Geschwindigkeitsverhältnis des RiemenantriebsDie Formel für das Geschwindigkeitsverhältnis des Riemenantriebs ist definiert als das Verhältnis der WinkelGeschwindigkeit der Folgewelle zu der der Antriebswelle in einem Riemenantriebssystem, bei dem es sich um ein mechanisches Gerät zur Kraftübertragung über eine Distanz handelt.
Geschwindigkeitsverhältnis des VerbundriemenantriebsDie Formel für das Geschwindigkeitsverhältnis eines zusammengesetzten Riemenantriebs ist definiert als das Verhältnis der WinkelGeschwindigkeit der angetriebenen Welle zu der der Antriebswelle in einem zusammengesetzten Riemenantriebssystem, bei dem es sich um ein mechanisches System zur Kraftübertragung von einer Welle auf eine andere handelt.
Geschwindigkeitsverhältnis des einfachen Riemenantriebs, wenn die Dicke nicht berücksichtigt wirdDie Formel für das Geschwindigkeitsverhältnis eines einfachen Riemenantriebs ohne Berücksichtigung der Dicke ist definiert als Maß für das Verhältnis der WinkelGeschwindigkeit der Antriebsscheibe zur WinkelGeschwindigkeit der Folgescheibe in einem einfachen Riemenantriebssystem, bei dem die Dicke des Riemens nicht berücksichtigt wird, und stellt eine vereinfachte Berechnung für Maschinenbauingenieure dar.
Geschwindigkeitsverhältnis des Riemens bei prozentualem GesamtschlupfDas Geschwindigkeitsverhältnis des Riemens bei gegebenem prozentualen Gesamtschlupf wird als das Verhältnis der Geschwindigkeit der Antriebsscheibe zur Geschwindigkeit der Folgescheibe in einem Riemenantriebssystem definiert, wobei der prozentuale Gesamtschlupf zwischen den beiden Scheiben berücksichtigt wird und ein Maß für die Effizienz des Systems bereitgestellt wird.
Geschwindigkeitsverhältnis des Riemens bei gegebenem Kriechen des RiemensDas Geschwindigkeitsverhältnis des Riemens bei gegebener Formel zur Kriechneigung des Riemens ist als dimensionslose Größe definiert, die das Verhältnis der Geschwindigkeit der Antriebsscheibe zur Geschwindigkeit der Folgescheibe in einem riemengetriebenen System ausdrückt, wobei die Kriechneigung des Riemens berücksichtigt wird, die sich auf die Gesamteffizienz des Systems auswirkt.
Geschwindigkeit für die Übertragung maximaler Leistung durch RiemenDie Formel für die Geschwindigkeit zur Übertragung maximaler Leistung durch einen Riemen wird als die maximale LeistungsübertragungsGeschwindigkeit eines Riemenantriebssystems definiert und ist für die Konstruktion und Optimierung von Riemenantriebssystemen zur effizienten Leistungsübertragung von entscheidender Bedeutung.
Geschwindigkeit des Mitläufers nach der Zeit t für ZykloidenbewegungDie Formel für die Geschwindigkeit des Stößels nach der Zeit t bei zykloider Bewegung ist definiert als Maß für die Geschwindigkeit des Stößels in einem Nocken- und Stößelsystem, das einer zykloiden Bewegung unterliegt. Sie beschreibt die Bewegung des Stößels, während dieser sich dreht und auf einer Kreisbahn verschiebt.
Geschwindigkeit für eine gegebene WenderateDie Geschwindigkeit bei einer gegebenen Wenderate ist ein Maß für die Geschwindigkeit eines Flugzeugs während einer Kurve und wird auf Grundlage des Lastfaktors, der Erdbeschleunigung und der Wenderate berechnet.
Geschwindigkeit des Körpers in einfacher harmonischer BewegungDie Formel für die Geschwindigkeit eines Körpers bei einer einfachen harmonischen Bewegung wird als die MaximalGeschwindigkeit eines Objekts definiert, während es um seine Gleichgewichtsposition schwingt. Sie liefert ein Maß für die kinetische Energie des Objekts während seiner Schwingungsbewegung.
Geschwindigkeit für gegebenen Pull-Up-ManöverradiusDie Geschwindigkeit für einen bestimmten Pull-Up-Manöverradius eines Flugzeugs hängt vom Manöverradius und der Auslastung des Flugzeugs ab. Diese Formel bietet eine vereinfachte Annäherung an die Geschwindigkeit, die erforderlich ist, um während des Pull-Up-Manövers die gewünschte SinkGeschwindigkeit aufrechtzuerhalten.
Geschwindigkeit für eine gegebene Pull-up-ManöverrateDie Geschwindigkeit für eine bestimmte Pull-up-Manöverrate ist die Geschwindigkeit, die ein Flugzeug benötigt, um während eines Pull-up-Manövers eine bestimmte Steigrate beizubehalten. Diese Formel berechnet die Geschwindigkeit basierend auf der Erdbeschleunigung, dem Pull-up-Lastfaktor und der Wenderate. Das Verständnis und die Anwendung dieser Formel ist für Piloten und Ingenieure unerlässlich, um sichere und effektive Pull-up-Manöver zu gewährleisten.
Geschwindigkeit des Windkanal-TestabschnittsDie Geschwindigkeitsformel des Windkanal-Testabschnitts basiert auf dem Bernoulli-Prinzip und ist eine Funktion der Druckdifferenz zwischen Reservoir und Testabschnitt.
Geschwindigkeitspotential für gleichmäßige inkompressible StrömungDie Geschwindigkeitspotentialfunktion für gleichmäßige inkompressible Strömung (ϕ) steigt linear mit der Entfernung in Strömungsrichtung (x) an, was die gleichmäßige Natur der Strömung widerspiegelt. Folglich gibt es keine Variation des Geschwindigkeitspotentials in Bezug auf die y-Koordinate, was die Homogenität der Strömung in y-Richtung veranschaulicht.
Geschwindigkeitspotential für gleichmäßige inkompressible Strömung in PolarkoordinatenDas Geschwindigkeitspotential für gleichmäßige inkompressible Strömung in Polarkoordinaten besagt, dass die Funktion direkt proportional zum radialen Abstand vom Ursprung (r) und dem Kosinus der Winkelkoordinate (θ) ist, skaliert durch die StrömungsGeschwindigkeit (U). Dies bedeutet, dass der Wert der Geschwindigkeitspotentialfunktion linear mit dem radialen Abstand vom Ursprung zunimmt und mit dem Kosinus des Winkels variiert, was die gleichmäßige Natur der Strömung und ihre Abhängigkeit von der Winkelrichtung widerspiegelt.
Geschwindigkeitspotential für den 2D-QuellenflussDie Formel für das Geschwindigkeitspotenzial für den zweidimensionalen Quellenfluss besagt, dass die Funktion direkt proportional zum natürlichen Logarithmus des radialen Abstands vom Quellpunkt und der Stärke der Quelle ist. Diese logarithmische Beziehung spiegelt die Eigenschaft des Potenzialflusses wider, bei dem die Geschwindigkeit mit zunehmendem Abstand von der Quelle logarithmisch abnimmt.
Geschwindigkeit der Schallwelle bei gegebenem VolumenmodulDie Geschwindigkeit der Schallwelle in Abhängigkeit vom Kompressionsmodul des Mediums gibt Aufschluss darüber, wie schnell sich Schall durch das Material bewegt. Das Verständnis dieser Beziehung ist in der Akustik, der Materialwissenschaft und in technischen Anwendungen von entscheidender Bedeutung, bei denen die Schallausbreitung und die mechanischen Eigenschaften von Materialien wichtige Überlegungen darstellen.
Geschwindigkeit der Schallwelle unter Verwendung eines isothermen ProzessesDie Geschwindigkeit von Schallwellen mithilfe isothermer Prozesse bietet Einblicke in die Auswirkungen der Temperatur und der physikalischen Eigenschaften von Gasen auf die Geschwindigkeit, mit der sich Schall ausbreitet. Dies ermöglicht präzise Berechnungen und fundierte Designentscheidungen in der Akustik, Aerodynamik und verschiedenen technologischen Anwendungen.
Geschwindigkeit der Schallwelle bei gegebener Machzahl für komprimierbare FlüssigkeitsströmungDie Geschwindigkeit der Schallwelle bei gegebener Mach-Zahl für kompressible Flüssigkeitsströmungen gibt die Geschwindigkeit an, mit der sich Schall durch das Medium ausbreitet, relativ zur SchallGeschwindigkeit in diesem Medium. Diese Beziehung ist von grundlegender Bedeutung in der Aerodynamik, der Luft- und Raumfahrttechnik und der Akustik, wo die Mach-Zahl das Strömungsregime charakterisiert und das Verhalten von Stoßwellen und Schallübertragung beeinflusst.
Geschwindigkeit der FlüssigkeitDie FlüssigkeitsGeschwindigkeit ist definiert als die Geschwindigkeit, mit der sich Flüssigkeit oder Öl im Tank aufgrund der Anwendung der Kolbenkraft bewegt.
Geschwindigkeit für die Wellenlänge der WelleDie Formel zur Berechnung der Geschwindigkeit für die Wellenlänge einer Welle ist definiert als die Geschwindigkeit, mit der sich die Welle durch ein Medium ausbreitet, berechnet als Produkt ihrer Frequenz und Wellenlänge.
Geschwindigkeit der SchallwelleDie Formel zur Berechnung der SchallwellenGeschwindigkeit wird als Geschwindigkeit definiert, obwohl Geschwindigkeit eigentlich sowohl Geschwindigkeit als auch Richtung impliziert. Die Geschwindigkeit einer Welle ist gleich dem Produkt aus Wellenlänge und Frequenz (Anzahl der Schwingungen pro Sekunde) und ist unabhängig von ihrer Intensität.
Geschwindigkeit der Schallwelle gegeben SchallintensitätDie Geschwindigkeit einer Schallwelle wird bei gegebener Schallintensitätsformel als Tempo definiert, obwohl Geschwindigkeit eigentlich sowohl Geschwindigkeit als auch Richtung impliziert. Die Geschwindigkeit einer Welle ist gleich dem Produkt aus Wellenlänge und Frequenz (Anzahl der Schwingungen pro Sekunde) und ist unabhängig von ihrer Intensität.
Geschwindigkeit am Auslass bei gegebener an das Rad abgegebener LeistungDie Geschwindigkeit am Auslass bei gegebener Leistung, die an das Rad geliefert wird, ist die Geschwindigkeit, mit der sich die Position ändert. Die durchschnittliche Geschwindigkeit ist das Verhältnis von Verschiebung oder Positionsänderung (eine Vektorgröße) pro Zeit.
Geschwindigkeitsskala angesichts der relativen Bedeutung der ViskositätDie Geschwindigkeitsskala mit der relativen Bedeutung der Viskosität wird als typische Strömungssituation im Küstenbereich definiert. Bei einer Geschwindigkeitsskala von 1 ms−1 und einer Längenskala von 2 m ergibt sich ein Verhältnis von etwa 0,5 × 10−6, sodass wir die Auswirkungen der Viskosität vernachlässigen können.
Geschwindigkeit bei LeckageGeschwindigkeit bei Leckage: Im Kontext der Strömungsdynamik, speziell im Umgang mit Leckagen, bezieht sich der Begriff „Geschwindigkeit“ auf die Geschwindigkeit, mit der die Flüssigkeit durch ein Leck entweicht.
Geschwindigkeit von FluidpartikelnDie Geschwindigkeit von Fluidpartikeln in der Fluiddynamik-Terminologie wird verwendet, um die Bewegung eines Kontinuums mathematisch zu beschreiben.
Geschwindigkeit der chemischen ReaktionDie Formel für die Geschwindigkeit der chemischen Reaktion ist definiert als die Geschwindigkeitsänderung der Konzentration eines der Reaktanten oder Produkte pro Zeiteinheit. Die Geschwindigkeit der chemischen Reaktion bedeutet die Geschwindigkeit, mit der die Reaktion stattfindet.
Geschwindigkeitskonstante der Reaktion nullter OrdnungDie Formel für die Geschwindigkeitskonstante der Reaktion nullter Ordnung ist definiert als die Subtraktion der Konzentration eines Reaktanten zum Zeitpunkt t von der Anfangskonzentration des Reaktanten in einem bestimmten Zeitintervall der Reaktion.
Geschwindigkeitskonstante zur Halbzeit der Reaktion nullter OrdnungDie Geschwindigkeitskonstante zur Halbwertszeit der Reaktionsformel nullter Ordnung ist definiert als die Anfangskonzentration des Reaktanten geteilt durch die doppelte Halbwertszeit der Reaktion. Die doppelte Hälfte der Reaktion ist die Gesamtzeit für den Abschluss der Reaktion.
Geschwindigkeit hinter Normalschock durch Normalschock-ImpulsgleichungDie Geschwindigkeit hinter dem Normalschock durch die Normalschock-Impulsgleichung berechnet die Geschwindigkeit einer Flüssigkeit stromabwärts einer normalen Stoßwelle unter Verwendung der Normalschock-Impulsgleichung. Diese Formel berücksichtigt Parameter wie die statischen Drücke vor und hinter dem Stoß, die Dichte vor dem Stoß und die Geschwindigkeit vor dem Stoß. Es liefert entscheidende Einblicke in die Geschwindigkeitsänderung, die sich aus dem Durchgang der Stoßwelle ergibt.
Geschwindigkeit vor Normalschock durch Normalschock-ImpulsgleichungDie Gleichung „Geschwindigkeit vor Normalstoß durch Normalstoßimpuls“ berechnet die Geschwindigkeit einer Flüssigkeit vor einer Normalstoßwelle mithilfe der Gleichung „Normalschockimpuls“. Diese Formel berücksichtigt Parameter wie den statischen Druck vor und hinter dem Stoß, die Dichte hinter dem Stoß und die Geschwindigkeit hinter dem Stoß. Es liefert wichtige Informationen über die FlüssigkeitsGeschwindigkeit vor dem Auftreffen auf die Stoßwelle und hilft bei der Analyse des kompressiblen Strömungsverhaltens.
Geschwindigkeit des Kolbens beim AusfahrenDie Formel für die KolbenGeschwindigkeit während der Ausdehnung ist definiert als die Bewegungsrate eines Kolbens in einem hydraulischen Aktuator oder Motor. Sie ist ein entscheidender Parameter bei der Bestimmung der Leistung und Effizienz des Systems und wird von der Durchflussrate und der Kolbenfläche beeinflusst.