Buscar Fórmulas

Ingrese un mínimo de 3 caracteres para comenzar a buscar fórmulas de .

Seleccionar filtro

Limite los resultados de su búsqueda con la ayuda de estos filtros.

50 ¡Se encontraron fórmulas coincidentes!

Fuerza de frenado máxima que actúa en las ruedas delanteras cuando los frenos se aplican únicamente a las ruedas delanteras

La fórmula de Fuerza de frenado máxima que actúa en las ruedas delanteras cuando los frenos se aplican solo a las ruedas delanteras se define como la Fuerza máxima ejercida por las ruedas delanteras de un vehículo cuando los frenos se aplican solo a las ruedas delanteras, lo cual es un parámetro crítico para comprender la potencia de frenado y la seguridad del vehículo.

Fbraking=μbrakeRA

Fuerza de frenado total que actúa en las ruedas delanteras (cuando los frenos se aplican únicamente a las ruedas delanteras)

La fórmula de Fuerza de frenado total que actúa en las ruedas delanteras (cuando los frenos se aplican solo a las ruedas delanteras) se define como la Fuerza neta ejercida en las ruedas delanteras de un vehículo cuando se aplican los frenos, teniendo en cuenta la masa del vehículo, la aceleración y la inclinación de la carretera.

Fbraking=ma-mgsin(αinclination)

Fuerza centrífuga en vuelo acelerado

La Fuerza centrífuga en vuelo acelerado es una Fuerza ficticia que parece actuar sobre objetos que se mueven en una trayectoria circular. Surge de la inercia y es percibida por un observador en un marco de referencia giratorio; esta Fuerza actúa perpendicular a la dirección del vector velocidad.

Fc=FL+Tsin(σT)-m[g]cos(γ)

Fuerza de la fuente para la velocidad radial y en cualquier radio

La Fuerza de la fuente para la velocidad radial y en cualquier radio se conoce a partir de la relación de flujo de la fuente. Se define como el caudal volumétrico por unidad de profundidad.

q=Vr2πr1

Fuerza de elevación con ángulo de ataque

La fórmula de la Fuerza de sustentación con el ángulo de ataque se define como el producto de la Fuerza de arrastre y la cuna del ángulo de ataque.

FL=FDcot(α)

Fuerza de arrastre con ángulo de ataque

La fórmula de Fuerza de arrastre con ángulo de ataque se define como la relación entre la Fuerza de sustentación y la cuna del ángulo de ataque.

FD=FLcot(α)

Fuerza del doblete para la función de flujo

La Fuerza del doblete para la función de corriente representa la magnitud o intensidad de la fuente o sumidero del doblete. Determina qué tan fuerte es el doblete en términos de su efecto sobre el campo de flujo, particularmente al generar o influir en líneas de corriente a su alrededor.

µ=-ψ2π((x2)+(y2))y

Fuerza de atracción entre dos masas separadas por distancia

La fórmula de Fuerza de atracción entre dos masas separadas por una distancia se define como una medida de la Fuerza gravitacional que existe entre dos objetos con masa, que es directamente proporcional al producto de sus masas e inversamente proporcional al cuadrado de la distancia entre ellos.

Fg=[G.]m1m2dm2

Fuerza de arrastre total dada la potencia requerida

La Fuerza de arrastre total dada la potencia requerida define la Fuerza de arrastre ejercida sobre un objeto que se mueve a través de un fluido, donde P es la potencia requerida para mantener esa velocidad, esta fórmula ilustra que la Fuerza de arrastre experimentada por un objeto es directamente proporcional a la potencia requerida para mantener su velocidad a través del fluido, siendo la velocidad inversamente proporcional a la Fuerza de arrastre.

FD=PV

Fuerza de tracción en el perno dada la máxima tensión de tracción en el perno

La Fuerza de tracción en el perno dada la tensión máxima de tracción en la fórmula del perno se define como las Fuerzas de estiramiento que actúan sobre el material y tiene dos componentes, a saber, la tensión de tracción y la deformación por tracción.

Ptb=σtmaxπ4dc2

Fuerza de tracción en el perno en tensión

La Fuerza de tracción en el perno en la fórmula de tensión se define como la Fuerza de tracción que producirá una cierta cantidad de deformación permanente dentro de un sujetador específico.

Ptb=π4dc2Sytfs

Fuerza de tracción en perno en cortante

La fórmula de la Fuerza de tracción sobre el perno en corte se define como la carga máxima que se puede soportar antes de la fractura cuando se aplica en ángulo recto con el eje del sujetador. Una carga que ocurre en un plano transversal se conoce como cortante simple.

Ptb=πdchSsyfs

Fuerza de corte primaria de conexión atornillada cargada excéntricamente

La fórmula de la Fuerza cortante primaria de una conexión atornillada cargada excéntricamente se define como la Fuerza que actúa en una dirección paralela a una superficie o a una sección transversal plana de un cuerpo, como por ejemplo la presión del aire a lo largo de la parte delantera del ala de un avión.

P1'=Pn

Fuerza imaginaria en el centro de gravedad de la junta atornillada dada la Fuerza de corte primaria

La Fuerza imaginaria en el centro de gravedad de la junta atornillada dada La Fuerza de corte primaria se define como la Fuerza que parece actuar sobre una masa cuyo movimiento se describe utilizando un marco de referencia no inercial, como un marco de referencia de aceleración o rotación.

P=P1'n

Fuerza que actúa dada la tensión de corte inducida en un plano que está inclinado en un ángulo theta

La Fuerza que actúa dada la tensión de corte inducida en un plano que está inclinado en la fórmula del ángulo theta se define como la carga o la Fuerza que actúa sobre la soldadura, que es la razón de la tensión de corte inducida.

Pd=𝜏hlLsin(θ)(sin(θ)+cos(θ))

Fuerza por molécula de gas en la pared de la caja

La fórmula Fuerza de la molécula de gas sobre la pared de la caja se define como la tasa de cambio del impulso de la molécula gaseosa con respecto al tiempo.

Fwall=m(u)2L

Fuerza de inercia dado el número de Reynolds

La Fuerza de inercia dada la fórmula del número de Reynolds se define como cualquier Fuerza invocada por un observador para mantener la validez de la segunda ley de movimiento de Isaac Newton en un marco de referencia que gira o acelera a una velocidad constante.

Fi=Reμ

Fuerza viscosa dado el número de Reynolds

La Fuerza viscosa dada la fórmula del número de Reynolds se define como la velocidad a la que cambia la velocidad del fluido en el espacio.

μ=FiRe

Fuerza hacia abajo debido a la masa de sustentación, cuando la sustentación se mueve hacia arriba

La fórmula de Fuerza descendente debido a la masa del elevador, cuando el elevador se mueve hacia arriba, se define como la Fuerza ejercida sobre un objeto debido a su masa cuando se eleva, oponiéndose al movimiento ascendente, y es un concepto crucial para comprender la dinámica del movimiento vertical.

Fdwn=mo[g]

Fuerza neta hacia arriba en el levantamiento, cuando el levantamiento se mueve hacia arriba

La fórmula de la Fuerza ascendente neta sobre la sustentación, cuando la sustentación se mueve hacia arriba, se define como la Fuerza ascendente ejercida sobre un objeto cuando se mueve hacia arriba, oponiéndose al peso del objeto y dando como resultado su movimiento ascendente. Es un concepto crucial para comprender los principios de la aerodinámica y el comportamiento de los objetos en vuelo.

Fup=L-mo[g]

Fuerza neta hacia abajo, cuando la elevación se mueve hacia abajo

La fórmula de Fuerza neta descendente cuando el elevador se mueve hacia abajo se define como la Fuerza descendente total ejercida sobre un objeto cuando se lo eleva hacia abajo, teniendo en cuenta el peso del objeto y la Fuerza opuesta del elevador, lo que proporciona una medida de la Fuerza neta que actúa sobre el objeto en dirección descendente.

Fdwn=mo[g]-R

Fuerza ejercida por la masa transportada por el ascensor sobre su piso, cuando el ascensor se mueve hacia arriba

La fórmula de la Fuerza ejercida por la masa transportada por el ascensor sobre su suelo, cuando el ascensor se mueve hacia arriba, se define como la Fuerza total ejercida sobre el suelo del ascensor por la masa transportada, teniendo en cuenta tanto el peso de la masa como la aceleración del ascensor a medida que se mueve hacia arriba.

Fup=mc([g]+a)

Fuerza de unión fibra-matriz dada la longitud crítica de la fibra

La Fuerza de unión fibra-matriz dada la longitud crítica de la fibra indica que la Fuerza de unión entre la fibra y la matriz es inversamente proporcional a la longitud crítica de la fibra. En otras palabras, las fibras más cortas suelen presentar una unión más fuerte con la matriz en comparación con las fibras más largas.

τ=σfd2lc

Fuerza de arrastre ejercida por el agua que fluye

La Fuerza de arrastre ejercida por el agua que fluye es la Fuerza de resistencia causada por el movimiento de un cuerpo a través de un fluido, como el agua o el aire.

FD=γw(G-1)(1-n)tsin(αi)

Fuerza de arrastre o intensidad de la Fuerza de tracción

La Fuerza de arrastre o intensidad de la Fuerza de tracción se define como la Fuerza de resistencia causada por el movimiento de un cuerpo a través de un fluido, como el agua o el aire.

FD=γwm

Fuerza de flotación en prisma vertical

La Fuerza de flotación en el prisma vertical será igual al producto del volumen del sólido, la aceleración de la gravedad y la densidad del agua.

FBuoyant=ωHPressureheadA

Fuerza de flotabilidad dado el volumen del prisma vertical

La Fuerza de flotabilidad dado el volumen del prisma vertical será igual al producto del volumen del sólido, la aceleración debida a la gravedad y la densidad del agua.

FBuoyant=ωV

Fuerza de flotación en todo el cuerpo sumergido

La Fuerza de flotación en todo el cuerpo sumergido será igual al producto del volumen del sólido, la aceleración debida a la gravedad y la densidad del agua.

FBuoyant=ωV

Fuerza de flotación cuando el cuerpo flota entre dos fluidos inmiscibles de pesos específicos

La Fuerza de flotación cuando el cuerpo flota entre dos fluidos inmiscibles de pesos específicos es la Fuerza que hace que los objetos floten. La Fuerza de flotación es la Fuerza hacia arriba ejercida por un fluido que se opone al peso del objeto sumergido en el fluido.

FBuoyant=(ων1+ω1ν2)

Fuerza de flotación total dados los volúmenes de prisma elemental sumergido en fluidos

La Fuerza de flotación total dados los volúmenes de prisma elemental sumergido en fluidos es la Fuerza que hace que los objetos floten. La Fuerza de flotación es la Fuerza ascendente ejercida por un fluido que se opone al peso del objeto sumergido en el fluido.

FBuoyant=(ων1+ω1ν2)

Fuerza cortante que resiste el movimiento del pistón

La Fuerza de corte que resiste el movimiento del pistón se define como la Fuerza debida a la fricción entre el pistón y el tanque.

Fs=πLPμvpiston(1.5(DCR)2+4(DCR))

Fuerzas totales

Las Fuerzas Totales se definen como la suma de la Fuerza cortante junto con la Fuerza de diferencia de presión que actúa sobre el pistón.

Tf=Fv+Fs

Fuerza vertical dada Fuerza total

La fórmula Fuerza vertical dada Fuerza total se define como la Fuerza total debida a la diferencia de presión en el pistón por Fuerza externa.

Fv=Fs-FTotal

Fuerza que actúa sobre el resorte dada la tensión resultante

La fórmula de Fuerza que actúa sobre un resorte dada la tensión resultante se define como la medida de la Fuerza ejercida sobre un resorte cuando está sujeto a una tensión resultante, lo que proporciona una forma de calcular la Fuerza en función de las dimensiones del resorte y las propiedades del material, lo cual es crucial para diseñar y analizar sistemas basados en resortes.

P=𝜏πd3K8D

Fuerza aplicada en el resorte dada la deflexión en el resorte

La fórmula de Fuerza aplicada al resorte dada la deflexión en el resorte se define como la medida de la Fuerza ejercida sobre un resorte cuando se desvía de su posición original, lo cual es un parámetro crítico para determinar la tensión y las deflexiones en los resortes, y es esencial para diseñar y analizar sistemas basados en resortes.

P=δGd48(D3)Na

Fuerza aplicada en primavera dada la energía de deformación almacenada en primavera

La fórmula de Fuerza aplicada sobre un resorte dada la energía de deformación almacenada en el resorte se define como la medida de la Fuerza ejercida sobre un resorte cuando se comprime o se estira, que es directamente proporcional a la energía de deformación almacenada en el resorte e inversamente proporcional a la deformación del resorte.

P=2Uhδ

Fuerza ejercida por el chorro en la dirección del flujo del chorro entrante con un ángulo de 90

La Fuerza ejercida por el chorro en la dirección del flujo del chorro entrante con un ángulo de 90 se define como la Fuerza ejercida por el chorro en la dirección paralela a la placa.

Ft=(γfAJet(Vabsolute-v)2G)

Fuerza ejercida por el chorro en la dirección del flujo del chorro entrante con ángulo cero

La Fuerza ejercida por el chorro en la dirección del flujo del chorro entrante con ángulo cero se define como la Fuerza ejercida por el chorro en la dirección de paralelo a la placa.

Ft=(γfAJet(Vabsolute-v)2G)

Fuerza ejercida por el chorro en la dirección del flujo del chorro

La Fuerza ejercida por el chorro en la dirección del flujo del chorro se define como la Fuerza inducida por el fluido sobre la placa estacionaria del chorro.

Fs=(γfAJetVabsolute(Vabsolute-v)G)(1+cos(θ))

Fuerza ejercida por un chorro con velocidad relativa

La Fuerza ejercida por el chorro con velocidad relativa se define como la Fuerza inducida por el fluido en la placa estacionaria del chorro.

Fs=(γfAJetVabsolute(Vabsolute-v)G)(1+acos(θ))

Fuerza de resistencia del alambre por cm de longitud dado el número de vueltas del alambre

La fórmula Fuerza de resistencia del alambre por cm de longitud dado el número de vueltas del alambre se define como cualquier interacción que, cuando no tiene oposición, cambiará el movimiento de un objeto. Una Fuerza puede hacer que un objeto con masa cambie su velocidad (que incluye comenzar a moverse desde un estado de reposo), es decir, acelerar.

F=N(2Acs)σw

Fuerza de resistencia del alambre por cm de longitud dado el diámetro del alambre

La fórmula Fuerza de resistencia del alambre por cm de longitud dado el diámetro del alambre se define como cualquier interacción que, cuando no tiene oposición, cambiará el movimiento de un objeto. Una Fuerza puede hacer que un objeto con masa cambie su velocidad (que incluye comenzar a moverse desde un estado de reposo), es decir, acelerar.

F=(L(π2)Gwireσw)

Fuerza de estallido debido a la presión del fluido

La fórmula de la Fuerza de explosión debida a la presión del fluido se define como cualquier interacción que, sin oposición, cambiará el movimiento de un objeto. Una Fuerza puede hacer que un objeto con masa cambie su velocidad (lo que incluye comenzar a moverse desde un estado de reposo), es decir, que se acelere.

F=Rc+Rw

Fuerza de resistencia del cilindro dada la Fuerza de explosión debido a la presión del fluido

La Fuerza de resistencia del cilindro dada la Fuerza de explosión debido a la fórmula de la presión del fluido se define como cualquier interacción que, cuando no tiene oposición, cambiará el movimiento de un objeto. Una Fuerza puede hacer que un objeto con masa cambie su velocidad (que incluye comenzar a moverse desde un estado de reposo), es decir, acelerar.

Rc=F-Rw

Fuerza de resistencia del alambre dada la Fuerza de ruptura debido a la presión del fluido

La Fuerza de resistencia del alambre dada la Fuerza de ruptura debido a la fórmula de la presión del fluido se define como cualquier interacción que, cuando no tiene oposición, cambiará el movimiento de un objeto. Una Fuerza puede hacer que un objeto con masa cambie su velocidad (que incluye comenzar a moverse desde un estado de reposo), es decir, acelerar.

Rw=F-Rc

Fuerza de ruptura del cilindro dada la tensión debido a la presión del fluido

La Fuerza de explosión del cilindro dado el estrés debido a la fórmula de la presión del fluido se define como cualquier interacción que, cuando no tiene oposición, cambiará el movimiento de un objeto. Una Fuerza puede hacer que un objeto con masa cambie su velocidad (que incluye comenzar a moverse desde un estado de reposo), es decir, acelerar.

F=L((2tσc)+((π2)Gwireσw))

Fuerza iónica para electrolito univalente

La Fuerza iónica para la fórmula de electrolito univalente se define como la mitad de la sumisión de la molalidad y el cuadrado de las valencias de los iones disponibles en la solución. Un ejemplo de electrolito univalente es NaCl, KBr, HCl, etc.

I=(12)(m+((Z+)2)+m-((Z-)2))

Fuerza iónica para electrolito bivalente

La Fuerza iónica para la fórmula de electrolito bivalente se define como la mitad de la sumisión de la molalidad y el cuadrado de las valencias de los iones disponibles en la solución. Un ejemplo de un electrolito bivalente es CuSO4, ZnSO4, MgSO4, etc.

I=(12)(m+((Z+)2)+m-((Z-)2))

Fuerza iónica para electrolito bivalente si la molalidad del catión y el anión es la misma

La Fuerza iónica para el electrolito bivalente si la molalidad del catión y el anión es la misma fórmula se define como cuatro veces la molalidad del electrolito. Para los electrolitos bivalentes, las valencias de catión y anión son dos.

I=(4m)

Fuerza de pretensado a una distancia x cuando se considera la fricción inversa

La Fuerza de pretensado a una distancia x cuando se considera la fricción inversa se define como la ecuación para encontrar la Fuerza de pretensado a una distancia x del extremo de estiramiento de la sección o viga.

Px=(P-Δfp)exp(ηx)

¿Cómo encontrar Fórmulas?

A continuación se ofrecen algunos consejos para obtener mejores resultados de búsqueda.
Sea específico: cuanto más específica sea su consulta, mejores serán los resultados.
Utilice varias palabras clave: combine varias palabras clave para limitar los resultados.
Experimenta con sinónimos: Diferentes términos pueden producir resultados diferentes.
Búsqueda con comodines: utiliza el operador * (asterisco). TENGA EN CUENTA que este operador funciona solo al final de una palabra. Ejemplo: biografía*, área*, etc.

Como alternativa, puede navegar a través de las subcategorías dentro de para concentrarse en las fórmulas de interés.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!