Buscar Fórmulas

Ingrese un mínimo de 3 caracteres para comenzar a buscar fórmulas de .

Seleccionar filtro

Limite los resultados de su búsqueda con la ayuda de estos filtros.

50 ¡Se encontraron fórmulas coincidentes!

Fuerza normal para el freno de zapata si la línea de acción de la Fuerza tangencial pasa por debajo del punto de apoyo (antirreloj)

La fórmula de Fuerza Normal para Freno de Zapata si la Línea de Acción de la Fuerza Tangencial Pasa por Debajo del Punto de Apoyo (En Sentido Antihorario) se define como la Fuerza que ejerce la zapata de freno sobre la rueda giratoria para reducir su velocidad o detenerla, considerando que la línea de acción de la Fuerza tangencial pasa por debajo del punto de apoyo en sentido antihorario.

Fn=Plx-μbrakeashift

Fuerza normal para el freno de zapata si la línea de acción de la Fuerza tangencial pasa por debajo del punto de apoyo (en el sentido de las agujas del reloj)

La fórmula de Fuerza normal para freno de zapata si la línea de acción de la Fuerza tangencial pasa por debajo del fulcro (en el sentido de las agujas del reloj) se define como la Fuerza ejercida por la zapata de freno sobre la rueda giratoria para reducir su velocidad, que depende de la Fuerza tangencial, el punto de pivote y la eficiencia del freno, y es crucial para diseñar sistemas de frenado efectivos en vehículos y maquinaria.

Fn=Plx+μbrakeashift

Fuerza normal para el freno de zapata si la línea de acción de la Fuerza tangencial pasa por encima del punto de apoyo (antirreloj)

La fórmula de Fuerza Normal para Freno de Zapata si la Línea de Acción de la Fuerza Tangencial Pasa por Arriba del Punto de Apoyo (En Sentido Antihorario) se define como la Fuerza ejercida por el freno de zapata sobre la rueda cuando la línea de acción de la Fuerza tangencial pasa por encima del punto de apoyo en sentido antihorario, lo cual es esencial para determinar la eficiencia de frenado de un vehículo.

Fn=Plx+μbrakeashift

Fuerza normal para el freno de zapata si la línea de acción de la Fuerza tangencial pasa por encima del punto de apoyo (en el sentido de las agujas del reloj)

La fórmula de Fuerza Normal para Freno de Zapata si la Línea de Acción de la Fuerza Tangencial Pasa por Arriba del Punto de Apoyo (en el Sentido de las Agujas del Reloj) se define como la Fuerza ejercida por el freno de zapata sobre la rueda giratoria cuando la línea de acción de la Fuerza tangencial pasa por encima del punto de apoyo en el sentido de las agujas del reloj, lo cual es esencial para determinar la eficiencia de frenado y la estabilidad del sistema.

Fn=Plx-μbrakeashift

Fuerza normal presionando el bloque de freno en la rueda para freno de zapata

La fórmula de Fuerza normal que presiona el bloque de freno sobre la rueda para el freno de zapata se define como la Fuerza ejercida por el bloque de freno sobre la rueda en un sistema de freno de zapata, que es un componente crítico en el mecanismo de frenado de los vehículos, que influye en la potencia de frenado general y la seguridad del vehículo.

Fn=Plx

Fuerza de frenado tangencial que actúa en la superficie de contacto del bloque y la rueda para el freno de zapata

La fórmula de la Fuerza de frenado tangencial que actúa en la superficie de contacto del bloque y la rueda para el freno de zapata se define como la Fuerza ejercida por la zapata de freno sobre la rueda giratoria para reducir su velocidad, que depende de la Fuerza de reacción normal y del coeficiente de fricción entre la zapata de freno y la rueda.

Ft=μbrakeRN

Fuerza restauradora

La fórmula de Fuerza de restauración se define como una medida de la Fuerza que restaura un objeto a su posición original después de haber sido desplazado de su posición de equilibrio, a menudo observada en movimientos oscilatorios, y es un concepto crucial para comprender la dinámica de los sistemas vibratorios.

Fre=-sconstrainsbody

Fuerza de restauración usando el peso del cuerpo

La fórmula de Fuerza de restauración utilizando el peso del cuerpo se define como la Fuerza que restaura un objeto a su posición original después de haber sido desplazado de su posición de equilibrio, teniendo en cuenta el peso del cuerpo y las restricciones que actúan sobre él, y es un concepto crucial para comprender la frecuencia natural de las vibraciones longitudinales libres.

Fre=W-(sconstrain(δ+sbody))

Fuerza aceleradora

La fórmula de Fuerza de aceleración se define como una medida de la Fuerza que hace que un objeto gire o se retuerza alrededor de un eje central, lo que produce vibraciones torsionales, y es un parámetro crítico en el análisis del movimiento de rotación y la vibración en sistemas mecánicos.

F=Idα

Fuerza de choque

La Fuerza de Choque calcula la Fuerza de una onda de choque normal en un flujo de fluido. Esta fórmula incorpora la relación de calores específicos del fluido y el número de Mach antes del choque para determinar la Fuerza del choque. Proporciona información sobre la intensidad de la onda de choque, lo que ayuda en el análisis del comportamiento del flujo compresible y su impacto en la dinámica de fluidos.

Δpstr=(2γ1+γ)(M12-1)

Fuerza de la fuente para la velocidad radial y en cualquier radio

La Fuerza de la fuente para la velocidad radial y en cualquier radio se conoce a partir de la relación de flujo de la fuente. Se define como el caudal volumétrico por unidad de profundidad.

q=Vr2πr1

Fuerza de elevación con ángulo de ataque

La fórmula de la Fuerza de sustentación con el ángulo de ataque se define como el producto de la Fuerza de arrastre y la cuna del ángulo de ataque.

FL=FDcot(α)

Fuerza de arrastre con ángulo de ataque

La fórmula de Fuerza de arrastre con ángulo de ataque se define como la relación entre la Fuerza de sustentación y la cuna del ángulo de ataque.

FD=FLcot(α)

Fuerza del doblete para la función de flujo

La Fuerza del doblete para la función de corriente representa la magnitud o intensidad de la fuente o sumidero del doblete. Determina qué tan fuerte es el doblete en términos de su efecto sobre el campo de flujo, particularmente al generar o influir en líneas de corriente a su alrededor.

µ=-ψ2π((x2)+(y2))y

Fuerza de atracción entre dos masas separadas por distancia

La fórmula de Fuerza de atracción entre dos masas separadas por una distancia se define como una medida de la Fuerza gravitacional que existe entre dos objetos con masa, que es directamente proporcional al producto de sus masas e inversamente proporcional al cuadrado de la distancia entre ellos.

Fg=[G.]m1m2dm2

Fuerza de arrastre total dada la potencia requerida

La Fuerza de arrastre total dada la potencia requerida define la Fuerza de arrastre ejercida sobre un objeto que se mueve a través de un fluido, donde P es la potencia requerida para mantener esa velocidad, esta fórmula ilustra que la Fuerza de arrastre experimentada por un objeto es directamente proporcional a la potencia requerida para mantener su velocidad a través del fluido, siendo la velocidad inversamente proporcional a la Fuerza de arrastre.

FD=PV

Fuerza de punzonado para orificios más pequeños que el espesor de la hoja

La Fuerza de punzonado para orificios más pequeños que el espesor de la hoja es la Fuerza que debe ejercer el punzón para cortar la pieza en bruto del material. Se puede estimar a partir del área de corte real y la resistencia al corte del material.

P=drmtbε(drmtb)13

Fuerza de tracción para carcasas cilíndricas

La Fuerza de estirado para carcasas cilíndricas es la Fuerza mínima que se requiere para formar carcasas cilíndricas a partir de chapa metálica utilizando una matriz de embutición. Se calcula considerando el material de la copa, sus dimensiones y configuración.

Pd=πdstbσy(Dbds-Cf)

Fuerza de amortiguamiento

La fórmula de la Fuerza de amortiguamiento se define como una medida de la Fuerza retardante que se opone al movimiento de un objeto, lo que resulta en la reducción de la amplitud de las vibraciones, y es un parámetro crucial en el estudio de las vibraciones mecánicas, ayudando a analizar y predecir el comportamiento de los sistemas oscilantes.

Fd=cV

Fuerza de la primavera

La fórmula de Fuerza de resorte se define como una medida de la Fuerza ejercida por un resorte cuando se comprime o se estira, que es proporcional a la distancia de desplazamiento desde su posición de equilibrio, y es un concepto fundamental en vibraciones mecánicas, utilizado para describir el movimiento oscilatorio de objetos unidos a resortes.

Pspring=k'd

Fuerza de inercia

La fórmula de la Fuerza de inercia se define como la medida de la Fuerza que se opone a los cambios en el movimiento de un objeto, resultante de la masa y la aceleración del objeto, y es un concepto fundamental en las vibraciones mecánicas, donde juega un papel crucial en la comprensión del comportamiento dinámico de los sistemas.

Finertia=m'a

Fuerza cortante para torque y diámetro del eje en el cojinete de deslizamiento

La Fuerza de corte para el par y el diámetro del eje en el cojinete de deslizamiento se conoce considerando los términos de resistencia violenta o Fuerza de corte y el diámetro del eje de la derivación del cojinete de deslizamiento en flujo viscoso.

Fs=τDs2

Fuerza en una soldadura de filete paralela dada la tensión de corte

La Fuerza en la soldadura de filete paralela dada la tensión de corte es la Fuerza o la carga que actúa sobre la soldadura de filete paralela.

Pf=𝜏Lhlsin(θ)+cos(θ)

Fuerza tangencial en el engranaje dado el par y el diámetro del círculo primitivo

La Fuerza tangencial sobre el engranaje dado el par y el diámetro del círculo primitivo se define como la Fuerza que actúa sobre un engranaje recto en la dirección de una tangente a la superficie curva de la circunferencia del engranaje. Esta Fuerza tiende a hacer girar el engranaje recto.

Pt=2Mtd

Fuerza radial del engranaje dada la Fuerza tangencial y el ángulo de presión

La Fuerza radial del engranaje dada la Fuerza tangencial y el ángulo de presión se define como la Fuerza que actúa sobre el engranaje en la dirección radial hacia sí mismo. Esto provoca un empuje lateral sobre el cojinete. La Fuerza radial del engranaje depende de la Fuerza tangencial y el ángulo de presión.

Pr=Pttan(Φ)

Fuerza tangencial en el engranaje dada la Fuerza radial y el ángulo de presión

La Fuerza tangencial sobre el engranaje dada la Fuerza radial y el ángulo de presión se define como la Fuerza que actúa sobre un engranaje recto en la dirección de una tangente a la superficie curva de la circunferencia del engranaje. Esta Fuerza tiende a hacer girar el engranaje recto.

Pt=Prcot(Φ)

Fuerza resultante sobre el engranaje

La Fuerza resultante sobre la fórmula del engranaje se define como la Fuerza neta que actúa sobre un engranaje. Es una suma de la carga de empuje, la carga axial y la carga radial sobre el engranaje. La Fuerza resultante sobre el engranaje depende de la Fuerza tangencial y el ángulo de presión.

Prs=Ptcos(Φ)

Fuerza tangencial en el engranaje dado el ángulo de presión y la Fuerza resultante

La Fuerza tangencial sobre el engranaje dado el ángulo de presión y la Fuerza resultante se definen como la Fuerza que actúa sobre un engranaje recto en la dirección de una tangente a la superficie curva de la circunferencia del engranaje. Esta Fuerza tiende a hacer girar el engranaje recto.

Pt=Prscos(Φ)

Fuerza de arrastre total en la esfera

La fórmula de la Fuerza de arrastre total sobre la esfera se define como la cantidad total de Fuerza que actúa sobre la esfera como resultado del arrastre por presión y el arrastre por fricción superficial, conocida teniendo en cuenta la viscosidad del fluido, el diámetro de la esfera y la velocidad del flujo. del fluido sobre la esfera.

FD=3πμdDv

Fuerza de flotación dado el número de grashof

La Fuerza de flotación dada la fórmula del número de Grashof se define como una Fuerza hacia arriba ejercida por un fluido que se opone al peso de un objeto parcial o totalmente sumergido.

Fbu=Gμ2Fi

Fuerza de inercia dado el número de Grashof

La Fuerza de inercia dada la fórmula del número de Grashof se define como cualquier Fuerza invocada por un observador para mantener la validez de la segunda ley de movimiento de Isaac Newton en un marco de referencia que gira o acelera a una tasa constante.

Fi=Gμ2Fbu

Fuerza viscosa dado el número de Grashof

La Fuerza viscosa dada la fórmula del número de Grashof se define como la tasa a la que la velocidad del fluido cambia en el espacio.

μ=FbuFiG

Fuerza de tracción axial dada la tensión de tracción en el eje hueco

La fórmula de Fuerza de tracción axial dada la tensión de tracción en un eje hueco se define como la cantidad máxima de Fuerza de tracción que un eje hueco puede soportar sin sufrir deformación, lo cual es crucial en el diseño de ejes huecos para garantizar su integridad estructural y confiabilidad en diversas aplicaciones mecánicas.

Pax hollow=σtpπ4(do2-di2)

Fuerza de corte primaria en cada perno

La Fuerza de corte primaria en cada fórmula de perno se define como la relación entre la Fuerza externa y el número de pernos. Es la Fuerza que actúa en una dirección paralela a una superficie o a una sección transversal plana de un cuerpo.

P1'=Pen

Fuerza externa en el perno

La Fuerza externa sobre el perno es crucial para garantizar la confiabilidad y seguridad de la unión. La Fuerza externa sobre un perno puede verse influenciada por varios factores, incluidas las cargas aplicadas, la geometría del perno y las propiedades de los materiales involucrados.

Pe=nP1'

Fuerza límite en el perno dada la rigidez y la precarga inicial

La Fuerza límite sobre el perno dada la rigidez y la precarga inicial se define como la cantidad de Fuerza neta que el perno puede soportar hasta la falla. Es el valor límite de la Fuerza.

Fl=Pi(kb'+kc'kc')

Fuerza impulsora

La Fuerza impulsora se define como la Fuerza y el peso efectivo de la partícula en un fluido. Si se conocen todos los demás valores, se puede determinar cualquier cosa.

F=(ρm-ρf)[g]Vp

Fuerza motriz magneto (MMF)

La fórmula de la Fuerza motriz magnética (MMF) se define como la Fuerza motriz magnética es una cantidad que aparece en la ecuación para el flujo magnético en un circuito magnético, a menudo llamada ley de Ohm para circuitos magnéticos.

mmf=ΦR

Fuerza magnética aparente en longitud l

La fórmula de la Fuerza magnética aparente en la longitud l se define como Fuerza magnética, atracción o repulsión que surge entre partículas cargadas eléctricamente debido a su movimiento en la longitud l.

H1=ILn

Fuerza de pretensado dada una carga uniforme

La Fuerza de pretensado dada la carga uniforme es la Fuerza que actúa directamente sobre el miembro pretensado en el área de la sección transversal considerada.

F=wbL28Ls

Fuerza ascendente debida al agua de filtración dado el peso de la unidad sumergida

La Fuerza ascendente debida a la filtración de agua dado el peso unitario sumergido se define como el valor de la Fuerza ascendente cuando tenemos información previa de otros parámetros utilizados.

Fu=σn-(ySz(cos(iπ180))2)

Fuerza cortante dada la deflexión debida al corte en la presa Arch

La Fuerza de corte dada la deflexión debida al corte en la presa de arco se refiere a la Fuerza interna que es perpendicular al eje longitudinal de la presa y se genera debido a la deflexión causada por las Fuerzas de corte aplicadas, como la presión del agua.

Fs=δEK3

Fuerza cortante dada la rotación debido al corte en la presa Arch

La fórmula de la Fuerza cortante dada la rotación debida al corte en el arco de la presa se define como la Fuerza que actúa a lo largo del miembro o a lo largo del estribo de la presa.

Fs=ΦEtK5

Fuerza de flotación de un cuerpo sumergido en un fluido

La fórmula de la Fuerza de flotación del cuerpo sumergido en un fluido se define como la Fuerza que hace que los objetos floten. Es una Fuerza ejercida sobre un objeto que está parcial o totalmente sumergido en un fluido.

FB=ρ[g]

Fuerza de arrastre para cuerpo en movimiento en fluido

La Fuerza de arrastre para un cuerpo en movimiento en la fórmula de un fluido se define como la Fuerza que actúa de manera opuesta al movimiento relativo de cualquier objeto que se mueve con respecto a un fluido circundante.

FD'=CD'ApMw(v)2Vw2

Fuerza de sustentación para cuerpo en movimiento en fluido

La fórmula Fuerza de sustentación para un cuerpo que se mueve en un fluido se define como la suma de todas las Fuerzas sobre un cuerpo que lo Fuerzan a moverse perpendicularmente a la dirección del flujo.

FL'=CLApMw(v2)Vw2

Fuerza ejercida por el cuerpo en el plano supersónico.

La Fuerza ejercida por el cuerpo en la fórmula del plano supersónico se define como un empujón o un tirón sobre un objeto resultante de la interacción del objeto con otro objeto.

F=(ρ(ΔL2)(v2))(μdρvΔL)(Kρv2)

Fuerza total ejercida por el fluido sobre el cuerpo.

La fórmula de Fuerza total ejercida por el fluido sobre el cuerpo se define como la Fuerza ejercida por el fluido sobre el cuerpo perpendicular a la superficie del cuerpo.

F=(CD'Apρv22)+(CLApρv22)

Fuerza de flotación que actúa sobre una bola esférica

La fórmula de Fuerza de flotación que actúa sobre una bola esférica se define como la Fuerza hacia arriba que ejerce un fluido sobre un objeto. El principio de Arquímedes es el hecho de que la Fuerza de flotación es igual al peso del fluido desplazado.

FB'=ρwatergVb

Fuerza de fricción ejercida por la empaquetadura blanda en la varilla de movimiento alternativo

La Fuerza de fricción ejercida por el empaque blando en la fórmula de la varilla recíproca se define como la Fuerza que resiste el movimiento cuando la superficie de un objeto entra en contacto con la superficie de otro.

Ffriction=.005pd

¿Cómo encontrar Fórmulas?

A continuación se ofrecen algunos consejos para obtener mejores resultados de búsqueda.
Sea específico: cuanto más específica sea su consulta, mejores serán los resultados.
Utilice varias palabras clave: combine varias palabras clave para limitar los resultados.
Experimenta con sinónimos: Diferentes términos pueden producir resultados diferentes.
Búsqueda con comodines: utiliza el operador * (asterisco). TENGA EN CUENTA que este operador funciona solo al final de una palabra. Ejemplo: biografía*, área*, etc.

Como alternativa, puede navegar a través de las subcategorías dentro de para concentrarse en las fórmulas de interés.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!