FormulaDen.com
Physics
Chemistry
Math
Chemical Engineering
Civil
Electrical
Electronics
Electronics and Instrumentation
Materials Science
Mechanical
Production Engineering
Financial
Health
You are here
-
Home
»
Chemistry
»
Kinetic Theory of Gases
Temperature in Kinetic Theory of Gases Formulas
Temperature is the degree or intensity of heat present in a substance or object. And is denoted by T. Temperature is usually measured using the Kelvin for Temperature. Note that the value of Temperature is always negative.
Formulas to find Temperature in Kinetic Theory of Gases
f
x
Temperature given Average Thermal Energy of Linear Polyatomic Gas Molecule
Go
f
x
Temperature given Internal Molar Energy of Linear Molecule
Go
f
x
Temperature given Average Thermal Energy of Non-Linear Polyatomic Gas Molecule
Go
f
x
Temperature given Internal Molar Energy of Non-Linear Molecule
Go
f
x
Temperature given Molar Vibrational Energy of Linear Molecule
Go
f
x
Temperature given Molar Vibrational Energy of Non-Linear Molecule
Go
f
x
Temperature given Vibrational Energy of Linear Molecule
Go
f
x
Temperature given Vibrational Energy of Non-Linear Molecule
Go
f
x
Temperature of Real Gas given Heat Capacities
Go
f
x
Temperature of Real Gas given Difference between Cp and Cv
Go
f
x
Actual Temperature using Redlich Kwong Equation given 'a' and 'b'
Go
f
x
Actual Temperature of Real Gas using Redlich Kwong Equation given 'a'
Go
f
x
Temperature of Real Gas using Berthelot Equation
Go
f
x
Temperature using Modified Berthelot Equation given Reduced and Actual Parameters
Go
f
x
Temperature of Real Gas using Berthelot Equation given Critical and Reduced Parameters
Go
f
x
Temperature of Real Gas using Peng Robinson Equation given Reduced and Critical Parameters
Go
f
x
Actual Temperature given Peng Robinson Parameter a, and other Reduced and Critical Parameters
Go
f
x
Actual Temperature given Peng Robinson Parameter a, and other Actual and Reduced Parameters
Go
f
x
Actual Temperature given Peng Robinson Parameter b, other Actual and Reduced Parameters
Go
f
x
Actual Temperature for Peng Robinson Equation using Alpha-function and Pure Component Parameter
Go
Kinetic Theory of Gases formulas that make use of Temperature
f
x
Internal Molar Energy of Linear Molecule given Atomicity
Go
f
x
Average Thermal Energy of Linear Polyatomic Gas Molecule given Atomicity
Go
f
x
Internal Molar Energy of Non-Linear Molecule
Go
f
x
Average Thermal Energy of Non-linear Polyatomic Gas Molecule
Go
f
x
Vibrational Energy of Linear Molecule
Go
f
x
Vibrational Energy of Non-Linear Molecule
Go
f
x
Internal Molar Energy of Linear Molecule
Go
f
x
Internal Molar Energy of Non-Linear Molecule given Atomicity
Go
f
x
Average Thermal Energy of Linear Polyatomic Gas Molecule
Go
f
x
Average Thermal Energy of Non-linear polyatomic Gas Molecule given Atomicity
Go
f
x
Molar Vibrational Energy of Linear Molecule
Go
f
x
Molar Vibrational Energy of Non-Linear Molecule
Go
f
x
Molar Heat Capacity at Constant Pressure given Volumetric Coefficient of Thermal Expansion
Go
f
x
Molar Heat Capacity at Constant Volume given Volumetric Coefficient of Thermal Expansion
Go
f
x
Molar Heat Capacity at Constant Pressure given Thermal Pressure Coefficient
Go
f
x
Molar Heat Capacity at Constant Volume given Thermal Pressure Coefficient
Go
f
x
Atomicity given Average Thermal Energy of Linear Polyatomic Gas Molecule
Go
f
x
Atomicity given Average Thermal Energy of Non-linear Polyatomic Gas Molecule
Go
f
x
Atomicity given Internal Molar Energy of Linear Molecule
Go
f
x
Atomicity given Internal Molar Energy of Non-Linear Molecule
Go
f
x
Atomicity given Molar Vibrational Energy of Linear Molecule
Go
f
x
Atomicity given Molar Vibrational Energy of Non-Linear Molecule
Go
f
x
Atomicity given Vibrational Energy of Linear Molecule
Go
f
x
Atomicity given Vibrational Energy of Non-Linear Molecule
Go
f
x
Difference between Cp and Cv of Real Gas
Go
f
x
Heat Capacity at Constant Pressure of Real Gas
Go
f
x
Heat Capacity at Constant Volume of Real Gas
Go
f
x
Coefficient of Thermal Expansion of Real Gas
Go
f
x
Isothermal Compressibility of Real Gas
Go
f
x
Specific Volume of Real Gas given Heat Capacities
Go
f
x
Adiabatic Index of Real Gas given Heat Capacity at Constant Pressure
Go
f
x
Adiabatic Index of Real Gas given Heat Capacity at Constant Volume
Go
f
x
Isothermal Compressibility of Real Gas given Difference between Cp and Cv
Go
f
x
Coefficient of Thermal Expansion of Real Gas given Difference between Cp and Cv
Go
f
x
Specific Volume of Real Gas given Difference between Cp and Cv
Go
f
x
Pressure of Real Gas using Redlich Kwong Equation
Go
f
x
Molar Volume of Real Gas using Redlich Kwong Equation
Go
f
x
Actual Pressure of Real Gas using Reduced Redlich Kwong Equation
Go
f
x
Redlich Kwong Parameter given Pressure, Temperature and Molar Volume of Real Gas
Go
f
x
Redlich Kwong Parameter a, given Reduced and Actual Pressure
Go
f
x
Redlich Kwong Parameter b given Pressure, Temperature and Molar Volume of Real Gas
Go
f
x
Redlich Kwong Parameter b given Reduced and Actual Pressure
Go
f
x
Reduced Temperature of Real Gas given 'a' using Redlich Kwong Equation
Go
f
x
Reduced Temperature of Real Gas given 'b' using Redlich Kwong Equation
Go
f
x
Reduced Temperature of Real Gas using Actual and Critical Temperature
Go
f
x
Pressure of Real Gas using Berthelot Equation
Go
f
x
Molar Volume of Real Gas using Berthelot Equation
Go
f
x
Berthelot Parameter of Real Gas
Go
f
x
Berthelot parameter b of Real Gas
Go
f
x
Molar Volume using Modified Berthelot Equation given Critical and Actual Parameters
Go
f
x
Molar Volume using Modified Berthelot Equation given Reduced and Actual Parameters
Go
f
x
Pressure using Modified Berthelot Equation given Reduced and Actual Parameters
Go
f
x
Critical Temperature using Modified Berthelot Equation given Reduced and Actual Parameters
Go
f
x
Reduced Molar Volume using Modified Berthelot Equation given Critical and Actual Parameters
Go
f
x
Critical Molar Volume using Modified Berthelot Equation given Reduced and Actual Parameters
Go
f
x
Pressure of Real Gas using Peng Robinson Equation
Go
f
x
Peng Robinson Alpha-Function using Peng Robinson Equation
Go
f
x
Actual Pressure given Peng Robinson Parameter a, and other Actual and Reduced Parameters
Go
f
x
Actual Pressure given Peng Robinson Parameter b, other Actual and Reduced Parameters
Go
f
x
Alpha-function for Peng Robinson Equation of state given Critical and Actual Temperature
Go
f
x
Pure Component Factor for Peng Robinson Equation of state using Critical and Actual Temperature
Go
f
x
Reduced Temperature given Peng Robinson Parameter a, and other Actual and Critical Parameters
Go
f
x
Reduced Temperature given Peng Robinson Parameter a, and other Actual and Reduced Parameters
Go
f
x
Reduced Temperature given Peng Robinson Parameter b, other Actual and Critical Parameters
Go
f
x
Reduced Temperature given Peng Robinson Parameter b, other Actual and Reduced Parameters
Go
f
x
Critical Temperature for Peng Robinson Equation using Alpha-function and Pure Component Parameter
Go
f
x
Critical Pressure given Peng Robinson Parameter a, and other Actual and Reduced Parameters
Go
f
x
Critical Pressure of Real Gas using Peng Robinson Equation given Reduced and Actual Parameters
Go
f
x
Peng Robinson parameter a, of Real Gas given Reduced and Actual Parameters
Go
f
x
Peng Robinson Parameter a, using Peng Robinson Equation
Go
f
x
Peng Robinson Parameter b of Real Gas given Reduced and Actual Parameters
Go
f
x
Reduced Pressure given Peng Robinson Parameter a, and other Actual and Reduced Parameters
Go
f
x
Reduced Pressure using Peng Robinson Equation given Critical and Actual Parameters
Go
f
x
STP
Go
f
x
Isentropic Compressibility given Volumetric Coefficient of Thermal Expansion and Cp
Go
f
x
Isentropic Compressibility given Thermal Pressure Coefficient and Cp
Go
f
x
Isentropic Compressibility given Volumetric Coefficient of Thermal Expansion and Cv
Go
f
x
Isentropic Compressibility given Thermal Pressure Coefficient and Cv
Go
f
x
Isothermal Compressibility given Volumetric Coefficient of Thermal Expansion and Cp
Go
f
x
Isothermal Compressibility given Thermal Pressure Coefficient and Cp
Go
f
x
Isothermal Compressibility given Volumetric Coefficient of Thermal Expansion and Cv
Go
f
x
Isothermal Compressibility given Thermal Pressure Coefficient and Cv
Go
f
x
Isothermal Compressibility given Relative Size of Fluctuations in Particle Density
Go
f
x
Volumetric Coefficient of Thermal Expansion given Compressibility Factors and Cp
Go
f
x
Thermal Pressure Coefficient given Compressibility Factors and Cp
Go
f
x
Volumetric Coefficient of Thermal Expansion given Compressibility Factors and Cv
Go
f
x
Thermal Pressure Coefficient given Compressibility Factors and Cv
Go
f
x
Volume given Relative Size of Fluctuations in Particle Density
Go
f
x
Relative Size of Fluctuations in Particle Density
Go
f
x
Density given Volumetric Coefficient of Thermal Expansion, Compressibility Factors and Cp
Go
f
x
Density given Thermal Pressure Coefficient, Compressibility Factors and Cp
Go
f
x
Density given Volumetric Coefficient of Thermal Expansion, Compressibility Factors and Cv
Go
f
x
Density given Thermal Pressure Coefficient, Compressibility Factors and Cv
Go
f
x
Density given Relative Size of Fluctuations in Particle Density
Go
f
x
Number of Moles given Kinetic Energy
Go
List of variables in Kinetic Theory of Gases formulas
f
x
Thermal Energy
Go
f
x
Atomicity
Go
f
x
Internal Molar Energy
Go
f
x
Molar Vibrational Energy
Go
f
x
Vibrational Energy
Go
f
x
Heat Capacity Constant Pressure
Go
f
x
Heat Capacity Constant Volume
Go
f
x
Isothermal Compressibility
Go
f
x
Specific Volume
Go
f
x
Coefficient of Thermal Expansion
Go
f
x
Difference in Heat Capacities
Go
f
x
Reduced Temperature
Go
f
x
Redlich–Kwong Parameter a
Go
f
x
Redlich–Kwong parameter b
Go
f
x
Critical Pressure
Go
f
x
Pressure
Go
f
x
Berthelot Parameter a
Go
f
x
Molar Volume
Go
f
x
Berthelot Parameter b
Go
f
x
Reduced Pressure
Go
f
x
Reduced Molar Volume
Go
f
x
Critical Molar Volume
Go
f
x
Peng–Robinson Parameter a
Go
f
x
α-function
Go
f
x
Peng–Robinson Parameter b
Go
f
x
Critical Temperature
Go
f
x
Pure Component Parameter
Go
FAQ
What is the Temperature?
Temperature is the degree or intensity of heat present in a substance or object. Temperature is usually measured using the Kelvin for Temperature. Note that the value of Temperature is always negative.
Can the Temperature be negative?
Yes, the Temperature, measured in Temperature can be negative.
What unit is used to measure Temperature?
Temperature is usually measured using the Kelvin[K] for Temperature. Celsius[K], Fahrenheit[K], Rankine[K] are the few other units in which Temperature can be measured.
Let Others Know
✖
Facebook
Twitter
Reddit
LinkedIn
Email
WhatsApp
Copied!