Suche Formeln

Bitte geben Sie mindestens 3 Zeichen ein, um mit der Suche nach -Formeln zu beginnen.

Wählen Sie Filter

Grenzen Sie Ihre Suchergebnisse mithilfe dieser Filter ein.

50 Passende Formeln gefunden!

Geschwindigkeit von Fluidpartikeln

Die Geschwindigkeit von Fluidpartikeln in der Fluiddynamik-Terminologie wird verwendet, um die Bewegung eines Kontinuums mathematisch zu beschreiben.

vf=dta

Geschwindigkeit des Flugzeugs bei gegebener Überschussleistung

Die Geschwindigkeit des Flugzeugs bei gegebener Überschussleistung ist die LuftGeschwindigkeit, die erforderlich ist, um eine gegebene Steigrate beizubehalten, wobei die verfügbare Überschussleistung und das Gleichgewicht zwischen Schub- und Widerstandskräften während des Steigflugs berücksichtigt werden. Das Verständnis und die Anwendung dieser Formel ist für Piloten und Ingenieure von entscheidender Bedeutung, um die Steigleistung zu optimieren.

v=PexcessT-FD

Geschwindigkeit an jedem Punkt für den Staurohrkoeffizienten

Die Geschwindigkeit an jedem Punkt für den Koeffizienten der Pitotrohrformel ist bekannt, wenn man den Anstieg der Flüssigkeit im Rohr über die freie Oberfläche betrachtet, die die Höhe der Flüssigkeit am oberen Rand des Pitotrohrs ist.

Vp=Cv29.81hp

Geschwindigkeit über dem Normalschock aus der Normalschockenergiegleichung

Die Geschwindigkeit vor dem normalen Schock aus der Formel der normalen Schockenergiegleichung ist definiert als die Funktion der Gesamtenthalpie und der AufwärtsGeschwindigkeit vor dem normalen Schock. Die in der Formel verwendete Enthalpie ist die Enthalpie pro Masseneinheit.

V1=2(h2+V222-h1)

Geschwindigkeit hinter dem Normalschock aus der Normalschock-Energiegleichung

Die Geschwindigkeit hinter dem Normalschock aus der Normalschock-Energiegleichung berechnet die Geschwindigkeit einer Flüssigkeit stromabwärts einer normalen Stoßwelle unter Verwendung der Normalschock-Energiegleichung. Diese Formel berücksichtigt Parameter wie die Enthalpie vor und hinter dem Stoß und die Geschwindigkeit vor dem Stoß. Es liefert wesentliche Erkenntnisse über die Geschwindigkeitsänderung, die sich aus dem Durchgang der Stoßwelle ergibt.

V2=2(h1+V122-h2)

Geschwindigkeitsgleichung der Hydraulik

Die Formel zur Geschwindigkeitsgleichung der Hydraulik ist definiert als das Produkt aus Querschnittsfläche und GrundwasserGeschwindigkeit.

q=Av

Geschwindigkeit des freien Stroms der laminaren Strömung der flachen Platte

Die Formel für die freie StrömungsGeschwindigkeit einer laminaren Flachplatte ist definiert als die Geschwindigkeit der Flüssigkeit, die sich der Flachplatte in einem laminaren Strömungsregime nähert. Dies ist ein entscheidender Parameter bei konvektiven Massenübertragungsprozessen, insbesondere im Zusammenhang mit der Strömungsdynamik und der Wärmeübertragung.

u=kL(Sc0.67)(Re0.5)0.322

Geschwindigkeitskonstante für die Reaktion nullter Ordnung aus der Arrhenius-Gleichung

Die Geschwindigkeitskonstante für eine Reaktion nullter Ordnung aus der Arrhenius-Gleichungsformel ist definiert als das Produkt des Frequenzfaktors mit einer empirischen Form der negativen Aktivierungsenergie pro universeller Gaskonstante multipliziert mit der Temperatur, und die Geschwindigkeitskonstante der Arrhenius-Gleichung ist umgekehrt proportional zur Reaktionstemperatur.

k0=Afactor-zeroorderexp(-Ea1[R]TZeroOrder)

Geschwindigkeitskonstante für die Reaktion erster Ordnung aus der Arrhenius-Gleichung

Die Geschwindigkeitskonstante für die Reaktion erster Ordnung aus der Arrhenius-Gleichungsformel ist definiert als der Frequenzfaktor multipliziert mit dem Exponential der negativen Aktivierungsenergie pro universeller Gaskonstante und Temperatur. Die Geschwindigkeitskonstante der Reaktion erster Ordnung ist umgekehrt proportional zur Reaktionstemperatur. Mit steigender Reaktionstemperatur nimmt die Geschwindigkeitskonstante ab.

kfirst=Afactor-firstorderexp(-Ea1[R]TFirstOrder)

Geschwindigkeitskonstante für die Reaktion zweiter Ordnung aus der Arrhenius-Gleichung

Die Geschwindigkeitskonstante für die Reaktion zweiter Ordnung aus der Arrhenius-Gleichungsformel ist definiert als Frequenzfaktor multipliziert mit der Exponentialform der negativen Aktivierungsenergie pro universeller Gaskonstante und Temperatur. Die Geschwindigkeitskonstante der Reaktion zweiter Ordnung ist umgekehrt proportional zur Reaktionstemperatur.

Ksecond=Afactor-secondorderexp(-Ea1[R]TSecondOrder)

Geschwindigkeit des Projektils bei gegebener Höhe über dem Projektionspunkt

Die Formel für die Geschwindigkeit eines Projektils in einer bestimmten Höhe über dem Projektilpunkt ist definiert als Maß für die Geschwindigkeit eines Projektils in einer bestimmten Höhe über dem Projektilpunkt, wobei die AnfangsGeschwindigkeit, die Erdbeschleunigung und die Höhe über dem Projektilpunkt berücksichtigt werden.

vp=vpm2-2[g]h

Geschwindigkeit im Abfluss bei gegebener Kanaldurchflusszeit

Die Formel für die Geschwindigkeit im Abfluss bei gegebener Kanalfließzeit wird als die Geschwindigkeit des durch den Abfluss fließenden Wassers definiert.

V=LTm/f

Geschwindigkeit des freien Stroms bei lokalem Reibungskoeffizienten

Die Formel für die freie StrömungsGeschwindigkeit bei gegebenem lokalen Reibungskoeffizienten ist definiert als die Geschwindigkeit einer Flüssigkeit, wenn diese weit entfernt von einer Begrenzung oder Wand ist und von der Anwesenheit der Wand unbeeinflusst bleibt. Sie ist ein entscheidender Parameter zum Verständnis des Verhaltens einer Flüssigkeitsströmung über einer flachen Platte.

u=2τwρCfx

Geschwindigkeit beim Laufen bei teilweise voller Entladung

Die Geschwindigkeit bei teilweiser Füllung eines Abwasserkanals wird als die FließGeschwindigkeit bei nicht vollständig gefülltem Abwasserkanal definiert und ist von der Tiefe und dem Gefälle abhängig.

Vs=qa

Geschwindigkeit beim Laufen bei voller Entladung

Die Geschwindigkeit bei vollem Durchfluss wird als die Geschwindigkeit definiert, mit der sich eine Flüssigkeit durch ein vollständig gefülltes Rohr oder einen Kanal bewegt, normalerweise bei maximaler Kapazität.

V=QA

Geschwindigkeit bei teilweise vollem Lauf bei proportionaler Entladung

Die Geschwindigkeit bei teilweiser Füllung und anteiliger Abflussmenge ist definiert als die FließGeschwindigkeit bei nicht vollständig gefülltem Abwasserkanal, beeinflusst durch Tiefe und Neigung.

Vs=PqVAa

Geschwindigkeit während des Volllaufs bei proportionaler Entladung

Die Geschwindigkeit bei vollem Betrieb und proportionaler Entladung wird als die FließGeschwindigkeit einer Flüssigkeit in einem Rohr definiert, wenn dieses vollständig gefüllt ist, beeinflusst durch die Neigung und Rauheit des Rohrs.

V=VsaPqA

Geschwindigkeitskonstante bei gegebener Desoxygenierungskonstante

Die Geschwindigkeitskonstante wird in der Formel zur Desoxygenierungskonstanten als Oxidationsrate von organischer Materie definiert und hängt von der Art der darin vorhandenen organischen Materie und der Temperatur ab.

K=2.3KD

Geschwindigkeit bei gegebener Länge

Die Geschwindigkeit bei gegebener Länge ist als beizubehaltende FahrzeugGeschwindigkeit definiert, wenn eine Beschleunigungsrate und eine Änderung des Gradienten der vertikalen Kurve bereitgestellt werden.

V=Lc100fg1-(g2)

Geschwindigkeit des Strahls bei normalem Schub parallel zur Richtung des Strahls

Die Geschwindigkeit des Strahls bei normalem Schub parallel zur Richtung des Strahls ist die Änderungsrate seiner Position in Bezug auf einen Bezugsrahmen und eine Funktion der Zeit.

v=-(FtGγfAJet(∠D(180π))2-Vabsolute)

Geschwindigkeit des Strahls bei normalem Schub Normal zur Richtung des Strahls

Die Geschwindigkeit des Strahls bei normalem Schub normal zur Richtung des Strahls ist die Änderungsrate seiner Position in Bezug auf einen Bezugsrahmen und eine Funktion der Zeit.

v=-(FtGγfAJet(∠D(180π))cos(θ))+Vabsolute

Geschwindigkeit im Turn

Die Geschwindigkeit in der Kurve ist als Geschwindigkeit des Flugzeugs in der Kurve oder Kurve definiert und ist eine Funktion des Kurvenradius.

VTurning Speed=4.1120RTaxiway0.5

Geschwindigkeit an der Oberfläche bei gegebener Scherspannung an der Wasseroberfläche

Die Formel für die Geschwindigkeit an der Oberfläche bei gegebener Scherspannung an der Wasseroberfläche ist definiert als die Bestimmung der Geschwindigkeit des Wassers an der Oberfläche eines Gewässers basierend auf der auf die Wasseroberfläche ausgeübten Scherspannung. Scherspannung an der Wasseroberfläche wird typischerweise durch Wind oder andere Kräfte erzeugt, die tangential auf die Oberfläche wirken. Es handelt sich um einen Geschwindigkeitsparameter an der Oberfläche, der das Strömungsprofil beeinflusst.

Vs=πτ2DFρwaterΩEsin(L)

Geschwindigkeitskonstante der irreversiblen Reaktion zweiter Ordnung mit gleichen Reaktantenkonzentrationen

Die Formel für die Geschwindigkeitskonstante der irreversiblen Reaktion zweiter Ordnung mit gleichen Reaktantenkonzentrationen ist definiert als die Proportionalitätskonstante in der Gleichung, die die Beziehung zwischen der Geschwindigkeit einer chemischen Reaktion und den Konzentrationen der reagierenden Substanzen ausdrückt.

k2=r(CA)2

Geschwindigkeitskonstante der irreversiblen Reaktion dritter Ordnung

Die Formel für die Geschwindigkeitskonstante der irreversiblen Reaktion dritter Ordnung ist definiert als die Proportionalitätskonstante in der Gleichung, die die Beziehung zwischen der Geschwindigkeit einer chemischen Reaktion und den Konzentrationen der reagierenden Substanzen ausdrückt.

k3=rCACBCD

Geschwindigkeitsfaktor

Die Formel für den Geschwindigkeitsfaktor ist definiert als der Bruchwert, der sich auf die AusbreitungsGeschwindigkeit einer Übertragungsleitung und die LichtGeschwindigkeit im Vakuum bezieht. Der Geschwindigkeitsfaktor stellt das Verhältnis der Geschwindigkeit einer elektromagnetischen Welle in der Antennenstruktur zur LichtGeschwindigkeit dar.

Vf=1K

Geschwindigkeitskonstante für Reaktion A bis B für einen Satz von drei Parallelreaktionen

Die Formel für die Geschwindigkeitskonstante für die Reaktionen A bis B für den Satz aus drei parallelen Reaktionen ist definiert als die Beziehung zwischen der molaren Konzentration der Reaktanten und der Geschwindigkeit der stattfindenden chemischen Reaktion.

k1=1tln(A0RA)-(k2+k3)

Geschwindigkeitskonstante für Reaktion A bis C für Satz von drei Parallelreaktionen

Die Formel für die Geschwindigkeitskonstante für die Reaktionen A bis C für den Satz aus drei parallelen Reaktionen ist definiert als die Beziehung zwischen der molaren Konzentration der Reaktanten und der Geschwindigkeit der stattfindenden chemischen Reaktion.

k2=1tln(A0RA)-(k1+k3)

Geschwindigkeitskonstante für Reaktion A bis D für Satz von drei Parallelreaktionen

Die Formel für die Geschwindigkeitskonstante für die Reaktionen A bis D für den Satz aus drei parallelen Reaktionen ist definiert als die Beziehung zwischen der molaren Konzentration der Reaktanten und der Geschwindigkeit der stattfindenden chemischen Reaktion.

k3=1tln(A0RA)-(k1+k2)

Geschwindigkeitskonstante der Phase zwischen Blase und Wolke

Die Formel für die Geschwindigkeitskonstante der Phase zwischen Blase und Wolke wird als berechnete Geschwindigkeitskonstante definiert, wenn im Wirbelreaktor Blasenbildung auftritt.

Kbc=4.50(umfdb)+5.85(Df R)12([g])14db54

Geschwindigkeitskonstante der Phase zwischen Wolkenwache und Emulsion

Die Geschwindigkeitskonstante der Phase zwischen Wolkenwache und Emulsionsformel wird als berechnete Geschwindigkeitskonstante definiert, wenn Blasenbildung an der Grenzfläche im Wirbelschichtreaktor beim Kunii-Levenspiel-Modell auftritt.

Kce=6.77(εmfDf Rubrdb3)12

Geschwindigkeit für verzögerte Kohärenz bei der Photodissoziation

Die Geschwindigkeitsformel für die verzögerte Kohärenz bei der Photodissoziation ist definiert als die Größe der Änderung seiner Position über die Zeit oder die Größe der Änderung seiner Position pro Zeiteinheit während der verzögerten Kohärenz während der Photodissoziation des KrF-Moleküls.

vcov=2(Vcov_R0-Vcov_R)μcov

Geschwindigkeit im schnellen Wirbelbett

Die Formel „Geschwindigkeit im schnellen Wirbelschichtbett“ bezieht sich auf die AufwärtsGeschwindigkeit des Fluidisierungsgases, das zum Schweben und Fluidisieren fester Partikel im Bett verwendet wird. Schnelle Wirbelschichten zeichnen sich durch hohe GasGeschwindigkeiten aus, und diese Geschwindigkeiten liegen typischerweise deutlich über der minimalen FluidisierungsGeschwindigkeit.

uTB-FF=1.53(ρsolids-ρgas)[g]dpρgas

Geschwindigkeit in der pneumatischen Förderung

Die Geschwindigkeitsformel bei der pneumatischen Förderung ist definiert als die Geschwindigkeit, typischerweise ausgedrückt als Luft- oder GasGeschwindigkeit am Punkt der Injektion oder Einführung der Feststoffpartikel in das Fördersystem.

uFF-PC=((21.6((GSρgas)0.542)(d'p 0.315))[g]dp)11.542

Geschwindigkeitsverhältnis

Die Formel für das Geschwindigkeitsverhältnis ist definiert als das Verhältnis der Drehzahl des angetriebenen Zahnrads zu der des treibenden Zahnrads in einem mechanischen System. Sie hilft dabei, die Effizienz und Drehmomentübertragung des Getriebes zu bestimmen.

i=TdTdr

Geschwindigkeit des Mitnehmers für Kreisbogennocken, wenn der Kontakt auf der Kreisflanke erfolgt

Die Formel für die Geschwindigkeit des Stößels für einen Kreisbogennocken, wenn der Kontakt auf einer Kreisflanke liegt, ist definiert als Maß für die Geschwindigkeit des Stößels in einem Kreisbogennockenmechanismus, wenn sich der Kontaktpunkt auf der Kreisflanke befindet. Dies ist ein kritischer Parameter bei der Konstruktion und Optimierung von Nockenstößelsystemen.

v=ω(R-r1)sin(θturned)

Geschwindigkeitskoeffizient

Die Formel für den Geschwindigkeitskoeffizienten ist definiert als das Verhältnis zwischen der tatsächlichen Geschwindigkeit des Strahls an der Vena-Contracta und der theoretischen Geschwindigkeit am Strahl.

Cv=vaVth

Geschwindigkeitskoeffizient für horizontalen und vertikalen Abstand

Die Formel für den Geschwindigkeitskoeffizienten für die horizontale und vertikale Entfernung wird aus der experimentellen Bestimmung der hydraulischen Koeffizienten definiert.

Cv=R4VH

Geschwindigkeit unter Verwendung der Wasserströmungsgleichung

Die Geschwindigkeit wird mithilfe der Wasserdurchflussgleichung als FließGeschwindigkeit definiert, wenn der Querschnittsbereich des Rohrs und der Wasserdurchfluss gegeben sind.

Vf=QwAcs

Geschwindigkeitskoeffizient

Die Geschwindigkeitskoeffizientenformel ist definiert als das Verhältnis der tatsächlichen AustrittsGeschwindigkeit zum Verhältnis der idealen AustrittsGeschwindigkeit.

Cv=CactCideal

Geschwindigkeit in Abschnitt 1-1 für plötzliche Vergrößerung

Die Geschwindigkeit in Abschnitt 1-1 für die Formel für plötzliche Vergrößerung ist bekannt, wenn die StrömungsGeschwindigkeit in Abschnitt 2-2 nach der Vergrößerung und der Druckverlust aufgrund der Reibung für eine durch das Rohr fließende Flüssigkeit berücksichtigt werden.

V1'=V2'+he2[g]

Geschwindigkeit in Abschnitt 2-2 für plötzliche Vergrößerung

Die Geschwindigkeit in Abschnitt 2-2 für die Formel für plötzliche Vergrößerung ist bekannt, wenn die StrömungsGeschwindigkeit in Abschnitt 1-1 vor der Vergrößerung und der Druckverlust aufgrund der Reibung für eine durch das Rohr fließende Flüssigkeit berücksichtigt werden.

V2'=V1'-he2[g]

Geschwindigkeit in Abschnitt 2-2 für plötzliche Kontraktion

Die Geschwindigkeit in Abschnitt 2-2 für die Formel für plötzliche Kontraktion ist bekannt, wenn der Verlust des Kopfes aufgrund plötzlicher Kontraktion und der Kontraktionskoeffizient bei cm³ berücksichtigt werden.

V2'=hc2[g](1Cc)-1

Geschwindigkeit im radialen Abstand r1 bei gegebenem Drehmoment, das auf die Flüssigkeit ausgeübt wird

Die Geschwindigkeit im radialen Abstand r1 bei gegebenem auf die Flüssigkeit ausgeübtem Drehmoment ist definiert als das auf die Flüssigkeit ausgeübte Drehmoment, das zu einer Rotationsbewegung oder einem Fluss führt.

V1=qflowr2V2-(τΔ)r1qflow

Geschwindigkeit im radialen Abstand r2 bei gegebenem Drehmoment, das auf die Flüssigkeit ausgeübt wird

Die Geschwindigkeit bei radialem Abstand r2 bei gegebenem auf die Flüssigkeit ausgeübtem Drehmoment ist definiert als das Drehmoment, das die WinkelGeschwindigkeit beeinflusst. Es führt zu einer entsprechenden Änderung der Geschwindigkeit der Flüssigkeit, was zu einem bestimmten Wert bei gegebenem radialen Abstand führt.

V2=qflowr1V1+(τΔ)qflowr2

Geschwindigkeit der Schaufel bei ausgeübter Kraft durch den Strahl

Die Geschwindigkeit der Schaufel bei der vom Strahl ausgeübten Kraft ist definiert als die Geschwindigkeit, mit der sich die Schaufel als Reaktion auf den Aufprall des Strahls bewegt. Sie stellt die Änderungsrate der Position der Schaufel dar und wird durch die Größe und Richtung der vom Strahl ausgeübten Kraft bestimmt.

v=-(FGγfAJet(1+cos(θ))-Vabsolute)

Geschwindigkeit in der Tiefe bei gegebener absoluter Geschwindigkeit der Welle, die sich nach rechts bewegt

Die Geschwindigkeit in der Tiefe, gegeben durch die Formel „Absolute Geschwindigkeit des Schwalls, der sich nach rechts bewegt“, ist definiert als die resultierende Geschwindigkeit der Flüssigkeitspartikel, die für die Schwallbewegung verantwortlich sind.

VNegativesurges=(vabs(h 1-D2))+(V2D2)h 1

Geschwindigkeit der Welle bei zwei Tiefen

Die Geschwindigkeit der Welle bei zwei Tiefen ist definiert als die Addition der normalen WasserGeschwindigkeit der Kanäle im offenen Kanalfluss.

Cw=[g]D2(D2+h 1)2h 1

Geschwindigkeit in Tiefe 1, wenn die Schwallhöhe vernachlässigbar ist

Die Geschwindigkeit in Tiefe1, wenn die Schwallhöhe vernachlässigbar ist, wird als Geschwindigkeit des Strömungsstoßes an einem Punkt definiert.

VNegativesurges=(Hch[g]Cw)+V2

Geschwindigkeit der Welle bei ungleichmäßiger Strömung

Die Formel „WellenGeschwindigkeit bei ungleichmäßiger Strömung“ ist definiert als die Geschwindigkeit der Wellenausbreitung bei unterschiedlichen Strömungsbedingungen.

Cw=[g]h 1(1+1.5(Hchh 1)+0.5(Hchh 1)(Hchh 1))

Wie finde ich Formeln?

Hier sind ein paar Tipps für bessere Suchergebnisse.
Seien Sie konkret: Je konkreter Ihre Suchanfrage, desto besser sind Ihre Ergebnisse.
Verwenden Sie mehrere Schlüsselwörter: Kombinieren Sie mehrere Schlüsselwörter, um die Ergebnisse einzugrenzen.
Experimentieren Sie mit Synonymen: Unterschiedliche Begriffe können zu unterschiedlichen Ergebnissen führen.
Platzhaltersuche: Verwenden Sie den Operator * (Sternchen). BEACHTEN SIE, dass dieser Operator nur am Ende eines Wortes funktioniert. Beispiel: Bio*, Bereich* usw.

Alternativ können Sie durch die Unterkategorien innerhalb von navigieren, um die Formeln einzugrenzen, die Sie interessieren.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!