Suche Formeln

Bitte geben Sie mindestens 3 Zeichen ein, um mit der Suche nach -Formeln zu beginnen.

Wählen Sie Filter

Grenzen Sie Ihre Suchergebnisse mithilfe dieser Filter ein.

50 Passende Formeln gefunden!

Leistung bei gegebenem elektrischem Potentialunterschied und elektrischem Strom

Die Formel für die Leistung bei elektrischer Potenzialdifferenz und elektrischem Strom wird als die Rate definiert, mit der elektrische Energie übertragen oder umgewandelt wird (gemessen in Watt) und ist ein grundlegendes Konzept zum Verständnis der Beziehung zwischen elektrischer Potenzialdifferenz und elektrischem Strom in einem Stromkreis.

P=VI

Leistung gegeben Elektrischer Strom und Widerstand

Die Formel für Leistung ausgehend von elektrischem Strom und Widerstand ist definiert als die Rate, mit der elektrische Energie in einem Stromkreis übertragen oder umgewandelt wird (gemessen in Watt) und stellt ein grundlegendes Konzept zum Verständnis des Verhaltens von Stromkreisen und Geräten dar.

P=I2R

Leistung bei gegebener elektrischer Potentialdifferenz und Widerstand

Die Formel für die Leistung bei gegebener elektrischer Potenzialdifferenz und Widerstand ist definiert als ein Maß für die Rate, mit der elektrische Energie in einem Stromkreis übertragen oder umgewandelt wird, abhängig von der im Stromkreis vorhandenen elektrischen Potenzialdifferenz und dem Widerstand. Sie bietet ein grundlegendes Verständnis des Energieflusses in elektrischen Systemen.

P=ΔV2Rp

Leistungszahl bei gegebener Enthalpie des flüssigen Kältemittels, das den Verflüssiger verlässt (hf3)

Die Formel für den Leistungskoeffizienten bei gegebener Enthalpie des den Kondensator verlassenden flüssigen Kältemittels (hf3) ist als Maß für die Effizienz eines Kühlsystems definiert. Sie vergleicht die zugeführte Energie mit der gewünschten Kühlwirkung und liefert einen theoretischen Wert für die Leistung des Systems unter Idealbedingungen.

COPth=h1-hf3h2-h1

Leistungsbedarf für die Flockung im Direktfiltrationsprozess

Der Leistungsbedarf für die Flockung im Direktfiltrationsprozess wird als die Leistung definiert, die erforderlich ist, wenn wir vorab Informationen über den mittleren Geschwindigkeitsgradienten, die Viskosität und das Tankvolumen haben.

P=(G)2μviscosityV

Leistungsfaktor unter Verwendung von Leitungsverlusten (2-phasig 3-adrig US)

Die Formel für den Leistungsfaktor unter Verwendung der Leitungsverluste (2-phasig, 3-adrig US) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=(PVm)(2+2)ρLPlossA

Leistungsfaktor unter Verwendung von Leitungsverlusten (Zweiphasen-Dreileiter-Betriebssystem)

Die Formel für den Leistungsfaktor unter Verwendung von Leitungsverlusten (Zweiphasen-Dreileiter-OS) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=(PVm)(2+2)ρL2PlossA

Leistungswandlungseffizienz der Klasse-A-Ausgangsstufe

Die Leistungsumwandlungseffizienz der Klasse-A-Endstufenformel ist definiert als das Verhältnis der Fläche unter der IV-Kurve einer PV-Zelle zur Eingangsbeleuchtungsstärke.

ηpA=14(o2IbRLVcc)

Leistungsfähigkeitsfaktor

Der LeistungsLeistungsfähigkeitsfaktor ist das Verhältnis der durchschnittlichen Leistungsabgabe einer Stromerzeugungseinheit oder eines Stromerzeugungssystems über einen bestimmten Zeitraum zur maximal möglichen elektrischen Energieabgabe über diesen Zeitraum.

CF=PmaxVdIpeak

Leistungsdichte an der Satellitenstation

Die Leistungsdichte einer Satellitenstation bezieht sich auf die Menge an Leistung pro Flächeneinheit, die von Satellitengeräten empfangen oder übertragen wird und für eine effiziente Signalübertragung und -empfang in der Satellitenkommunikation von entscheidender Bedeutung ist.

Pd=EIRP-Lpath-Ltotal-(10log10(4π))-(20log10(Rsat))

Leistungsverlust oder -verbrauch aufgrund von Flüssigkeitslecks durch die Gesichtsdichtung

Die Formel für Leistungsverlust oder -verbrauch aufgrund von Flüssigkeitslecks durch die Gesichtsdichtung ist definiert als Flüssigkeit, die an einem beliebigen Punkt entlang der komplizierten Maschinerie austritt und ihre Wirksamkeit verliert.

Pl=πνw213200t(r24-r14)

Leistungskoeffizient der Windmaschine

Der Leistungskoeffizient der Windmaschine ist das Verhältnis der vom Rotor extrahierten Leistung zur im Windstrom verfügbaren Leistung.

Cp=Pe0.5ρπR2V3

Leistungszeit

Die Leistungszeit bezeichnet die Zeitdauer, die für die Ausführung der Arbeiten zulässig ist, einschließlich aller genehmigten Zeitverlängerungen.

∆tpro=Δtcompute+(2Δttrans)

Leistung der Peltonturbine

Die Leistung einer Peltonturbine ist die mechanische Energie, die durch die Umwandlung der kinetischen Energie eines Hochgeschwindigkeitswasserstrahls, der auf die Turbinenschaufeln trifft, erzeugt wird. Diese Umwandlung hängt von der Wasserdurchflussrate, der Höhe des Wasserfalls (Fallhöhe) und der Effizienz der Turbine ab. Die Hauptfaktoren, die die Leistung beeinflussen, sind die Geschwindigkeit des Wasserstrahls und die auf die Turbinenschaufeln ausgeübte Kraft.

Pt=(1+kcos(β2))ρQpUVr1

Leistung der Peltonturbine bei gegebener Geschwindigkeit

Die Leistung einer Peltonturbine bei gegebener Geschwindigkeit wird als die pro Zeiteinheit übertragene oder umgewandelte Energiemenge definiert. Diese wird durch die Flüssigkeit auf das Rad übertragen.

Pt=(1+kcos(β2))ρQpU(V1-U)

Leistungseffizienz des Verstärkers

Die VerstärkerLeistungseffizienzformel ist ein wichtiger Leistungsparameter eines Verstärkers, da sie dazu beiträgt, den Leistungsverlust in einem Verstärker zu verfolgen und somit dessen Leistung zu verbessern, indem der Verlust minimiert wird.

p=100(PLPin)

Leistungsverstärkung des Modulators

Die Leistungsverstärkung der Modulatorformel kann definiert werden als das Verhältnis der AusgangsLeistung, die durch Mischen des Eingangssignals mit einem Pumpsignal erzeugt wird, was zu einem verstärkten Ausgangssignal bei der Summen- oder Differenzfrequenz führt, zur EingangsLeistung für einen Modulator.

Gm=fp+fsfs

Leistungsverstärkung des Demodulators

Die Leistungsverstärkung der Demodulatorformel kann definiert werden als das Verhältnis der AusgangsLeistung, die durch Mischen des Eingangssignals mit einem Pumpsignal erzeugt wird, was zu einem verstärkten Ausgangssignal bei der Summen- oder Differenzfrequenz führt, zur EingangsLeistung für einen Demodulator.

Gdm=fsfp+fs

Leistungsverstärkung für parametrischen Aufwärtswandler

Die Leistungsverstärkung für die parametrische Up-Converter-Formel ist definiert als If fo > fs ; Schaltung wird Up-Converter genannt und ist Leistungsverstärkung in dieser Schaltung.

Gup=(fofs)GDF

Leistungsgewinn des Abwärtswandlers

Die Formel für die Leistungsverstärkung des Abwärtswandlers ist so definiert, dass die EingangsLeistung in den Idler-Schaltkreis eingespeist werden muss und die AusgangsLeistung aus dem Signalschaltkreis austreten muss.

Gdown=4fiRiRgαfsRTsRTi(1-α)2

Leistungsfaktor unter Verwendung von Leitungsverlusten (1-Phase 2-Draht US)

Die Formel für den Leistungsfaktor unter Verwendung der Leitungsverluste (1-phasig, 2-adrig US) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=(2PVm)ρLPlossA

Leistungsfaktor mit Widerstand (1-phasig 2-Draht US)

Die Formel für den Leistungsfaktor unter Verwendung des Widerstands (1-phasig, 2-adrig US) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=(2PVm)RPloss

Leistung der Schallwelle bei gegebener Schallintensität

Die Leistung einer Schallwelle wird anhand der Formel zur Schallintensität als die Rate definiert, mit der Schallenergie pro Zeiteinheit ausgesendet, reflektiert, übertragen oder empfangen wird.

W=IA

Leistungsfaktor unter Verwendung des Volumens des Leitermaterials (2 Phasen 3 Leiter US)

Die Formel für den Leistungsfaktor unter Verwendung des Volumens des Leitermaterials (2 Phasen 3 Leiter US) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=(2.194)KV

Leistungsfaktor unter Verwendung des Volumens des Leitermaterials (Zweiphasen-Dreileiter-Betriebssystem)

Die Formel für den Leistungsfaktor unter Verwendung des Volumens des Leitermaterials (Zweiphasen-Dreileiter-OS) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=(1.457)KV

Leistungsfaktor unter Verwendung des Volumens des Leitermaterials (einphasiges Dreileiter-Betriebssystem)

Die Formel für den Leistungsfaktor unter Verwendung des Volumens des Leitermaterials (Einphasen-Dreileiter-OS) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=(0.625)KV

Leistungsfaktor unter Verwendung von Leitungsverlusten (2-Phasen-4-Draht-US)

Die Formel für den Leistungsfaktor unter Verwendung der Leitungsverluste (2-Phasen-4-Draht-US) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=4(P2)RPloss(Vm2)

Leistungsfaktor unter Verwendung des Laststroms (2-Phasen-4-Draht-US)

Die Formel für den Leistungsfaktor unter Verwendung des Laststroms (2 Phasen, 4 Leiter US) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=2PVmI

Leistungsaufnahme im Induktionsmotor

Die Formel für die Leistungsaufnahme in einem Induktionsmotor ist wie folgt definiert: Bei einem Induktionsmotor ist die Leistungsaufnahme die elektrische Leistung, die dem Motor von der Stromquelle zugeführt wird, die typischerweise eine Wechselspannungsquelle ist. Diese aufgenommene Leistung wird vom Motor in mechanische abgegebene Leistung umgewandelt.

Pin=3VlineIlinecosΦ

Leistungsdichte der sphärischen Welle

Die Leistungsdichte einer Kugelwelle ist die Energiemenge pro Flächeneinheit, die von der Quelle nach außen abgestrahlt wird.

Pd=Pgt4πd

Leistung der Kolonne bei gegebenem Gas-Film-Übertragungskoeffizienten und Dampfdurchfluss

Die Formel für die Leistung einer Säule bei gegebenem Gas-Film-Übertragungskoeffizienten und Dampfdurchflussrate gibt an, wie effektiv die Säule die Trennung oder Absorption von Komponenten in einem Flüssigkeitsgemisch durchführt.

J=k'gaGm

Leistung der Säule bei bekanntem Wert der Höhe der Transfereinheit

Die Formel „Leistung der Säule für den bekannten Wert der Höhe der Transfereinheit“ ist definiert als die Fähigkeit der gepackten Säule, verschiedene Komponenten in einer Mischung basierend auf der Änderung der Zusammensetzung mit der Höhe für eine Einheitsantriebskraft zu trennen.

J=1HOG

Leistungsfluss im SSSC

Die Power Flow in SSSC-Formel wird verwendet, um sowohl den Wirk- als auch den BlindLeistungsfluss auf einer Übertragungsleitung zu steuern und UPFC zu einem vielseitigen Gerät zur Optimierung von Leistungsfluss- und Spannungsprofilen in einem Energiesystem zu machen.

Psssc=Pmax+VseIsh4

Leistungsfaktor bei gegebenem Leistungsfaktorwinkel

Leistungsfaktor bei gegebenem Leistungsfaktorwinkel ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

cosΦ=cos(Φ)

Leistungsfaktor bei gegebener Leistung

Leistungsfaktor bei gegebener Leistung ist definiert als das Verhältnis der von der Last aufgenommenen WirkLeistung zur im Stromkreis fließenden ScheinLeistung.

cosΦ=PVI

Leistungsfaktor bei gegebener Impedanz

Der Leistungsfaktor bei gegebener Impedanz eines Wechselstromnetzes ist definiert als das Verhältnis von Widerstand und Impedanz des Stromkreises.

cosΦ=RZ

Leistung für gegebene aerodynamische Koeffizienten erforderlich

Die für bestimmte aerodynamische Koeffizienten erforderliche Leistung stellt die Menge an Leistung dar, die zum Aufrechterhalten des Fluges basierend auf bestimmten aerodynamischen Parametern, wie etwa dem Luftwiderstandsbeiwert, erforderlich ist. Diese Gleichung veranschaulicht, dass die für einen bestimmten Satz aerodynamischer Koeffizienten erforderliche Leistung von Faktoren wie Luftdichte, Geschwindigkeit und den spezifischen aerodynamischen Eigenschaften des Flugzeugs, wie sie durch den Luftwiderstandsbeiwert dargestellt werden, beeinflusst wird.

P=WbodyVCDCL

Leistungsfaktor unter Verwendung der Fläche des X-Abschnitts (einphasiges Dreileiter-Betriebssystem)

Die Formel für den Leistungsfaktor unter Verwendung der Fläche des X-Abschnitts (Einphasen-Dreileiter-OS) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=(P2)ρLAPloss(Vm2)

Leistungsfaktor unter Verwendung der Fläche des X-Abschnitts (einphasiges Zweidraht-Betriebssystem)

Der Leistungsfaktor unter Verwendung der Formel für die Fläche des X-Abschnitts (Einphasen-Zweidraht-OS) ist als Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis definiert.

PF=4P2ρLAPloss(Vm2)

Leistungsfaktor unter Verwendung des Laststroms (2-Phasen-4-Draht-Betriebssystem)

Die Formel für den Leistungsfaktor unter Verwendung des Laststroms (2-Phasen-4-Draht-Betriebssystem) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=P22VmI

Leistungsfaktor unter Verwendung von Leitungsverlusten (2-Phasen-4-Draht-Betriebssystem)

Die Formel für den Leistungsfaktor unter Verwendung von Leitungsverlusten (2-Phasen-4-Draht-Betriebssystem) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=(PVm)ρL2PlossA

Leistung ans Rad geliefert

Die an das Rad abgegebene Energie ist eine Energiemenge, die durch Kraft übertragen wird, um ein Objekt zu bewegen, und wird als verrichtete Arbeit bezeichnet.

Pdc=(wfG)(vfu+vvf)

Leistungsfaktor unter Verwendung der Fläche des X-Abschnitts (3-Phasen-3-Draht-Betriebssystem)

Die Formel für den Leistungsfaktor unter Verwendung der Fläche des X-Abschnitts (3-Phasen-3-Draht-OS) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=2ρP2L23APloss(Vm2)

Leistungsfaktorwinkel für einphasiges 3-Leiter-System

Der Leistungsfaktorwinkel für einphasige 3-Leiter-Systemformel ist definiert als der Phasenwinkel zwischen Blind- und WirkLeistung.

Φ=acos(P2VacI)

Leistungsfaktor unter Verwendung des Laststroms (1 Phase 3 Leiter US)

Die Formel für den Leistungsfaktor unter Verwendung des Laststroms (1 Phase, 3 Leiter US) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=2PVmI

Leistungsfaktor unter Verwendung des Stroms in jedem Äußeren (2-Phasen-3-Draht-US)

Der Leistungsfaktor unter Verwendung der Strom in jedem äußeren (2-Phasen-3-Draht-US)-Formel ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=PIVm

Leistungsfaktor unter Verwendung des Stroms im Neutralleiter (2-Phasen 3-Leiter US)

Die Formel für den Leistungsfaktor unter Verwendung des Stroms im Neutralleiter (2-phasig, 3-adrig US) ist definiert als der Kosinus des Winkels zwischen dem Spannungszeiger und dem Stromzeiger in einem Wechselstromkreis.

PF=2PIVm

Leistungsaufnahme der kapazitiven Last

Die Formel für die Leistungsaufnahme der kapazitiven Last ist definiert als die AusgangsLeistung, die für den Lastkondensator in der Schaltung berechnet wird.

PL=CLVcc2foSwo

Leistungsgewinn des Verstärkers

Die Formel für die Leistungsverstärkung des Verstärkers ist definiert als die LastLeistung P(l) zur EingangsLeistung P(i), ein Verstärker versorgt die Last mit einer Leistung, die größer ist als die von der Signalquelle erhaltene.

Ap=PLPin

Leistungsverstärkung des Verstärkers bei gegebener Spannungsverstärkung und Stromverstärkung

Die Leistungsverstärkung des Verstärkers bei gegebener Spannungsverstärkungs- und Stromverstärkungsformel ist definiert als das Produkt aus der Spannungsverstärkung und der Stromverstärkung der Verstärkerschaltung.

Ap=AvAi

Wie finde ich Formeln?

Hier sind ein paar Tipps für bessere Suchergebnisse.
Seien Sie konkret: Je konkreter Ihre Suchanfrage, desto besser sind Ihre Ergebnisse.
Verwenden Sie mehrere Schlüsselwörter: Kombinieren Sie mehrere Schlüsselwörter, um die Ergebnisse einzugrenzen.
Experimentieren Sie mit Synonymen: Unterschiedliche Begriffe können zu unterschiedlichen Ergebnissen führen.
Platzhaltersuche: Verwenden Sie den Operator * (Sternchen). BEACHTEN SIE, dass dieser Operator nur am Ende eines Wortes funktioniert. Beispiel: Bio*, Bereich* usw.

Alternativ können Sie durch die Unterkategorien innerhalb von navigieren, um die Formeln einzugrenzen, die Sie interessieren.

Copied!