Suche Formeln

Bitte geben Sie mindestens 3 Zeichen ein, um mit der Suche nach -Formeln zu beginnen.

Wählen Sie Filter

Grenzen Sie Ihre Suchergebnisse mithilfe dieser Filter ein.

50 Passende Formeln gefunden!

Geschwindigkeitskonstante der Reaktion erster Ordnung

Die Geschwindigkeitskonstante der Reaktion erster Ordnung ist die Proportionalitätskonstante zur Anfangskonzentration und die Menge des umgesetzten Reaktanten oder des gebildeten Produkts.

Kh=ln(C0C0-x)treaction

Geschwindigkeitsverhältnis des Verbundgetriebes

Das Übersetzungsverhältnis eines zusammengesetzten Getriebes ist das Produkt der Übersetzungsverhältnisse jedes Zahnradpaars im Getriebe. Es wird durch Multiplikation der einzelnen Übersetzungsverhältnisse berechnet, wobei jedes Übersetzungsverhältnis das Verhältnis der Anzahl der Zähne des Antriebsrads zur Anzahl der Zähne des angetriebenen Rads ist.

i=PdP'd

Geschwindigkeit des Mitnehmers für Kreisbogennocken, wenn der Kontakt auf der Kreisflanke erfolgt

Die Formel für die Geschwindigkeit des Stößels für einen Kreisbogennocken, wenn der Kontakt auf einer Kreisflanke liegt, ist definiert als Maß für die Geschwindigkeit des Stößels in einem Kreisbogennockenmechanismus, wenn sich der Kontaktpunkt auf der Kreisflanke befindet. Dies ist ein kritischer Parameter bei der Konstruktion und Optimierung von Nockenstößelsystemen.

v=ω(R-r1)sin(θturned)

Geschwindigkeit hinter Normalschock durch Normalschock-Impulsgleichung

Die Geschwindigkeit hinter dem Normalschock durch die Normalschock-Impulsgleichung berechnet die Geschwindigkeit einer Flüssigkeit stromabwärts einer normalen Stoßwelle unter Verwendung der Normalschock-Impulsgleichung. Diese Formel berücksichtigt Parameter wie die statischen Drücke vor und hinter dem Stoß, die Dichte vor dem Stoß und die Geschwindigkeit vor dem Stoß. Es liefert entscheidende Einblicke in die Geschwindigkeitsänderung, die sich aus dem Durchgang der Stoßwelle ergibt.

V2=P1-P2+ρ1V12ρ2

Geschwindigkeit vor Normalschock durch Normalschock-Impulsgleichung

Die Gleichung „Geschwindigkeit vor Normalstoß durch Normalstoßimpuls“ berechnet die Geschwindigkeit einer Flüssigkeit vor einer Normalstoßwelle mithilfe der Gleichung „Normalschockimpuls“. Diese Formel berücksichtigt Parameter wie den statischen Druck vor und hinter dem Stoß, die Dichte hinter dem Stoß und die Geschwindigkeit hinter dem Stoß. Es liefert wichtige Informationen über die FlüssigkeitsGeschwindigkeit vor dem Auftreffen auf die Stoßwelle und hilft bei der Analyse des kompressiblen Strömungsverhaltens.

V1=P2-P1+ρ2V22ρ1

Geschwindigkeit des Kolbens beim Ausfahren

Die Formel für die KolbenGeschwindigkeit während der Ausdehnung ist definiert als die Bewegungsrate eines Kolbens in einem hydraulischen Aktuator oder Motor. Sie ist ein entscheidender Parameter bei der Bestimmung der Leistung und Effizienz des Systems und wird von der Durchflussrate und der Kolbenfläche beeinflusst.

vpiston=QextAp

Geschwindigkeit des Kolbens beim Einfahren

Die Formel für die KolbenGeschwindigkeit während des Rückzugs ist definiert als die Bewegungsrate eines Kolbens während der Rückzugsphase in einem Hydrauliksystem, die für die Bestimmung der Gesamtleistung und Effizienz von Hydraulikantrieben und -motoren entscheidend ist.

vpiston=QretAp-Ar

Geschwindigkeitsverhältnis

Die Formel für das Drehzahlverhältnis ist eine dimensionslose Größe, die das Strömungsverhalten einer Kreiselpumpe charakterisiert. Sie stellt eine Beziehung zwischen der UmfangsGeschwindigkeit des Laufrads und der SpritzGeschwindigkeit der Flüssigkeit her, die für die Konstruktion und Optimierung der Pumpenleistung von wesentlicher Bedeutung ist.

Ku=u22[g]Hm

Geschwindigkeitsgradient gegebener Druckgradient am zylindrischen Element

Der Geschwindigkeitsgradient wird durch die Formel für den Druckgradienten am zylindrischen Element als Geschwindigkeitsvariation in Bezug auf den Rohrradius definiert.

VG=(12μ)dp|drdradial

Geschwindigkeit an jedem Punkt im zylindrischen Element

Die Geschwindigkeit an jedem Punkt in der Formel für das zylindrische Element wird als Rate definiert, mit der Flüssigkeit in das Rohr eindringt und ein parabolisches Profil bildet.

vFluid=-(14μ)dp|dr((R2)-(dradial2))

Geschwindigkeit am Auslass der Düse für maximalen Flüssigkeitsdurchfluss

Die Geschwindigkeit am Düsenauslass für die maximale Durchflussrate der Flüssigkeit ist entscheidend für die Bestimmung der Effizienz und Leistung von Fluiddynamiksystemen. Sie korreliert direkt mit dem Druckverhältnis über der Düse, der Flüssigkeitsdichte und den Düsendesignmerkmalen und beeinflusst die Durchflussrate und Antriebseffizienz in Anwendungen wie Raketentriebwerken und industriellen Sprühsystemen. Das Verständnis und die Optimierung dieser Geschwindigkeit ist für das Erreichen der gewünschten Betriebsergebnisse in technischen und technologischen Anwendungen von entscheidender Bedeutung.

Vf=2yP1(y+1)ρa

Geschwindigkeitsverhältnis bei gegebenem Verhältnis der Bettneigung

Das Geschwindigkeitsverhältnis (Verhältnis der Sohlenneigung) wird als die FließGeschwindigkeit in einem teilweise gefüllten Rohr im Vergleich zu der in einem voll gefüllten Rohr definiert und gibt Effizienzunterschiede an.

νsVratio=(Nnp)(rpfRrf)23S

Geschwindigkeit bei voller Fahrt unter Verwendung des Bettneigungsverhältnisses

Die Geschwindigkeit bei vollem Betrieb unter Verwendung des Bettneigungsverhältnisses wird als die FließGeschwindigkeit einer Flüssigkeit in einem Rohr definiert, wenn dieses vollständig gefüllt ist, beeinflusst durch die Rohrneigung und Rauheit.

V=Vs(Nnp)(rpfRrf)23S

Geschwindigkeit bei Vollbetrieb unter Verwendung von Bed Slope für Partial Flow

Die Geschwindigkeit bei Volldurchfluss unter Verwendung der Bettneigung für Teildurchfluss wird als die Geschwindigkeit des Flüssigkeitsflusses in einem Rohr definiert, wenn dieses vollständig gefüllt ist, beeinflusst durch die Rohrneigung und -rauheit.

V=Vs(Nnp)(rpfRrf)23sss

Geschwindigkeit des Strahls bei normalem Schub parallel zur Richtung des Strahls

Die Geschwindigkeit des Strahls bei normalem Schub parallel zur Richtung des Strahls ist die Änderungsrate seiner Position in Bezug auf einen Bezugsrahmen und eine Funktion der Zeit.

v=-(FtGγfAJet(∠D(180π))2-Vabsolute)

Geschwindigkeit des Strahls bei normalem Schub Normal zur Richtung des Strahls

Die Geschwindigkeit des Strahls bei normalem Schub normal zur Richtung des Strahls ist die Änderungsrate seiner Position in Bezug auf einen Bezugsrahmen und eine Funktion der Zeit.

v=-(FtGγfAJet(∠D(180π))cos(θ))+Vabsolute

Geschwindigkeit der Tiefwasserwelle

Die Geschwindigkeit von Tiefwasserwellen bezieht sich auf die Geschwindigkeit, mit der sich Wellen in Wassertiefen von mehr als der Hälfte ihrer Wellenlänge ausbreiten.

Co=[g]λo2π

Geschwindigkeit der größeren Riemenscheibe gegebene Geschwindigkeit der kleineren Riemenscheibe

Drehzahl der größeren Scheibe bei gegebener Drehzahl der kleineren Scheibe ist definiert als die Drehzahl, mit der sich die größere Scheibe des Riementriebs dreht.

n2=d(n1D)

Geschwindigkeitsverhältnis von Kettenantrieben

Die Formel für das Geschwindigkeitsverhältnis von Kettenantrieben ist definiert als das Verhältnis der Anzahl der Zähne des Antriebsrads zur Anzahl der Zähne des angetriebenen Rads in einem Kettenantriebssystem, das die Geschwindigkeit der Ausgangswelle im Verhältnis zur Eingangswelle bestimmt.

i=N1N2

Geschwindigkeit des Fahrzeugs bei gegebenem Verzögerungsabstand oder Reaktionsabstand

Die Geschwindigkeit des Fahrzeugs bei gegebener Verzögerungsentfernungs- oder Reaktionsentfernungsformel ist definiert als Geschwindigkeit, mit der sich das Fahrzeug auf der Straßenoberfläche bewegt.

Vb=LDt

Geschwindigkeit eines langsamen Fahrzeugs mit OSD

Die Geschwindigkeit eines langsamen Fahrzeugs unter Verwendung von OSD wird verwendet, um die Geschwindigkeit des Fahrzeugs zu ermitteln, das von einem sich schnell bewegenden Fahrzeug überholt werden muss, wenn OSD gegeben wird.

Vb=OSD-VT-2ltr+T+1.4

Geschwindigkeit des Strahls von der Düse

Die Formel für die StrahlGeschwindigkeit von der Düse ist als die Geschwindigkeit des Strahls aus der Düse definiert.

VJ=Cv2[g]H

Geschwindigkeitskonstante der Phase zwischen Blase und Wolke

Die Formel für die Geschwindigkeitskonstante der Phase zwischen Blase und Wolke wird als berechnete Geschwindigkeitskonstante definiert, wenn im Wirbelreaktor Blasenbildung auftritt.

Kbc=4.50(umfdb)+5.85(Df R)12([g])14db54

Geschwindigkeitskonstante der Phase zwischen Wolkenwache und Emulsion

Die Geschwindigkeitskonstante der Phase zwischen Wolkenwache und Emulsionsformel wird als berechnete Geschwindigkeitskonstante definiert, wenn Blasenbildung an der Grenzfläche im Wirbelschichtreaktor beim Kunii-Levenspiel-Modell auftritt.

Kce=6.77(εmfDf Rubrdb3)12

Geschwindigkeit für verzögerte Kohärenz bei der Photodissoziation

Die Geschwindigkeitsformel für die verzögerte Kohärenz bei der Photodissoziation ist definiert als die Größe der Änderung seiner Position über die Zeit oder die Größe der Änderung seiner Position pro Zeiteinheit während der verzögerten Kohärenz während der Photodissoziation des KrF-Moleküls.

vcov=2(Vcov_R0-Vcov_R)μcov

Geschwindigkeit im schnellen Wirbelbett

Die Formel „Geschwindigkeit im schnellen Wirbelschichtbett“ bezieht sich auf die AufwärtsGeschwindigkeit des Fluidisierungsgases, das zum Schweben und Fluidisieren fester Partikel im Bett verwendet wird. Schnelle Wirbelschichten zeichnen sich durch hohe GasGeschwindigkeiten aus, und diese Geschwindigkeiten liegen typischerweise deutlich über der minimalen FluidisierungsGeschwindigkeit.

uTB-FF=1.53(ρsolids-ρgas)[g]dpρgas

Geschwindigkeit in der pneumatischen Förderung

Die Geschwindigkeitsformel bei der pneumatischen Förderung ist definiert als die Geschwindigkeit, typischerweise ausgedrückt als Luft- oder GasGeschwindigkeit am Punkt der Injektion oder Einführung der Feststoffpartikel in das Fördersystem.

uFF-PC=((21.6((GSρgas)0.542)(d'p 0.315))[g]dp)11.542

Geschwindigkeit der chemischen Reaktion

Die Formel für die Geschwindigkeit der chemischen Reaktion ist definiert als die Geschwindigkeitsänderung der Konzentration eines der Reaktanten oder Produkte pro Zeiteinheit. Die Geschwindigkeit der chemischen Reaktion bedeutet die Geschwindigkeit, mit der die Reaktion stattfindet.

r=ΔcΔt

Geschwindigkeitskonstante der Reaktion nullter Ordnung

Die Formel für die Geschwindigkeitskonstante der Reaktion nullter Ordnung ist definiert als die Subtraktion der Konzentration eines Reaktanten zum Zeitpunkt t von der Anfangskonzentration des Reaktanten in einem bestimmten Zeitintervall der Reaktion.

k=C0-Cttreaction

Geschwindigkeitskonstante zur Halbzeit der Reaktion nullter Ordnung

Die Geschwindigkeitskonstante zur Halbwertszeit der Reaktionsformel nullter Ordnung ist definiert als die Anfangskonzentration des Reaktanten geteilt durch die doppelte Halbwertszeit der Reaktion. Die doppelte Hälfte der Reaktion ist die Gesamtzeit für den Abschluss der Reaktion.

k=C02T1/2

Geschwindigkeit bei jedem gegebenen Radius des Rohrs und maximale Geschwindigkeit

Geschwindigkeit bei jedem Radius bei gegebenem Rohrradius und MaximalGeschwindigkeit hängt von der MaximalGeschwindigkeit und dem Rohrradius ab. Die Geschwindigkeitsverteilung variiert normalerweise mit dem Radius und folgt oft einem bestimmten Profil, abhängig von den Strömungsbedingungen.

V=Vm(1-(rpdo2)2)

Geschwindigkeit der durch Sprengung verursachten Vibrationen

Die Geschwindigkeit der durch Sprengungen verursachten Vibrationen ist definiert als die Änderungsrate der Verschiebung in der Vibrationsarbeit.

V=(λvf)

Geschwindigkeit von Teilchen, die durch Vibrationen gestört werden

Die Formel für die Geschwindigkeit von durch Vibrationen gestörten Partikeln ist definiert als die Geschwindigkeit von Partikeln, die durch Vibrationen beeinflusst werden, und drückt die Geschwindigkeit und Richtung ihrer Bewegung als Reaktion auf Störungen aus.

v=(2πfA)

Geschwindigkeit von Teilchen Eins im Abstand von der Explosion

Die Geschwindigkeit von Partikel Eins in der Entfernung von der Explosion ist definiert als die Geschwindigkeit eines Partikels vom Explosionspunkt in einer bestimmten Entfernung.

v1=v2(D2D1)1.5

Geschwindigkeit von Teilchen Zwei im Abstand von der Explosion

Die Geschwindigkeit von Partikel Zwei im Abstand von der Explosion ist als Änderungsrate der Verschiebung des Partikels definiert.

v2=v1(D1D2)1.5

Geschwindigkeit von Chezys Formel

Die Geschwindigkeit der Chezy-Formel ist bekannt, wenn man die Chezy-Konstante, die Quadratwurzel der hydraulischen mittleren Tiefe und die Neigung des Bettes berücksichtigt.

v=Cmi

Geschwindigkeitskonstante bei gegebenem Sauerstoffäquivalent

Die Geschwindigkeitskonstante der Formel zum Sauerstoffäquivalent wird als Oxidationsrate organischer Stoffe definiert und hängt von der Art der organischen Stoffe und der Temperatur ab.

Kh=c-log(Lt,e)t

Geschwindigkeitskonstante bei gegebener Desoxygenierungskonstante

Die Geschwindigkeitskonstante in der Formel zur Sauerstoffentzugskonstante wird als Oxidationsrate organischer Stoffe definiert. Sie hängt von der Temperatur und der Art der im Abwasser vorhandenen organischen Stoffe ab.

K=KD0.434

Geschwindigkeit der Kugel bei gegebener Widerstandskraft auf der Kugeloberfläche

Die Geschwindigkeit der Kugel bei gegebener Widerstandskraft auf der Kugeloberfläche ist definiert als die Geschwindigkeit des Objekts in der fließenden Flüssigkeit.

Vmean=Fresistance3πμDS

Geschwindigkeit der Sphäre bei gegebener Widerstandskraft

Die Geschwindigkeit der Kugel bei gegebener Widerstandskraft ist definiert als die EndGeschwindigkeit, die das Objekt im Strömungsmedium erreicht.

Vmean=FDACDρ0.5

Geschwindigkeit der Kugel bei gegebenem Luftwiderstandsbeiwert

Die Geschwindigkeit der Kugel bei gegebenem Widerstandskoeffizienten ist definiert als die durchschnittliche Geschwindigkeit, mit der die Kugel den Strom bewegt.

Vmean=24μρCDDS

Geschwindigkeit des Kolbens für die Scherkraft, die der Bewegung des Kolbens widersteht

Die Geschwindigkeit des Kolbens zur Widerstandsfähigkeit gegen Scherkräfte ist definiert als die durchschnittliche Geschwindigkeit, mit der sich der Kolben bewegt.

vpiston=FsπμLP(1.5(DCR)2+4(DCR))

Geschwindigkeit der Flüssigkeit

Die FlüssigkeitsGeschwindigkeit ist definiert als die Geschwindigkeit, mit der sich Flüssigkeit oder Öl im Tank aufgrund der Anwendung der Kolbenkraft bewegt.

uOiltank=dp|dr0.5RR-CHRμ

Geschwindigkeit des Kolbens bei Scherspannung

Die Geschwindigkeit des Kolbens bei Scherbeanspruchung ist definiert als die durchschnittliche Geschwindigkeit im Tank aufgrund der Bewegung des Kolbens.

vpiston=𝜏1.5DμCHCH

Geschwindigkeit der Schaufel bei ausgeübter Kraft durch den Strahl

Die Geschwindigkeit der Schaufel bei der vom Strahl ausgeübten Kraft ist definiert als die Geschwindigkeit, mit der sich die Schaufel als Reaktion auf den Aufprall des Strahls bewegt. Sie stellt die Änderungsrate der Position der Schaufel dar und wird durch die Größe und Richtung der vom Strahl ausgeübten Kraft bestimmt.

v=-(FGγfAJet(1+cos(θ))-Vabsolute)

Geschwindigkeit des Wasserflusses mit bekannter Wassersäule und Stützpfeilerwiderstand

Die FließGeschwindigkeit des Wassers bei bekannter Wassersäule und bekanntem Pfeilerwiderstand wird als der Wert der FließGeschwindigkeit des Wassers durch die Wasserleitung unter Berücksichtigung der Wassersäule und des Pfeilerwiderstands definiert.

Vfw=(([g]γwater)((PBR2Acssin(θb2)-Hγwater)))

Geschwindigkeitsverhältnis der Francis-Turbine

Das Francis-Turbinen-Drehzahlverhältnis ist das Verhältnis der tatsächlichen Drehzahl der Turbine zur idealen Drehzahl für maximale Effizienz. Es hilft bei der Beurteilung, wie nahe die Turbine an ihrer optimalen Drehzahl für die Stromerzeugung arbeitet.

Ku=u12gHi

Geschwindigkeit der Schaufel am Einlass bei gegebenem Geschwindigkeitsverhältnis der Francis-Turbine

Die Geschwindigkeit der Leitschaufel am Einlass bei gegebenem Drehzahlverhältnis der Francis-Turbine ist definiert als die Geschwindigkeit der Leitschaufel am Einlass der Turbine.

u1=Ku2gHi

Geschwindigkeit des Fahrzeugs bei gegebenem Bremsweg

Die Geschwindigkeit des Fahrzeugs bei gegebener Bremswegformel ist definiert als die Geschwindigkeit, mit der sich das Fahrzeug auf der Straßenoberfläche bewegt.

Vb=(BD(2[g]f))0.5

Geschwindigkeitskonstante für die Reaktion nullter Ordnung unter Verwendung von Raumzeit für gemischte Strömung

Die Ratenkonstante für die Reaktion nullter Ordnung unter Verwendung der Raum-Zeit-Formel für gemischte Strömung ist definiert als die Reaktionsrate für eine Reaktion nullter Ordnung für eine gemischte Strömung, bei der die fraktionelle Volumenänderung null ist.

kmixed flow=XmfrCo𝛕mixed

Wie finde ich Formeln?

Hier sind ein paar Tipps für bessere Suchergebnisse.
Seien Sie konkret: Je konkreter Ihre Suchanfrage, desto besser sind Ihre Ergebnisse.
Verwenden Sie mehrere Schlüsselwörter: Kombinieren Sie mehrere Schlüsselwörter, um die Ergebnisse einzugrenzen.
Experimentieren Sie mit Synonymen: Unterschiedliche Begriffe können zu unterschiedlichen Ergebnissen führen.
Platzhaltersuche: Verwenden Sie den Operator * (Sternchen). BEACHTEN SIE, dass dieser Operator nur am Ende eines Wortes funktioniert. Beispiel: Bio*, Bereich* usw.

Alternativ können Sie durch die Unterkategorien innerhalb von navigieren, um die Formeln einzugrenzen, die Sie interessieren.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!