo de inclinación.

Ff=Mcgsin(θi)3

Fuerza eléctrica según la ley de Coulomb

La Fuerza eléctrica según la fórmula de la Ley de Coulomb se define como una medida de la Fuerza electrostática de atracción o repulsión entre dos objetos cargados, cuantificando la interacción entre ellos en función de la magnitud de sus cargas y la distancia entre ellos.

Felectric=([Coulomb])(q1q2r2)

Fuerza de compresión total dada el área y el esfuerzo de tracción del acero

La Fuerza de compresión total dada el área y la tensión de tracción del acero se define como la Fuerza de compresión total es igual a la Fuerza de tracción total, que es producto de la tensión en el acero de tracción y el área del acero de tracción.

C=AfTS

Fuerza de presión total en la parte superior del cilindro

La Fuerza de presión total en la parte superior del cilindro se define a partir de la relación recipiente cilíndrico cerrado donde la parte superior del cilindro está en contacto con el agua y en el plano horizontal.

Ft=(LD4)(ω2)π(r14)

Fuerza de presión total en la parte inferior del cilindro

La fórmula de la Fuerza de presión total en la parte inferior del cilindro se define a partir de la relación del recipiente cilíndrico cerrado donde la parte superior del cilindro está en contacto con el agua y en el plano horizontal.

Fb=ρ9.81π(r12)H+Ft

Fuerza normal en un plano dado en suelo sin cohesión

La Fuerza normal en un plano dado en un suelo sin cohesión se define como la Fuerza que actúa sobre el suelo en dirección perpendicular.

Fn=(Fstanφ)

Fuerza de corte en el plano cuando el deslizamiento sobre el plano es inminente

La Fuerza cortante en el plano cuando el deslizamiento en el plano es inminente se define como el producto de la Fuerza normal y el coeficiente de fricción interna del suelo.

Fs=(Fntanφ)

Fuerza de tracción en el perno dada la máxima tensión de tracción en el perno

La Fuerza de tracción en el perno dada la tensión máxima de tracción en la fórmula del perno se define como las Fuerzas de estiramiento que actúan sobre el material y tiene dos componentes, a saber, la tensión de tracción y la deformación por tracción.

Ptb=σtmaxπ4dc2

Fuerza de tracción en el perno en tensión

La Fuerza de tracción en el perno en la fórmula de tensión se define como la Fuerza de tracción que producirá una cierta cantidad de deformación permanente dentro de un sujetador específico.

Ptb=π4dc2Sytfs

Fuerza de tracción en perno en cortante

La fórmula de la Fuerza de tracción sobre el perno en corte se define como la carga máxima que se puede soportar antes de la fractura cuando se aplica en ángulo recto con el eje del sujetador. Una carga que ocurre en un plano transversal se conoce como cortante simple.

Ptb=πdchSsyfs

Fuerza de corte primaria de conexión atornillada cargada excéntricamente

La fórmula de la Fuerza cortante primaria de una conexión atornillada cargada excéntricamente se define como la Fuerza que actúa en una dirección paralela a una superficie o a una sección transversal plana de un cuerpo, como por ejemplo la presión del aire a lo largo de la parte delantera del ala de un avión.

P1'=Pn

Fuerza imaginaria en el centro de gravedad de la junta atornillada dada la Fuerza de corte primaria

La Fuerza imaginaria en el centro de gravedad de la junta atornillada dada La Fuerza de corte primaria se define como la Fuerza que parece actuar sobre una masa cuyo movimiento se describe utilizando un marco de referencia no inercial, como un marco de referencia de aceleración o rotación.

P=P1'n

Fuerza que actúa dada la tensión de corte inducida en un plano que está inclinado en un ángulo theta

La Fuerza que actúa dada la tensión de corte inducida en un plano que está inclinado en la fórmula del ángulo theta se define como la carga o la Fuerza que actúa sobre la soldadura, que es la razón de la tensión de corte inducida.

Pd=𝜏hlLsin(θ)(sin(θ)+cos(θ))

Fuerza de elevación en el cilindro para circulación

La fórmula de la Fuerza de elevación en el cilindro para la circulación se conoce teniendo en cuenta la densidad, la longitud del cilindro, la velocidad de la corriente libre y la circulación.

FL=ρIΓcV

Fuerza por molécula de gas en la pared de la caja

La fórmula Fuerza de la molécula de gas sobre la pared de la caja se define como la tasa de cambio del impulso de la molécula gaseosa con respecto al tiempo.

Fwall=m(u)2L

Fuerza de inercia dado el número de Reynolds

La Fuerza de inercia dada la fórmula del número de Reynolds se define como cualquier Fuerza invocada por un observador para mantener la validez de la segunda ley de movimiento de Isaac Newton en un marco de referencia que gira o acelera a una velocidad constante.

Fi=Reμ

Fuerza viscosa dado el número de Reynolds

La Fuerza viscosa dada la fórmula del número de Reynolds se define como la velocidad a la que cambia la velocidad del fluido en el espacio.

μ=FiRe

Fuerza hacia abajo debido a la masa de sustentación, cuando la sustentación se mueve hacia arriba

La fórmula de Fuerza descendente debido a la masa del elevador, cuando el elevador se mueve hacia arriba, se define como la Fuerza ejercida sobre un objeto debido a su masa cuando se eleva, oponiéndose al movimiento ascendente, y es un concepto crucial para comprender la dinámica del movimiento vertical.

Fdwn=mo[g]

Fuerza neta hacia arriba en el levantamiento, cuando el levantamiento se mueve hacia arriba

La fórmula de la Fuerza ascendente neta sobre la sustentación, cuando la sustentación se mueve hacia arriba, se define como la Fuerza ascendente ejercida sobre un objeto cuando se mueve hacia arriba, oponiéndose al peso del objeto y dando como resultado su movimiento ascendente. Es un concepto crucial para comprender los principios de la aerodinámica y el comportamiento de los objetos en vuelo.

Fup=L-mo[g]

Fuerza neta hacia abajo, cuando la elevación se mueve hacia abajo

La fórmula de Fuerza neta descendente cuando el elevador se mueve hacia abajo se define como la Fuerza descendente total ejercida sobre un objeto cuando se lo eleva hacia abajo, teniendo en cuenta el peso del objeto y la Fuerza opuesta del elevador, lo que proporciona una medida de la Fuerza neta que actúa sobre el objeto en dirección descendente.

Fdwn=mo[g]-R

Fuerza ejercida por la masa transportada por el ascensor sobre su piso, cuando el ascensor se mueve hacia arriba

La fórmula de la Fuerza ejercida por la masa transportada por el ascensor sobre su suelo, cuando el ascensor se mueve hacia arriba, se define como la Fuerza total ejercida sobre el suelo del ascensor por la masa transportada, teniendo en cuenta tanto el peso de la masa como la aceleración del ascensor a medida que se mueve hacia arriba.

Fup=mc([g]+a)

Fuerza ejercida por el chorro en la dirección del flujo del chorro entrante con un ángulo de 90

La Fuerza ejercida por el chorro en la dirección del flujo del chorro entrante con un ángulo de 90 se define como la Fuerza ejercida por el chorro en la dirección paralela a la placa.

Ft=(γfAJet(Vabsolute-v)2G)

Fuerza ejercida por el chorro en la dirección del flujo del chorro entrante con ángulo cero

La Fuerza ejercida por el chorro en la dirección del flujo del chorro entrante con ángulo cero se define como la Fuerza ejercida por el chorro en la dirección de paralelo a la placa.

Ft=(γfAJet(Vabsolute-v)2G)

Fuerza ejercida por el chorro en la dirección del flujo del chorro

La Fuerza ejercida por el chorro en la dirección del flujo del chorro se define como la Fuerza inducida por el fluido sobre la placa estacionaria del chorro.

Fs=(γfAJetVabsolute(Vabsolute-v)G)(1+cos(θ))

Fuerza ejercida por un chorro con velocidad relativa

La Fuerza ejercida por el chorro con velocidad relativa se define como la Fuerza inducida por el fluido en la placa estacionaria del chorro.

Fs=(γfAJetVabsolute(Vabsolute-v)G)(1+acos(θ))

Fuerza iónica del electrolito uni-bivalente

La Fuerza iónica de la fórmula de electrolito unibivalente se define como la mitad de la sumisión de la molalidad y el cuadrado de las valencias de los iones disponibles en la solución. Un ejemplo de electrolitos unibivalentes son Na2SO4, K2CrO4, etc. Por lo tanto, la molalidad del catión se toma dos veces.

I=(12)(m+((Z+)2)+(2m-((Z-)2)))

Fuerza iónica del electrolito uni-bivalente si la molalidad del catión y el anión son iguales

La Fuerza iónica del electrolito unibivalente si la molalidad del catión y el anión son la misma fórmula se define como tres veces la molalidad del electrolito. En el electrolito unibivalente, la valencia del catión es uno y la valencia si el anión es dos.

I=3m

Fuerza iónica del electrolito bi-trivalente

La Fuerza iónica de la fórmula de electrolito bi-trivalente se define como la mitad de la sumisión de la molalidad y el cuadrado de las valencias de los iones disponibles en la solución. Aquí, la molalidad del catión se toma dos veces y la molalidad del anión se toma tres veces.

I=(12)(2m+((Z+)2)+3m-((Z-)2))

Fuerza iónica del electrolito bi-trivalente si la molalidad del catión y el anión son iguales

La Fuerza iónica del electrolito bi-trivalente si la molalidad del catión y el anión son la misma fórmula se define como quince veces la molalidad de un electrolito bi-trivalente.

I=15m

Fuerza de tracción máxima en ausencia de refuerzo no pretensado

La Fuerza de tracción última en ausencia de armadura no pretensada se define como la ecuación para encontrar la resistencia a la tracción de una sección pretensada utilizando el código IS 1343:1980.

PuR=0.87FpkfAs

Fuerza máxima de gas en la cabeza del pistón

La Fuerza máxima del gas en la cabeza del pistón es la Fuerza máxima debida a la combustión de gases en la parte superior de la cabeza del pistón.

FP=πDi2pmax4

Fuerza de reacción normal en la rueda trasera

La fórmula Fuerza de reacción normal en la rueda trasera se usa para encontrar la Fuerza de reacción que ofrece la superficie de la carretera sobre la rueda trasera.

Rr=W(b-x-μh)cos(θ)b-μh

Fuerza de elevación dado el coeficiente de elevación de la hoja

La Fuerza de sustentación dada por el coeficiente de sustentación de la pala es la suma de todas las Fuerzas sobre un cuerpo que lo obligan a moverse perpendicularmente a la dirección del flujo y surge debido a la presión desigual en las dos superficies de la pala.

L=CL0.5ρvcπR2V2

Fuerza de arrastre dado el coeficiente de elevación

Fuerza de arrastre dada el coeficiente de elevación es una medida de la Fuerza de arrastre ejercida sobre un objeto, calculada multiplicando la Fuerza de elevación por el coeficiente de resistencia y dividiéndola por el coeficiente de elevación, proporcionando un valor cuantitativo de la resistencia experimentada por un objeto que se mueve a través de un fluido. .

FD=FLCDCL

Fuerza aerodinámica

La Fuerza aerodinámica es una medida de la Fuerza total ejercida sobre un objeto, que consta de la Fuerza de arrastre, que se opone al movimiento, y la Fuerza de elevación, que es perpendicular a la dirección del movimiento.

FR=FD+FL

Fuerzas sobre cargas que se mueven en campos magnéticos

La fórmula Fuerzas sobre cargas que se mueven en campos magnéticos se define como la Fuerza que actúa sobre una carga perpendicular a la dirección de su movimiento a través de un campo magnético.

F=quBsin(θ)

Fuerzas en los cables portadores de corriente

La fórmula Fuerzas en los cables que transportan corriente se define como que el campo magnético ejerce una Fuerza sobre un cable que transporta corriente en una dirección dada por la regla de la mano derecha 1 (la misma dirección que en las cargas individuales en movimiento). Esta Fuerza puede ser lo suficientemente grande como para mover el cable, ya que las corrientes típicas consisten en un gran número de cargas en movimiento.

F=Bilsin(θ)

Fuerza ejercida sobre la partícula

La Fuerza ejercida sobre una partícula se define como la atracción que experimenta una partícula que está en movimiento en un campo magnético de densidad de flujo B. Es directamente proporcional a su carga.

Fe=(qvcp)B

Fuerza de campo para ionización de supresión de barrera

La fórmula de intensidad de campo para la ionización con supresión de barrera se define como una relación en la que, si el campo aplicado es de intensidad suficiente para deprimir el punto de silla desarrollado por debajo del potencial de ionización, el electrón ya no ve una barrera al continuo y escapa libremente del sistema.

FBSI=([Permitivity-vacuum]2)([hP]2)(IP2)([Charge-e]3)[Mass-e][Bohr-r]Z

Fuerza centrífuga que actúa sobre la bola para un peso dado de bola

La fórmula de Fuerza centrífuga que actúa sobre la bola para un peso dado de la bola se define como la Fuerza ejercida sobre una bola cuando gira en una trayectoria circular, que está influenciada por el peso de la bola, el radio de rotación y la altura del regulador en una válvula de motor de vapor y un sistema de engranajes de inversión.

Fc=wRhg

Fuerza centrífuga que actúa sobre la bola para una masa dada de bola

La fórmula de Fuerza centrífuga que actúa sobre la bola para una masa dada de la bola se define como la Fuerza ejercida sobre una bola cuando gira en una trayectoria circular, que está influenciada por la masa de la bola, la Fuerza gravitacional, el radio de rotación y la altura del regulador en una máquina de vapor.

Fc=mballgRhg

Fuerza en el brazo del gobernador Porter dado el peso de la carga central y la bola

La fórmula de Fuerza en el brazo del gobernador Porter dado el peso de la carga central y la bola se define como una medida de la Fuerza ejercida sobre el brazo de un gobernador Porter, que es un tipo de gobernador centrífugo utilizado en máquinas de vapor, teniendo en cuenta el peso de la carga central y la bola.

T1=Wc+w2cos(α)

Fuerza en el brazo del gobernador Porter dada la masa de la carga central y la bola

La fórmula de Fuerza en el brazo del gobernador Porter dada la masa de la carga central y la bola se define como la medida de la Fuerza ejercida por la carga central y la bola en el brazo de un gobernador Porter, un dispositivo mecánico utilizado para regular la velocidad de un motor.

T1=Mg+mbg2cos(α)

Fuerza en Enlace de Porter Gobernador dada Masa de Carga Central

La fórmula de Fuerza en el enlace del gobernador Porter dada la masa de la carga central se define como una medida de la Fuerza ejercida en el enlace de un gobernador Porter, un dispositivo mecánico utilizado en máquinas de vapor, que depende de la masa de la carga central y otros parámetros, proporcionando un aspecto crucial en el funcionamiento del gobernador.

T2=Mg2cos(β)

Fuerza en el enlace del gobernador Porter dado el peso de la carga central

La fórmula de Fuerza en el enlace del gobernador Porter dado el peso de la carga central se define como una medida de la Fuerza ejercida sobre el enlace del gobernador Porter, que es un dispositivo mecánico utilizado en las máquinas de vapor para regular la velocidad del motor, y depende del peso de la carga central.

T2=Wc2cos(β)

Fuerza en el brazo del gobernador Porter dada la Fuerza centrífuga en la bola

La Fuerza en el brazo del gobernador Porter dada la fórmula de la Fuerza centrífuga sobre la bola se define como una medida de la Fuerza ejercida por la bola sobre el brazo del gobernador Porter, que es un tipo de gobernador centrífugo utilizado en máquinas de vapor para regular la velocidad del motor.

T1=F′c-T2sin(β)sin(α)

Fuerza contraelectromotriz del motor síncrono dada la constante del devanado del inducido

La Fuerza contraelectromotriz del motor síncrono dada la fórmula constante del devanado del inducido se define como la Fuerza electromotriz opuesta inducida en el motor síncrono.

Eb=KaΦNs

Fuerza máxima cuando no se aplican cargas de viento y terremoto

La fórmula de resistencia máxima cuando no se aplican cargas de viento y terremoto se define como la resistencia total debido a la carga muerta de la estructura y la carga viva en la estructura.

U=(1.4DL)+(1.7LL)

Fuerza máxima cuando se aplican cargas de viento

La fórmula de Resistencia máxima cuando se aplican cargas de viento se define como las capacidades para resistir cargas de diseño y sus momentos y Fuerzas internos relacionados.

U=(0.9DL)+(1.3W)

Fuerza de empuje para Fuerza de corte dada, ángulo de corte y Fuerza a lo largo de la Fuerza de corte

La Fuerza de empuje para la Fuerza de corte, el ángulo de corte y la Fuerza dada a lo largo de la Fuerza de corte actúa en la dirección perpendicular a la superficie generada y la Fuerza de empuje se mide con un dinamómetro.

Fa=Fccos(ϕs)-Fssin(ϕs)

¿Cómo encontrar Fórmulas?

A continuación se ofrecen algunos consejos para obtener mejores resultados de búsqueda.
Sea específico: cuanto más específica sea su consulta, mejores serán los resultados.
Utilice varias palabras clave: combine varias palabras clave para limitar los resultados.
Experimenta con sinónimos: Diferentes términos pueden producir resultados diferentes.
Búsqueda con comodines: utiliza el operador * (asterisco). TENGA EN CUENTA que este operador funciona solo al final de una palabra. Ejemplo: biografía*, área*, etc.

Como alternativa, puede navegar a través de las subcategorías dentro de para concentrarse en las fórmulas de interés.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!