Buscar Fórmulas

Ingrese un mínimo de 3 caracteres para comenzar a buscar fórmulas de .

Seleccionar filtro

Limite los resultados de su búsqueda con la ayuda de estos filtros.

50 ¡Se encontraron fórmulas coincidentes!

Fuerza de fricción entre el cilindro y la superficie del plano inclinado para rodar sin deslizar

La fórmula de Fuerza de fricción entre un cilindro y una superficie plana inclinada para rodar sin resbalar se define como la medida de la Fuerza que se opone al movimiento de un cilindro que rueda sobre una superficie plana inclinada sin resbalar, influenciada por la masa del cilindro, la aceleración debida a la gravedad y el ángulo de inclinación.

Ff=Mcgsin(θi)3

Fuerza eléctrica según la ley de Coulomb

La Fuerza eléctrica según la fórmula de la Ley de Coulomb se define como una medida de la Fuerza electrostática de atracción o repulsión entre dos objetos cargados, cuantificando la interacción entre ellos en función de la magnitud de sus cargas y la distancia entre ellos.

Felectric=([Coulomb])(q1q2r2)

Fuerza de flotación

La fórmula de la Fuerza de flotabilidad se define como la Fuerza ascendente ejercida por un fluido sobre un objeto parcial o totalmente sumergido en él, resultante de la diferencia de presión entre la parte superior e inferior del objeto, y es un concepto fundamental en la dinámica de fluidos hidrostáticos.

Fb=YVo

Fuerza de fricción en la transmisión por correa en V

La fórmula de Fuerza de fricción en la transmisión por correa trapezoidal se define como la medida de la Fuerza que se opone al movimiento entre la correa y la polea en un sistema de transmisión por correa trapezoidal, que está influenciada por el coeficiente de fricción de la correa, el radio de la polea y el ángulo de la correa trapezoidal.

Ff=μbRcosec(β2)

Fuerza tangencial en el eje del engranaje

La fórmula de Fuerza tangencial sobre el eje del engranaje se define como la medida de la Fuerza ejercida tangencialmente sobre el eje del engranaje, que es un parámetro crítico para determinar la eficiencia y el rendimiento de los sistemas de engranajes, particularmente en aplicaciones de transmisión de potencia mecánica y rotación.

Pt=Fcos(Φgear)

Fuerza normal en el eje del engranaje

La fórmula de Fuerza normal sobre el eje del engranaje se define como la medida de la Fuerza ejercida sobre el eje del engranaje debido al peso del engranaje y las Fuerzas externas que actúan sobre él, lo cual es esencial para determinar la estabilidad y la eficiencia del sistema de engranajes en diversas aplicaciones mecánicas.

Fn=Fsin(Φgear)

Fuerza de control para el gobernador de Porter

La fórmula de Fuerza de control del gobernador Porter se define como la Fuerza que regula el movimiento de las bolas del gobernador en un gobernador Porter, manteniendo el equilibrio y controlando la velocidad del motor al equilibrar la Fuerza centrífuga con el peso de las bolas.

F=mbωe2rr

Fuerza de control para el gobernador Porter dado el radio de rotación de la posición media

La fórmula de Fuerza de control para el gobernador Porter dado el radio de rotación de la posición media se define como la Fuerza que regula el movimiento del gobernador, manteniendo un equilibrio entre la Fuerza centrífuga y el peso de las bolas, asegurando un funcionamiento estable del motor.

F=mb(2πNe60)2rr

Fuerza radial en cada bola en el gobernador de Porter

La fórmula de Fuerza radial en cada bola en el regulador Porter se define como la Fuerza ejercida sobre cada bola en el regulador Porter, un dispositivo mecánico utilizado para regular la velocidad de un motor, que depende de la Fuerza del resorte, el radio y la altura del regulador.

FB=FS(1+q)r2h

Fuerza radial correspondiente requerida en cada bola para gobernadores cargados por resorte

La fórmula de la Fuerza radial correspondiente requerida en cada bola para reguladores con resorte se define como la Fuerza requerida en cada bola de un regulador con resorte para mantener el equilibrio, lo cual es crucial para comprender el funcionamiento de los reguladores en sistemas mecánicos, particularmente para controlar la velocidad del motor.

FB=FSy2xball arm

Fuerza de restauración usando la rigidez del eje

La fórmula de restauración de Fuerza mediante la rigidez del eje se define como una medida de la Fuerza que tiende a devolver un objeto a su posición original después de haber sido desplazado de su posición de equilibrio, típicamente observada en sistemas mecánicos como resortes y ejes.

F=-ssbody

Fuerza de resistencia dada la tensión de compresión

La fórmula de Fuerza de resistencia dada la tensión de compresión se define como la medida de la Fuerza que se opone a la deformación de un material bajo tensión de compresión, proporcionando información sobre la capacidad del material para soportar Fuerzas de aplastamiento y su potencial para fallar bajo carga.

Fresistance=σcA

Fuerza de alimentación

La Fuerza de avance, también conocida como Fuerza de empuje o Fuerza axial, es una de las tres Fuerzas principales que actúan sobre una herramienta de corte durante una operación de corte de metal. Actúa en la dirección del movimiento de avance, empujando la herramienta hacia la pieza de trabajo. Comprender la Fuerza de avance es crucial para optimizar las condiciones de corte, garantizar la longevidad de la herramienta y lograr el acabado superficial y la precisión dimensional deseados.

Ff=Ftcos(ψ)

Fuerza radial

La Fuerza radial es el componente de la Fuerza de corte total que actúa perpendicular a la dirección de la velocidad de corte y paralela a la superficie de la pieza de trabajo. Tiende a empujar la herramienta de corte lejos de la pieza de trabajo.

Fr=Ftsin(ψ)

Fuerza a lo largo de la Fuerza de corte dada la Fuerza de corte y la Fuerza de empuje

La Fuerza a lo largo de la Fuerza de corte dada por la fórmula de la Fuerza de corte y la Fuerza de empuje se define por las Fuerzas que causan la deformación de corte en el plano de corte.

Fshear=fccos(φshr)-fasin(φshr)

Fuerza de corte dada la Fuerza de corte y la Fuerza de empuje

La Fuerza de corte dada por la fórmula de la Fuerza de corte y la Fuerza de empuje es la Fuerza de corte en la dirección de la velocidad de corte.

Fc=Fs+(FTsin(Φ))cos(Φ)

Fuerza normal a la Fuerza de corte para una Fuerza de corte, Fuerza de empuje y ángulo de corte dados

La Fuerza normal a la Fuerza de corte para una Fuerza de corte, Fuerza de empuje y ángulo de corte dados se obtiene a partir del proceso de corte ortogonal utilizando la teoría de Merchant.

FN=Fcsin(ϕ)+Pacos(ϕ)

Fuerza cortante total por herramienta

La Fuerza cortante total por herramienta es la Fuerza cortante resultante real aplicada por la herramienta a la pieza de trabajo.

Fs=(Fccos(ϕ))+(Ftsin(ϕ))

Fuerza de elevación en el cilindro para circulación

La fórmula de la Fuerza de elevación en el cilindro para la circulación se conoce teniendo en cuenta la densidad, la longitud del cilindro, la velocidad de la corriente libre y la circulación.

FL=ρIΓcV

Fuerza por molécula de gas en la pared de la caja

La fórmula Fuerza de la molécula de gas sobre la pared de la caja se define como la tasa de cambio del impulso de la molécula gaseosa con respecto al tiempo.

Fwall=m(u)2L

Fuerza de inercia dado el número de Reynolds

La Fuerza de inercia dada la fórmula del número de Reynolds se define como cualquier Fuerza invocada por un observador para mantener la validez de la segunda ley de movimiento de Isaac Newton en un marco de referencia que gira o acelera a una velocidad constante.

Fi=Reμ

Fuerza viscosa dado el número de Reynolds

La Fuerza viscosa dada la fórmula del número de Reynolds se define como la velocidad a la que cambia la velocidad del fluido en el espacio.

μ=FiRe

Fuerza hacia abajo debido a la masa de sustentación, cuando la sustentación se mueve hacia arriba

La fórmula de Fuerza descendente debido a la masa del elevador, cuando el elevador se mueve hacia arriba, se define como la Fuerza ejercida sobre un objeto debido a su masa cuando se eleva, oponiéndose al movimiento ascendente, y es un concepto crucial para comprender la dinámica del movimiento vertical.

Fdwn=mo[g]

Fuerza neta hacia arriba en el levantamiento, cuando el levantamiento se mueve hacia arriba

La fórmula de la Fuerza ascendente neta sobre la sustentación, cuando la sustentación se mueve hacia arriba, se define como la Fuerza ascendente ejercida sobre un objeto cuando se mueve hacia arriba, oponiéndose al peso del objeto y dando como resultado su movimiento ascendente. Es un concepto crucial para comprender los principios de la aerodinámica y el comportamiento de los objetos en vuelo.

Fup=L-mo[g]

Fuerza neta hacia abajo, cuando la elevación se mueve hacia abajo

La fórmula de Fuerza neta descendente cuando el elevador se mueve hacia abajo se define como la Fuerza descendente total ejercida sobre un objeto cuando se lo eleva hacia abajo, teniendo en cuenta el peso del objeto y la Fuerza opuesta del elevador, lo que proporciona una medida de la Fuerza neta que actúa sobre el objeto en dirección descendente.

Fdwn=mo[g]-R

Fuerza ejercida por la masa transportada por el ascensor sobre su piso, cuando el ascensor se mueve hacia arriba

La fórmula de la Fuerza ejercida por la masa transportada por el ascensor sobre su suelo, cuando el ascensor se mueve hacia arriba, se define como la Fuerza total ejercida sobre el suelo del ascensor por la masa transportada, teniendo en cuenta tanto el peso de la masa como la aceleración del ascensor a medida que se mueve hacia arriba.

Fup=mc([g]+a)

Fuerza de arrastre ofrecida por fluido

La fórmula de Fuerza de arrastre ofrecida por un fluido se define como la Fuerza de resistencia causada por el movimiento del cuerpo a través de un fluido, como el agua o el aire.

Fd=(CDAρwater(v)22)

Fuerza de tracción que actúa sobre el perno dado el esfuerzo cortante

La Fuerza de tracción que actúa sobre el perno dada la fórmula del esfuerzo cortante se refiere a una Fuerza que intenta separar o estirar un perno.

P=(π𝜏dc'hn)

Fuerza de tracción que actúa sobre el perno

La Fuerza de tracción que actúa sobre el perno es la Fuerza axial que se le aplica, lo que hace que el perno se estire a lo largo de su longitud. Esta Fuerza suele ser el resultado de cargas aplicadas a la estructura o conjunto que sujeta el perno. La magnitud de esta Fuerza de tracción es crucial para determinar si el perno puede soportar con seguridad la carga aplicada sin fallar.

P=(π𝜏dc'hn)

Fuerza que actúa sobre el resorte dada la tensión resultante

La fórmula de Fuerza que actúa sobre un resorte dada la tensión resultante se define como la medida de la Fuerza ejercida sobre un resorte cuando está sujeto a una tensión resultante, lo que proporciona una forma de calcular la Fuerza en función de las dimensiones del resorte y las propiedades del material, lo cual es crucial para diseñar y analizar sistemas basados en resortes.

P=𝜏πd3K8D

Fuerza aplicada en el resorte dada la deflexión en el resorte

La fórmula de Fuerza aplicada al resorte dada la deflexión en el resorte se define como la medida de la Fuerza ejercida sobre un resorte cuando se desvía de su posición original, lo cual es un parámetro crítico para determinar la tensión y las deflexiones en los resortes, y es esencial para diseñar y analizar sistemas basados en resortes.

P=δGd48(D3)Na

Fuerza aplicada en primavera dada la energía de deformación almacenada en primavera

La fórmula de Fuerza aplicada sobre un resorte dada la energía de deformación almacenada en el resorte se define como la medida de la Fuerza ejercida sobre un resorte cuando se comprime o se estira, que es directamente proporcional a la energía de deformación almacenada en el resorte e inversamente proporcional a la deformación del resorte.

P=2Uhδ

Fuerza de resistencia del alambre por cm de longitud dado el número de vueltas del alambre

La fórmula Fuerza de resistencia del alambre por cm de longitud dado el número de vueltas del alambre se define como cualquier interacción que, cuando no tiene oposición, cambiará el movimiento de un objeto. Una Fuerza puede hacer que un objeto con masa cambie su velocidad (que incluye comenzar a moverse desde un estado de reposo), es decir, acelerar.

F=N(2Acs)σw

Fuerza de resistencia del alambre por cm de longitud dado el diámetro del alambre

La fórmula Fuerza de resistencia del alambre por cm de longitud dado el diámetro del alambre se define como cualquier interacción que, cuando no tiene oposición, cambiará el movimiento de un objeto. Una Fuerza puede hacer que un objeto con masa cambie su velocidad (que incluye comenzar a moverse desde un estado de reposo), es decir, acelerar.

F=(L(π2)Gwireσw)

Fuerza de estallido debido a la presión del fluido

La fórmula de la Fuerza de explosión debida a la presión del fluido se define como cualquier interacción que, sin oposición, cambiará el movimiento de un objeto. Una Fuerza puede hacer que un objeto con masa cambie su velocidad (lo que incluye comenzar a moverse desde un estado de reposo), es decir, que se acelere.

F=Rc+Rw

Fuerza de resistencia del cilindro dada la Fuerza de explosión debido a la presión del fluido

La Fuerza de resistencia del cilindro dada la Fuerza de explosión debido a la fórmula de la presión del fluido se define como cualquier interacción que, cuando no tiene oposición, cambiará el movimiento de un objeto. Una Fuerza puede hacer que un objeto con masa cambie su velocidad (que incluye comenzar a moverse desde un estado de reposo), es decir, acelerar.

Rc=F-Rw

Fuerza de resistencia del alambre dada la Fuerza de ruptura debido a la presión del fluido

La Fuerza de resistencia del alambre dada la Fuerza de ruptura debido a la fórmula de la presión del fluido se define como cualquier interacción que, cuando no tiene oposición, cambiará el movimiento de un objeto. Una Fuerza puede hacer que un objeto con masa cambie su velocidad (que incluye comenzar a moverse desde un estado de reposo), es decir, acelerar.

Rw=F-Rc

Fuerza de ruptura del cilindro dada la tensión debido a la presión del fluido

La Fuerza de explosión del cilindro dado el estrés debido a la fórmula de la presión del fluido se define como cualquier interacción que, cuando no tiene oposición, cambiará el movimiento de un objeto. Una Fuerza puede hacer que un objeto con masa cambie su velocidad (que incluye comenzar a moverse desde un estado de reposo), es decir, acelerar.

F=L((2tσc)+((π2)Gwireσw))

Fuerza iónica del electrolito uni-bivalente

La Fuerza iónica de la fórmula de electrolito unibivalente se define como la mitad de la sumisión de la molalidad y el cuadrado de las valencias de los iones disponibles en la solución. Un ejemplo de electrolitos unibivalentes son Na2SO4, K2CrO4, etc. Por lo tanto, la molalidad del catión se toma dos veces.

I=(12)(m+((Z+)2)+(2m-((Z-)2)))

Fuerza iónica del electrolito uni-bivalente si la molalidad del catión y el anión son iguales

La Fuerza iónica del electrolito unibivalente si la molalidad del catión y el anión son la misma fórmula se define como tres veces la molalidad del electrolito. En el electrolito unibivalente, la valencia del catión es uno y la valencia si el anión es dos.

I=3m

Fuerza iónica del electrolito bi-trivalente

La Fuerza iónica de la fórmula de electrolito bi-trivalente se define como la mitad de la sumisión de la molalidad y el cuadrado de las valencias de los iones disponibles en la solución. Aquí, la molalidad del catión se toma dos veces y la molalidad del anión se toma tres veces.

I=(12)(2m+((Z+)2)+3m-((Z-)2))

Fuerza iónica del electrolito bi-trivalente si la molalidad del catión y el anión son iguales

La Fuerza iónica del electrolito bi-trivalente si la molalidad del catión y el anión son la misma fórmula se define como quince veces la molalidad de un electrolito bi-trivalente.

I=15m

Fuerza máxima en equilibrio

La fórmula de Fuerza Máxima en Equilibrio se define como la Fuerza requerida para elevar el líquido.

Fmax=(ρ1-ρ2)[g]VT

Fuerza de gas que actúa sobre la tapa del cilindro

La Fuerza del gas que actúa sobre la tapa del cilindro es la cantidad de Fuerza que actúa en la parte inferior de la tapa del cilindro debido a la combustión del combustible.

Fg=πDi24pmax

Fuerza de resistencia neta ofrecida por los espárragos de la culata

La Fuerza de resistencia neta que ofrecen los espárragos de la culata es la Fuerza de resistencia total desarrollada dentro de los espárragos de la tapa del cilindro del motor.

Ps=zπdc24σts

Fuerza de arrastre para cuerpos Bluff

La fórmula Drag Force for Bluff Bodies se define como la función de la Fuerza de arrastre, el área frontal, la densidad del fluido y la velocidad de la corriente libre. La Fuerza ejercida sobre un cuerpo sólido que se mueve en relación con un fluido por el movimiento del fluido se conoce como Fuerza de arrastre. Por ejemplo, arrastre un barco en movimiento o arrastre un avión volador. Como resultado, una Fuerza de arrastre es una resistencia creada por un cuerpo que se mueve a través de un fluido como el agua o el aire. La resistencia se genera por la diferencia de velocidad entre el objeto sólido y el fluido. Debe haber movimiento entre el objeto y el fluido. Si no hay movimiento, no hay arrastre. No importa si el objeto se mueve a través de un fluido estático o si el fluido pasa por un objeto sólido estático.

FD=CDAρFluid(u2)2

Fuerza motriz media logarítmica basada en la fracción molar

La fórmula de la Fuerza impulsora media logarítmica basada en la fracción molar es un medio eficaz para cuantificar la Fuerza impulsora para la transferencia de masa en la columna de absorción.

Δylm=y1-y2ln(y1-yey2-ye)

Fuerza magnética

La fórmula de la Fuerza magnética se define como una medida de la Fuerza ejercida sobre un cable portador de corriente en un campo magnético, que es un concepto fundamental para comprender la interacción entre la electricidad y el magnetismo, y tiene numerosas aplicaciones en ingeniería, física y tecnología.

Fmm=|I|Lrod(Bsin(θ2))

Fuerza de empuje hacia arriba

La fórmula de Fuerza de empuje se define como la Fuerza ascendente ejercida por un fluido sobre un objeto parcial o totalmente sumergido en él, resultante de la diferencia de presión entre la parte superior e inferior del objeto, y es un concepto clave para comprender la dinámica de fluidos y la flotabilidad.

Ft=Vi[g]ρ

Fuerza de volumen usando normalidad

La Fuerza de volumen usando la normalidad da el volumen de oxígeno liberado por 1 litro de peróxido de hidrógeno en NPT

VS=5.6N

¿Cómo encontrar Fórmulas?

A continuación se ofrecen algunos consejos para obtener mejores resultados de búsqueda.
Sea específico: cuanto más específica sea su consulta, mejores serán los resultados.
Utilice varias palabras clave: combine varias palabras clave para limitar los resultados.
Experimenta con sinónimos: Diferentes términos pueden producir resultados diferentes.
Búsqueda con comodines: utiliza el operador * (asterisco). TENGA EN CUENTA que este operador funciona solo al final de una palabra. Ejemplo: biografía*, área*, etc.

Como alternativa, puede navegar a través de las subcategorías dentro de para concentrarse en las fórmulas de interés.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!