Suche Formeln

Bitte geben Sie mindestens 3 Zeichen ein, um mit der Suche nach -Formeln zu beginnen.

Wählen Sie Filter

Grenzen Sie Ihre Suchergebnisse mithilfe dieser Filter ein.

50 Passende Formeln gefunden!

Leistungsabfall im DC-Bürstengenerator

Der Leistungsabfall im Bürsten-Gleichstromgenerator ist der Verlust, der zwischen dem Kommutator und den Kohlebürsten stattfindet. Der über einen großen Bereich von Ankerströmen auftretende Spannungsabfall über einem Bürstensatz ist annähernd konstant. Wenn der Wert des Bürstenspannungsabfalls nicht angegeben ist, wird er normalerweise mit etwa 2 Volt angenommen. Somit wird der Bürstentropfenverlust als 2Ia genommen.

PBD=IaVBD

Leistungsfaktor

Die Leistungsfaktorformel ist definiert als das Verhältnis der von der Last aufgenommenen WirkLeistung zur im Stromkreis fließenden ScheinLeistung und ist eine dimensionslose Zahl im geschlossenen Intervall von -1 bis 1.

PF=VrmsIrmscos(φ)

Leistungsbedarf bei mittlerem Geschwindigkeitsgradienten

Der Leistungsbedarf bei mittlerem Geschwindigkeitsgradienten wird als die Leistung definiert, die erforderlich ist, wenn wir vorab Informationen über mittleren Geschwindigkeitsgradienten, Viskosität und Tankvolumen haben.

P=(G)2μviscosityV

Leistungsbedarf für schnelle Mischvorgänge in der Abwasserbehandlung

Der Leistungsbedarf für schnelle Mischvorgänge bei der Abwasserbehandlung wird als die Leistung definiert, die erforderlich ist, wenn wir vorab Informationen über den mittleren Geschwindigkeitsgradienten, die Viskosität und das Tankvolumen haben.

P=(G)2μviscosityV

Leistung pro Einheit Bandbreite

Die Formel „Leistung pro Bandbreiteneinheit“ ist so definiert, dass sie Einheiten für Leistung, Spannung, Strom, Impedanz und Admittanz bereitstellt. Mit Ausnahme von Impedanz und Admittanz sind zwei beliebige Einheiten unabhängig und können als Basiswerte gewählt werden; Leistung und Spannung werden typischerweise gewählt.

Pu=kTR

Leistungsdichte der Antenne

Die Formel für die Leistungsdichte der Antenne ist definiert als das Maß der Leistung von einer Antenne bis zu einer bestimmten Entfernung D. Dabei wird davon ausgegangen, dass eine Antenne Leistung in alle Richtungen abstrahlt.

S=PiG4πD

Leistungsfaktor unter Verwendung des Volumens des Leitermaterials (3 Phasen 4 Leiter US)

Die Formel für den Leistungsfaktor unter Verwendung des Volumens des Leitermaterials (3 Phasen 4 Leiter US) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=(1.75)KV

Leistungsfaktor unter Verwendung des Volumens des Leitermaterials (3 Phasen 3 Leiter US)

Die Formel für den Leistungsfaktor unter Verwendung des Volumens des Leitermaterials (3 Phasen 3 Leiter US) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=(1.5)KV

Leistungsfaktor unter Verwendung des Laststroms (1 Phase, 2 Leiter, Mittelpunkt geerdet)

Die Formel für den Leistungsfaktor unter Verwendung des Laststroms (1 Phase, 2 Leiter, Mittelpunkt geerdet) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=2PIVm

Leistungsfaktor unter Verwendung von Leitungsverlusten (1-phasig, 2-adrig, Mittelpunkt geerdet)

Die Formel für den Leistungsfaktor unter Verwendung von Leitungsverlusten (1-phasig, 2-Leiter, Mittelpunkt geerdet) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=4(P2)RPloss(Vm2)

Leistungsfaktor unter Verwendung der Fläche des X-Abschnitts (1-phasig, 2-adrig, Mittelpunkt geerdet)

Die Formel für den Leistungsfaktor unter Verwendung der Fläche des X-Querschnitts (1 Phase, 2 Leiter, Mittelpunkt geerdet) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=4(P2)ρLAPloss(Vm2)

Leistungswandlungseffizienz der Klasse-A-Ausgangsstufe

Die Leistungsumwandlungseffizienz der Klasse-A-Endstufenformel ist definiert als das Verhältnis der Fläche unter der IV-Kurve einer PV-Zelle zur Eingangsbeleuchtungsstärke.

ηpA=14(o2IbRLVcc)

Leistungsfähigkeitsfaktor

Der LeistungsLeistungsfähigkeitsfaktor ist das Verhältnis der durchschnittlichen Leistungsabgabe einer Stromerzeugungseinheit oder eines Stromerzeugungssystems über einen bestimmten Zeitraum zur maximal möglichen elektrischen Energieabgabe über diesen Zeitraum.

CF=PmaxVdIpeak

Leistungseinbußen aufgrund chromatischer Dispersion

Leistungseinbußen durch chromatische Dispersion sind ein Phänomen, das in Glasfaserkommunikationssystemen aufgrund der chromatischen Dispersion auftritt. Chromatische Dispersion ist eine Eigenschaft optischer Fasern, die dazu führt, dass sich Licht unterschiedlicher Farben (oder Wellenlängen) mit leicht unterschiedlichen Geschwindigkeiten ausbreitet. Dies kann zu einer Verbreiterung optischer Impulse auf ihrem Weg entlang der Faser führen. Der Leistungsnachteil entsteht, weil diese Impulsverbreiterung zu einer Verringerung der Amplitude der Impulse führen kann, was das Signal-Rausch-Verhältnis (SNR) verschlechtern und Fehler bei der Datenübertragung verursachen kann. Dies ist insbesondere bei digitalen Hochgeschwindigkeitssystemen und analogen Videosystemen problematisch.

Pcd=-5log10(1-(4BoptLoptDcdFSR)2)

Leistungszahl bei gegebener Enthalpie des flüssigen Kältemittels, das den Verflüssiger verlässt (hf3)

Die Formel für den Leistungskoeffizienten bei gegebener Enthalpie des den Kondensator verlassenden flüssigen Kältemittels (hf3) ist als Maß für die Effizienz eines Kühlsystems definiert. Sie vergleicht die zugeführte Energie mit der gewünschten Kühlwirkung und liefert einen theoretischen Wert für die Leistung des Systems unter Idealbedingungen.

COPth=h1-hf3h2-h1

Leistungsabgabe des Motors unter Verwendung des Wirkungsgrads des Getriebes

Die Leistungsabgabe des Motors unter Verwendung der Formel für den Wirkungsgrad der Getriebeübertragung ist definiert als das Verhältnis des Produkts aus Zugkraft und Geschwindigkeit zum Produkt aus Konstante 3600 und Getriebewirkungsgrad.

P=FtV3600ηgear

Leistungsfaktor mit Konstante (1-Phase 2-Draht US)

Der Leistungsfaktor unter Verwendung der konstanten (1-Phasen-2-Draht-US)-Formel ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=2KV

Leistungsfaktor unter Verwendung des Volumens des Leitermaterials (1 Phase 3 Draht US)

Die Formel für den Leistungsfaktor unter Verwendung des Volumens des Leitermaterials (1 Phase, 3 Leiter US) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=10ρ(PL)2PlossV((Vm)2)

Leistungsfaktor unter Verwendung des Laststroms (3-Phasen-3-Draht-Betriebssystem)

Der Leistungsfaktor unter Verwendung der Laststromformel (3-Phasen-3-Draht-OS) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=2P3IVm

Leistungsschalterhöhenindex

Die Formel für den Breaker Height Index ist definiert als das Verhältnis der Wellenhöhe beim Brechen zur Wassertiefe am Brechpunkt.

Ωb=Hbλo

Leistungsfaktor unter Verwendung der Fläche des X-Abschnitts (1 Phase 3-Draht US)

Die Formel für den Leistungsfaktor unter Verwendung der Fläche des X-Abschnitts (1 Phase, 3 Leiter US) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=((2PVm)ρLPlossA)

Leistungsfaktor unter Verwendung von Leitungsverlusten (1 Phase 3 Leiter US)

Die Formel für den Leistungsfaktor unter Verwendung der Leitungsverluste (1 Phase, 3 Leiter US) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=((2PVm)RPloss)

Leistungsaufnahme nur zum Zerkleinern

Der Stromverbrauch nur zum Zerkleinern ist der Nettostrom, der verbraucht wird, während die Mühle in Betrieb ist. es umfasst sowohl die Leistungen, die Leistung, die mit Leistungsverlusten verbunden ist, als auch die tatsächliche Leistung, die zum Zerkleinern von Partikeln verbraucht wird.

Pc=Pl-Po

Leistungsdichte der sphärischen Welle

Die Leistungsdichte einer Kugelwelle ist die Energiemenge pro Flächeneinheit, die von der Quelle nach außen abgestrahlt wird.

Pd=Pgt4πd

Leistung der Kolonne bei gegebenem Gas-Film-Übertragungskoeffizienten und Dampfdurchfluss

Die Formel für die Leistung einer Säule bei gegebenem Gas-Film-Übertragungskoeffizienten und Dampfdurchflussrate gibt an, wie effektiv die Säule die Trennung oder Absorption von Komponenten in einem Flüssigkeitsgemisch durchführt.

J=k'gaGm

Leistung der Säule bei bekanntem Wert der Höhe der Transfereinheit

Die Formel „Leistung der Säule für den bekannten Wert der Höhe der Transfereinheit“ ist definiert als die Fähigkeit der gepackten Säule, verschiedene Komponenten in einer Mischung basierend auf der Änderung der Zusammensetzung mit der Höhe für eine Einheitsantriebskraft zu trennen.

J=1HOG

Leistungsfluss im SSSC

Die Power Flow in SSSC-Formel wird verwendet, um sowohl den Wirk- als auch den BlindLeistungsfluss auf einer Übertragungsleitung zu steuern und UPFC zu einem vielseitigen Gerät zur Optimierung von Leistungsfluss- und Spannungsprofilen in einem Energiesystem zu machen.

Psssc=Pmax+VseIsh4

Leistungsverhältnis

Das Leistungsverhältnis bezieht sich auf das Verhältnis der Leistungspegel zwischen zwei Signalen oder Komponenten innerhalb des Systems. Es quantifiziert die relative Stärke oder Größe eines Signals im Vergleich zu einem anderen. Das Leistungsverhältnis wird normalerweise in logarithmischen Einheiten wie Dezibel ausgedrückt.

PR=20log10(V2V1)

Leistungsfaktor unter Verwendung von Leitungsverlusten (1-Phase 2-Draht US)

Die Formel für den Leistungsfaktor unter Verwendung der Leitungsverluste (1-phasig, 2-adrig US) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=(2PVm)ρLPlossA

Leistungsfaktor mit Widerstand (1-phasig 2-Draht US)

Die Formel für den Leistungsfaktor unter Verwendung des Widerstands (1-phasig, 2-adrig US) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=(2PVm)RPloss

Leistungsfaktor unter Verwendung des Laststroms (einphasiges Dreileiter-Betriebssystem)

Die Formel für den Leistungsfaktor unter Verwendung des Laststroms (einphasiges dreiadriges Betriebssystem) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=PΦVmI

Leistungsfaktor unter Verwendung von Leitungsverlusten (einphasiges Dreileiter-Betriebssystem)

Die Formel für den Leistungsfaktor unter Verwendung von Leitungsverlusten (einphasiges Dreileiter-OS) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=(PVm)ρLPlossA

Leistungsdichte des Laserstrahls

Die Formel zur Leistungsdichte eines Laserstrahls ist definiert als die Leistung, die pro Flächeneinheit des Strahlquerschnitts enthalten ist.

δp=4Pπflens2α2ΔT

Leistungsfaktor unter Verwendung der Fläche des X-Abschnitts (3-Phasen-4-Draht-Betriebssystem)

Die Formel für den Leistungsfaktor unter Verwendung der Fläche des X-Abschnitts (3-Phasen-4-Draht-OS) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=(PVm)2ρL3A

Leistungsfaktor unter Verwendung des Laststroms (3-Phasen-4-Draht-Betriebssystem)

Die Formel für den Leistungsfaktor unter Verwendung des Laststroms (3-Phasen-4-Draht-OS) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=2P3Vm

Leistung des hydraulischen Krans

Die Leistung einer Hydraulikkranformel wird als das maximale Gewicht definiert, das ein Hydraulikkran heben kann. Dies ist ein entscheidender Parameter bei der Bestimmung der Kapazität und Sicherheit des Krans in verschiedenen Industrie- und Bauanwendungen.

w=Whch

Leistungsverlust oder -verbrauch aufgrund von Flüssigkeitslecks durch die Gesichtsdichtung

Die Formel für Leistungsverlust oder -verbrauch aufgrund von Flüssigkeitslecks durch die Gesichtsdichtung ist definiert als Flüssigkeit, die an einem beliebigen Punkt entlang der komplizierten Maschinerie austritt und ihre Wirksamkeit verliert.

Pl=πνw213200t(r24-r14)

Leistung bei gegebenem elektrischem Potentialunterschied und elektrischem Strom

Die Formel für die Leistung bei elektrischer Potenzialdifferenz und elektrischem Strom wird als die Rate definiert, mit der elektrische Energie übertragen oder umgewandelt wird (gemessen in Watt) und ist ein grundlegendes Konzept zum Verständnis der Beziehung zwischen elektrischer Potenzialdifferenz und elektrischem Strom in einem Stromkreis.

P=VI

Leistung gegeben Elektrischer Strom und Widerstand

Die Formel für Leistung ausgehend von elektrischem Strom und Widerstand ist definiert als die Rate, mit der elektrische Energie in einem Stromkreis übertragen oder umgewandelt wird (gemessen in Watt) und stellt ein grundlegendes Konzept zum Verständnis des Verhaltens von Stromkreisen und Geräten dar.

P=I2R

Leistung bei gegebener elektrischer Potentialdifferenz und Widerstand

Die Formel für die Leistung bei gegebener elektrischer Potenzialdifferenz und Widerstand ist definiert als ein Maß für die Rate, mit der elektrische Energie in einem Stromkreis übertragen oder umgewandelt wird, abhängig von der im Stromkreis vorhandenen elektrischen Potenzialdifferenz und dem Widerstand. Sie bietet ein grundlegendes Verständnis des Energieflusses in elektrischen Systemen.

P=ΔV2Rp

Leistungsfaktor des Synchronmotors bei gegebener EingangsLeistung

Die Formel für den Leistungsfaktor des Synchronmotors bei gegebener EingangsLeistung ist definiert als das Verhältnis der von der Last aufgenommenen WirkLeistung zur im Stromkreis fließenden ScheinLeistung.

CosΦ=PinVIa

Leistungsfaktor des Synchronmotors mit 3-Phasen-EingangsLeistung

Der Leistungsfaktor eines Synchronmotors unter Verwendung der 3-Phasen-EingangsLeistungsformel ist definiert als das Verhältnis der von der Last aufgenommenen WirkLeistung zur im Stromkreis fließenden ScheinLeistung.

CosΦ=Pin(3Φ)3VLIL

Leistungsfaktor des Synchronmotors bei 3-phasiger mechanischer Leistung

Der Leistungsfaktor des Synchronmotors bei gegebener 3-phasiger mechanischer Leistungsformel ist definiert als das Verhältnis der von der Last aufgenommenen WirkLeistung zur im Stromkreis fließenden ScheinLeistung.

CosΦ=Pme(3Φ)+3Ia2Ra3VLIL

Leistungseffizienz des Verstärkers

Die VerstärkerLeistungseffizienzformel ist ein wichtiger Leistungsparameter eines Verstärkers, da sie dazu beiträgt, den Leistungsverlust in einem Verstärker zu verfolgen und somit dessen Leistung zu verbessern, indem der Verlust minimiert wird.

p=100(PLPin)

Leistung unter Verwendung der Zwei-Wattmeter-Methode

Die Formel für die Leistung unter Verwendung der Zwei-Wattmeter-Methode wird verwendet, um die MomentanLeistung in Wattmeter 1 in einem zweiphasigen Schaltungsaufbau zu berechnen.

Pt=3VphI1cos(Φ)

Leistungsfaktor unter Verwendung des Volumens des Leitermaterials (3-Phasen-4-Draht-Betriebssystem)

Die Formel für den Leistungsfaktor unter Verwendung des Volumens des Leitermaterials (3-Phasen-4-Draht-OS) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=(0.583)KV

Leistungsaufnahme der kapazitiven Last

Die Formel für die Leistungsaufnahme der kapazitiven Last ist definiert als die AusgangsLeistung, die für den Lastkondensator in der Schaltung berechnet wird.

PL=CLVcc2foSwo

Leistungskoeffizient der Windmaschine

Der Leistungskoeffizient der Windmaschine ist das Verhältnis der vom Rotor extrahierten Leistung zur im Windstrom verfügbaren Leistung.

Cp=Pe0.5ρπR2V3

Leistungsaufnahme der Hydraulikkupplung

Die Formel zur Leistungsaufnahme einer hydraulischen Kupplung ist definiert als das Maß der pro Zeiteinheit von der Eingangswelle auf die Hydraulikflüssigkeit in einem hydraulischen Kupplungssystem übertragenen Energie. Sie ist für die Bewertung der Leistung und Effizienz des Hydrauliksystems von wesentlicher Bedeutung.

Pin=Tipωp

Leistungsabgabe der Hydraulikkupplung

Die Formel zur Leistungsabgabe einer hydraulischen Kupplung ist definiert als das Maß der Energie, die von der Eingangswelle auf die Ausgangswelle einer hydraulischen Kupplung übertragen wird. Bei einer hydraulischen Kupplung handelt es sich um ein Gerät zum Verbinden und Trennen der Kraftübertragung zwischen zwei rotierenden Wellen in einem mechanischen System.

Po=Ttωt

Wie finde ich Formeln?

Hier sind ein paar Tipps für bessere Suchergebnisse.
Seien Sie konkret: Je konkreter Ihre Suchanfrage, desto besser sind Ihre Ergebnisse.
Verwenden Sie mehrere Schlüsselwörter: Kombinieren Sie mehrere Schlüsselwörter, um die Ergebnisse einzugrenzen.
Experimentieren Sie mit Synonymen: Unterschiedliche Begriffe können zu unterschiedlichen Ergebnissen führen.
Platzhaltersuche: Verwenden Sie den Operator * (Sternchen). BEACHTEN SIE, dass dieser Operator nur am Ende eines Wortes funktioniert. Beispiel: Bio*, Bereich* usw.

Alternativ können Sie durch die Unterkategorien innerhalb von navigieren, um die Formeln einzugrenzen, die Sie interessieren.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!