Buscar Fórmulas

Ingrese un mínimo de 3 caracteres para comenzar a buscar fórmulas de .

Seleccionar filtro

Limite los resultados de su búsqueda con la ayuda de estos filtros.

50 ¡Se encontraron fórmulas coincidentes!

Fuerza electrostática entre el núcleo y el electrón

La Fuerza electrostática entre el núcleo y el electrón es la Fuerza por la cual los electrones se mantienen en la órbita alrededor del núcleo.

Fn_e=[Coulomb]Z([Charge-e]2)rorbit2

Fuerza cortante en la sección para cara de pared vertical

La fórmula de la Fuerza de corte en la sección para la cara vertical de la pared se define como la Fuerza transversal a la viga en una sección dada que tiende a provocar que se corte en esa sección.

Fshear=V1+(Mbd)tan(θ)

Fuerza por unidad de área requerida para penetrar la masa del suelo con un pistón circular

La fórmula de la Fuerza por unidad de área requerida para penetrar la masa del suelo con un pistón circular se define como la presión aplicada sobre el pistón circular.

F=CBRFs

Fuerza por unidad de área requerida para la penetración de material estándar

La fórmula de la Fuerza por unidad de área requerida para la penetración del material estándar se define como la presión aplicada por el material estándar.

Fs=(FCBR)

Fuerza de presión total en cada extremo del cilindro

La fórmula de la Fuerza de presión total en cada extremo del cilindro se define como la Fuerza máxima que actúa en el fluido.

FC=y(π4[g]((ωdv2)2)+πdv3)

Fuerza del brazo del elevador dado el coeficiente de momento de la bisagra

La Fuerza del brazo del ascensor dado el coeficiente de momento de la bisagra es un cálculo que determina la Fuerza del brazo requerida para controlar el movimiento longitudinal de un ascensor, teniendo en cuenta la relación de engranaje, el coeficiente de momento de la bisagra, la densidad, la velocidad, la cuerda y el área del ascensor. Esta fórmula es esencial. en el diseño de aeronaves para garantizar el control y la estabilidad adecuados del ascensor, una superficie crítica de control de vuelo.

𝙁=𝑮Che0.5ρV2ceSe

Fuerza lateral de cola vertical para un momento dado

La Fuerza lateral de cola vertical para un momento dado es una medida de la Fuerza ejercida por la cola vertical de una aeronave en respuesta a un momento o Fuerza de giro, calculada dividiendo el momento producido por la cola vertical por el brazo de momento de cola vertical, proporcionando un valor crítico. parámetro en el diseño de aeronaves y análisis de estabilidad.

Yv=-(Nv𝒍v)

Fuerza ejercida sobre el tanque debido al chorro

La Fuerza ejercida sobre el tanque debido al chorro se define como la Fuerza debida al flujo de salida del fluido a través del orificio en la superficie del tanque.

F=γfAJetv2[g]

Fuerza de resistencia en superficie esférica

La Fuerza de resistencia en la superficie esférica se define como el fluido con una Fuerza externa contra la Fuerza del fluido.

Fresistance=3πμVmeanDS

Fuerza de resistencia sobre una superficie esférica dados pesos específicos

La Fuerza de resistencia sobre la superficie esférica dados los pesos específicos se define como la Fuerza total ejercida por el fluido sobre el objeto.

Fresistance=(π6)(DS3)(γf)

Fuerza de arrastre dado el coeficiente de arrastre

La Fuerza de arrastre dado el coeficiente de arrastre se define como la cantidad de resistencia desarrollada por el objeto en líquido.

FD=CDAVmeanVmeanρ0.5

Fuerza ejercida por el chorro en dirección normal a la placa

La Fuerza ejercida por el chorro en la dirección normal a la placa se define como la Fuerza ejercida por el chorro en la dirección normal a la placa.

Fp=(γfAJet(vjet2)[g])sin(∠D)

Fuerza ejercida por el chorro paralelo a la dirección del chorro normal a la placa

La Fuerza ejercida por el chorro paralelo a la dirección del chorro normal a la placa se define como la Fuerza ejercida por el chorro en la dirección paralela a la placa.

FX=(γfAJetvjet2[g])(sin(∠D))2

Fuerza ejercida por el chorro normal a la dirección del chorro normal a la placa

La Fuerza ejercida por el chorro normal a la dirección del chorro normal a la placa se define como la Fuerza ejercida por el chorro en dirección paralela a la placa.

FY=(γfAJetvjet2[g])sin(∠D)cos(∠D)

Fuerza ejercida sobre la placa en la dirección del flujo del chorro sobre un álabe curvo estacionario

La Fuerza ejercida sobre la placa en la dirección del flujo del chorro sobre un álabe curvo estacionario se define como la Fuerza inducida por el fluido sobre la placa estacionaria del chorro.

Fjet=(γfAJetvjet2[g])(1+cos(θt))

Fuerza neta que actúa sobre el electrodo

La fórmula de la Fuerza neta que actúa sobre el electrodo se define como la Fuerza que actúa sobre el electrodo mientras se realiza un mecanizado no convencional con una herramienta EDM.

Fnet=π(P1-Patm)(R02-R12)2ln(R0R1)

Fuerza ejercida sobre la placa en la dirección del flujo del chorro cuando Theta es cero

La Fuerza ejercida sobre la placa en la dirección del flujo del chorro cuando Theta es cero se define como la Fuerza inducida por el fluido sobre la placa estacionaria del chorro.

Fjet=2γfAJetvjet2[g]

Fuerza ejercida por el chorro sobre la paleta en la dirección x

La Fuerza ejercida por el chorro sobre la paleta en la dirección x se define como la Fuerza inducida por el fluido sobre la placa estacionaria del chorro en la dirección X.

Fx=(γfAJet(vjet2)g)(cos(θ)+cos(∠D))

Fuerza ejercida por el chorro en la paleta en dirección Y

La Fuerza ejercida por el chorro sobre la paleta en dirección Y se define como la Fuerza inducida por el fluido sobre la placa estacionaria del chorro.

Fy=(γfAJetvjet2g)((sin(θ))-sin(∠D))

Fuerza iónica para electrolito univalente

La Fuerza iónica para la fórmula de electrolito univalente se define como la mitad de la sumisión de la molalidad y el cuadrado de las valencias de los iones disponibles en la solución. Un ejemplo de electrolito univalente es NaCl, KBr, HCl, etc.

I=(12)(m+((Z+)2)+m-((Z-)2))

Fuerza iónica para electrolito bivalente

La Fuerza iónica para la fórmula de electrolito bivalente se define como la mitad de la sumisión de la molalidad y el cuadrado de las valencias de los iones disponibles en la solución. Un ejemplo de un electrolito bivalente es CuSO4, ZnSO4, MgSO4, etc.

I=(12)(m+((Z+)2)+m-((Z-)2))

Fuerza iónica para electrolito bivalente si la molalidad del catión y el anión es la misma

La Fuerza iónica para el electrolito bivalente si la molalidad del catión y el anión es la misma fórmula se define como cuatro veces la molalidad del electrolito. Para los electrolitos bivalentes, las valencias de catión y anión son dos.

I=(4m)

Fuerza de flotabilidad en desplazador cilíndrico

La fórmula de la Fuerza de flotabilidad en el desplazador cilíndrico se define como siempre igual al peso del volumen de fluido desplazado. ... Simplemente calcule el volumen del desplazador (si es un cilindro, donde está el radio del cilindro y la longitud del cilindro) y multiplique ese volumen por la densidad de peso.

Fb=γπD2L4

Fuerza cortante transversal de la sección triangular dado el esfuerzo cortante máximo

La Fuerza de corte transversal de la sección triangular dada la fórmula de tensión de corte máxima se define como la Fuerza que induce la tensión.

V=htribtriτmax3

Fuerza cortante transversal de la sección triangular dada la tensión cortante en el eje neutro

La Fuerza de corte transversal de la sección triangular dada la fórmula de tensión de corte en el eje neutral se define como la Fuerza que induce la tensión.

V=3btrihtriτNA8

Fuerza de pretensado a una distancia x del extremo de estiramiento para la resultante conocida

La Fuerza de pretensado a una distancia x del extremo de estiramiento para un resultado conocido se define como la ecuación para encontrar la Fuerza de pretensado a una distancia x del extremo de estiramiento de la sección en una longitud infinitesimal dx.

Px=N2sin(θ2)

Fuerza de pretensado a distancia X por expansión de la serie Taylor

La Fuerza de pretensado a la distancia X mediante expansión en serie de Taylor se define como la fórmula para encontrar la pérdida de pretensado debido a la fricción para valores pequeños de ángulo acumulativo, coeficiente de oscilación, distancia desde el extremo y coeficiente de fricción.

Px=PEnd(1-(μfrictiona)-(kx))

Fuerza de pretensado en el extremo de tensión mediante la expansión de la serie Taylor

La Fuerza de pretensado en el extremo de tensión usando la expansión en serie de Taylor se define como la fórmula para encontrar el pretensado en el extremo del gato para valores pequeños de ángulo acumulativo, coeficiente de oscilación, distancia desde el extremo y coeficiente de fricción.

PEnd=Px(1-(μfrictiona)-(kx))

Fuerza de par de la sección transversal

La Fuerza de par de la sección transversal se define como un sistema de Fuerzas con un momento resultante (akanet o suma) pero sin Fuerza resultante. Un término mejor es par de Fuerzas o momento puro.

C=0.5EcεcxWcr

Fuerza que actúa en la dirección y en la ecuación del momento

La fórmula de Fuerza que actúa en la dirección y en la ecuación de momento se define como el componente vertical de la Fuerza ejercida sobre un fluido en un sistema hidrostático, que juega un papel crucial en la comprensión del comportamiento de los fluidos en diversas condiciones de presión y velocidad.

Fy=ρlQ(-V2sin(θ)-P2A2sin(θ))

Fuerza cortante para una viga simplemente apoyada que lleva udl a una distancia x del soporte izquierdo

La Fuerza cortante para una viga simplemente apoyada que lleva udl a una distancia x del soporte izquierdo es una Fuerza que actúa en una dirección paralela a (sobre la parte superior) una superficie o sección transversal de una viga simplemente apoyada con una carga uniformemente distribuida desde el soporte izquierdo.

Fs=(w'l2)-(w'x)

Fuerza resultante que actúa sobre la superficie plana de una placa completamente sumergida dada la presión promedio

La Fuerza resultante que actúa sobre la superficie plana de una placa completamente sumergida dada la fórmula de presión promedio se define como el producto de la presión promedio que actúa sobre la superficie y el área de la superficie. La magnitud de la Fuerza resultante que actúa sobre una superficie plana de una placa completamente sumergida en un fluido homogéneo (densidad constante) es igual al producto de la presión Pc en el centroide de la superficie y el área A de la superficie.

FR=PAvgA

Fuerza inferior dada Fuerza de flotación y Fuerza superior

La Fuerza de fondo dada por la fórmula de Fuerza de flotación y Fuerza superior se define como la suma de la Fuerza de flotación y la Fuerza superior. Es una experiencia común que un objeto se siente más liviano y pesa menos en un líquido que en el aire. Esto se puede demostrar fácilmente pesando un objeto pesado en agua con una balanza de resorte a prueba de agua. Además, los objetos hechos de madera u otros materiales livianos flotan en el agua. Estas y otras observaciones sugieren que un fluido ejerce una Fuerza hacia arriba sobre un cuerpo sumergido en él. Esta Fuerza que tiende a levantar el cuerpo se llama Fuerza de flotación. La Fuerza de flotación es causada por el aumento de presión con la profundidad en un fluido. Por tanto, concluimos que la Fuerza de flotación que actúa sobre la placa es igual al peso del líquido desplazado por la placa. Para un fluido con densidad constante, la Fuerza de flotación es independiente de la distancia del cuerpo a la superficie libre. También es independiente de la densidad del cuerpo sólido.

FBottom=Fbuoyant+FTop

Fuerza superior dada la Fuerza de flotación y la Fuerza inferior

La Fuerza superior dada la fórmula de Fuerza de flotación y Fuerza de fondo se define como la diferencia entre la Fuerza de fondo y la Fuerza de flotación. Es una experiencia común que un objeto se siente más liviano y pesa menos en un líquido que en el aire. Esto se puede demostrar fácilmente pesando un objeto pesado en agua con una balanza de resorte a prueba de agua. Además, los objetos hechos de madera u otros materiales livianos flotan en el agua. Estas y otras observaciones sugieren que un fluido ejerce una Fuerza hacia arriba sobre un cuerpo sumergido en él. Esta Fuerza que tiende a levantar el cuerpo se llama Fuerza de flotación. La Fuerza de flotación es causada por el aumento de presión con la profundidad en un fluido. Por tanto, concluimos que la Fuerza de flotación que actúa sobre la placa es igual al peso del líquido desplazado por la placa. Para un fluido con densidad constante, la Fuerza de flotación es independiente de la distancia del cuerpo a la superficie libre. También es independiente de la densidad del cuerpo sólido.

FTop=FBottom-Fbuoyant

Fuerza impulsora de presión en la membrana

La Fuerza impulsora de la presión en la membrana se define como la diferencia en la presión del fluido existente a ambos lados de una membrana.

ΔPm=RmμJwM

Fuerza restauradora de la molécula vibratoria diatómica

La fórmula de la Fuerza restauradora de la molécula vibrante diatómica se define como el producto de la constante de Fuerza de la molécula vibrante por el desplazamiento de los átomos que vibran desde la posición media.

F=-(kx)

Fuerza mínima requerida para deslizar el cuerpo en un plano horizontal rugoso

La fórmula de Fuerza mínima requerida para deslizar un cuerpo sobre un plano horizontal rugoso se define como la menor cantidad de Fuerza necesaria para iniciar el movimiento de deslizamiento de un objeto sobre una superficie horizontal rugosa, teniendo en cuenta el peso del objeto y el ángulo de elevación del plano.

Pmin=Wsin(θe)

Fuerza de frenado tangencial dada la Fuerza normal en el bloque de freno

La Fuerza de frenado tangencial dada la fórmula de Fuerza normal sobre el bloque de freno se define como la Fuerza ejercida por el bloque de freno sobre la rueda para reducir la velocidad o detener el vehículo, que depende de la Fuerza normal aplicada, la fricción del freno y el radio de la rueda, desempeñando un papel crucial en la seguridad y el control del vehículo.

Ft=μbrakeRNrwheel

Fuerza de restauración usando la rigidez del eje

La fórmula de restauración de Fuerza mediante la rigidez del eje se define como una medida de la Fuerza que tiende a devolver un objeto a su posición original después de haber sido desplazado de su posición de equilibrio, típicamente observada en sistemas mecánicos como resortes y ejes.

F=-ssbody

Fuerza de resistencia dada la tensión de tracción

La fórmula de Fuerza de resistencia dada la tensión de tracción se define como la medida de la Fuerza que se opone a la deformación de un material bajo tensión, lo cual es un parámetro crítico para comprender el comportamiento de los materiales bajo diferentes tipos de tensiones, particularmente en aplicaciones de ingeniería y ciencia de los materiales.

Fresistance=σtA

Fuerzas que actúan sobre el cuerpo a lo largo de la trayectoria de vuelo

La fórmula de Fuerzas que actúan sobre un cuerpo a lo largo de la trayectoria de vuelo se define como una medida de las Fuerzas que actúan sobre un cuerpo a medida que se mueve a lo largo de una trayectoria de vuelo, específicamente la Fuerza de arrastre y el componente de peso, que están influenciados por la velocidad y la altitud del cuerpo.

FD=Wsin(θi)-MVG

Fuerzas que actúan perpendicularmente al cuerpo en la trayectoria de vuelo

La fórmula de Fuerzas que actúan perpendicularmente al cuerpo en la trayectoria de vuelo se define como la medida de la Fuerza neta ejercida sobre un objeto que se mueve a velocidades hipersónicas, teniendo en cuenta el peso del objeto, su velocidad y el radio de su trayectoria de vuelo, proporcionando datos cruciales para los mapas de velocidad de altitud en trayectorias de vuelo hipersónicas.

FL=Wcos(θi)-Mv2r

Fuerza de tracción en el perno dada la máxima tensión de tracción en el perno

La Fuerza de tracción en el perno dada la tensión máxima de tracción en la fórmula del perno se define como las Fuerzas de estiramiento que actúan sobre el material y tiene dos componentes, a saber, la tensión de tracción y la deformación por tracción.

Ptb=σtmaxπ4dc2

Fuerza de tracción en el perno en tensión

La Fuerza de tracción en el perno en la fórmula de tensión se define como la Fuerza de tracción que producirá una cierta cantidad de deformación permanente dentro de un sujetador específico.

Ptb=π4dc2Sytfs

Fuerza de tracción en perno en cortante

La fórmula de la Fuerza de tracción sobre el perno en corte se define como la carga máxima que se puede soportar antes de la fractura cuando se aplica en ángulo recto con el eje del sujetador. Una carga que ocurre en un plano transversal se conoce como cortante simple.

Ptb=πdchSsyfs

Fuerza de corte primaria de conexión atornillada cargada excéntricamente

La fórmula de la Fuerza cortante primaria de una conexión atornillada cargada excéntricamente se define como la Fuerza que actúa en una dirección paralela a una superficie o a una sección transversal plana de un cuerpo, como por ejemplo la presión del aire a lo largo de la parte delantera del ala de un avión.

P1'=Pn

Fuerza imaginaria en el centro de gravedad de la junta atornillada dada la Fuerza de corte primaria

La Fuerza imaginaria en el centro de gravedad de la junta atornillada dada La Fuerza de corte primaria se define como la Fuerza que parece actuar sobre una masa cuyo movimiento se describe utilizando un marco de referencia no inercial, como un marco de referencia de aceleración o rotación.

P=P1'n

Fuerza necesaria para retirar la viruta y actuar sobre la cara de la herramienta

La Fuerza necesaria para eliminar la viruta y actuar sobre la cara de la herramienta es la cantidad de Fuerza necesaria para eliminar la viruta de la superficie del metal.

Fr=Frc-Fp

Fuerza de planchado después del dibujo

La Fuerza de planchado después del estirado es la Fuerza utilizada para reducir el espesor de la pared de la copa después del estirado.

F=πd1tfSavgln(t0tf)

Fuerza normal en el plano de corte de la herramienta

La Fuerza normal en el plano de corte de la fórmula de la herramienta se usa para encontrar la Fuerza normal que actúa en el plano de corte de la herramienta.

Fns=Frsin((ϕ+β-γne))

¿Cómo encontrar Fórmulas?

A continuación se ofrecen algunos consejos para obtener mejores resultados de búsqueda.
Sea específico: cuanto más específica sea su consulta, mejores serán los resultados.
Utilice varias palabras clave: combine varias palabras clave para limitar los resultados.
Experimenta con sinónimos: Diferentes términos pueden producir resultados diferentes.
Búsqueda con comodines: utiliza el operador * (asterisco). TENGA EN CUENTA que este operador funciona solo al final de una palabra. Ejemplo: biografía*, área*, etc.

Como alternativa, puede navegar a través de las subcategorías dentro de para concentrarse en las fórmulas de interés.

Copied!