Buscar Fórmulas

Ingrese un mínimo de 3 caracteres para comenzar a buscar fórmulas de .

Seleccionar filtro

Limite los resultados de su búsqueda con la ayuda de estos filtros.

50 ¡Se encontraron fórmulas coincidentes!

Fuerza sobre el elemento actual en el campo magnético

La Fuerza sobre el elemento de corriente en el campo magnético es la Fuerza que se ejerce sobre un conductor que lleva corriente cuando se coloca en un campo magnético.

F=iLBsin(θ)

Fuerza de frenado en el tambor para freno de banda simple

La Fuerza de frenado en el tambor para el freno de banda simple se define como la Fuerza ejercida por el tambor para reducir la velocidad o detener el movimiento de un objeto, que es un componente crítico en el diseño de frenos de banda utilizados en varios sistemas mecánicos.

Fbraking=T1-T2

Fuerza sobre la palanca del freno de banda simple para la rotación del tambor en el sentido de las agujas del reloj

La fórmula de Fuerza sobre la palanca de un freno de banda simple para la rotación en el sentido de las agujas del reloj del tambor se define como la medida de la Fuerza ejercida sobre la palanca de un freno de banda simple cuando el tambor gira en el sentido de las agujas del reloj, lo cual es esencial para comprender la ventaja mecánica del sistema de freno.

P=T1bl

Fuerza sobre la palanca del freno de banda simple para la rotación del tambor en sentido antihorario

La fórmula de Fuerza sobre la palanca de un freno de banda simple para la rotación en sentido antihorario del tambor se define como la medida de la Fuerza ejercida sobre la palanca de un freno de banda simple cuando el tambor gira en sentido antihorario, lo cual es esencial para comprender la ventaja mecánica del sistema de freno.

P=T2bl

Fuerza de frenado total que actúa en las ruedas traseras cuando los frenos se aplican únicamente a las ruedas traseras

La fórmula de Fuerza de frenado total que actúa en las ruedas traseras cuando se aplican los frenos a las ruedas traseras únicamente se define como la Fuerza neta ejercida en las ruedas traseras de un vehículo cuando se aplican los frenos, teniendo en cuenta la masa del vehículo, la aceleración y la inclinación de la superficie.

Fbraking=ma-mgsin(αinclination)

Fuerza centrífuga resultante

La Fuerza centrífuga resultante se obtiene de las componentes horizontal y vertical de la Fuerza centrífuga.

Fc=ΣH2+ΣV2

Fuerza aceleradora

La fórmula de Fuerza de aceleración se define como una medida de la Fuerza que hace que un objeto gire o se retuerza alrededor de un eje central, lo que produce vibraciones torsionales, y es un parámetro crítico en el análisis del movimiento de rotación y la vibración en sistemas mecánicos.

F=Idα

Fuerza axial máxima

La fórmula de la Fuerza axial máxima se define como el producto de la tensión en la dirección de la Fuerza y el área de la sección transversal.

Paxial=σA

Fuerza en losa dada Número de conectores en puentes

La fórmula de Fuerza en losa dada la cantidad de conectores en puentes se define como la Fuerza que actúa en el punto de momento positivo máximo y en los soportes finales.

Pon slab=NΦSultimate

Fuerza de arrastre en el método de resistencia de esfera descendente

Fuerza de arrastre en la caída del método de resistencia de la esfera, la Fuerza de arrastre es la resistencia ejercida por el fluido sobre la esfera mientras cae. Está determinado por la velocidad de la esfera, la viscosidad del fluido y el tamaño de la esfera. A la velocidad terminal, la Fuerza de arrastre es igual a la Fuerza gravitacional menos la Fuerza de flotación.

FD=3πμUd

Fuerza de flotación en el método de resistencia de esfera descendente

Fuerza de flotación en el método de resistencia de la esfera que cae, la Fuerza de flotación es la Fuerza hacia arriba ejercida por el fluido sobre la esfera que cae. Es igual al peso del fluido desplazado por la esfera. Esta Fuerza afecta la velocidad terminal de la esfera y debe tenerse en cuenta al calcular la viscosidad del fluido.

FB=π6ρ[g]d3

Fuerza de tracción en las placas dada la tensión de tracción en la soldadura de filete transversal

La Fuerza de tracción en las placas dada la tensión de tracción en la soldadura de filete transversal es la Fuerza de estiramiento que actúa sobre las placas.

Pt=σt0.707hlL

Fuerza de aceleración centrífuga en centrífuga

La Fuerza de aceleración centrífuga en centrífuga se define como una Fuerza inercial que parece actuar sobre todos los objetos cuando se ve en un marco de referencia giratorio.

G=Rb(2πN)232.2

Fuerza de flotación en los núcleos

La Fuerza de flotación sobre los núcleos se puede calcular como la diferencia entre el peso del metal líquido y el del material del núcleo del mismo volumen que el del núcleo expuesto.

Fb =9.81Vc(ρcm-ρc)

Fuerza de flotación en núcleos cilíndricos colocados horizontalmente

La Fuerza de flotación sobre núcleos cilíndricos colocados horizontalmente es la Fuerza hacia arriba ejercida por un fluido sobre los núcleos cuando están parcial o totalmente sumergidos en el fluido.

Fb =π4D2[g]Hc(ρcm-ρc)

Fuerza de flotación en núcleos verticales

La Fuerza de flotación en los núcleos verticales es la Fuerza hacia arriba que ejerce el metal fundido sobre el núcleo a medida que se vierte en la cavidad.

Fb =(π4(dc2-D2)hρcm-Vcρc)[g]

Fuerza axial en el embrague de cono de la teoría del desgaste constante dada la presión

Fuerza axial sobre el embrague cónico a partir de la teoría del desgaste constante La fórmula de presión dada se define como una medida de la Fuerza ejercida sobre el embrague cónico, que está influenciada por la presión aplicada y las dimensiones del embrague, lo que proporciona información valiosa sobre el rendimiento del embrague y las características de desgaste.

Pa=πPp(do2)-(di2)4

Fuerza axial en el embrague de cono de la teoría del desgaste constante dada la intensidad de presión permitida

La Fuerza axial sobre el embrague cónico a partir de la teoría del desgaste constante dada la fórmula de intensidad de presión admisible se define como una medida de la Fuerza ejercida sobre el embrague cónico en un sistema mecánico, que está influenciada por la intensidad de presión admisible y las dimensiones del embrague.

Pa=πpadido-di2

Fuerza centrífuga en el embrague

La Fuerza centrífuga en el embrague se define como la Fuerza que actúa sobre los bloques de zapata del embrague centrífugo en dirección radial hacia afuera.

Fc=(M(ω12)rg)

Fuerza de resorte en embrague centrífugo

La Fuerza del resorte en el embrague centrífugo se define como la Fuerza que actúa sobre la zapata del embrague centrífugo debido al resorte utilizado en el embrague centrífugo.

Pspring=M(ω12)rg

Fuerza de fricción en el embrague centrífugo

La Fuerza de fricción en el embrague centrífugo se define como la Fuerza que actúa sobre la placa del embrague de fricción cuando el embrague está acoplado y como resultado de la fricción entre el embrague y las zapatas.

Ffriction=μMrg(ω22-ω12)

Fuerza tangencial en el engranaje debido al par nominal

La Fuerza tangencial sobre el engranaje debido al par nominal se define como la Fuerza que actúa sobre un engranaje recto en la dirección de una tangente a la superficie curva de la circunferencia del engranaje. Esta Fuerza tiende a hacer girar el engranaje recto.

Pt=PtmaxKs

Fuerza de inercia dado el número de Euler

La Fuerza de inercia dada la fórmula del número de Euler se define como cualquier Fuerza invocada por un observador para mantener la validez de la segunda ley del movimiento de Isaac Newton en un sistema de referencia que gira o acelera a un ritmo constante.

Fi=FpEu

Fuerza de presión dado el número de Euler

La Fuerza de presión dada la fórmula del número de Euler se define como la Fuerza por unidad de área perpendicular sobre la que se aplica la Fuerza.

Fp=EuFi

Fuerza de inercia dado el número de Froude

La Fuerza de inercia dada la fórmula del número de Froude se define como cualquier Fuerza invocada por un observador para mantener la validez de la segunda ley del movimiento de Isaac Newton en un sistema de referencia que gira o acelera a un ritmo constante.

Fi=FrFg

Fuerza de gravedad dado el número de Froude

La Fuerza de gravedad dada la fórmula del número de Froude se define como la Fuerza universal de atracción que actúa entre toda la materia.

Fg=FiFr

Fuerza del haz del diente del engranaje

La Fuerza de la viga del diente del engranaje es la Fuerza del diente del oso considerado como una viga en voladizo. La componente tangencial de la Fuerza sobre el diente provoca el momento flector sobre la base del diente. Entonces, en realidad, la Fuerza del haz del valor máximo de la Fuerza tangencial que el diente puede transmitir sin fallar por flexión.

Sb=mbYσb

Fuerza dada Momento de flexión debido a esa Fuerza

Fuerza dada Momento de flexión Debido a que la fórmula de Fuerza se define como una medida de la Fuerza ejercida sobre un resorte en espiral, que es directamente proporcional al momento de flexión e inversamente proporcional al radio del resorte, lo que proporciona un parámetro crucial en el diseño de resortes y aplicaciones de ingeniería.

P=Mr

Fuerza impulsora

La Fuerza impulsora se define como la Fuerza y el peso efectivo de la partícula en un fluido. Si se conocen todos los demás valores, se puede determinar cualquier cosa.

F=(ρm-ρf)[g]Vp

Fuerza motriz magneto (MMF)

La fórmula de la Fuerza motriz magnética (MMF) se define como la Fuerza motriz magnética es una cantidad que aparece en la ecuación para el flujo magnético en un circuito magnético, a menudo llamada ley de Ohm para circuitos magnéticos.

mmf=ΦR

Fuerza magnética aparente en longitud l

La fórmula de la Fuerza magnética aparente en la longitud l se define como Fuerza magnética, atracción o repulsión que surge entre partículas cargadas eléctricamente debido a su movimiento en la longitud l.

H1=ILn

Fuerza normal total que actúa en la base de la rebanada

La Fuerza normal total que actúa en la base del corte se define como el valor de la Fuerza normal total cuando tenemos información previa de otros parámetros utilizados.

P=σnormall

Fuerza normal total que actúa en la base de la rebanada dada la tensión efectiva

La Fuerza normal total que actúa en la base del corte dada la tensión efectiva se define como el valor de la Fuerza normal total que actúa sobre el corte cuando tenemos información previa de otros parámetros utilizados.

P=(σ'+ΣU)l

Fuerza cortante en el análisis de Bishop

La Fuerza cortante en el análisis de Bishop se define como una Fuerza que actúa en una dirección paralela (sobre la parte superior) de una superficie o sección transversal de un cuerpo que influye en la estabilidad de la pendiente.

S=𝜏l

Fuerza de corte en el análisis de Bishop dado el factor de seguridad

La Fuerza cortante en el análisis de Bishop dado el factor de seguridad se define como una Fuerza que actúa en una dirección paralela (sobre la parte superior) de una superficie o sección transversal de un cuerpo que influye en la estabilidad de la pendiente.

S=(c'l)+(P-(ul))tan(φ'π180)fs

Fuerza normal total que actúa sobre la rebanada dado el peso de la rebanada

La Fuerza normal total que actúa sobre la rebanada dado el peso de la rebanada se define como el valor de la Fuerza normal total cuando tenemos información previa de otros parámetros utilizados.

Fn=W+Xn-X(n+1)-(Ssin(θπ180))cos(θπ180)

Fuerza cortante vertical resultante en la sección N

La Fuerza cortante vertical resultante en la sección N se define como el valor de la Fuerza cortante vertical resultante cuando tenemos información previa de otros parámetros utilizados.

Xn=(Fncos(θπ180))+(Ssin(θπ180))-W+X(n+1)

Fuerza cortante vertical resultante en la sección N 1

La Fuerza cortante vertical resultante en la sección N 1 se define como el valor de la Fuerza cortante vertical resultante cuando tenemos información previa de otros parámetros utilizados.

X(n+1)=W+Xn-(Fncos(θπ180))+(Ssin(θπ180))

Fuerza de corte total en la rebanada dado el radio del arco

La Fuerza cortante total en un corte dado el radio de arco se define como una Fuerza que actúa en una dirección paralela (sobre la parte superior) de una superficie o sección transversal de un cuerpo que influye en la estabilidad de la pendiente.

ΣS=ΣWxr

Fuerza de corte por unidad de área o tensión de corte

La Fuerza Cortante Por Unidad de Área o Esfuerzo Cortante se define cuando la placa superior se mueve con una velocidad V con respecto a la otra placa. Newton postuló que la velocidad entre las placas era lineal y que la Fuerza necesaria para sostener el movimiento era proporcional al esfuerzo cortante.

σ=μdu/dy

Fuerza en prototipo

La Fuerza sobre el prototipo se utiliza para indicar la relación entre el prototipo, la cantidad y el modelo.

Fp=αFFm

Fuerza requerida para acelerar el agua en la tubería

La Fuerza requerida para acelerar el agua en la fórmula de la tubería se define como el producto de la masa y la aceleración del agua que fluye a través de la tubería.

F=Mwal

Fuerza para placa rectangular usando el método de placa de Wilhelmy

La Fuerza para una placa rectangular usando la fórmula del método de la placa de Wilhelmy es la Fuerza neta hacia abajo que actúa sobre una placa rectangular necesaria para separar el peso de la placa de la superficie del líquido.

F=Wplate+(Fs((γPp)-Udrift))

Fuerza dada la tensión superficial utilizando el método Wilhelmy-Plate

La Fuerza dada la tensión superficial utilizando la fórmula del método Wilhelmy-Plate es la Fuerza descendente neta que se expresa en las dimensiones de la placa rectangular, es decir, Lp y Wp y la densidad del material ρ, la profundidad hp en un líquido de densidad ρL.

F=(ρp[g](LBt))+(2γ(t+B)(cos(θ)))-(ρfluid[g]tBhp)

Fuerza resultante sobre un cuerpo en movimiento en un fluido con cierta densidad

La fórmula de Fuerza resultante sobre un cuerpo que se mueve en un fluido con cierta densidad se define como la Fuerza neta ejercida sobre un objeto que se mueve a través de un fluido, como el aire o el agua, que está influenciada por la densidad del fluido y el movimiento del objeto.

Pn=FD2+FL2

Fuerza de tracción en cada perno del acoplamiento de abrazadera

La Fuerza de tracción en cada perno del acoplamiento de abrazadera es la Fuerza que provoca una deformación de tipo estiramiento en los pernos del acoplamiento de abrazadera.

Pt=2Ncn

Fuerza de tracción en cada perno del acoplamiento de abrazadera dado el par de torsión

La Fuerza de tracción en cada perno del acoplamiento de abrazadera dada es la Fuerza que provoca una deformación de tipo estiramiento en los pernos del acoplamiento de abrazadera.

Pt=2Mtμdn

Fuerza en el pasador del cigüeñal debido a la presión del gas dentro del cilindro

La Fuerza sobre el pasador del cigüeñal debido a la presión del gas dentro del cilindro es la Fuerza que actúa sobre el pasador del cigüeñal del extremo grande de la biela debido a la presión del gas dentro del cilindro.

Pp=πDi2pmax4

Fuerza en el pasador de rodillo del extremo bifurcado del balancín

La Fuerza sobre el pasador de rodillo del extremo bifurcado del balancín es la Fuerza que actúa sobre el pasador de rodillo (el pivote sobre el que rueda una palanca) que se utiliza como articulación en un punto de rodillo.

Pc=Pbpd2l2

Fuerza en el pasador de rodillo del extremo bifurcado del balancín dado el esfuerzo cortante en el pasador de rodillo

La Fuerza sobre el pasador del rodillo del extremo bifurcado del balancín dado el esfuerzo cortante en el pasador del rodillo es la Fuerza que actúa sobre el pasador del rodillo (el pivote sobre el que rueda una palanca) que se utiliza como articulación en un punto del rodillo.

Pc=πd22τr2

¿Cómo encontrar Fórmulas?

A continuación se ofrecen algunos consejos para obtener mejores resultados de búsqueda.
Sea específico: cuanto más específica sea su consulta, mejores serán los resultados.
Utilice varias palabras clave: combine varias palabras clave para limitar los resultados.
Experimenta con sinónimos: Diferentes términos pueden producir resultados diferentes.
Búsqueda con comodines: utiliza el operador * (asterisco). TENGA EN CUENTA que este operador funciona solo al final de una palabra. Ejemplo: biografía*, área*, etc.

Como alternativa, puede navegar a través de las subcategorías dentro de para concentrarse en las fórmulas de interés.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!