Buscar Fórmulas

Ingrese un mínimo de 3 caracteres para comenzar a buscar fórmulas de .

Seleccionar filtro

Limite los resultados de su búsqueda con la ayuda de estos filtros.

50 ¡Se encontraron fórmulas coincidentes!

Fuerza de empuje hacia arriba

La fórmula de Fuerza de empuje se define como la Fuerza ascendente ejercida por un fluido sobre un objeto parcial o totalmente sumergido en él, resultante de la diferencia de presión entre la parte superior e inferior del objeto, y es un concepto clave para comprender la dinámica de fluidos y la flotabilidad.

Ft=Vi[g]ρ

Fuerza en la dirección del chorro que golpea la placa vertical estacionaria

La fórmula de Fuerza en la dirección del chorro que golpea una placa vertical estacionaria se define como la medida de la Fuerza del fluido ejercida sobre una placa vertical estacionaria cuando un chorro de fluido la golpea, que está influenciada por la densidad del fluido, el área de la sección transversal del chorro y la velocidad del chorro.

F=ρAcνj2

Fuerza de corte máxima requerida para punzonar

La fórmula de Fuerza de corte máxima requerida para punzonado se define como la Fuerza máxima requerida para perforar un orificio en un material, que es un parámetro crítico en el diseño de operaciones de punzonado y está influenciado por la resistencia al corte del material y el proceso de punzonado.

Fs=asτu

Fuerza de frenado máxima que actúa en las ruedas delanteras cuando los frenos se aplican únicamente a las ruedas delanteras

La fórmula de Fuerza de frenado máxima que actúa en las ruedas delanteras cuando los frenos se aplican solo a las ruedas delanteras se define como la Fuerza máxima ejercida por las ruedas delanteras de un vehículo cuando los frenos se aplican solo a las ruedas delanteras, lo cual es un parámetro crítico para comprender la potencia de frenado y la seguridad del vehículo.

Fbraking=μbrakeRA

Fuerza de frenado total que actúa en las ruedas delanteras (cuando los frenos se aplican únicamente a las ruedas delanteras)

La fórmula de Fuerza de frenado total que actúa en las ruedas delanteras (cuando los frenos se aplican solo a las ruedas delanteras) se define como la Fuerza neta ejercida en las ruedas delanteras de un vehículo cuando se aplican los frenos, teniendo en cuenta la masa del vehículo, la aceleración y la inclinación de la carretera.

Fbraking=ma-mgsin(αinclination)

Fuerza contraelectromotriz del motor síncrono dada la constante del devanado del inducido

La Fuerza contraelectromotriz del motor síncrono dada la fórmula constante del devanado del inducido se define como la Fuerza electromotriz opuesta inducida en el motor síncrono.

Eb=KaΦNs

Fuerza máxima cuando no se aplican cargas de viento y terremoto

La fórmula de resistencia máxima cuando no se aplican cargas de viento y terremoto se define como la resistencia total debido a la carga muerta de la estructura y la carga viva en la estructura.

U=(1.4DL)+(1.7LL)

Fuerza máxima cuando se aplican cargas de viento

La fórmula de Resistencia máxima cuando se aplican cargas de viento se define como las capacidades para resistir cargas de diseño y sus momentos y Fuerzas internos relacionados.

U=(0.9DL)+(1.3W)

Fuerza de empuje para Fuerza de corte dada, ángulo de corte y Fuerza a lo largo de la Fuerza de corte

La Fuerza de empuje para la Fuerza de corte, el ángulo de corte y la Fuerza dada a lo largo de la Fuerza de corte actúa en la dirección perpendicular a la superficie generada y la Fuerza de empuje se mide con un dinamómetro.

Fa=Fccos(ϕs)-Fssin(ϕs)

Fuerza de empuje para Fuerza de corte dada, ángulo de corte y Fuerza normal a la Fuerza de corte

La Fuerza de empuje para una Fuerza de corte, un ángulo de corte y una Fuerza normal a la Fuerza de corte dados actúa en la dirección perpendicular a la superficie generada y la Fuerza de empuje se mide con un dinamómetro.

Fa=FN-Fcsin(ϕs)cos(ϕs)

Fuerza a lo largo de la Fuerza cortante para una Fuerza dada normal a la Fuerza cortante, cortante, fricción y ángulo de inclinación normal

La Fuerza a lo largo de la Fuerza de corte para una Fuerza dada normal a la Fuerza de corte, el corte, la fricción y el ángulo de ataque normal se calcula usando estas relaciones. La teoría de Merchant describe estas relaciones de Fuerza en detalle.

Fshear=FNtan(φshr+βfr-αN)

Fuerza de fricción a lo largo de la cara de desprendimiento de la herramienta para Fuerzas de corte y empuje dadas, ángulo de desprendimiento normal

Fuerza de fricción a lo largo de la cara de ataque de la herramienta para Fuerzas de corte y empuje dadas, la fórmula del ángulo de ataque normal se define usando estas relaciones. Consulte la teoría de Merchant.

Fsleeve=(Fc(sin(αN)))+(FN(cos(αN)))

Fuerza de corte para Fuerza de fricción a lo largo de la cara inclinada de la herramienta y Fuerza de empuje

La Fuerza de corte para la Fuerza de fricción a lo largo de la cara inclinada de la herramienta y la fórmula de la Fuerza de empuje se definen utilizando estas relaciones. Consulte la teoría del comerciante.

Fc=F-(FT(cos(αo)))sin(αo)

Fuerza de empuje para una Fuerza de fricción dada a lo largo de la cara de inclinación de la herramienta, la Fuerza de corte y el ángulo de inclinación normal

La fórmula de la Fuerza de empuje para una Fuerza de fricción dada a lo largo de la cara de ataque de la herramienta, la Fuerza de corte y el ángulo de ataque normal se define como la relación entre la Fuerza de fricción menos la Fuerza de corte que actúa en el sen del ángulo normal al cos del ángulo de ataque normal.

Ft=Ffr-Fcsin(αN)cos(αN)

Fuerza de fuente para medio cuerpo Rankine

La Fuerza de la fuente para el medio cuerpo de Rankine es un concepto teórico de dinámica de fluidos que se utiliza para modelar el flujo alrededor de un cuerpo sumergido. Se deriva de la teoría del flujo potencial, asumiendo flujo irrotacional y resistencia cero. La Fuerza de la fuente en la teoría del medio cuerpo de Rankine representa la Fuerza de la fuente/sumidero necesaria para representar el flujo alrededor del medio cuerpo.

q=y2U1-(∠Aπ)

Fuerza cortante promedio para sección circular

La fórmula de Fuerza cortante promedio para sección circular se define como la medida del esfuerzo cortante promedio experimentado por una sección circular, que es un parámetro crítico para evaluar la integridad estructural de componentes circulares bajo diversas condiciones de carga.

Fs=πr2𝜏avg

Fuerza cortante máxima dado el radio de la sección circular

La fórmula de Fuerza cortante máxima dado el radio de la sección circular se define como una medida de la Fuerza cortante máxima que ocurre en una sección circular, que es un parámetro crítico para evaluar la integridad estructural de vigas y ejes circulares bajo varios tipos de condiciones de carga.

Fs=𝜏max34πr2

Fuerza de corte utilizando esfuerzo de corte máximo

La Fuerza cortante utilizando la fórmula del esfuerzo cortante máximo se define como una medida de la Fuerza máxima que se puede aplicar a una sección circular sin provocar su deformación o rotura, normalmente utilizada en ingeniería mecánica para diseñar y analizar estructuras y máquinas.

Fs=3I𝜏maxr2

Fuerza cortante en sección circular

La fórmula de Fuerza cortante en una sección circular se define como la medida del esfuerzo cortante interno que se produce en una sección circular de una viga, generalmente debido a cargas externas, y es un parámetro crítico para evaluar la integridad estructural de la viga.

Fs=𝜏beamIB23(r2-y2)32

Fuerza de aceleración centrífuga en centrífuga

La Fuerza de aceleración centrífuga en centrífuga se define como una Fuerza inercial que parece actuar sobre todos los objetos cuando se ve en un marco de referencia giratorio.

G=Rb(2πN)232.2

Fuerza de flotación en los núcleos

La Fuerza de flotación sobre los núcleos se puede calcular como la diferencia entre el peso del metal líquido y el del material del núcleo del mismo volumen que el del núcleo expuesto.

Fb =9.81Vc(ρcm-ρc)

Fuerza de flotación en núcleos cilíndricos colocados horizontalmente

La Fuerza de flotación sobre núcleos cilíndricos colocados horizontalmente es la Fuerza hacia arriba ejercida por un fluido sobre los núcleos cuando están parcial o totalmente sumergidos en el fluido.

Fb =π4D2[g]Hc(ρcm-ρc)

Fuerza de flotación en núcleos verticales

La Fuerza de flotación en los núcleos verticales es la Fuerza hacia arriba que ejerce el metal fundido sobre el núcleo a medida que se vierte en la cavidad.

Fb =(π4(dc2-D2)hρcm-Vcρc)[g]

Fuerza de arrastre en la placa

La Fuerza de arrastre en la placa se conoce considerando el ancho de la placa, la viscosidad y la velocidad del fluido, y el número de Reynolds en la placa.

FD=0.73bμVRe

Fuerza de fricción

La fórmula de la Fuerza de fricción se define como la medida de la Fuerza que se opone al movimiento entre dos superficies que están en contacto, resultante de la interacción entre las superficies, y depende de la Fuerza normal, el coeficiente de fricción y el ángulo de inclinación.

Ffri=μhsm2[g]cos(θp)

Fuerza ejercida por el chorro en la dirección del flujo del chorro entrante con un ángulo de 90

La Fuerza ejercida por el chorro en la dirección del flujo del chorro entrante con un ángulo de 90 se define como la Fuerza ejercida por el chorro en la dirección paralela a la placa.

Ft=(γfAJet(Vabsolute-v)2G)

Fuerza ejercida por el chorro en la dirección del flujo del chorro entrante con ángulo cero

La Fuerza ejercida por el chorro en la dirección del flujo del chorro entrante con ángulo cero se define como la Fuerza ejercida por el chorro en la dirección de paralelo a la placa.

Ft=(γfAJet(Vabsolute-v)2G)

Fuerza ejercida por el chorro en la dirección del flujo del chorro

La Fuerza ejercida por el chorro en la dirección del flujo del chorro se define como la Fuerza inducida por el fluido sobre la placa estacionaria del chorro.

Fs=(γfAJetVabsolute(Vabsolute-v)G)(1+cos(θ))

Fuerza de arrastre según la ley de Stokes

La Fuerza de arrastre según la fórmula de la ley de Stokes se define que el arrastre D es igual al coeficiente de arrastre Cd por la densidad r por la mitad de la velocidad V al cuadrado por el área de referencia A.

FD=3DSπμviscosityVs

Fuerza transmitida a través de juntas dada la cantidad de remaches en una junta pequeña

La Fuerza transmitida a través de las juntas dada la cantidad de remaches en la fórmula de las juntas pequeñas se define como la tracción o la Fuerza transmitida a través de la junta remachada.

FT=nPl

Fuerza de par de la sección transversal

La Fuerza de par de la sección transversal se define como un sistema de Fuerzas con un momento resultante (akanet o suma) pero sin Fuerza resultante. Un término mejor es par de Fuerzas o momento puro.

C=0.5EcεcxWcr

Fuerza que actúa en la dirección y en la ecuación del momento

La fórmula de Fuerza que actúa en la dirección y en la ecuación de momento se define como el componente vertical de la Fuerza ejercida sobre un fluido en un sistema hidrostático, que juega un papel crucial en la comprensión del comportamiento de los fluidos en diversas condiciones de presión y velocidad.

Fy=ρlQ(-V2sin(θ)-P2A2sin(θ))

Fuerza cortante para una viga simplemente apoyada que lleva udl a una distancia x del soporte izquierdo

La Fuerza cortante para una viga simplemente apoyada que lleva udl a una distancia x del soporte izquierdo es una Fuerza que actúa en una dirección paralela a (sobre la parte superior) una superficie o sección transversal de una viga simplemente apoyada con una carga uniformemente distribuida desde el soporte izquierdo.

Fs=(w'l2)-(w'x)

Fuerza que actúa sobre la parte superior del pistón debido a la presión del gas para un par máximo en el cigüeñal central

La Fuerza que actúa sobre la parte superior del pistón debido a la presión del gas para un par máximo en el centro del cigüeñal es la cantidad de Fuerza ejercida sobre la parte superior del pistón por los gases debido a la combustión del combustible, donde el cigüeñal está diseñado para un par máximo sobre él.

P=πD2p'4

Fuerza que actúa sobre la parte superior del pistón debido a la presión del gas dada la Fuerza de empuje sobre la biela

La Fuerza que actúa sobre la parte superior del pistón debido a la presión del gas dada la Fuerza de empuje sobre la biela es la Fuerza que actúa sobre la parte superior del pistón debido a la presión de los gases de combustión.

P=Pcrcos(φ)

Fuerza sobre la biela dada la componente radial de la Fuerza en la muñequilla

La Fuerza sobre la biela dada la componente radial de la Fuerza en la muñequilla es la Fuerza de empuje sobre la biela transmitida desde el pistón a la biela. La cabeza del pistón está sujeta a la Fuerza ejercida por la presión del gas.

Pcr=Prcos(φ+θ)

Fuerza sobre la biela dada la componente tangencial de la Fuerza en la muñequilla

La Fuerza sobre la biela dada la componente tangencial de la Fuerza en la muñequilla es la Fuerza de empuje sobre la biela transmitida desde el pistón a la biela. La cabeza del pistón está sujeta a la Fuerza ejercida por la presión del gas.

Pcr=Ptsin(φ+θ)

Fuerza cortante transversal dada Esfuerzo cortante longitudinal máximo en el alma de una viga en I

La Fuerza cortante transversal dada la tensión cortante longitudinal máxima en el alma de la viga I se define como la Fuerza cortante que causa tensiones cortantes tanto longitudinales como transversales en la viga I. Cuando se aplica una Fuerza cortante transversal, tiende a causar deformación de la sección transversal.

V=τmaxlongitudinalbw8I(bf(D2-dw2))+(bw(dw2))

Fuerza máxima en el resorte de la válvula del motor dada la compresión máxima en el resorte

La Fuerza máxima sobre el resorte de la válvula del motor dada la compresión máxima en el resorte es la cantidad total de Fuerza que actúa sobre el resorte de la válvula para que la válvula se abra para su funcionamiento.

P=Gdw4x8ND3

Fuerza de frenado en el tambor de freno en carretera nivelada

La fórmula de la Fuerza de frenado en el tambor de freno en una carretera nivelada se define como la Fuerza que actúa sobre el tambor de freno por la zapata de freno cuando el conductor aplica los frenos.

F=Wgf

Fuerza del tambor del freno de descenso gradiente

La fórmula de la Fuerza del tambor de freno de descenso en pendiente se define como la Fuerza que actúa sobre el tambor de freno cuando se presiona el pedal del freno y el vehículo se mueve cuesta abajo.

F=Wgf+Wsin(αinc)

Fuerza normal en el punto de contacto de la zapata de freno

La fórmula de la Fuerza normal en el punto de contacto de las zapatas de freno se define como la Fuerza que actúa sobre las pastillas de freno de las zapatas de freno y que surge debido a las Fuerzas de accionamiento.

P=Fr8μfα

Fuerza de impacto en el vehículo después del accidente

La fórmula de Fuerza de impacto sobre el vehículo después de un choque se define como la medida de la Fuerza promedio ejercida sobre un vehículo durante un choque, que es un parámetro crítico para evaluar la gravedad del impacto y el daño resultante al vehículo y sus ocupantes.

Favg=0.5Mv2d

Fuerza en el Punto 1 usando la Ley de Pascal

La Fuerza en el Punto 1 utilizando la fórmula de la Ley de Pascal se define como la función de la Fuerza en el punto 2 y el área de la sección transversal de ambos puntos. Una consecuencia de que la presión en un fluido permanezca constante en la dirección horizontal es que la presión aplicada a un fluido confinado aumenta la presión en la misma cantidad. Esto se llama la ley de Pascal, en honor a Blaise Pascal (1623-1662). Pascal también sabía que la Fuerza aplicada por un fluido es proporcional al área de la superficie. Se dio cuenta de que se podían conectar dos cilindros hidráulicos de diferentes áreas, y el más grande podía usarse para ejercer una Fuerza proporcionalmente mayor que la aplicada al más pequeño. La “máquina de Pascal” ha sido la fuente de muchos inventos que forman parte de nuestra vida cotidiana, como los frenos hidráulicos y los ascensores. Esto es lo que nos permite levantar un coche fácilmente con un brazo.

F1=F2(A1A2)

Fuerza en el Punto 2 usando la Ley de Pascal

La Fuerza en el Punto 2 utilizando la fórmula de la Ley de Pascal se define como la función de la Fuerza en el punto 1 y el área de la sección transversal de ambos puntos. Una consecuencia de que la presión en un fluido permanezca constante en la dirección horizontal es que la presión aplicada a un fluido confinado aumenta la presión en la misma cantidad. Esto se llama la ley de Pascal, en honor a Blaise Pascal (1623-1662). Pascal también sabía que la Fuerza aplicada por un fluido es proporcional al área de la superficie. Se dio cuenta de que se podían conectar dos cilindros hidráulicos de diferentes áreas, y el más grande podía usarse para ejercer una Fuerza proporcionalmente mayor que la aplicada al más pequeño. La “máquina de Pascal” ha sido la fuente de muchos inventos que forman parte de nuestra vida cotidiana, como los frenos hidráulicos y los ascensores. Esto es lo que nos permite levantar un coche fácilmente con un brazo.

F2=F1(A2A1)

Fuerza de campo para ionización de supresión de barrera

La fórmula de intensidad de campo para la ionización con supresión de barrera se define como una relación en la que, si el campo aplicado es de intensidad suficiente para deprimir el punto de silla desarrollado por debajo del potencial de ionización, el electrón ya no ve una barrera al continuo y escapa libremente del sistema.

FBSI=([Permitivity-vacuum]2)([hP]2)(IP2)([Charge-e]3)[Mass-e][Bohr-r]Z

Fuerza magnética

La fórmula de la Fuerza magnética se define como una medida de la Fuerza ejercida sobre un cable portador de corriente en un campo magnético, que es un concepto fundamental para comprender la interacción entre la electricidad y el magnetismo, y tiene numerosas aplicaciones en ingeniería, física y tecnología.

Fmm=|I|Lrod(Bsin(θ2))

Fuerza de Stokes

La fórmula de Fuerza de Stokes se define como una medida de la Fuerza de fricción ejercida sobre un objeto esférico que se mueve a través de un fluido, que es proporcional a la velocidad del objeto y a la viscosidad del fluido, y se utiliza comúnmente para modelar el comportamiento de partículas en fluidos, como el aire o el agua.

Fd=6πRμνf

Fuerza de inercia por unidad de área

La fórmula de Fuerza inercial por unidad de área se define como la medida de la Fuerza ejercida por unidad de área de un fluido debido a su inercia, que es un concepto fundamental en la dinámica de fluidos, particularmente en el estudio del flujo y la presión de fluidos. Es un parámetro importante para comprender el comportamiento de los fluidos en diversas aplicaciones científicas y de ingeniería.

Fi=v2ρ

Fuerza corporal

La fórmula de Fuerza corporal se define como la medida de la Fuerza ejercida por un fluido sobre un objeto, resultante de la interacción entre el fluido y el objeto, y es un concepto fundamental en mecánica de fluidos, utilizado para analizar y comprender el comportamiento de los fluidos en diversas aplicaciones científicas y de ingeniería.

Fb=FmVm

¿Cómo encontrar Fórmulas?

A continuación se ofrecen algunos consejos para obtener mejores resultados de búsqueda.
Sea específico: cuanto más específica sea su consulta, mejores serán los resultados.
Utilice varias palabras clave: combine varias palabras clave para limitar los resultados.
Experimenta con sinónimos: Diferentes términos pueden producir resultados diferentes.
Búsqueda con comodines: utiliza el operador * (asterisco). TENGA EN CUENTA que este operador funciona solo al final de una palabra. Ejemplo: biografía*, área*, etc.

Como alternativa, puede navegar a través de las subcategorías dentro de para concentrarse en las fórmulas de interés.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!