Buscar Fórmulas

Ingrese un mínimo de 3 caracteres para comenzar a buscar fórmulas de .

Seleccionar filtro

Limite los resultados de su búsqueda con la ayuda de estos filtros.

50 ¡Se encontraron fórmulas coincidentes!

Fuerza mínima requerida para deslizar el cuerpo en un plano horizontal rugoso

La fórmula de Fuerza mínima requerida para deslizar un cuerpo sobre un plano horizontal rugoso se define como la menor cantidad de Fuerza necesaria para iniciar el movimiento de deslizamiento de un objeto sobre una superficie horizontal rugosa, teniendo en cuenta el peso del objeto y el ángulo de elevación del plano.

Pmin=Wsin(θe)

Fuerza normal para el freno de zapata si la línea de acción de la Fuerza tangencial pasa por debajo del punto de apoyo (antirreloj)

La fórmula de Fuerza Normal para Freno de Zapata si la Línea de Acción de la Fuerza Tangencial Pasa por Debajo del Punto de Apoyo (En Sentido Antihorario) se define como la Fuerza que ejerce la zapata de freno sobre la rueda giratoria para reducir su velocidad o detenerla, considerando que la línea de acción de la Fuerza tangencial pasa por debajo del punto de apoyo en sentido antihorario.

Fn=Plx-μbrakeashift

Fuerza normal para el freno de zapata si la línea de acción de la Fuerza tangencial pasa por debajo del punto de apoyo (en el sentido de las agujas del reloj)

La fórmula de Fuerza normal para freno de zapata si la línea de acción de la Fuerza tangencial pasa por debajo del fulcro (en el sentido de las agujas del reloj) se define como la Fuerza ejercida por la zapata de freno sobre la rueda giratoria para reducir su velocidad, que depende de la Fuerza tangencial, el punto de pivote y la eficiencia del freno, y es crucial para diseñar sistemas de frenado efectivos en vehículos y maquinaria.

Fn=Plx+μbrakeashift

Fuerza normal para el freno de zapata si la línea de acción de la Fuerza tangencial pasa por encima del punto de apoyo (antirreloj)

La fórmula de Fuerza Normal para Freno de Zapata si la Línea de Acción de la Fuerza Tangencial Pasa por Arriba del Punto de Apoyo (En Sentido Antihorario) se define como la Fuerza ejercida por el freno de zapata sobre la rueda cuando la línea de acción de la Fuerza tangencial pasa por encima del punto de apoyo en sentido antihorario, lo cual es esencial para determinar la eficiencia de frenado de un vehículo.

Fn=Plx+μbrakeashift

Fuerza normal para el freno de zapata si la línea de acción de la Fuerza tangencial pasa por encima del punto de apoyo (en el sentido de las agujas del reloj)

La fórmula de Fuerza Normal para Freno de Zapata si la Línea de Acción de la Fuerza Tangencial Pasa por Arriba del Punto de Apoyo (en el Sentido de las Agujas del Reloj) se define como la Fuerza ejercida por el freno de zapata sobre la rueda giratoria cuando la línea de acción de la Fuerza tangencial pasa por encima del punto de apoyo en el sentido de las agujas del reloj, lo cual es esencial para determinar la eficiencia de frenado y la estabilidad del sistema.

Fn=Plx-μbrakeashift

Fuerza normal presionando el bloque de freno en la rueda para freno de zapata

La fórmula de Fuerza normal que presiona el bloque de freno sobre la rueda para el freno de zapata se define como la Fuerza ejercida por el bloque de freno sobre la rueda en un sistema de freno de zapata, que es un componente crítico en el mecanismo de frenado de los vehículos, que influye en la potencia de frenado general y la seguridad del vehículo.

Fn=Plx

Fuerza de frenado tangencial que actúa en la superficie de contacto del bloque y la rueda para el freno de zapata

La fórmula de la Fuerza de frenado tangencial que actúa en la superficie de contacto del bloque y la rueda para el freno de zapata se define como la Fuerza ejercida por la zapata de freno sobre la rueda giratoria para reducir su velocidad, que depende de la Fuerza de reacción normal y del coeficiente de fricción entre la zapata de freno y la rueda.

Ft=μbrakeRN

Fuerza centrífuga resultante

La Fuerza centrífuga resultante se obtiene de las componentes horizontal y vertical de la Fuerza centrífuga.

Fc=ΣH2+ΣV2

Fuerza de compresión total dada el área y el esfuerzo de tracción del acero

La Fuerza de compresión total dada el área y la tensión de tracción del acero se define como la Fuerza de compresión total es igual a la Fuerza de tracción total, que es producto de la tensión en el acero de tracción y el área del acero de tracción.

C=AfTS

Fuerza de corte para una Fuerza dada a lo largo de la Fuerza de corte, corte, fricción y ángulos de ataque normales

La Fuerza de corte para una Fuerza dada a lo largo de la Fuerza de corte, corte, fricción y ángulos de ataque normales se define como el producto de la Fuerza a lo largo del plano de corte por la relación del coseno de la diferencia de fricción y ángulos de ataque por el coseno de la suma del ángulo de corte. a la diferencia de fricción y ángulos de ataque.

Fc=Fscos(β-α)cos(Φ+β-α)

Fuerza de corte para tensión de corte, ancho de corte, espesor de viruta sin cortar, fricción, inclinación y ángulos de corte

La Fuerza de corte para el esfuerzo cortante, el ancho de corte, el espesor de la viruta sin cortar, la fricción, la inclinación y los ángulos de corte se define como el producto del esfuerzo cortante promedio a lo largo de los planos de corte, el espesor de la viruta sin cortar y el ancho del corte por la relación del coseno de la diferencia. de los ángulos de rozamiento y de ataque al coseno del ángulo de corte sumado a la diferencia de los ángulos de rozamiento y de ataque.

Fc=τwtcos(β-α)cos(Φ+β-α)

Fuerza de flexión resultante a lo largo de la dirección xey

La fórmula de la Fuerza de flexión resultante a lo largo de las direcciones xey es conocida por encontrar la Fuerza total que actúa mientras se consideran todas las Fuerzas de los ejes xey.

FR=(Fx2)+(Fy2)

Fuerza de corte o resistencia viscosa en cojinetes de deslizamiento

La Fuerza cortante o la resistencia viscosa en la fórmula de los cojinetes deslizantes se conoce considerando el esfuerzo cortante del aceite y el área de superficie del eje.

Fs=π2μNLDs2t

Fuerza de arrastre en el método de resistencia de esfera descendente

Fuerza de arrastre en la caída del método de resistencia de la esfera, la Fuerza de arrastre es la resistencia ejercida por el fluido sobre la esfera mientras cae. Está determinado por la velocidad de la esfera, la viscosidad del fluido y el tamaño de la esfera. A la velocidad terminal, la Fuerza de arrastre es igual a la Fuerza gravitacional menos la Fuerza de flotación.

FD=3πμUd

Fuerza de flotación en el método de resistencia de esfera descendente

Fuerza de flotación en el método de resistencia de la esfera que cae, la Fuerza de flotación es la Fuerza hacia arriba ejercida por el fluido sobre la esfera que cae. Es igual al peso del fluido desplazado por la esfera. Esta Fuerza afecta la velocidad terminal de la esfera y debe tenerse en cuenta al calcular la viscosidad del fluido.

FB=π6ρ[g]d3

Fuerza de tracción en las placas dada la tensión de tracción en la soldadura de filete transversal

La Fuerza de tracción en las placas dada la tensión de tracción en la soldadura de filete transversal es la Fuerza de estiramiento que actúa sobre las placas.

Pt=σt0.707hlL

Fuerza de aceleración centrífuga en centrífuga

La Fuerza de aceleración centrífuga en centrífuga se define como una Fuerza inercial que parece actuar sobre todos los objetos cuando se ve en un marco de referencia giratorio.

G=Rb(2πN)232.2

Fuerza de flotación en los núcleos

La Fuerza de flotación sobre los núcleos se puede calcular como la diferencia entre el peso del metal líquido y el del material del núcleo del mismo volumen que el del núcleo expuesto.

Fb =9.81Vc(ρcm-ρc)

Fuerza de flotación en núcleos cilíndricos colocados horizontalmente

La Fuerza de flotación sobre núcleos cilíndricos colocados horizontalmente es la Fuerza hacia arriba ejercida por un fluido sobre los núcleos cuando están parcial o totalmente sumergidos en el fluido.

Fb =π4D2[g]Hc(ρcm-ρc)

Fuerza de flotación en núcleos verticales

La Fuerza de flotación en los núcleos verticales es la Fuerza hacia arriba que ejerce el metal fundido sobre el núcleo a medida que se vierte en la cavidad.

Fb =(π4(dc2-D2)hρcm-Vcρc)[g]

Fuerza de arrastre para el coeficiente de arrastre promedio

La Fuerza de arrastre para el coeficiente de arrastre promedio se conoce al considerar los términos coeficiente de arrastre, la densidad del fluido, el área de la superficie o las placas y la velocidad de la corriente libre.

FD=12CDρfAV2

Fuerza lateral de cola vertical

La Fuerza lateral de cola vertical es una medida de la Fuerza lateral ejercida sobre la cola vertical de una aeronave, lo que indica su capacidad para resistir la guiñada y mantener la estabilidad direccional durante el vuelo; depende de la pendiente de la curva de elevación de la cola vertical, el ángulo de ataque, el área y la dinámica. presión, y es crucial para garantizar la estabilidad general y el control de la aeronave durante diversos regímenes de vuelo.

Yv=-CvαvSvQv

Fuerza tangencial máxima sobre el engranaje dado Factor de servicio

Fuerza tangencial máxima sobre el engranaje dado El factor de servicio se define como la cantidad máxima o más alta de Fuerza tangencial que actúa sobre el engranaje. La Fuerza tangencial es tangente al círculo primitivo operativo en el plano transversal.

Ptmax=KsPt

Fuerza de unión fibra-matriz dada la longitud crítica de la fibra

La Fuerza de unión fibra-matriz dada la longitud crítica de la fibra indica que la Fuerza de unión entre la fibra y la matriz es inversamente proporcional a la longitud crítica de la fibra. En otras palabras, las fibras más cortas suelen presentar una unión más fuerte con la matriz en comparación con las fibras más largas.

τ=σfd2lc

Fuerza centrífuga que actúa sobre el vehículo

La fórmula de la Fuerza centrífuga que actúa sobre el vehículo se define como una Fuerza que surge de la inercia del cuerpo, que parece actuar sobre un cuerpo que se mueve en una trayectoria circular y se aleja del centro alrededor del cual se mueve el cuerpo.

Fc=WV2gRCurve

Fuerza resultante por paralelogramo de Fuerzas

La Fuerza resultante por paralelogramo de Fuerzas se describe como la cantidad total de Fuerza que actúa sobre el objeto o cuerpo junto con la dirección del cuerpo.

Pn=dH2+dv2

Fuerza horizontal dada la dirección de la Fuerza resultante

La Fuerza horizontal dada la dirección de la Fuerza resultante se define como la presión que actúa sobre un miembro particular en dirección horizontal debido al relleno.

dH=dvtan(θ)

Fuerza iónica para electrolito univalente

La Fuerza iónica para la fórmula de electrolito univalente se define como la mitad de la sumisión de la molalidad y el cuadrado de las valencias de los iones disponibles en la solución. Un ejemplo de electrolito univalente es NaCl, KBr, HCl, etc.

I=(12)(m+((Z+)2)+m-((Z-)2))

Fuerza iónica para electrolito bivalente

La Fuerza iónica para la fórmula de electrolito bivalente se define como la mitad de la sumisión de la molalidad y el cuadrado de las valencias de los iones disponibles en la solución. Un ejemplo de un electrolito bivalente es CuSO4, ZnSO4, MgSO4, etc.

I=(12)(m+((Z+)2)+m-((Z-)2))

Fuerza iónica para electrolito bivalente si la molalidad del catión y el anión es la misma

La Fuerza iónica para el electrolito bivalente si la molalidad del catión y el anión es la misma fórmula se define como cuatro veces la molalidad del electrolito. Para los electrolitos bivalentes, las valencias de catión y anión son dos.

I=(4m)

Fuerza de actuación dada la capacidad de par del freno de disco

La Fuerza de actuación dada por la capacidad de torsión de la fórmula del freno de disco se define como la Fuerza que actúa en ese punto sobre las pastillas de freno.

F=MtμRf

Fuerza de actuación

La fórmula de la Fuerza de actuación se define como la Fuerza necesaria para ajustar el mecanismo de actuación.

F=PaA

Fuerza tangencial al final de cada brazo de la polea dada la torsión transmitida por la polea

La Fuerza tangencial en el extremo de cada brazo de la polea, dada la fórmula del par transmitido por la polea, se define como la cantidad de Fuerza presente en el extremo de cada brazo de la polea.

P=MtR(N2)

Fuerza tangencial en el extremo de cada brazo de la polea dado el momento de flexión en el brazo

La Fuerza tangencial en el extremo de cada brazo de la polea, dada la fórmula del momento de flexión en el brazo, se define como la cantidad de Fuerza que actúa en el extremo de los brazos perpendicular al brazo de la polea.

P=MbR

Fuerza de tracción para juntas de soldadura a tope

La Fuerza de tracción para la unión de soldadura a tope son las Fuerzas de estiramiento que actúan sobre el material y tiene dos componentes, a saber, la tensión de tracción y la deformación por tracción.

Ftensile=σtAweld bed

Fuerza de tracción para uniones soldadas a tope dada la longitud de la soldadura

La Fuerza de tracción para la unión de soldadura a tope dada la longitud de la soldadura se define como las Fuerzas de estiramiento que actúan sobre el material y tiene dos componentes, a saber, la tensión de tracción y la deformación por tracción.

Ftensile=σtlt

Fuerza sobre el émbolo dada la intensidad

La Fuerza sobre el émbolo dada la intensidad puede determinarse mediante la relación entre la intensidad, el área y la Fuerza. La intensidad de una onda sonora es la potencia por unidad de área y la Fuerza es el producto de la presión y el área. Dado que la intensidad se relaciona con la energía por unidad de área por unidad de tiempo, la Fuerza sobre el émbolo se puede encontrar considerando la presión ejercida por la onda sonora sobre el área de la superficie del émbolo.

F'=pia

Fuerza final hidrostática

La fórmula de la Fuerza final hidrostática se define como la Fuerza resultante causada por la carga de presión de un líquido que actúa sobre superficies sumergidas.

H=Wm1-Hp

Fuerza de gas que actúa sobre la tapa del cilindro

La Fuerza del gas que actúa sobre la tapa del cilindro es la cantidad de Fuerza que actúa en la parte inferior de la tapa del cilindro debido a la combustión del combustible.

Fg=πDi24pmax

Fuerza de resistencia neta ofrecida por los espárragos de la culata

La Fuerza de resistencia neta que ofrecen los espárragos de la culata es la Fuerza de resistencia total desarrollada dentro de los espárragos de la tapa del cilindro del motor.

Ps=zπdc24σts

Fuerza de reacción en el punto de apoyo de la palanca dado el esfuerzo, la carga y el ángulo contenido

La Fuerza de reacción en el punto de apoyo de la palanca dado el esfuerzo, la carga y el ángulo contenido es la Fuerza de reacción que actúa sobre el punto de apoyo de la palanca como resultado de la Fuerza de esfuerzo y la Fuerza aplicada por la palanca.

Rf=W2+P2-2WPcos(θ)

Fuerza de reacción en el punto de apoyo de la palanca en ángulo recto

La Fuerza de reacción en el punto de apoyo de la palanca en ángulo recto es la Fuerza de reacción que actúa sobre el punto de apoyo de la palanca como resultado de la Fuerza de esfuerzo y la Fuerza aplicada por la palanca.

Rf=W2+P2

Fuerza de esfuerzo aplicada en la palanca dado el momento de flexión

La Fuerza de esfuerzo aplicada sobre la palanca dado el momento de flexión es la Fuerza que se aplica sobre el brazo de la palanca como Fuerza de entrada, esta Fuerza aumenta por la ventaja mecánica de la palanca.

P=Mbl1-d1

Fuerza de reacción en el punto de apoyo de la palanca dada la presión de apoyo

La Fuerza de reacción en el punto de apoyo de la palanca dada la presión de apoyo es la Fuerza de reacción que actúa sobre el punto de apoyo de la palanca como resultado de la Fuerza de esfuerzo y la Fuerza aplicada por la palanca.

Rf=Pbd1lf

Fuerza tangencial en la circunferencia del eje

La Fuerza tangencial en la circunferencia del eje se define como la Fuerza que actúa sobre un eje en movimiento en la dirección de la tangente a la trayectoria curva del eje.

F=Tmdshaft2

Fuerza de aplastamiento de la llave

La fórmula de Resistencia al aplastamiento de Key se define como la capacidad de un material o estructura para soportar cargas en la circunferencia del eje.

F=(l)(t2)fc

Fuerza de arrastre dado el coeficiente de elevación

Fuerza de arrastre dada el coeficiente de elevación es una medida de la Fuerza de arrastre ejercida sobre un objeto, calculada multiplicando la Fuerza de elevación por el coeficiente de resistencia y dividiéndola por el coeficiente de elevación, proporcionando un valor cuantitativo de la resistencia experimentada por un objeto que se mueve a través de un fluido. .

FD=FLCDCL

Fuerza aerodinámica

La Fuerza aerodinámica es una medida de la Fuerza total ejercida sobre un objeto, que consta de la Fuerza de arrastre, que se opone al movimiento, y la Fuerza de elevación, que es perpendicular a la dirección del movimiento.

FR=FD+FL

Fuerza resultante que actúa sobre la superficie plana de una placa completamente sumergida dada la presión promedio

La Fuerza resultante que actúa sobre la superficie plana de una placa completamente sumergida dada la fórmula de presión promedio se define como el producto de la presión promedio que actúa sobre la superficie y el área de la superficie. La magnitud de la Fuerza resultante que actúa sobre una superficie plana de una placa completamente sumergida en un fluido homogéneo (densidad constante) es igual al producto de la presión Pc en el centroide de la superficie y el área A de la superficie.

FR=PAvgA

Fuerza inferior dada Fuerza de flotación y Fuerza superior

La Fuerza de fondo dada por la fórmula de Fuerza de flotación y Fuerza superior se define como la suma de la Fuerza de flotación y la Fuerza superior. Es una experiencia común que un objeto se siente más liviano y pesa menos en un líquido que en el aire. Esto se puede demostrar fácilmente pesando un objeto pesado en agua con una balanza de resorte a prueba de agua. Además, los objetos hechos de madera u otros materiales livianos flotan en el agua. Estas y otras observaciones sugieren que un fluido ejerce una Fuerza hacia arriba sobre un cuerpo sumergido en él. Esta Fuerza que tiende a levantar el cuerpo se llama Fuerza de flotación. La Fuerza de flotación es causada por el aumento de presión con la profundidad en un fluido. Por tanto, concluimos que la Fuerza de flotación que actúa sobre la placa es igual al peso del líquido desplazado por la placa. Para un fluido con densidad constante, la Fuerza de flotación es independiente de la distancia del cuerpo a la superficie libre. También es independiente de la densidad del cuerpo sólido.

FBottom=Fbuoyant+FTop

¿Cómo encontrar Fórmulas?

A continuación se ofrecen algunos consejos para obtener mejores resultados de búsqueda.
Sea específico: cuanto más específica sea su consulta, mejores serán los resultados.
Utilice varias palabras clave: combine varias palabras clave para limitar los resultados.
Experimenta con sinónimos: Diferentes términos pueden producir resultados diferentes.
Búsqueda con comodines: utiliza el operador * (asterisco). TENGA EN CUENTA que este operador funciona solo al final de una palabra. Ejemplo: biografía*, área*, etc.

Como alternativa, puede navegar a través de las subcategorías dentro de para concentrarse en las fórmulas de interés.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!