Suche Formeln

Bitte geben Sie mindestens 3 Zeichen ein, um mit der Suche nach -Formeln zu beginnen.

Wählen Sie Filter

Grenzen Sie Ihre Suchergebnisse mithilfe dieser Filter ein.

50 Passende Formeln gefunden!

Geschwindigkeitsverhältnis

Die Formel für das Geschwindigkeitsverhältnis ist definiert als das Verhältnis der Drehzahl des angetriebenen Zahnrads zu der des treibenden Zahnrads in einem mechanischen System. Sie hilft dabei, die Effizienz und Drehmomentübertragung des Getriebes zu bestimmen.

i=TdTdr

Geschwindigkeit des Serien-DC-Motors

Die Formel für die Geschwindigkeit des Serien-DC-Motors ist definiert als die Geschwindigkeit, mit der sich der Rotor dreht, und die SynchronGeschwindigkeit ist die Geschwindigkeit des Statormagnetfelds im Dreiphasen-Induktionsmotor.

N=Vs-Ia(Ra+Rsh)KfΦ

Geschwindigkeit an mittlerer Position

Die Formel für die Geschwindigkeit an der mittleren Position ist definiert als Maß für die Geschwindigkeit eines Objekts an seiner mittleren Position während freier Längsschwingungen und bietet Einblick in das Schwingungsverhalten des Objekts und seine Eigenfrequenz.

v=(ωfx)cos(ωfttotal)

Geschwindigkeitskonstante der Reaktion erster Ordnung unter Verwendung des Logarithmus zur Basis 10

Die Geschwindigkeitskonstante der Reaktion erster Ordnung unter Verwendung des Logarithmus zur Basis-10-Formel ist definiert als die ReaktionsGeschwindigkeit pro Konzentration des Reaktanten. Die Formel ist der Logarithmus zur Basis 10 der Anfangskonzentration pro Konzentration zum Zeitpunkt t, das Ganze wird durch die Zeit dividiert, die für die Vervollständigung der Reaktion erforderlich ist.

kfirst=2.303tcompletionlog10(A0Ct)

Geschwindigkeitskonstante zur Halbzeit für die Reaktion erster Ordnung

Die Geschwindigkeitskonstante zur Halbzeit für die Reaktionsformel erster Ordnung ist definiert als die ReaktionsGeschwindigkeit pro Konzentration des Reaktanten. Die Formel ist ein natürlicher Logarithmus von 2 geteilt durch die Halbwertszeit der Reaktion.

kfirst=0.693t1/2

Geschwindigkeitskonstante für dasselbe Produkt für eine Reaktion zweiter Ordnung

Die Geschwindigkeitskonstante für dasselbe Produkt für die Reaktionsformel zweiter Ordnung ist definiert als die durchschnittliche ReaktionsGeschwindigkeit pro Konzentration des Reaktanten mit einer auf 2 erhöhten Leistung.

Ksecond=1axttcompletion-1atcompletion

Geschwindigkeitskonstante für verschiedene Produkte für die Reaktion zweiter Ordnung

Die Geschwindigkeitskonstante für verschiedene Produkte für die Reaktionsformel zweiter Ordnung ist definiert als die durchschnittliche ReaktionsGeschwindigkeit pro Konzentration der beiden verschiedenen Reaktanten, deren Leistung jeweils auf 1 erhöht ist.

Kfirst=2.303tcompletion(CAO-CBO)log10CBO(ax)CAO(bx)

Geschwindigkeitskonstante unter konstantem Druck und konstanter Temperatur für eine Reaktion nullter Ordnung

Die Geschwindigkeitskonstante unter konstantem Druck und konstanter Temperatur für die Reaktionsformel nullter Ordnung ist definiert als Fortschritt der Gasreaktion, die durch Messen des Gesamtdrucks bei einem festen Volumen und einer festen Temperatur überwacht werden kann. Da die Geschwindigkeitskonstante für eine Reaktion nullter Ordnung gilt, sollte die Reihenfolge der Reaktion (n) durch Null ersetzt werden.

k=(2.303t)log10(P0(n-1)(nP0)-Pt)

Geschwindigkeitskonstante nach Titrationsverfahren für Reaktionen erster Ordnung

Die Geschwindigkeitskonstante durch das Titrationsverfahren für die Formel des Reaktionsverfahrens erster Ordnung ist definiert als die ReaktionsGeschwindigkeit geteilt durch die Konzentration des Reaktanten, der auf die Potenz eins erhöht ist. Die Geschwindigkeitskonstante nach dem Titrationsverfahren ist direkt proportional zum Logarithmus des Anfangsvolumens des Reaktanten pro Volumen eines Reaktanten zum Zeitpunkt t.

kfirst=(2.303tcompletion)log10(V0Vt)

Geschwindigkeit für eine gegebene Wenderate

Die Geschwindigkeit bei einer gegebenen Wenderate ist ein Maß für die Geschwindigkeit eines Flugzeugs während einer Kurve und wird auf Grundlage des Lastfaktors, der Erdbeschleunigung und der Wenderate berechnet.

V=[g]n2-1ω

Geschwindigkeit des Körpers in einfacher harmonischer Bewegung

Die Formel für die Geschwindigkeit eines Körpers bei einer einfachen harmonischen Bewegung wird als die MaximalGeschwindigkeit eines Objekts definiert, während es um seine Gleichgewichtsposition schwingt. Sie liefert ein Maß für die kinetische Energie des Objekts während seiner Schwingungsbewegung.

V=A'ωcos(ωtsec)

Geschwindigkeit für gegebenen Pull-Up-Manöverradius

Die Geschwindigkeit für einen bestimmten Pull-Up-Manöverradius eines Flugzeugs hängt vom Manöverradius und der Auslastung des Flugzeugs ab. Diese Formel bietet eine vereinfachte Annäherung an die Geschwindigkeit, die erforderlich ist, um während des Pull-Up-Manövers die gewünschte SinkGeschwindigkeit aufrechtzuerhalten.

Vpull-up=R[g](n-1)

Geschwindigkeit für eine gegebene Pull-up-Manöverrate

Die Geschwindigkeit für eine bestimmte Pull-up-Manöverrate ist die Geschwindigkeit, die ein Flugzeug benötigt, um während eines Pull-up-Manövers eine bestimmte Steigrate beizubehalten. Diese Formel berechnet die Geschwindigkeit basierend auf der Erdbeschleunigung, dem Pull-up-Lastfaktor und der Wenderate. Das Verständnis und die Anwendung dieser Formel ist für Piloten und Ingenieure unerlässlich, um sichere und effektive Pull-up-Manöver zu gewährleisten.

Vpull-up=[g]npull-up-1ω

Geschwindigkeit des Windkanal-Testabschnitts

Die Geschwindigkeitsformel des Windkanal-Testabschnitts basiert auf dem Bernoulli-Prinzip und ist eine Funktion der Druckdifferenz zwischen Reservoir und Testabschnitt.

V2=2(P1-P2)ρ0(1-1Alift2)

Geschwindigkeitskoeffizient gegebener Entladungskoeffizient

Der Geschwindigkeitskoeffizient wird in der Formel für den Abflusskoeffizienten als Reduktionsfaktor für die theoretische Geschwindigkeit durch die Öffnung definiert.

Cv=CdCc

Geschwindigkeitspotential für gleichmäßige inkompressible Strömung

Die Geschwindigkeitspotentialfunktion für gleichmäßige inkompressible Strömung (ϕ) steigt linear mit der Entfernung in Strömungsrichtung (x) an, was die gleichmäßige Natur der Strömung widerspiegelt. Folglich gibt es keine Variation des Geschwindigkeitspotentials in Bezug auf die y-Koordinate, was die Homogenität der Strömung in y-Richtung veranschaulicht.

ϕ=Vx

Geschwindigkeit am Punkt des Tragflächenprofils für gegebenen Druckkoeffizienten und freie StrömungsGeschwindigkeit

Die Geschwindigkeit an einem Punkt auf dem Schaufelblatt für einen gegebenen Druckkoeffizienten und eine Formel für die Geschwindigkeit im freien Strom ist das Produkt aus der Geschwindigkeit im freien Strom und der Quadratwurzel aus eins minus dem Druckkoeffizienten in inkompressibler Strömung.

V=u2(1-Cp)

Geschwindigkeitspotential für gleichmäßige inkompressible Strömung in Polarkoordinaten

Das Geschwindigkeitspotential für gleichmäßige inkompressible Strömung in Polarkoordinaten besagt, dass die Funktion direkt proportional zum radialen Abstand vom Ursprung (r) und dem Kosinus der Winkelkoordinate (θ) ist, skaliert durch die StrömungsGeschwindigkeit (U). Dies bedeutet, dass der Wert der Geschwindigkeitspotentialfunktion linear mit dem radialen Abstand vom Ursprung zunimmt und mit dem Kosinus des Winkels variiert, was die gleichmäßige Natur der Strömung und ihre Abhängigkeit von der Winkelrichtung widerspiegelt.

ϕ=Vrcos(θ)

Geschwindigkeitspotential für den 2D-Quellenfluss

Die Formel für das Geschwindigkeitspotenzial für den zweidimensionalen Quellenfluss besagt, dass die Funktion direkt proportional zum natürlichen Logarithmus des radialen Abstands vom Quellpunkt und der Stärke der Quelle ist. Diese logarithmische Beziehung spiegelt die Eigenschaft des Potenzialflusses wider, bei dem die Geschwindigkeit mit zunehmendem Abstand von der Quelle logarithmisch abnimmt.

ϕ=Λ2πln(r)

Geschwindigkeitskonstante für die Reaktion nullter Ordnung aus der Arrhenius-Gleichung

Die Geschwindigkeitskonstante für eine Reaktion nullter Ordnung aus der Arrhenius-Gleichungsformel ist definiert als das Produkt des Frequenzfaktors mit einer empirischen Form der negativen Aktivierungsenergie pro universeller Gaskonstante multipliziert mit der Temperatur, und die Geschwindigkeitskonstante der Arrhenius-Gleichung ist umgekehrt proportional zur Reaktionstemperatur.

k0=Afactor-zeroorderexp(-Ea1[R]TZeroOrder)

Geschwindigkeitskonstante für die Reaktion erster Ordnung aus der Arrhenius-Gleichung

Die Geschwindigkeitskonstante für die Reaktion erster Ordnung aus der Arrhenius-Gleichungsformel ist definiert als der Frequenzfaktor multipliziert mit dem Exponential der negativen Aktivierungsenergie pro universeller Gaskonstante und Temperatur. Die Geschwindigkeitskonstante der Reaktion erster Ordnung ist umgekehrt proportional zur Reaktionstemperatur. Mit steigender Reaktionstemperatur nimmt die Geschwindigkeitskonstante ab.

kfirst=Afactor-firstorderexp(-Ea1[R]TFirstOrder)

Geschwindigkeitskonstante für die Reaktion zweiter Ordnung aus der Arrhenius-Gleichung

Die Geschwindigkeitskonstante für die Reaktion zweiter Ordnung aus der Arrhenius-Gleichungsformel ist definiert als Frequenzfaktor multipliziert mit der Exponentialform der negativen Aktivierungsenergie pro universeller Gaskonstante und Temperatur. Die Geschwindigkeitskonstante der Reaktion zweiter Ordnung ist umgekehrt proportional zur Reaktionstemperatur.

Ksecond=Afactor-secondorderexp(-Ea1[R]TSecondOrder)

Geschwindigkeit des Projektils bei gegebener Höhe über dem Projektionspunkt

Die Formel für die Geschwindigkeit eines Projektils in einer bestimmten Höhe über dem Projektilpunkt ist definiert als Maß für die Geschwindigkeit eines Projektils in einer bestimmten Höhe über dem Projektilpunkt, wobei die AnfangsGeschwindigkeit, die Erdbeschleunigung und die Höhe über dem Projektilpunkt berücksichtigt werden.

vp=vpm2-2[g]h

Geschwindigkeit im Abfluss bei gegebener Kanaldurchflusszeit

Die Formel für die Geschwindigkeit im Abfluss bei gegebener Kanalfließzeit wird als die Geschwindigkeit des durch den Abfluss fließenden Wassers definiert.

V=LTm/f

Geschwindigkeit des freien Stroms bei lokalem Reibungskoeffizienten

Die Formel für die freie StrömungsGeschwindigkeit bei gegebenem lokalen Reibungskoeffizienten ist definiert als die Geschwindigkeit einer Flüssigkeit, wenn diese weit entfernt von einer Begrenzung oder Wand ist und von der Anwesenheit der Wand unbeeinflusst bleibt. Sie ist ein entscheidender Parameter zum Verständnis des Verhaltens einer Flüssigkeitsströmung über einer flachen Platte.

u=2τwρCfx

Geschwindigkeitsgradient gegebener piezometrischer Gradient mit Scherspannung

Der Geschwindigkeitsgradient bei einem gegebenen piezometrischen Gradienten mit Scherspannung ist als Änderung der Geschwindigkeit in Bezug auf den radialen Abstand definiert.

VG=(γfμ)dh/dx0.5dradial

Geschwindigkeitsverteilungsprofil

Das Geschwindigkeitsverteilungsprofil ist definiert als die Geschwindigkeit relativ zur Platte in Strömungsrichtung im Strom.

v=-(12μ)dp|dr(wR-(R2))

Geschwindigkeitskonstante bei gegebener Desoxygenierungskonstante

Die Geschwindigkeitskonstante wird in der Formel zur Desoxygenierungskonstanten als Oxidationsrate von organischer Materie definiert und hängt von der Art der darin vorhandenen organischen Materie und der Temperatur ab.

K=2.3KD

Geschwindigkeitsgradienten

Die Formel für Geschwindigkeitsgradienten wird als Änderung der Geschwindigkeit im Verhältnis zur Entfernungsänderung entlang der gemessenen Richtung definiert.

VG=πr2Ω30(r2-r1)

Geschwindigkeit des äußeren Zylinders bei gegebenem Geschwindigkeitsgradienten

Die Geschwindigkeit des äußeren Zylinders wird mit der Geschwindigkeitsgradientenformel als die Geschwindigkeit definiert, mit der sich der Zylinder in Umdrehungen pro Minute dreht.

Ω=VGπr230(r2-r1)

Geschwindigkeit des äußeren Zylinders bei gegebener dynamischer Viskosität der Flüssigkeit

Die Geschwindigkeit des Außenzylinders wird anhand der Formel zur dynamischen Viskosität einer Flüssigkeit als Geschwindigkeit des Zylinders in Umdrehungen pro Minute definiert.

Ω=15T(r2-r1)ππr1r1r2hμ

Geschwindigkeit des Außenzylinders bei gegebenem Drehmoment, das auf den Außenzylinder ausgeübt wird

Die Geschwindigkeit des Außenzylinders bei auf den Außenzylinder ausgeübtem Drehmoment wird gemäß der Formel als das auf ihn ausgeübte Drehmoment definiert, wobei die Beziehung zwischen Drehmoment, Rotationsträgheit und Winkelbeschleunigung gilt.

Ω=Toππμr1460C

Geschwindigkeit des äußeren Zylinders bei gegebenem Gesamtdrehmoment

Die Geschwindigkeit des äußeren Zylinders wird bei gegebener Gesamtdrehmomentformel als die Geschwindigkeit des Zylinders in Umdrehungen pro Minute definiert.

Ω=ΤTorqueVcμ

Geschwindigkeit des Strahls bei dynamischem Schub, der vom Strahl auf die Platte ausgeübt wird

Die Geschwindigkeit des Strahls bei dynamischem Schub, der durch den Strahl auf die Platte ausgeübt wird, ist die Änderungsrate seiner Position in Bezug auf einen Bezugssystem und ist eine Funktion der Zeit.

v=-(mfGγfAJet-Vabsolute)

Geschwindigkeit am Einlass bei gegebenem Drehmoment durch die Flüssigkeit

Die Geschwindigkeit am Einlass eines gegebenen Drehmoments durch Fluid ist die Änderungsrate seiner Position in Bezug auf einen Referenzrahmen und ist eine Funktion der Zeit am Einlass eines beliebigen Objekts.

vf=(τGwf)+(vr)rO

Geschwindigkeit am Auslass bei gegebenem Drehmoment durch Flüssigkeit

Die Geschwindigkeit am Auslass bei gegebenem Drehmoment durch Flüssigkeit ist die Änderungsrate ihrer Position in Bezug auf einen Bezugsrahmen und eine Funktion der Zeit am Auslass eines beliebigen Objekts.

v=(τGwf)-(vfr)rO

Geschwindigkeit am Einlass bei gegebener am Rad geleisteter Arbeit

Die Geschwindigkeit am Einlass bei gegebener am Rad geleisteter Arbeit ist die Änderungsrate seiner Position in Bezug auf einen Referenzrahmen und ist eine Funktion der Zeit am Einlass eines beliebigen Objekts.

vf=(wGwfω)-vrOr

Geschwindigkeit am Auslass bei geleisteter Arbeit am Rad

Die Geschwindigkeit am Ausgang bei gegebener am Rad geleisteter Arbeit ist die Änderungsrate seiner Position in Bezug auf einen Bezugsrahmen und eine Funktion der Zeit am Ausgang eines beliebigen Objekts.

v=(wGwfω)-(vfr)rO

Geschwindigkeit in der Tiefsee bei gegebener Wellenkraft in der Tiefsee

Die Formel zur Berechnung der TiefseeGeschwindigkeit anhand der Wellenkraft in der Tiefsee wird als die Geschwindigkeit definiert, mit der sich eine einzelne Welle fortbewegt oder „ausbreitet“.

Co=Pd0.5E

Geschwindigkeit an der Oberfläche bei gegebener Scherspannung an der Wasseroberfläche

Die Formel für die Geschwindigkeit an der Oberfläche bei gegebener Scherspannung an der Wasseroberfläche ist definiert als die Bestimmung der Geschwindigkeit des Wassers an der Oberfläche eines Gewässers basierend auf der auf die Wasseroberfläche ausgeübten Scherspannung. Scherspannung an der Wasseroberfläche wird typischerweise durch Wind oder andere Kräfte erzeugt, die tangential auf die Oberfläche wirken. Es handelt sich um einen Geschwindigkeitsparameter an der Oberfläche, der das Strömungsprofil beeinflusst.

Vs=πτ2DFρwaterΩEsin(L)

Geschwindigkeit des Fahrzeugs bei gegebenem Bremsweg

Die Geschwindigkeit des Fahrzeugs bei gegebener Bremswegformel ist definiert als die Geschwindigkeit, mit der sich das Fahrzeug auf der Straßenoberfläche bewegt.

Vb=(BD(2[g]f))0.5

Geschwindigkeitskonstante der irreversiblen Reaktion zweiter Ordnung

Die Formel für die Geschwindigkeitskonstante der irreversiblen Reaktion zweiter Ordnung ist definiert als die Proportionalitätskonstante in der Gleichung, die die Beziehung zwischen der Geschwindigkeit einer chemischen Reaktion und den Konzentrationen der reagierenden Substanzen ausdrückt.

k2=rCACB

Geschwindigkeitskonstante für Reaktion A bis B für einen Satz von drei Parallelreaktionen

Die Formel für die Geschwindigkeitskonstante für die Reaktionen A bis B für den Satz aus drei parallelen Reaktionen ist definiert als die Beziehung zwischen der molaren Konzentration der Reaktanten und der Geschwindigkeit der stattfindenden chemischen Reaktion.

k1=1tln(A0RA)-(k2+k3)

Geschwindigkeitskonstante für Reaktion A bis C für Satz von drei Parallelreaktionen

Die Formel für die Geschwindigkeitskonstante für die Reaktionen A bis C für den Satz aus drei parallelen Reaktionen ist definiert als die Beziehung zwischen der molaren Konzentration der Reaktanten und der Geschwindigkeit der stattfindenden chemischen Reaktion.

k2=1tln(A0RA)-(k1+k3)

Geschwindigkeitskonstante für Reaktion A bis D für Satz von drei Parallelreaktionen

Die Formel für die Geschwindigkeitskonstante für die Reaktionen A bis D für den Satz aus drei parallelen Reaktionen ist definiert als die Beziehung zwischen der molaren Konzentration der Reaktanten und der Geschwindigkeit der stattfindenden chemischen Reaktion.

k3=1tln(A0RA)-(k1+k2)

Geschwindigkeitskonstante basierend auf dem Gewicht des Katalysators in Batch-Feststoffen und Batch-Flüssigkeiten

Die Formel „Geschwindigkeitskonstante basierend auf dem Gewicht des Katalysators in Batch-Feststoffen und Batch-Flüssigkeiten“ ist definiert als die Geschwindigkeitskonstante basierend auf dem Gewicht des Katalysators, einem Parameter, der zur Beschreibung der Kinetik einer chemischen Reaktion, insbesondere im Zusammenhang mit der Katalyse, verwendet wird. Sie wird durch das Verhältnis der ReaktionsGeschwindigkeit zum Gewicht des vorhandenen Katalysators definiert.

k'=(VkdWd)exp(ln(ln(CACA∞))+kdt)

Geschwindigkeitskonstante basierend auf dem Gewicht des Katalysators in den Chargenfeststoffen und dem gemischten konstanten Flüssigkeitsfluss

Die Formel für die Geschwindigkeitskonstante basierend auf dem Gewicht des Katalysators in den Chargenfeststoffen und dem gemischten konstanten Flüssigkeitsfluss ist als Geschwindigkeitskonstante definiert, die berechnet wird, wenn die Chargenfeststoffe und der gemischte konstante Flüssigkeitsfluss in den Reaktoren bei der Deaktivierung des Katalysators berücksichtigt werden.

k'=exp(ln((CA0CA)-1)+kd,MFt)𝛕 '

Geschwindigkeitskonstante basierend auf dem Gewicht des Katalysators in den Chargenfeststoffen und dem gemischten, sich ändernden Flüssigkeitsfluss

Die Formel für die Geschwindigkeitskonstante basierend auf dem Gewicht des Katalysators in den Chargenfeststoffen und dem gemischten, sich ändernden Flüssigkeitsfluss ist als Geschwindigkeitskonstante definiert, die berechnet wird, wenn die Chargenfeststoffe und der gemischte Flüssigkeitsfluss in den Reaktoren bei der Deaktivierung des Katalysators berücksichtigt werden.

k'=CA0-CACAexp(ln(𝛕 ')-kd,MFt)

Geschwindigkeitsverhältnis des Verbundgetriebes

Das Übersetzungsverhältnis eines zusammengesetzten Getriebes ist das Produkt der Übersetzungsverhältnisse jedes Zahnradpaars im Getriebe. Es wird durch Multiplikation der einzelnen Übersetzungsverhältnisse berechnet, wobei jedes Übersetzungsverhältnis das Verhältnis der Anzahl der Zähne des Antriebsrads zur Anzahl der Zähne des angetriebenen Rads ist.

i=PdP'd

Geschwindigkeit des Elektrons im Orbit bei gegebener WinkelGeschwindigkeit

Die Geschwindigkeit des Elektrons in der Umlaufbahn bei gegebener WinkelGeschwindigkeit ist eine Vektorgröße (sie hat sowohl Größe als auch Richtung) und ist die Zeitrate der Positionsänderung (eines Teilchens).

ve_AV=ωrorbit

Wie finde ich Formeln?

Hier sind ein paar Tipps für bessere Suchergebnisse.
Seien Sie konkret: Je konkreter Ihre Suchanfrage, desto besser sind Ihre Ergebnisse.
Verwenden Sie mehrere Schlüsselwörter: Kombinieren Sie mehrere Schlüsselwörter, um die Ergebnisse einzugrenzen.
Experimentieren Sie mit Synonymen: Unterschiedliche Begriffe können zu unterschiedlichen Ergebnissen führen.
Platzhaltersuche: Verwenden Sie den Operator * (Sternchen). BEACHTEN SIE, dass dieser Operator nur am Ende eines Wortes funktioniert. Beispiel: Bio*, Bereich* usw.

Alternativ können Sie durch die Unterkategorien innerhalb von navigieren, um die Formeln einzugrenzen, die Sie interessieren.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!