Suche Formeln

Bitte geben Sie mindestens 3 Zeichen ein, um mit der Suche nach -Formeln zu beginnen.

Wählen Sie Filter

Grenzen Sie Ihre Suchergebnisse mithilfe dieser Filter ein.

50 Passende Formeln gefunden!

Geschwindigkeitskonstante der Reaktion erster Ordnung

Die Geschwindigkeitskonstante der Reaktion erster Ordnung ist die Proportionalitätskonstante zur Anfangskonzentration und die Menge des umgesetzten Reaktanten oder des gebildeten Produkts.

Kh=ln(C0C0-x)treaction

Geschwindigkeit der Welle in String

Die Geschwindigkeit der Welle in String bezieht sich im allgemeinen Sprachgebrauch auf Geschwindigkeit, obwohl Geschwindigkeit eigentlich sowohl Geschwindigkeit als auch Richtung impliziert. Die Geschwindigkeit einer Welle ist gleich dem Produkt aus Wellenlänge und Frequenz (Anzahl der Schwingungen pro Sekunde) und unabhängig von ihrer Intensität.

Vw=Tm

Geschwindigkeit des Elektrons in Bohrs Umlaufbahn

Die Geschwindigkeit des Elektrons in Bohrs Umlaufbahn ist eine Vektorgröße (sie hat sowohl Größe als auch Richtung) und ist die zeitliche Änderungsrate der Position (eines Teilchens).

ve_BO=[Charge-e]22[Permitivity-vacuum]nquantum[hP]

Geschwindigkeit des Elektrons im Orbit bei gegebener WinkelGeschwindigkeit

Die Geschwindigkeit des Elektrons in der Umlaufbahn bei gegebener WinkelGeschwindigkeit ist eine Vektorgröße (sie hat sowohl Größe als auch Richtung) und ist die Zeitrate der Positionsänderung (eines Teilchens).

ve_AV=ωrorbit

Geschwindigkeit des Elektrons bei gegebener Zeitdauer des Elektrons

Die Geschwindigkeit des Elektrons bei gegebener Zeitdauer des Elektrons ist eine Vektorgröße (sie hat sowohl Größe als auch Richtung) und ist die Zeitrate der Positionsänderung (eines Teilchens).

velectron=2πrorbitT

Geschwindigkeit eines kleinen Elements für Längsschwingung

Die Formel für die Geschwindigkeit kleiner Elemente bei Längsschwingungen ist als Maß für die Geschwindigkeit kleiner Elemente bei einer Längsschwingung definiert, die durch die Trägheit der Einschränkung beeinflusst wird, und wird zur Analyse der Schwingungen in verschiedenen mechanischen Systemen verwendet.

vs=xVlongitudinall

Geschwindigkeit von Teilchen 1 bei gegebener kinetischer Energie

Die Formel für die Geschwindigkeit von Teilchen 1 bei gegebener kinetischer Energie ist eine Methode zur Berechnung der Geschwindigkeit eines Teilchens, wenn wir die Geschwindigkeit anderer Teilchen und die gesamte kinetische Energie des Systems kennen. Da die gesamte kinetische Energie die Summe der individuellen kinetischen Energie beider Teilchen ist, bleibt uns nur eine Variable, und durch Lösen der Gleichung erhalten wir die erforderliche Geschwindigkeit.

v1=(2KE)-(m2v22)m1

Geschwindigkeit von Teilchen 2 bei gegebener kinetischer Energie

Die Formel für die Geschwindigkeit von Teilchen 2 bei gegebener kinetischer Energie ist eine Methode zur Berechnung der Geschwindigkeit eines Teilchens, wenn wir die Geschwindigkeit anderer Teilchen und die gesamte kinetische Energie des Systems kennen. Kinetische Energie ist die Arbeit, die erforderlich ist, um einen Körper einer bestimmten Masse aus dem Ruhezustand zu beschleunigen zu seiner angegebenen Geschwindigkeit. Da die kinetische Energie KE eine Summe der kinetischen Energie für jede Masse ist, haben wir nur eine Variable übrig gelassen und durch Lösen der Gleichung erhalten wir die erforderliche Geschwindigkeit.

v2=(2KE)-(m1v12)m2

Geschwindigkeitskoeffizient

Die Formel für den Geschwindigkeitskoeffizienten ist definiert als das Verhältnis zwischen der tatsächlichen Geschwindigkeit des Strahls an der Vena-Contracta und der theoretischen Geschwindigkeit am Strahl.

Cv=vaVth

Geschwindigkeitskoeffizient für horizontalen und vertikalen Abstand

Die Formel für den Geschwindigkeitskoeffizienten für die horizontale und vertikale Entfernung wird aus der experimentellen Bestimmung der hydraulischen Koeffizienten definiert.

Cv=R4VH

Geschwindigkeit der Walze bei der Verdichtungsproduktion durch Verdichtungsgeräte

Die Formel für die Geschwindigkeit der Walze bei gegebener Verdichtungsleistung durch Verdichtungsgeräte ist definiert als die Geschwindigkeit, mit der Verdichtungsgeräte wie Walzen während des Verdichtungsprozesses arbeiten. Effiziente Geschwindigkeiten tragen zu einer höheren Produktivität bei Bauprojekten bei, da die Geräte in kürzerer Zeit mehr Fläche abdecken können, ohne die Qualität zu beeinträchtigen.

S=yP16WLPRE

Geschwindigkeit für eine gegebene Wenderate

Die Geschwindigkeit bei einer gegebenen Wenderate ist ein Maß für die Geschwindigkeit eines Flugzeugs während einer Kurve und wird auf Grundlage des Lastfaktors, der Erdbeschleunigung und der Wenderate berechnet.

V=[g]n2-1ω

Geschwindigkeit des Körpers in einfacher harmonischer Bewegung

Die Formel für die Geschwindigkeit eines Körpers bei einer einfachen harmonischen Bewegung wird als die MaximalGeschwindigkeit eines Objekts definiert, während es um seine Gleichgewichtsposition schwingt. Sie liefert ein Maß für die kinetische Energie des Objekts während seiner Schwingungsbewegung.

V=A'ωcos(ωtsec)

Geschwindigkeit für gegebenen Pull-Up-Manöverradius

Die Geschwindigkeit für einen bestimmten Pull-Up-Manöverradius eines Flugzeugs hängt vom Manöverradius und der Auslastung des Flugzeugs ab. Diese Formel bietet eine vereinfachte Annäherung an die Geschwindigkeit, die erforderlich ist, um während des Pull-Up-Manövers die gewünschte SinkGeschwindigkeit aufrechtzuerhalten.

Vpull-up=R[g](n-1)

Geschwindigkeit für eine gegebene Pull-up-Manöverrate

Die Geschwindigkeit für eine bestimmte Pull-up-Manöverrate ist die Geschwindigkeit, die ein Flugzeug benötigt, um während eines Pull-up-Manövers eine bestimmte Steigrate beizubehalten. Diese Formel berechnet die Geschwindigkeit basierend auf der Erdbeschleunigung, dem Pull-up-Lastfaktor und der Wenderate. Das Verständnis und die Anwendung dieser Formel ist für Piloten und Ingenieure unerlässlich, um sichere und effektive Pull-up-Manöver zu gewährleisten.

Vpull-up=[g]npull-up-1ω

Geschwindigkeitsverhältnis im Differenzial-Riemenscheibenblock von Weston

Das Geschwindigkeitsverhältnis im Differential-Flaschenzug von Weston ist ein Maß für den mechanischen Vorteil, den das System bietet. Es stellt das Verhältnis der durch die Kraft zurückgelegten Strecke (die gezogene Kette) zur zurückgelegten Strecke durch die Last dar.

Vi=2dldl-ds

Geschwindigkeit im radialen Abstand r1 bei gegebenem Drehmoment, das auf die Flüssigkeit ausgeübt wird

Die Geschwindigkeit im radialen Abstand r1 bei gegebenem auf die Flüssigkeit ausgeübtem Drehmoment ist definiert als das auf die Flüssigkeit ausgeübte Drehmoment, das zu einer Rotationsbewegung oder einem Fluss führt.

V1=qflowr2V2-(τΔ)r1qflow

Geschwindigkeit im radialen Abstand r2 bei gegebenem Drehmoment, das auf die Flüssigkeit ausgeübt wird

Die Geschwindigkeit bei radialem Abstand r2 bei gegebenem auf die Flüssigkeit ausgeübtem Drehmoment ist definiert als das Drehmoment, das die WinkelGeschwindigkeit beeinflusst. Es führt zu einer entsprechenden Änderung der Geschwindigkeit der Flüssigkeit, was zu einem bestimmten Wert bei gegebenem radialen Abstand führt.

V2=qflowr1V1+(τΔ)qflowr2

Geschwindigkeit bei gegebener Länge

Die Geschwindigkeit bei gegebener Länge ist als beizubehaltende FahrzeugGeschwindigkeit definiert, wenn eine Beschleunigungsrate und eine Änderung des Gradienten der vertikalen Kurve bereitgestellt werden.

V=Lc100fg1-(g2)

Geschwindigkeit des Strahls bei normalem Schub parallel zur Richtung des Strahls

Die Geschwindigkeit des Strahls bei normalem Schub parallel zur Richtung des Strahls ist die Änderungsrate seiner Position in Bezug auf einen Bezugsrahmen und eine Funktion der Zeit.

v=-(FtGγfAJet(∠D(180π))2-Vabsolute)

Geschwindigkeit des Strahls bei normalem Schub Normal zur Richtung des Strahls

Die Geschwindigkeit des Strahls bei normalem Schub normal zur Richtung des Strahls ist die Änderungsrate seiner Position in Bezug auf einen Bezugsrahmen und eine Funktion der Zeit.

v=-(FtGγfAJet(∠D(180π))cos(θ))+Vabsolute

Geschwindigkeit in der Tiefsee bei gegebener Wellenkraft in der Tiefsee

Die Formel zur Berechnung der TiefseeGeschwindigkeit anhand der Wellenkraft in der Tiefsee wird als die Geschwindigkeit definiert, mit der sich eine einzelne Welle fortbewegt oder „ausbreitet“.

Co=Pd0.5E

Geschwindigkeitskonstante für Mixed-Flow-Reaktor mit Gewicht des Katalysators

Die Geschwindigkeitskonstante für einen Mischflussreaktor mit Katalysatorgewicht ist als Geschwindigkeitskonstante definiert, die unter Verwendung der Raumzeit des Reaktors unter Berücksichtigung des Katalysatorgewichts, der Reaktantenumwandlung und der fraktionierten Umwandlung berechnet wird.

k '=XA,out(1+εXA,out)(1-XA,out)𝛕'

Geschwindigkeitskonstante für Mixed-Flow-Reaktor mit Katalysatorvolumen

Die Geschwindigkeitskonstante für Mischströmungsreaktoren mit Katalysatorvolumen ist definiert als Geschwindigkeitskonstante, berechnet unter Verwendung der Reaktantenumwandlung, der fraktionierten Umwandlung und der berechneten Raumzeit unter Berücksichtigung des Katalysatorvolumens. Der Geschwindigkeitsausdruck für eine Reaktion erster Ordnung in Gegenwart eines Katalysators wird häufig geändert, um den Effekt des Katalysators einzubeziehen.

k'''=XA,out(1+εXA,out)(1-XA,out)𝛕'''

Geschwindigkeitsausbreitung in einer verlustfreien Leitung

Die Formel für die Geschwindigkeitsausbreitung in einer verlustfreien Leitung ist umgekehrt proportional zur Quadratwurzel des Produkts aus Serieninduktivität und Serienkapazität einer Leitung.

Vp=1lc

Geschwindigkeitsschwankungskoeffizient für Schwungrad

Die Formel für den Geschwindigkeitsschwankungskoeffizienten für Schwungräder ist als Maß für die Geschwindigkeitsschwankung eines Schwungrads definiert, bei dem es sich um ein rotierendes Rad handelt, das Energie speichert und die Geschwindigkeitsschwankungen eines Motors oder einer anderen Maschine ausgleicht.

Cs=2ω1-ω2ω1+ω2

Geschwindigkeit der progressiven Welle

Die Formel zur Geschwindigkeit fortschreitender Wellen ist definiert als Maß für die Geschwindigkeit, mit der sich eine Welle durch ein Medium ausbreitet. Sie beschreibt die Rate der Störungsübertragung in einem physikalischen System und ist ein grundlegendes Konzept zum Verständnis der Wellendynamik und ihrer Anwendungen in verschiedenen Bereichen der Physik.

Vw=λTW

Geschwindigkeit der progressiven Welle unter Verwendung der Frequenz

Die Geschwindigkeit fortschreitender Wellen wird mithilfe der Frequenzformel als Maß für die Geschwindigkeit definiert, mit der sich eine Welle durch ein Medium ausbreitet. Dies ist für das Verständnis verschiedener physikalischer Phänomene wie Schallwellen, Lichtwellen und seismischer Wellen von wesentlicher Bedeutung und spielt in Bereichen wie Physik, Ingenieurwesen und Geologie eine entscheidende Rolle.

Vw=λfw

Geschwindigkeit einer progressiven Welle bei gegebener Winkelfrequenz

Die Formel für die Geschwindigkeit einer fortschreitenden Welle bei gegebener Winkelfrequenz ist definiert als Maß für die Geschwindigkeit einer Welle, die sich in eine bestimmte Richtung bewegt, beeinflusst durch die Winkelfrequenz, und ist von entscheidender Bedeutung für das Verständnis des Verhaltens von Wellen in verschiedenen physikalischen Systemen, einschließlich Schall- und Lichtwellen.

Vw=λωf2π

Geschwindigkeit der Welle bei gegebener Wellennummer

Die Formel zur Berechnung der WellenGeschwindigkeit bei gegebener Wellenzahl ist ein Maß für die Geschwindigkeit, mit der sich eine Welle durch ein Medium ausbreitet. Sie bietet Aufschluss über die Frequenz und Wellenlänge der Welle und ist von entscheidender Bedeutung für das Verständnis verschiedener physikalischer Phänomene, wie etwa Schall- und Lichtwellen, in der Physik und in technischen Anwendungen.

Vw=ωfk

Geschwindigkeit eines kleinen Elements für Querschwingungen

Die Formel für die Geschwindigkeit kleiner Elemente bei Querschwingungen ist definiert als Maß für die Geschwindigkeit eines kleinen Elements bei einer Querschwingung, die durch die Trägheit der Einschränkung beeinflusst wird, und wird zur Analyse der Bewegung von Partikeln bei Längs- und Querschwingungen verwendet.

vs=(3lx2-x3)Vtraverse2l3

Geschwindigkeit der Kugel bei der Widerstandsmethode der fallenden Kugel

Die Geschwindigkeit der Kugel in der Formel der Widerstandsmethode für fallende Kugeln ist unter Berücksichtigung der Viskosität von Flüssigkeit oder Öl, des Kugeldurchmessers und der Widerstandskraft bekannt.

U=FD3πμd

Geschwindigkeit in Abschnitt 1 aus der Bernoulli-Gleichung

Die Geschwindigkeit in Abschnitt 1 aus der Bernoulli-Gleichung ist als Geschwindigkeit in einem bestimmten Rohrabschnitt definiert.

V1=2[g]((P2γf)+(0.5(Vp22[g]))+Z2-Z1-P1γf)

Geschwindigkeitskopf für gleichmäßigen, nicht viskosen Fluss

Die Geschwindigkeitshöhe für eine stationäre, nicht viskose Strömung wird als Energiehöhe aufgrund der StrömungsGeschwindigkeit definiert.

Vh=V22[g]

Geschwindigkeitsverteilung in rauer turbulenter Strömung

Die Formel für die Geschwindigkeitsverteilung in rauer turbulenter Strömung ist als die Funktion definiert, die beschreibt, wie molekulare Geschwindigkeiten im Durchschnitt in einer rauen, turbulenten Strömung verteilt sind.

v=5.75vshearlog10(30yks)

Geschwindigkeit des beweglichen Bootes

Die Formel für die Geschwindigkeit eines fahrenden Bootes ist als Strömungsmesser vom Propellertyp definiert, der sich frei um eine vertikale Achse bewegen kann und in einem Boot mit einer bestimmten Geschwindigkeit gezogen wird.

vb=Vcos(θ)

Geschwindigkeit des sich bewegenden Bootes bei gegebener Breite zwischen zwei Vertikalen

Die Formel für die Geschwindigkeit des sich bewegenden Bootes bei gegebener Breite zwischen zwei Vertikalen ist definiert als die kombinierte Bewegung des Bootes relativ zum Wasser und die Bewegung des Wassers relativ zum Ufer.

vb=WΔt

Geschwindigkeitskonstante nach Titrationsverfahren für Reaktionen nullter Ordnung

Die Geschwindigkeitskonstante durch Titrationsmethode für die Reaktionsformel nullter Ordnung ist definiert als die Geschwindigkeitskonstante, die direkt proportional zur Volumendifferenz und umgekehrt proportional zum Zeitpunkt der Fertigstellung ist.

k=V0-Vtt

Geschwindigkeitskonstante für dasselbe Produkt durch Titrationsmethode für Reaktionen zweiter Ordnung

Die Ratenkonstante für dasselbe Produkt durch Titrationsverfahren für die Reaktionsformel zweiter Ordnung ist definiert als die Subtraktion des Kehrwerts des Anfangsvolumens und des Zeitintervalls vom Kehrwert des Volumens eines Reaktanten zum Zeitpunkt t und Zeitintervall.

Ksecond=(1Vttcompletion)-(1V0tcompletion)

Geschwindigkeit des Teilchens nach einer bestimmten Zeit

Die Formel zur PartikelGeschwindigkeit nach einer bestimmten Zeit ist definiert als Maß für die Geschwindigkeit eines Partikels zu einem bestimmten Zeitpunkt unter Berücksichtigung der AnfangsGeschwindigkeit, Beschleunigung und verstrichenen Zeit und bietet Aufschluss über die Bewegung des Partikels und seine sich im Laufe der Zeit ändernde Geschwindigkeit.

vl=u+almt

Geschwindigkeit im Abfluss bei gegebener Kanaldurchflusszeit

Die Formel für die Geschwindigkeit im Abfluss bei gegebener Kanalfließzeit wird als die Geschwindigkeit des durch den Abfluss fließenden Wassers definiert.

V=LTm/f

Geschwindigkeit des freien Stroms bei lokalem Reibungskoeffizienten

Die Formel für die freie StrömungsGeschwindigkeit bei gegebenem lokalen Reibungskoeffizienten ist definiert als die Geschwindigkeit einer Flüssigkeit, wenn diese weit entfernt von einer Begrenzung oder Wand ist und von der Anwesenheit der Wand unbeeinflusst bleibt. Sie ist ein entscheidender Parameter zum Verständnis des Verhaltens einer Flüssigkeitsströmung über einer flachen Platte.

u=2τwρCfx

Geschwindigkeit beim Laufen bei teilweise voller Entladung

Die Geschwindigkeit bei teilweiser Füllung eines Abwasserkanals wird als die FließGeschwindigkeit bei nicht vollständig gefülltem Abwasserkanal definiert und ist von der Tiefe und dem Gefälle abhängig.

Vs=qa

Geschwindigkeit beim Laufen bei voller Entladung

Die Geschwindigkeit bei vollem Durchfluss wird als die Geschwindigkeit definiert, mit der sich eine Flüssigkeit durch ein vollständig gefülltes Rohr oder einen Kanal bewegt, normalerweise bei maximaler Kapazität.

V=QA

Geschwindigkeit bei teilweise vollem Lauf bei proportionaler Entladung

Die Geschwindigkeit bei teilweiser Füllung und anteiliger Abflussmenge ist definiert als die FließGeschwindigkeit bei nicht vollständig gefülltem Abwasserkanal, beeinflusst durch Tiefe und Neigung.

Vs=PqVAa

Geschwindigkeit während des Volllaufs bei proportionaler Entladung

Die Geschwindigkeit bei vollem Betrieb und proportionaler Entladung wird als die FließGeschwindigkeit einer Flüssigkeit in einem Rohr definiert, wenn dieses vollständig gefüllt ist, beeinflusst durch die Neigung und Rauheit des Rohrs.

V=VsaPqA

Geschwindigkeit für organische Materie einstellen

Die AbsetzGeschwindigkeit für organische Materie (auch als "SedimentationsGeschwindigkeit" bezeichnet) ist definiert als die EndGeschwindigkeit eines Partikels in stiller Flüssigkeit.

vs(o)=0.12Dp((3T)+70)

Geschwindigkeit für auf die Platte ausgeübte Kraft in Strömungsrichtung des Strahls

Die Geschwindigkeit der auf die Platte in Strömungsrichtung des Strahls ausgeübten Kraft ist die Änderungsrate ihrer Position in Bezug auf einen Bezugsrahmen und eine Funktion der Zeit.

vjet=Fjet[g]γfAJet(1+cos(θt))

Geschwindigkeit der vom Strahl auf die Leitschaufel ausgeübten Kraft in x-Richtung

Die KraftGeschwindigkeit, die vom Strahl auf die Leitschaufel in x-Richtung ausgeübt wird, ist die Änderungsrate ihrer Position in Bezug auf einen Bezugssystem und ist eine Funktion der Zeit.

vjet=FxgγfAJet(cos(θ)+cos(∠D))

Geschwindigkeit gegebene Kraft, die von Jet auf Vane in Y-Richtung ausgeübt wird

Die Geschwindigkeit bei gegebener Kraft, die der Strahl auf die Schaufel in Y-Richtung ausübt, ist definiert als die Änderungsrate seiner Position in Bezug auf einen Bezugsrahmen und ist eine Funktion der Zeit.

vjet=FygγfAJet((sin(θ))-sin(∠D))

Wie finde ich Formeln?

Hier sind ein paar Tipps für bessere Suchergebnisse.
Seien Sie konkret: Je konkreter Ihre Suchanfrage, desto besser sind Ihre Ergebnisse.
Verwenden Sie mehrere Schlüsselwörter: Kombinieren Sie mehrere Schlüsselwörter, um die Ergebnisse einzugrenzen.
Experimentieren Sie mit Synonymen: Unterschiedliche Begriffe können zu unterschiedlichen Ergebnissen führen.
Platzhaltersuche: Verwenden Sie den Operator * (Sternchen). BEACHTEN SIE, dass dieser Operator nur am Ende eines Wortes funktioniert. Beispiel: Bio*, Bereich* usw.

Alternativ können Sie durch die Unterkategorien innerhalb von navigieren, um die Formeln einzugrenzen, die Sie interessieren.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!