Suche Formeln

Bitte geben Sie mindestens 3 Zeichen ein, um mit der Suche nach -Formeln zu beginnen.

Wählen Sie Filter

Grenzen Sie Ihre Suchergebnisse mithilfe dieser Filter ein.

50 Passende Formeln gefunden!

Geschwindigkeit von Fluidpartikeln

Die Geschwindigkeit von Fluidpartikeln in der Fluiddynamik-Terminologie wird verwendet, um die Bewegung eines Kontinuums mathematisch zu beschreiben.

vf=dta

Geschwindigkeit bei gegebenem Pulldown-Manöverradius

Die Geschwindigkeit bei Pull-Down-Manöverradius ist die Geschwindigkeit, die ein Flugzeug benötigt, um während eines Pull-Down-Manövers einen bestimmten Wenderadius beizubehalten. Diese Formel berechnet die Geschwindigkeit basierend auf dem Wenderadius, der Erdbeschleunigung und dem Lastfaktor. Das Verständnis und die Anwendung dieser Formel ist für Piloten und Ingenieure von entscheidender Bedeutung, um sichere und kontrollierte Pull-Down-Manöver zu gewährleisten.

Vpull-down=R[g](n+1)

Geschwindigkeit für gegebene Pull-Down-Manöverrate

Die Geschwindigkeit für eine bestimmte Pull-Down-Manöverrate hängt vom Lastfaktor und der WendeGeschwindigkeit des Flugzeugs ab. Diese Formel bietet eine vereinfachte Annäherung an die Geschwindigkeit, die erforderlich ist, um die gewünschte Sinkrate während des Pull-Down-Manövers aufrechtzuerhalten.

Vpull-down=[g]1+nωpull-down

Geschwindigkeit des Gasmoleküls bei gegebener Kraft

Die Geschwindigkeit des Gasmoleküls gegebene Kraftformel ist definiert als die Quadratwurzel des Produkts der Länge des rechteckigen Kastens und der Kraft pro Masse des Teilchens.

uF=FLm

Geschwindigkeit des Gasmoleküls in 1D bei gegebenem Druck

Die Geschwindigkeit des Gasmoleküls in der 1D gegebenen Druckformel ist definiert als unter der Wurzel des Verhältnisses des Gasdrucks multipliziert mit dem Volumen mit der Masse des Partikels.

up=PgasVboxm

Geschwindigkeit des Körpers bei gegebenem Impuls

Die Formel für die Geschwindigkeit eines Körpers bei gegebenem Impuls ist definiert als Maß für die Geschwindigkeit eines Objekts in eine bestimmte Richtung. Sie wird berechnet, indem der Impuls des Objekts durch seine Masse geteilt wird. Sie liefert ein grundlegendes Konzept zum Verständnis der Bewegung eines Objekts und ihrer Beziehung zur Kraft.

v=pmo

Geschwindigkeit der Impulsänderung bei gegebener Beschleunigung und Masse

Die Formel zur Änderungsrate des Impulses bei gegebener Beschleunigung und Masse ist definiert als ein Maß für die Rate, mit der sich der Impuls eines Objekts ändert, wenn auf es eine externe Kraft einwirkt, wobei die Masse des Objekts und seine Beschleunigung die Hauptfaktoren sind, die diese Änderung beeinflussen.

rm=moa

Geschwindigkeit des Projektils des Mach-Kegels im komprimierbaren Flüssigkeitsstrom

Die Geschwindigkeit des Projektils eines Mach-Kegels in einer kompressiblen Flüssigkeitsströmung beschreibt die Geschwindigkeit, mit der sich das Projektil bewegt, wenn es die SchallGeschwindigkeit im umgebenden Medium erreicht oder überschreitet. Das Verständnis dieser Geschwindigkeit ist in der Aerodynamik und Ballistik von entscheidender Bedeutung, da sie den Beginn von Stoßwellen und die aerodynamischen Herausforderungen anzeigt, die mit Überschall- und Hyperschallflügen verbunden sind.

V=Csin(μ)

Geschwindigkeit der Schallwelle unter Berücksichtigung des Mach-Winkels in einem komprimierbaren Flüssigkeitsstrom

Die Geschwindigkeit von Schallwellen unter Berücksichtigung des Mach-Winkels bei kompressibler Fluidströmung ist wichtig für das Verständnis, wie sich Schall durch ein Medium ausbreitet, wenn die FluidGeschwindigkeit die SchallGeschwindigkeit erreicht oder überschreitet. Diese Beziehung hilft bei der Vorhersage des Verhaltens von Stoßwellen und der Schallübertragung in verschiedenen Umgebungen und ist von wesentlicher Bedeutung in der Luft- und Raumfahrttechnik, der Akustik und der Untersuchung der HochGeschwindigkeitsfluiddynamik.

C=Vsin(μ)

Geschwindigkeit durch Sieb bei Druckverlust durch Sieb

Die Geschwindigkeit durch das Sieb, gegeben durch den Druckverlust durch das Sieb, ist die Änderungsrate seiner Position in Bezug auf einen Referenzrahmen und ist eine Funktion der Zeit.

v=(hL0.0729)+u2

Geschwindigkeit über Sieb bei Druckverlust durch Sieb

Die Geschwindigkeit über dem Bildschirm, gegeben durch den Druckverlust durch den Bildschirm, ist die Änderungsrate seiner Position in Bezug auf einen Referenzrahmen und ist eine Funktion der Zeit.

u=v2-(hL0.0729)

Geschwindigkeit bei gegebener Länge

Die Geschwindigkeit bei gegebener Länge ist als beizubehaltende FahrzeugGeschwindigkeit definiert, wenn eine Beschleunigungsrate und eine Änderung des Gradienten der vertikalen Kurve bereitgestellt werden.

V=Lc100fg1-(g2)

Geschwindigkeit des Strahls bei normalem Schub parallel zur Richtung des Strahls

Die Geschwindigkeit des Strahls bei normalem Schub parallel zur Richtung des Strahls ist die Änderungsrate seiner Position in Bezug auf einen Bezugsrahmen und eine Funktion der Zeit.

v=-(FtGγfAJet(∠D(180π))2-Vabsolute)

Geschwindigkeit des Strahls bei normalem Schub Normal zur Richtung des Strahls

Die Geschwindigkeit des Strahls bei normalem Schub normal zur Richtung des Strahls ist die Änderungsrate seiner Position in Bezug auf einen Bezugsrahmen und eine Funktion der Zeit.

v=-(FtGγfAJet(∠D(180π))cos(θ))+Vabsolute

Geschwindigkeit am Einlass bei gegebenem Drehmoment durch die Flüssigkeit

Die Geschwindigkeit am Einlass eines gegebenen Drehmoments durch Fluid ist die Änderungsrate seiner Position in Bezug auf einen Referenzrahmen und ist eine Funktion der Zeit am Einlass eines beliebigen Objekts.

vf=(τGwf)+(vr)rO

Geschwindigkeit am Auslass bei gegebenem Drehmoment durch Flüssigkeit

Die Geschwindigkeit am Auslass bei gegebenem Drehmoment durch Flüssigkeit ist die Änderungsrate ihrer Position in Bezug auf einen Bezugsrahmen und eine Funktion der Zeit am Auslass eines beliebigen Objekts.

v=(τGwf)-(vfr)rO

Geschwindigkeit am Einlass bei gegebener am Rad geleisteter Arbeit

Die Geschwindigkeit am Einlass bei gegebener am Rad geleisteter Arbeit ist die Änderungsrate seiner Position in Bezug auf einen Referenzrahmen und ist eine Funktion der Zeit am Einlass eines beliebigen Objekts.

vf=(wGwfω)-vrOr

Geschwindigkeit am Auslass bei geleisteter Arbeit am Rad

Die Geschwindigkeit am Ausgang bei gegebener am Rad geleisteter Arbeit ist die Änderungsrate seiner Position in Bezug auf einen Bezugsrahmen und eine Funktion der Zeit am Ausgang eines beliebigen Objekts.

v=(wGwfω)-(vfr)rO

Geschwindigkeit des Einlasskanals

Die Formel für die EinlasskanalGeschwindigkeit ist definiert als die Darstellung einer KanalGeschwindigkeit in erster Näherung über die Zeit.

c1=Vmsin(2πtT)

Geschwindigkeit an der Oberfläche bei gegebener Volumenstromrate pro Einheit der Meeresbreite

Die Formel „Geschwindigkeit an der Oberfläche“ bei gegebener Volumenstromrate pro Einheit der Meeresbreite ist definiert als der Geschwindigkeitsparameter an der Oberfläche, der das aktuelle Profil beeinflusst.

Vs=qxπ2DF

Geschwindigkeitskonstante für irreversible Reaktionen erster Ordnung

Die Geschwindigkeitskonstante für irreversible Reaktionen erster Ordnung ist definiert als die UmwandlungsGeschwindigkeit von Reaktanten in Produkte.

K1st order=-ln(1-XA)t

Geschwindigkeitskonstante für irreversible Reaktionen erster Ordnung unter Verwendung von log10

Die Geschwindigkeitskonstante für irreversible Reaktionen erster Ordnung unter Verwendung der log10-Formel ist definiert als die UmwandlungsGeschwindigkeit von Reaktanten in Produkte.

K1st order=-2.303log10(1-XA)t

Geschwindigkeitskonstante der irreversiblen Reaktion dritter Ordnung mit zwei gleichen Reaktantenkonzentrationen

Die Formel für die Geschwindigkeitskonstante der irreversiblen Reaktion dritter Ordnung mit zwei gleichen Reaktantenkonzentrationen ist als die Proportionalitätskonstante in der Gleichung definiert, die die Beziehung zwischen der Geschwindigkeit der chemischen Reaktion und den Konzentrationen der reagierenden Substanzen ausdrückt.

k3=rCA(CB)2

Geschwindigkeitskonstante für die Reaktion nullter Ordnung für Pfropfenströmung

Die Formel für die Geschwindigkeitskonstante für die Reaktion nullter Ordnung für Pfropfenströmung ist als die ReaktionsGeschwindigkeit für eine Reaktion nullter Ordnung definiert, bei der die fraktionelle Volumenänderung beträchtlich ist.

k0=XA-PFRCo pfr𝛕pfr

Geschwindigkeitskonstante für die Reaktion nullter Ordnung für gemischten Fluss

Die Formel für die Geschwindigkeitskonstante für die Reaktion nullter Ordnung für eine gemischte Strömung ist als die ReaktionsGeschwindigkeit für eine Reaktion nullter Ordnung definiert, bei der die fraktionelle Volumenänderung beträchtlich ist.

k0-MFR=XMFRCo-MFR𝛕MFR

Geschwindigkeitskonstante für die Reaktion erster Ordnung für Pfropfenströmung

Die Formel für die Geschwindigkeitskonstante für die Reaktion erster Ordnung für die Pfropfenströmung ist als die Proportionalitätskonstante definiert, die das Verhältnis zwischen der ReaktionsGeschwindigkeit und der ersten Potenz der Konzentration eines der Reaktanten angibt, wenn die fraktionelle Volumenänderung beträchtlich ist.

kplug flow=(1𝛕pfr)((1+εPFR)ln(11-XA-PFR)-(εPFRXA-PFR))

Geschwindigkeitskonstante für die Reaktion erster Ordnung für gemischte Strömung

Die Formel für die Geschwindigkeitskonstante für die Reaktion erster Ordnung bei gemischter Strömung ist als die Proportionalitätskonstante definiert, die die Beziehung zwischen der ReaktionsGeschwindigkeit und der ersten Potenz der Konzentration eines der Reaktanten für die gemischte Strömung angibt.

k1MFR=(1𝛕MFR)(XMFR(1+(εXMFR))1-XMFR)

Geschwindigkeitskonstante für die Reaktion nullter Ordnung unter Verwendung der Geschwindigkeitskonstante für die Reaktion erster Ordnung

Die Geschwindigkeitskonstante für die Reaktion nullter Ordnung unter Verwendung der Formel 'Geschwindigkeitskonstante für die Reaktion erster Ordnung' ist definiert als die Proportionalitätskonstante für die Reaktion nullter Ordnung, die auf die Reaktion erster Ordnung folgt, unter Verwendung der Geschwindigkeitskonstante für die Reaktion erster Ordnung.

k0,k1=(CA0Δt)(1-exp((-kI)Δt)-(CRCA0))

Geschwindigkeit des Strahls von der Düse

Die Formel für die StrahlGeschwindigkeit von der Düse ist als die Geschwindigkeit des Strahls aus der Düse definiert.

VJ=Cv2[g]H

Geschwindigkeitskonstante der Phase zwischen Blase und Wolke

Die Formel für die Geschwindigkeitskonstante der Phase zwischen Blase und Wolke wird als berechnete Geschwindigkeitskonstante definiert, wenn im Wirbelreaktor Blasenbildung auftritt.

Kbc=4.50(umfdb)+5.85(Df R)12([g])14db54

Geschwindigkeitskonstante der Phase zwischen Wolkenwache und Emulsion

Die Geschwindigkeitskonstante der Phase zwischen Wolkenwache und Emulsionsformel wird als berechnete Geschwindigkeitskonstante definiert, wenn Blasenbildung an der Grenzfläche im Wirbelschichtreaktor beim Kunii-Levenspiel-Modell auftritt.

Kce=6.77(εmfDf Rubrdb3)12

Geschwindigkeit für verzögerte Kohärenz bei der Photodissoziation

Die Geschwindigkeitsformel für die verzögerte Kohärenz bei der Photodissoziation ist definiert als die Größe der Änderung seiner Position über die Zeit oder die Größe der Änderung seiner Position pro Zeiteinheit während der verzögerten Kohärenz während der Photodissoziation des KrF-Moleküls.

vcov=2(Vcov_R0-Vcov_R)μcov

Geschwindigkeit im schnellen Wirbelbett

Die Formel „Geschwindigkeit im schnellen Wirbelschichtbett“ bezieht sich auf die AufwärtsGeschwindigkeit des Fluidisierungsgases, das zum Schweben und Fluidisieren fester Partikel im Bett verwendet wird. Schnelle Wirbelschichten zeichnen sich durch hohe GasGeschwindigkeiten aus, und diese Geschwindigkeiten liegen typischerweise deutlich über der minimalen FluidisierungsGeschwindigkeit.

uTB-FF=1.53(ρsolids-ρgas)[g]dpρgas

Geschwindigkeit in der pneumatischen Förderung

Die Geschwindigkeitsformel bei der pneumatischen Förderung ist definiert als die Geschwindigkeit, typischerweise ausgedrückt als Luft- oder GasGeschwindigkeit am Punkt der Injektion oder Einführung der Feststoffpartikel in das Fördersystem.

uFF-PC=((21.6((GSρgas)0.542)(d'p 0.315))[g]dp)11.542

Geschwindigkeitsverhältnis

Die Formel für das Geschwindigkeitsverhältnis ist definiert als das Verhältnis der Drehzahl des angetriebenen Zahnrads zu der des treibenden Zahnrads in einem mechanischen System. Sie hilft dabei, die Effizienz und Drehmomentübertragung des Getriebes zu bestimmen.

i=TdTdr

Geschwindigkeit des Elektrons im Orbit bei gegebener WinkelGeschwindigkeit

Die Geschwindigkeit des Elektrons in der Umlaufbahn bei gegebener WinkelGeschwindigkeit ist eine Vektorgröße (sie hat sowohl Größe als auch Richtung) und ist die Zeitrate der Positionsänderung (eines Teilchens).

ve_AV=ωrorbit

Geschwindigkeit des Elektrons bei gegebener Zeitdauer des Elektrons

Die Geschwindigkeit des Elektrons bei gegebener Zeitdauer des Elektrons ist eine Vektorgröße (sie hat sowohl Größe als auch Richtung) und ist die Zeitrate der Positionsänderung (eines Teilchens).

velectron=2πrorbitT

Geschwindigkeit eines kleinen Elements für Längsschwingung

Die Formel für die Geschwindigkeit kleiner Elemente bei Längsschwingungen ist als Maß für die Geschwindigkeit kleiner Elemente bei einer Längsschwingung definiert, die durch die Trägheit der Einschränkung beeinflusst wird, und wird zur Analyse der Schwingungen in verschiedenen mechanischen Systemen verwendet.

vs=xVlongitudinall

Geschwindigkeit von Teilchen 1 bei gegebener kinetischer Energie

Die Formel für die Geschwindigkeit von Teilchen 1 bei gegebener kinetischer Energie ist eine Methode zur Berechnung der Geschwindigkeit eines Teilchens, wenn wir die Geschwindigkeit anderer Teilchen und die gesamte kinetische Energie des Systems kennen. Da die gesamte kinetische Energie die Summe der individuellen kinetischen Energie beider Teilchen ist, bleibt uns nur eine Variable, und durch Lösen der Gleichung erhalten wir die erforderliche Geschwindigkeit.

v1=(2KE)-(m2v22)m1

Geschwindigkeit von Teilchen 2 bei gegebener kinetischer Energie

Die Formel für die Geschwindigkeit von Teilchen 2 bei gegebener kinetischer Energie ist eine Methode zur Berechnung der Geschwindigkeit eines Teilchens, wenn wir die Geschwindigkeit anderer Teilchen und die gesamte kinetische Energie des Systems kennen. Kinetische Energie ist die Arbeit, die erforderlich ist, um einen Körper einer bestimmten Masse aus dem Ruhezustand zu beschleunigen zu seiner angegebenen Geschwindigkeit. Da die kinetische Energie KE eine Summe der kinetischen Energie für jede Masse ist, haben wir nur eine Variable übrig gelassen und durch Lösen der Gleichung erhalten wir die erforderliche Geschwindigkeit.

v2=(2KE)-(m1v12)m2

Geschwindigkeitskoeffizient

Die Formel für den Geschwindigkeitskoeffizienten ist definiert als das Verhältnis zwischen der tatsächlichen Geschwindigkeit des Strahls an der Vena-Contracta und der theoretischen Geschwindigkeit am Strahl.

Cv=vaVth

Geschwindigkeitskoeffizient für horizontalen und vertikalen Abstand

Die Formel für den Geschwindigkeitskoeffizienten für die horizontale und vertikale Entfernung wird aus der experimentellen Bestimmung der hydraulischen Koeffizienten definiert.

Cv=R4VH

Geschwindigkeit der Walze bei der Verdichtungsproduktion durch Verdichtungsgeräte

Die Formel für die Geschwindigkeit der Walze bei gegebener Verdichtungsleistung durch Verdichtungsgeräte ist definiert als die Geschwindigkeit, mit der Verdichtungsgeräte wie Walzen während des Verdichtungsprozesses arbeiten. Effiziente Geschwindigkeiten tragen zu einer höheren Produktivität bei Bauprojekten bei, da die Geräte in kürzerer Zeit mehr Fläche abdecken können, ohne die Qualität zu beeinträchtigen.

S=yP16WLPRE

Geschwindigkeit für eine gegebene Wenderate

Die Geschwindigkeit bei einer gegebenen Wenderate ist ein Maß für die Geschwindigkeit eines Flugzeugs während einer Kurve und wird auf Grundlage des Lastfaktors, der Erdbeschleunigung und der Wenderate berechnet.

V=[g]n2-1ω

Geschwindigkeit des Körpers in einfacher harmonischer Bewegung

Die Formel für die Geschwindigkeit eines Körpers bei einer einfachen harmonischen Bewegung wird als die MaximalGeschwindigkeit eines Objekts definiert, während es um seine Gleichgewichtsposition schwingt. Sie liefert ein Maß für die kinetische Energie des Objekts während seiner Schwingungsbewegung.

V=A'ωcos(ωtsec)

Geschwindigkeit für gegebenen Pull-Up-Manöverradius

Die Geschwindigkeit für einen bestimmten Pull-Up-Manöverradius eines Flugzeugs hängt vom Manöverradius und der Auslastung des Flugzeugs ab. Diese Formel bietet eine vereinfachte Annäherung an die Geschwindigkeit, die erforderlich ist, um während des Pull-Up-Manövers die gewünschte SinkGeschwindigkeit aufrechtzuerhalten.

Vpull-up=R[g](n-1)

Geschwindigkeit für eine gegebene Pull-up-Manöverrate

Die Geschwindigkeit für eine bestimmte Pull-up-Manöverrate ist die Geschwindigkeit, die ein Flugzeug benötigt, um während eines Pull-up-Manövers eine bestimmte Steigrate beizubehalten. Diese Formel berechnet die Geschwindigkeit basierend auf der Erdbeschleunigung, dem Pull-up-Lastfaktor und der Wenderate. Das Verständnis und die Anwendung dieser Formel ist für Piloten und Ingenieure unerlässlich, um sichere und effektive Pull-up-Manöver zu gewährleisten.

Vpull-up=[g]npull-up-1ω

Geschwindigkeit des Windkanal-Testabschnitts

Die Geschwindigkeitsformel des Windkanal-Testabschnitts basiert auf dem Bernoulli-Prinzip und ist eine Funktion der Druckdifferenz zwischen Reservoir und Testabschnitt.

V2=2(P1-P2)ρ0(1-1Alift2)

Geschwindigkeit der Kugel bei gegebener Widerstandskraft auf der Kugeloberfläche

Die Geschwindigkeit der Kugel bei gegebener Widerstandskraft auf der Kugeloberfläche ist definiert als die Geschwindigkeit des Objekts in der fließenden Flüssigkeit.

Vmean=Fresistance3πμDS

Geschwindigkeit der Sphäre bei gegebener Widerstandskraft

Die Geschwindigkeit der Kugel bei gegebener Widerstandskraft ist definiert als die EndGeschwindigkeit, die das Objekt im Strömungsmedium erreicht.

Vmean=FDACDρ0.5

Wie finde ich Formeln?

Hier sind ein paar Tipps für bessere Suchergebnisse.
Seien Sie konkret: Je konkreter Ihre Suchanfrage, desto besser sind Ihre Ergebnisse.
Verwenden Sie mehrere Schlüsselwörter: Kombinieren Sie mehrere Schlüsselwörter, um die Ergebnisse einzugrenzen.
Experimentieren Sie mit Synonymen: Unterschiedliche Begriffe können zu unterschiedlichen Ergebnissen führen.
Platzhaltersuche: Verwenden Sie den Operator * (Sternchen). BEACHTEN SIE, dass dieser Operator nur am Ende eines Wortes funktioniert. Beispiel: Bio*, Bereich* usw.

Alternativ können Sie durch die Unterkategorien innerhalb von navigieren, um die Formeln einzugrenzen, die Sie interessieren.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!