FormulaDen.com
Physics
Chemistry
Math
Chemical Engineering
Civil
Electrical
Electronics
Electronics and Instrumentation
Materials Science
Mechanical
Production Engineering
Financial
Health
You are here
-
Home
»
Chemistry
»
Kinetic Theory of Gases
»
Real Gas
Peng–Robinson Parameter a in Peng Robinson Model of Real Gas Formulas
Peng–Robinson parameter a is an empirical parameter characteristic to equation obtained from Peng–Robinson model of real gas. And is denoted by a
PR
.
Formulas to find Peng–Robinson Parameter a in Peng Robinson Model of Real Gas
f
x
Peng Robinson Parameter a, of Real Gas given Critical Parameters
Go
f
x
Peng Robinson parameter a, of Real Gas given Reduced and Actual Parameters
Go
f
x
Peng Robinson Parameter a, using Peng Robinson Equation
Go
f
x
Peng Robinson Parameter a, using Peng Robinson Equation given Reduced and Critical Parameters
Go
Peng Robinson Model of Real Gas formulas that make use of Peng–Robinson Parameter a
f
x
Pressure of Real Gas using Peng Robinson Equation
Go
f
x
Pressure of Real Gas using Peng Robinson Equation given Reduced and Critical Parameters
Go
f
x
Temperature of Real Gas using Peng Robinson Equation
Go
f
x
Temperature of Real Gas using Peng Robinson Equation given Reduced and Critical Parameters
Go
f
x
Peng Robinson Alpha-Function using Peng Robinson Equation
Go
f
x
Peng Robinson Alpha-Function using Peng Robinson Equation given Reduced and Critical Parameters
Go
f
x
Actual Temperature given Peng Robinson Parameter a, and other Reduced and Critical Parameters
Go
f
x
Actual Temperature given Peng Robinson Parameter a, and other Actual and Reduced Parameters
Go
f
x
Actual Pressure given Peng Robinson Parameter a, and other Reduced and Critical Parameters
Go
f
x
Actual Pressure given Peng Robinson Parameter a, and other Actual and Reduced Parameters
Go
f
x
Reduced Temperature given Peng Robinson Parameter a, and other Actual and Critical Parameters
Go
f
x
Reduced Temperature given Peng Robinson Parameter a, and other Actual and Reduced Parameters
Go
f
x
Reduced Temperature using Peng Robinson Equation given Critical and Actual Parameters
Go
f
x
Reduced Temperature using Peng Robinson Equation given Reduced and Critical Parameters
Go
f
x
Critical Temperature given Peng Robinson Parameter a, and other Actual and Reduced Parameters
Go
f
x
Critical Temperature of Real Gas using Peng Robinson Equation given Peng Robinson Parameter a
Go
f
x
Critical Temperature using Peng Robinson Equation given Reduced and Actual Parameters
Go
f
x
Critical Temperature using Peng Robinson Equation given Reduced and Critical Parameters
Go
f
x
Critical Pressure given Peng Robinson Parameter a, and other Actual and Reduced Parameters
Go
f
x
Critical Pressure of Real Gas using Peng Robinson Equation given Peng Robinson Parameter a
Go
f
x
Critical Pressure of Real Gas using Peng Robinson Equation given Reduced and Actual Parameters
Go
f
x
Critical Pressure using Peng Robinson Equation given Reduced and Critical Parameters
Go
f
x
Reduced Pressure given Peng Robinson Parameter a, and other Actual and Critical Parameters
Go
f
x
Reduced Pressure given Peng Robinson Parameter a, and other Actual and Reduced Parameters
Go
f
x
Reduced Pressure using Peng Robinson Equation given Critical and Actual Parameters
Go
f
x
Reduced Pressure using Peng Robinson Equation given Reduced and Critical Parameters
Go
List of variables in Peng Robinson Model of Real Gas formulas
f
x
Critical Temperature
Go
f
x
Critical Pressure
Go
f
x
Temperature
Go
f
x
Reduced Temperature
Go
f
x
Pressure
Go
f
x
Reduced Pressure
Go
f
x
Molar Volume
Go
f
x
Peng–Robinson Parameter b
Go
f
x
α-function
Go
f
x
Reduced Molar Volume
Go
f
x
Critical Molar Volume
Go
FAQ
What is the Peng–Robinson Parameter a?
Peng–Robinson parameter a is an empirical parameter characteristic to equation obtained from Peng–Robinson model of real gas.
Can the Peng–Robinson Parameter a be negative?
{YesorNo}, the Peng–Robinson Parameter a, measured in {OutputVariableMeasurementName} {CanorCannot} be negative.
Let Others Know
✖
Facebook
Twitter
Reddit
LinkedIn
Email
WhatsApp
Copied!