Suche Formeln

Bitte geben Sie mindestens 3 Zeichen ein, um mit der Suche nach -Formeln zu beginnen.

Wählen Sie Filter

Grenzen Sie Ihre Suchergebnisse mithilfe dieser Filter ein.

50 Passende Formeln gefunden!

Leistung der Peltonturbine

Die Leistung einer Peltonturbine ist die mechanische Energie, die durch die Umwandlung der kinetischen Energie eines Hochgeschwindigkeitswasserstrahls, der auf die Turbinenschaufeln trifft, erzeugt wird. Diese Umwandlung hängt von der Wasserdurchflussrate, der Höhe des Wasserfalls (Fallhöhe) und der Effizienz der Turbine ab. Die Hauptfaktoren, die die Leistung beeinflussen, sind die Geschwindigkeit des Wasserstrahls und die auf die Turbinenschaufeln ausgeübte Kraft.

Pt=(1+kcos(β2))ρQpUVr1

Leistung der Peltonturbine bei gegebener Geschwindigkeit

Die Leistung einer Peltonturbine bei gegebener Geschwindigkeit wird als die pro Zeiteinheit übertragene oder umgewandelte Energiemenge definiert. Diese wird durch die Flüssigkeit auf das Rad übertragen.

Pt=(1+kcos(β2))ρQpU(V1-U)

Leistungsbedarf bei mittlerem Geschwindigkeitsgradienten

Der Leistungsbedarf bei mittlerem Geschwindigkeitsgradienten wird als die Leistung definiert, die erforderlich ist, wenn wir vorab Informationen über mittleren Geschwindigkeitsgradienten, Viskosität und Tankvolumen haben.

P=(G)2μviscosityV

Leistungsbedarf für schnelle Mischvorgänge in der Abwasserbehandlung

Der Leistungsbedarf für schnelle Mischvorgänge bei der Abwasserbehandlung wird als die Leistung definiert, die erforderlich ist, wenn wir vorab Informationen über den mittleren Geschwindigkeitsgradienten, die Viskosität und das Tankvolumen haben.

P=(G)2μviscosityV

Leistungsdichte des Laserstrahls

Die Formel zur Leistungsdichte eines Laserstrahls ist definiert als die Leistung, die pro Flächeneinheit des Strahlquerschnitts enthalten ist.

δp=4Pπflens2α2ΔT

Leistungsfaktor unter Verwendung der Fläche des X-Abschnitts (3-Phasen-4-Draht-Betriebssystem)

Die Formel für den Leistungsfaktor unter Verwendung der Fläche des X-Abschnitts (3-Phasen-4-Draht-OS) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=(PVm)2ρL3A

Leistungsfaktor unter Verwendung des Laststroms (3-Phasen-4-Draht-Betriebssystem)

Die Formel für den Leistungsfaktor unter Verwendung des Laststroms (3-Phasen-4-Draht-OS) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=2P3Vm

Leistungsschalterhöhenindex

Die Formel für den Breaker Height Index ist definiert als das Verhältnis der Wellenhöhe beim Brechen zur Wassertiefe am Brechpunkt.

Ωb=Hbλo

Leistungsaufnahme der kapazitiven Last

Die Formel für die Leistungsaufnahme der kapazitiven Last ist definiert als die AusgangsLeistung, die für den Lastkondensator in der Schaltung berechnet wird.

PL=CLVcc2foSwo

Leistung im Gleichstromkreis

Die Formel für die Leistung im Gleichstromkreis ist definiert als die in einer Zeiteinheit verbrauchte Energierate. Elektrische Leistung ist die Flussrate elektrischer Energie an einem bestimmten Punkt in einem geschlossenen Stromkreis vorbei.

P=VI

Leistungsgewinn des Abwärtswandlers bei gegebenem Degradationsfaktor

Die Leistungsverstärkung des Abwärtswandlers mit der Formel für den Degradationsfaktor ist definiert als ein Gerät, das ein eingehendes Signal mit einer höheren Frequenz aufnimmt und es in eine niedrigere Frequenz umwandelt.

Gaindc=fsfofsfo(γQ)2(1+1+(fsfo(γQ)2))2

Leistungsgewinn des Verstärkers

Die Formel für die Leistungsverstärkung des Verstärkers ist definiert als die LastLeistung P(l) zur EingangsLeistung P(i), ein Verstärker versorgt die Last mit einer Leistung, die größer ist als die von der Signalquelle erhaltene.

Ap=PLPin

Leistungsverstärkung des Verstärkers bei gegebener Spannungsverstärkung und Stromverstärkung

Die Leistungsverstärkung des Verstärkers bei gegebener Spannungsverstärkungs- und Stromverstärkungsformel ist definiert als das Produkt aus der Spannungsverstärkung und der Stromverstärkung der Verstärkerschaltung.

Ap=AvAi

Leistungsfaktor unter Verwendung des Volumens des Leitermaterials (2 Phasen 3 Leiter US)

Die Formel für den Leistungsfaktor unter Verwendung des Volumens des Leitermaterials (2 Phasen 3 Leiter US) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=(2.194)KV

Leistungsfaktor unter Verwendung des Volumens des Leitermaterials (Zweiphasen-Dreileiter-Betriebssystem)

Die Formel für den Leistungsfaktor unter Verwendung des Volumens des Leitermaterials (Zweiphasen-Dreileiter-OS) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=(1.457)KV

Leistungsfaktor unter Verwendung des Volumens des Leitermaterials (einphasiges Dreileiter-Betriebssystem)

Die Formel für den Leistungsfaktor unter Verwendung des Volumens des Leitermaterials (Einphasen-Dreileiter-OS) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=(0.625)KV

Leistungsfaktor unter Verwendung des Laststroms (3 Phasen 4 Leiter US)

Die Formel für den Leistungsfaktor unter Verwendung des Laststroms (3 Phasen, 4 Leiter US) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=6P3VmI

Leistungsfaktor unter Verwendung der Fläche des X-Abschnitts (3 Phasen 4 Leiter US)

Die Formel für den Leistungsfaktor unter Verwendung der Fläche des X-Querschnitts (3 Phasen 4 Leiter US) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

Φ=acos((PVm)2ρLAPloss)

Leistungsfaktor unter Verwendung von Leitungsverlusten (3-Phasen-4-Draht-US)

Die Formel für den Leistungsfaktor unter Verwendung von Leitungsverlusten (3 Phasen, 4 Leiter US) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=((PVm)2RPloss)

Leistungsfluss im SSSC

Die Power Flow in SSSC-Formel wird verwendet, um sowohl den Wirk- als auch den BlindLeistungsfluss auf einer Übertragungsleitung zu steuern und UPFC zu einem vielseitigen Gerät zur Optimierung von Leistungsfluss- und Spannungsprofilen in einem Energiesystem zu machen.

Psssc=Pmax+VseIsh4

Leistungsfaktor unter Verwendung der Fläche des X-Abschnitts (1-phasig 2-adrig US)

Die Formel für den Leistungsfaktor unter Verwendung der Fläche des X-Abschnitts (1-phasig, 2-adrig US) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=(4)(P2)ρLAPloss(Vm2)

Leistungsfaktor unter Verwendung des Volumens des Leitermaterials (1-Phase 2-Draht US)

Die Formel für den Leistungsfaktor unter Verwendung des Volumens des Leitermaterials (1-phasig, 2-adrig US) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=(2)KV

Leistungsfaktor unter Verwendung des Laststroms (1-Phase 2-Draht US)

Die Formel für den Leistungsfaktor unter Verwendung des Laststroms (1-phasig, 2-adrig US) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=2PVmI

Leistungsfaktor mit Konstante (1-Phase 2-Draht US)

Der Leistungsfaktor unter Verwendung der konstanten (1-Phasen-2-Draht-US)-Formel ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=2KV

Leistungsfaktor unter Verwendung des Volumens des Leitermaterials (1 Phase 3 Draht US)

Die Formel für den Leistungsfaktor unter Verwendung des Volumens des Leitermaterials (1 Phase, 3 Leiter US) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=10ρ(PL)2PlossV((Vm)2)

Leistungsfaktor unter Verwendung des Laststroms (3-Phasen-3-Draht-Betriebssystem)

Der Leistungsfaktor unter Verwendung der Laststromformel (3-Phasen-3-Draht-OS) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=2P3IVm

Leistungsfaktor unter Verwendung des Stroms in jedem Äußeren (2-Phasen-3-Draht-US)

Der Leistungsfaktor unter Verwendung der Strom in jedem äußeren (2-Phasen-3-Draht-US)-Formel ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=PIVm

Leistungsfaktor unter Verwendung des Stroms im Neutralleiter (2-Phasen 3-Leiter US)

Die Formel für den Leistungsfaktor unter Verwendung des Stroms im Neutralleiter (2-phasig, 3-adrig US) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=2PIVm

Leistungsfaktor unter Verwendung der Fläche des X-Abschnitts (3 Phasen 3 Leiter US)

Die Formel für den Leistungsfaktor unter Verwendung der Fläche des X-Querschnitts (3 Phasen 3 Leiter US) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=(PVm)2ρLA

Leistung gegeben EinheitsLeistung

Die Power-gegebene-Unit-Power-Formel ist definiert als die vom Wasserkraftwerk erzeugte Leistung.

Ph=Pu1000H32

Leistung in einphasigen Wechselstromkreisen

Leistung in einphasigen Wechselstromkreisen ist die Verteilung von elektrischem Wechselstrom unter Verwendung eines Systems, in dem alle Spannungen der Versorgung im Einklang variieren.

P=VIcos(Φ)

Leistung in einphasigen Wechselstromkreisen mit Strom

Leistung in einphasigen Wechselstromkreisen unter Verwendung von Strom ist die Verteilung von elektrischer WechselstromLeistung unter Verwendung eines Systems, in dem alle Spannungen der Versorgung im Einklang variieren.

P=I2Rcos(Φ)

Leistung in einphasigen Wechselstromkreisen mit Spannung

Leistung in einphasigen Wechselstromkreisen unter Verwendung von Spannung ist die Verteilung von elektrischer WechselstromLeistung unter Verwendung eines Systems, in dem alle Spannungen der Versorgung im Einklang variieren.

P=V2cos(Φ)R

Leistungskoeffizient des Kühlschranks bei Wärmezufuhr im kalten und heißen Reservoir

Die Leistungszahl des Kühlschranks bei Wärme in kaltem und heißem Reservoir ist das Verhältnis der dem System entzogenen Wärme durch die vom System benötigte Arbeit.

COPR=QLQH-QL

Leistungskoeffizient der Wärmepumpe, die Wärme im kalten und heißen Reservoir verwendet

Die Leistungszahl der Wärmepumpe, die Wärme im kalten und heißen Reservoir verwendet, ist das Verhältnis der dem System zugeführten Wärme zu der vom System erforderlichen Arbeit.

COPHP=QHQH-QL

Leistungszahl der Wärmepumpe unter Verwendung von Arbeit und Wärme im Kältespeicher

Die Leistungszahl der Wärmepumpe, die Arbeit und Wärme in einem kalten Reservoir verwendet, ist das Verhältnis der dem System zugeführten Wärme zu der vom System benötigten Arbeit.

COPHP(CR)=QHWnet

Leistung in dreiphasigen Wechselstromkreisen mit Phasenstrom

Leistung in Dreiphasen-Wechselstromkreisen unter Verwendung von Phasenstrom ist eine übliche Methode zur Erzeugung, Übertragung und Verteilung von Wechselstrom. Es ist eine Art Mehrphasensystem und die weltweit am häufigsten verwendete Methode zur Übertragung von Energie in Stromnetzen.

P=3VphIphcos(Φ)

Leistungskoeffizient des Kühlschranks bei Arbeit und Wärme im Kältereservoir

Leistungszahl des Kühlschranks bei Arbeit und Wärme im Kältereservoir ist das Verhältnis der dem System entzogenen Wärme zu der vom System benötigten Arbeit.

COPRef=QLWnet

Leistungsfaktor

Die Leistungsfaktorformel ist definiert als das Verhältnis der von der Last aufgenommenen WirkLeistung zur im Stromkreis fließenden ScheinLeistung und ist eine dimensionslose Zahl im geschlossenen Intervall von -1 bis 1.

PF=VrmsIrmscos(φ)

Leistungsgewinn der Tunneldiode

Die Leistungsverstärkung der Tunneldiode hängt von der Schaltungskonfiguration und dem Arbeitspunkt der Diode ab. Im Allgemeinen werden Tunneldioden in Oszillatorschaltungen oder als negative Widerstandsverstärker verwendet.

gain=Γ2

Leistungsfaktor unter Verwendung von Leitungsverlusten (1-Phase 2-Draht US)

Die Formel für den Leistungsfaktor unter Verwendung der Leitungsverluste (1-phasig, 2-adrig US) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=(2PVm)ρLPlossA

Leistungsfaktor mit Widerstand (1-phasig 2-Draht US)

Die Formel für den Leistungsfaktor unter Verwendung des Widerstands (1-phasig, 2-adrig US) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=(2PVm)RPloss

Leistungsfaktor unter Verwendung des Volumens des Leitermaterials (3 Phasen 4 Leiter US)

Die Formel für den Leistungsfaktor unter Verwendung des Volumens des Leitermaterials (3 Phasen 4 Leiter US) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=(1.75)KV

Leistungsfaktor unter Verwendung des Volumens des Leitermaterials (3 Phasen 3 Leiter US)

Die Formel für den Leistungsfaktor unter Verwendung des Volumens des Leitermaterials (3 Phasen 3 Leiter US) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=(1.5)KV

Leistungsfaktor unter Verwendung der Fläche des X-Abschnitts (1 Phase 3-Draht US)

Die Formel für den Leistungsfaktor unter Verwendung der Fläche des X-Abschnitts (1 Phase, 3 Leiter US) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=((2PVm)ρLPlossA)

Leistungsfaktor unter Verwendung von Leitungsverlusten (1 Phase 3 Leiter US)

Die Formel für den Leistungsfaktor unter Verwendung der Leitungsverluste (1 Phase, 3 Leiter US) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=((2PVm)RPloss)

Leistung aus dem Wasserdurchfluss in Kilowatt bei gegebener effektiver Förderhöhe

Die aus dem Wasserdurchfluss in Kilowatt bei gegebener effektiver Förderhöhe gewonnene Leistung ist definiert als die Wassermenge, die durch die im Wasser gespeicherte potenzielle Energie erzeugt wird.

P=ηQtH11.8

Leistungsaufnahme nur zum Zerkleinern

Der Stromverbrauch nur zum Zerkleinern ist der Nettostrom, der verbraucht wird, während die Mühle in Betrieb ist. es umfasst sowohl die Leistungen, die Leistung, die mit Leistungsverlusten verbunden ist, als auch die tatsächliche Leistung, die zum Zerkleinern von Partikeln verbraucht wird.

Pc=Pl-Po

Leistungsdichte der sphärischen Welle

Die Leistungsdichte einer Kugelwelle ist die Energiemenge pro Flächeneinheit, die von der Quelle nach außen abgestrahlt wird.

Pd=Pgt4πd

Leistung für gegebene aerodynamische Koeffizienten erforderlich

Die für bestimmte aerodynamische Koeffizienten erforderliche Leistung stellt die Menge an Leistung dar, die zum Aufrechterhalten des Fluges basierend auf bestimmten aerodynamischen Parametern, wie etwa dem Luftwiderstandsbeiwert, erforderlich ist. Diese Gleichung veranschaulicht, dass die für einen bestimmten Satz aerodynamischer Koeffizienten erforderliche Leistung von Faktoren wie Luftdichte, Geschwindigkeit und den spezifischen aerodynamischen Eigenschaften des Flugzeugs, wie sie durch den Luftwiderstandsbeiwert dargestellt werden, beeinflusst wird.

P=WbodyVCDCL

Wie finde ich Formeln?

Hier sind ein paar Tipps für bessere Suchergebnisse.
Seien Sie konkret: Je konkreter Ihre Suchanfrage, desto besser sind Ihre Ergebnisse.
Verwenden Sie mehrere Schlüsselwörter: Kombinieren Sie mehrere Schlüsselwörter, um die Ergebnisse einzugrenzen.
Experimentieren Sie mit Synonymen: Unterschiedliche Begriffe können zu unterschiedlichen Ergebnissen führen.
Platzhaltersuche: Verwenden Sie den Operator * (Sternchen). BEACHTEN SIE, dass dieser Operator nur am Ende eines Wortes funktioniert. Beispiel: Bio*, Bereich* usw.

Alternativ können Sie durch die Unterkategorien innerhalb von navigieren, um die Formeln einzugrenzen, die Sie interessieren.

Copied!