Suche Formeln

Bitte geben Sie mindestens 3 Zeichen ein, um mit der Suche nach -Formeln zu beginnen.

Wählen Sie Filter

Grenzen Sie Ihre Suchergebnisse mithilfe dieser Filter ein.

50 Passende Formeln gefunden!

Geschwindigkeit des Elektrons in Bohrs Umlaufbahn

Die Geschwindigkeit des Elektrons in Bohrs Umlaufbahn ist eine Vektorgröße (sie hat sowohl Größe als auch Richtung) und ist die zeitliche Änderungsrate der Position (eines Teilchens).

ve_BO=[Charge-e]22[Permitivity-vacuum]nquantum[hP]

Geschwindigkeit eines kleinen Elements für Querschwingungen

Die Formel für die Geschwindigkeit kleiner Elemente bei Querschwingungen ist definiert als Maß für die Geschwindigkeit eines kleinen Elements bei einer Querschwingung, die durch die Trägheit der Einschränkung beeinflusst wird, und wird zur Analyse der Bewegung von Partikeln bei Längs- und Querschwingungen verwendet.

vs=(3lx2-x3)Vtraverse2l3

Geschwindigkeit für gegebene Wenderate bei hohem Lastfaktor

Die Geschwindigkeit für eine bestimmte Wenderate bei hohem Lastfaktor ist die Geschwindigkeit, die ein Flugzeug benötigt, um eine bestimmte Wenderate bei hohem Lastfaktor beizubehalten. Diese Formel berechnet die Geschwindigkeit basierend auf der Erdbeschleunigung, dem Lastfaktor und der Wenderate. Das Verständnis und die Anwendung dieser Formel ist für Piloten und Ingenieure unerlässlich, um die Manövrierfähigkeit von Flugzeugen zu optimieren.

v=[g]nω

Geschwindigkeit am Auslass für Druckverlust am Rohrausgang

Die Formel für die Geschwindigkeit am Auslass für den Druckverlust am Rohrausgang ist unter Berücksichtigung der Quadratwurzel des Druckverlusts am Rohrausgang und der Erdbeschleunigung bekannt.

v=ho2[g]

Geschwindigkeitsgradient bei Scherspannung

Die Formel für den Geschwindigkeitsgradienten bei gegebener Scherspannung ist als Geschwindigkeitsdifferenz zwischen benachbarten Fluidschichten definiert. Es ist das Verhältnis zwischen Geschwindigkeitsänderung und Abstandsänderung zwischen den Schichten.

dvdy=τμ

Geschwindigkeitsgradient

Die Geschwindigkeitsgradientenformel ist definiert als ein Verhältnis zwischen der Änderung der Geschwindigkeit zwischen benachbarten Schichten und der Änderung des Abstands zwischen aufeinanderfolgenden Punkten zwischen benachbarten Schichten.

dvdy=dvdy

Geschwindigkeit der Flüssigkeit bei gegebener Scherspannung

Die Formel für die Geschwindigkeit der Flüssigkeit bei gegebener Scherspannung ist als Funktion der Scherspannung, der dynamischen Viskosität und des Abstands zwischen den benachbarten Flüssigkeitsschichten definiert.

V=Yτμ

Geschwindigkeitspotential für 2D-Dublettströmung

Die Formel für das Geschwindigkeitspotenzial für eine 2D-Dublettströmung stellt das Geschwindigkeitspotenzial für eine 2D-Dublettströmung dar. Sie zeigt an, dass es umgekehrt proportional zur Entfernung vom Dublett ist und mit dem Winkel variiert.

ϕ=κ2πrcos(θ)

Geschwindigkeitspotential für 2D-Wirbelströmung

Die Formel für das Geschwindigkeitspotential für eine zweidimensionale Wirbelströmung ist als Funktion des Polarwinkels und der Stärke der Wirbelströmung definiert. Sie beschreibt die durch einen Wirbel verursachte Strömung, bei der das Geschwindigkeitspotential linear mit der Winkelkoordinate abnimmt.

ϕ=-(γ2π)θ

Geschwindigkeit planen

Die ZeitplanGeschwindigkeitsformel ist definiert als das Verhältnis der zwischen zwei Stopps zurückgelegten Strecke zur Gesamtzeit des Laufs einschließlich der Stoppzeit (Planungszeit).

Vs=DTrun+Tstop

Geschwindigkeit des Strahls im Verhältnis zur Bewegung des Schiffs bei gegebener kinetischer Energie

Die Geschwindigkeit des Strahls relativ zur Bewegung des Schiffs bei gegebener kinetischer Energie wird als relative Geschwindigkeit des Aufpralls definiert.

Vr=KE2[g]Wbody

Geschwindigkeit des sich bewegenden Schiffes bei relativer Geschwindigkeit

Die Geschwindigkeit des sich bewegenden Schiffes bei gegebener relativer Geschwindigkeit ist definiert als die Geschwindigkeit, die das Schiff tatsächlich im Propeller erzeugt.

u=Vr-V

Geschwindigkeit des Teilchens nach einer bestimmten Zeit

Die Formel zur PartikelGeschwindigkeit nach einer bestimmten Zeit ist definiert als Maß für die Geschwindigkeit eines Partikels zu einem bestimmten Zeitpunkt unter Berücksichtigung der AnfangsGeschwindigkeit, Beschleunigung und verstrichenen Zeit und bietet Aufschluss über die Bewegung des Partikels und seine sich im Laufe der Zeit ändernde Geschwindigkeit.

vl=u+almt

Geschwindigkeit bei teilweise voller Fahrt bei gegebener proportionaler Geschwindigkeit

Die Geschwindigkeit bei teilweiser Füllung, angegeben als proportionale Geschwindigkeit, wird als die Durchflussrate einer Flüssigkeit in einer Leitung definiert, wenn diese nicht vollständig gefüllt ist und von Tiefe und Geschwindigkeit beeinflusst wird.

Vs=VPv

Geschwindigkeit beim Laufen mit voller gegebener proportionaler Geschwindigkeit

Die Geschwindigkeit bei vollem Durchfluss, angegeben als proportionale Geschwindigkeit, wird als die FließGeschwindigkeit einer Flüssigkeit in einem Rohr definiert, wenn dieses vollständig gefüllt ist, beeinflusst durch die Neigung und Rauheit des Rohrs.

V=VsPv

Geschwindigkeit bei gegebener Länge

Die Geschwindigkeit bei gegebener Länge ist als beizubehaltende FahrzeugGeschwindigkeit definiert, wenn eine Beschleunigungsrate und eine Änderung des Gradienten der vertikalen Kurve bereitgestellt werden.

V=Lc100fg1-(g2)

Geschwindigkeit des Strahls bei normalem Schub parallel zur Richtung des Strahls

Die Geschwindigkeit des Strahls bei normalem Schub parallel zur Richtung des Strahls ist die Änderungsrate seiner Position in Bezug auf einen Bezugsrahmen und eine Funktion der Zeit.

v=-(FtGγfAJet(∠D(180π))2-Vabsolute)

Geschwindigkeit des Strahls bei normalem Schub Normal zur Richtung des Strahls

Die Geschwindigkeit des Strahls bei normalem Schub normal zur Richtung des Strahls ist die Änderungsrate seiner Position in Bezug auf einen Bezugsrahmen und eine Funktion der Zeit.

v=-(FtGγfAJet(∠D(180π))cos(θ))+Vabsolute

Geschwindigkeit im Turn

Die Geschwindigkeit in der Kurve ist als Geschwindigkeit des Flugzeugs in der Kurve oder Kurve definiert und ist eine Funktion des Kurvenradius.

VTurning Speed=4.1120RTaxiway0.5

Geschwindigkeit in der Tiefsee bei gegebener Wellenkraft in der Tiefsee

Die Formel zur Berechnung der TiefseeGeschwindigkeit anhand der Wellenkraft in der Tiefsee wird als die Geschwindigkeit definiert, mit der sich eine einzelne Welle fortbewegt oder „ausbreitet“.

Co=Pd0.5E

Geschwindigkeit an der Oberfläche bei gegebener Scherspannung an der Wasseroberfläche

Die Formel für die Geschwindigkeit an der Oberfläche bei gegebener Scherspannung an der Wasseroberfläche ist definiert als die Bestimmung der Geschwindigkeit des Wassers an der Oberfläche eines Gewässers basierend auf der auf die Wasseroberfläche ausgeübten Scherspannung. Scherspannung an der Wasseroberfläche wird typischerweise durch Wind oder andere Kräfte erzeugt, die tangential auf die Oberfläche wirken. Es handelt sich um einen Geschwindigkeitsparameter an der Oberfläche, der das Strömungsprofil beeinflusst.

Vs=πτ2DFρwaterΩEsin(L)

Geschwindigkeit des Fahrzeugs bei gegebenem Bremsweg

Die Geschwindigkeit des Fahrzeugs bei gegebener Bremswegformel ist definiert als die Geschwindigkeit, mit der sich das Fahrzeug auf der Straßenoberfläche bewegt.

Vb=(BD(2[g]f))0.5

Geschwindigkeit des freien Stroms bei gegebener Strouhal-Zahl

Die Formel für die FreistromGeschwindigkeit bei gegebener Strouhal-Zahl ist definiert als der Durchschnitt zwischen der KanaleintrittsGeschwindigkeit und der DurchschnittsGeschwindigkeit.

V=nDvortexS

Geschwindigkeitskonstante bei Temperatur 2

Die Geschwindigkeitskonstante bei Temperatur 2 ist definiert als die Proportionalitätskonstante in der chemischen Reaktion, die bei Temperatur 2 abläuft. Arrhenius-Gleichung, um die Auswirkung einer Temperaturänderung auf die Geschwindigkeitskonstante und damit auf die ReaktionsGeschwindigkeit zu zeigen.

K2=((K1)(Φ)T2-T110)

Geschwindigkeitskonstante für die Reaktion nullter Ordnung unter Verwendung von Raumzeit für Pfropfenströmung

Die Geschwindigkeitskonstante für die Reaktion nullter Ordnung unter Verwendung der Raum-Zeit-Formel für Pfropfenströmung ist definiert als die ReaktionsGeschwindigkeit für die Reaktion nullter Ordnung, bei der die fraktionale Volumenänderung null ist.

kBatch=XA BatchCo Batch𝛕Batch

Geschwindigkeit eines langsamen Fahrzeugs mit OSD

Die Geschwindigkeit eines langsamen Fahrzeugs unter Verwendung von OSD wird verwendet, um die Geschwindigkeit des Fahrzeugs zu ermitteln, das von einem sich schnell bewegenden Fahrzeug überholt werden muss, wenn OSD gegeben wird.

Vb=OSD-VT-2ltr+T+1.4

Geschwindigkeitskonstante für die Reaktion erster Stufe im ersten Schritt für MFR bei maximaler Zwischenkonzentration

Die Geschwindigkeitskonstante für die Reaktion erster Stufe im ersten Schritt für MFR bei maximaler Zwischenkonzentration ist definiert als die Proportionalitätskonstante für die Reaktion im ersten Schritt in einer irreversiblen Reaktion erster Ordnung in zwei Schritten in Reihe für Reaktoren mit gemischter Strömung bei maximaler Zwischenkonzentration.

kI=1k2(τR,max2)

Geschwindigkeitskonstante für die Reaktion erster Ordnung im zweiten Schritt für MFR bei maximaler Zwischenkonzentration

Die Geschwindigkeitskonstante für die Reaktion erster Ordnung im zweiten Schritt für MFR bei maximaler Zwischenkonzentration ist definiert als die Proportionalitätskonstante für die Reaktion im zweiten Schritt in einer irreversiblen Reaktion erster Ordnung in zwei Schritten in Reihe für Reaktoren mit gemischter Strömung bei maximaler Zwischenkonzentration.

k2=1kI(τR,max2)

Geschwindigkeitskonstante für Reaktion A bis B für einen Satz von drei Parallelreaktionen

Die Formel für die Geschwindigkeitskonstante für die Reaktionen A bis B für den Satz aus drei parallelen Reaktionen ist definiert als die Beziehung zwischen der molaren Konzentration der Reaktanten und der Geschwindigkeit der stattfindenden chemischen Reaktion.

k1=1tln(A0RA)-(k2+k3)

Geschwindigkeitskonstante für Reaktion A bis C für Satz von drei Parallelreaktionen

Die Formel für die Geschwindigkeitskonstante für die Reaktionen A bis C für den Satz aus drei parallelen Reaktionen ist definiert als die Beziehung zwischen der molaren Konzentration der Reaktanten und der Geschwindigkeit der stattfindenden chemischen Reaktion.

k2=1tln(A0RA)-(k1+k3)

Geschwindigkeitskonstante für Reaktion A bis D für Satz von drei Parallelreaktionen

Die Formel für die Geschwindigkeitskonstante für die Reaktionen A bis D für den Satz aus drei parallelen Reaktionen ist definiert als die Beziehung zwischen der molaren Konzentration der Reaktanten und der Geschwindigkeit der stattfindenden chemischen Reaktion.

k3=1tln(A0RA)-(k1+k2)

Geschwindigkeit des Satelliten im kreisförmigen LEO als Funktion der Höhe

Die Formel zur Berechnung der SatellitenGeschwindigkeit in einer kreisförmigen erdnahen Umlaufbahn als Funktion der Höhe ist definiert als die Geschwindigkeit, mit der ein Satellit die Erde in einer kreisförmigen erdnahen Umlaufbahn umkreist. Sie ist abhängig von der Höhe des Satelliten über der Erdoberfläche und stellt einen entscheidenden Parameter bei der Konstruktion und dem Betrieb von Satelliten in Weltraummissionen dar.

v=[GM.Earth][Earth-R]+z

Geschwindigkeit des Satelliten in seinem kreisförmigen GEO-Radius

Die Geschwindigkeit eines Satelliten in seiner kreisförmigen geosynchronen Umlaufbahn wird in Abhängigkeit von der Gravitationskonstante und dem Radius der Umlaufbahn als die Geschwindigkeit definiert, mit der ein Satellit die Erde in einer kreisförmigen geosynchronen Umlaufbahn umkreist.

v=[GM.Earth]Rgso

Geschwindigkeitskonstante der Phase zwischen Blase und Wolke

Die Formel für die Geschwindigkeitskonstante der Phase zwischen Blase und Wolke wird als berechnete Geschwindigkeitskonstante definiert, wenn im Wirbelreaktor Blasenbildung auftritt.

Kbc=4.50(umfdb)+5.85(Df R)12([g])14db54

Geschwindigkeitskonstante der Phase zwischen Wolkenwache und Emulsion

Die Geschwindigkeitskonstante der Phase zwischen Wolkenwache und Emulsionsformel wird als berechnete Geschwindigkeitskonstante definiert, wenn Blasenbildung an der Grenzfläche im Wirbelschichtreaktor beim Kunii-Levenspiel-Modell auftritt.

Kce=6.77(εmfDf Rubrdb3)12

Geschwindigkeit für verzögerte Kohärenz bei der Photodissoziation

Die Geschwindigkeitsformel für die verzögerte Kohärenz bei der Photodissoziation ist definiert als die Größe der Änderung seiner Position über die Zeit oder die Größe der Änderung seiner Position pro Zeiteinheit während der verzögerten Kohärenz während der Photodissoziation des KrF-Moleküls.

vcov=2(Vcov_R0-Vcov_R)μcov

Geschwindigkeit im schnellen Wirbelbett

Die Formel „Geschwindigkeit im schnellen Wirbelschichtbett“ bezieht sich auf die AufwärtsGeschwindigkeit des Fluidisierungsgases, das zum Schweben und Fluidisieren fester Partikel im Bett verwendet wird. Schnelle Wirbelschichten zeichnen sich durch hohe GasGeschwindigkeiten aus, und diese Geschwindigkeiten liegen typischerweise deutlich über der minimalen FluidisierungsGeschwindigkeit.

uTB-FF=1.53(ρsolids-ρgas)[g]dpρgas

Geschwindigkeit in der pneumatischen Förderung

Die Geschwindigkeitsformel bei der pneumatischen Förderung ist definiert als die Geschwindigkeit, typischerweise ausgedrückt als Luft- oder GasGeschwindigkeit am Punkt der Injektion oder Einführung der Feststoffpartikel in das Fördersystem.

uFF-PC=((21.6((GSρgas)0.542)(d'p 0.315))[g]dp)11.542

Geschwindigkeit des Stößels für Rollenstößel-Tangentennocken, wenn der Kontakt mit geraden Flanken erfolgt

Die Formel für die Geschwindigkeit des Stößels für einen Rollenstößel mit tangentialem Nocken bei Kontakt mit geraden Flanken ist als Maß für die Geschwindigkeit des Stößels in einem Nockenstößelsystem definiert, bei dem der Kontakt mit geraden Flanken erfolgt. Sie bietet Einblick in die Kinematik des Systems und ermöglicht die Entwicklung effizienter mechanischer Systeme.

v=ω(r1+rroller)sin(θ)(cos(θ))2

Geschwindigkeitskoeffizient für das Peltonrad

Der Geschwindigkeitskoeffizient für das Peltonrad ist das Verhältnis der tatsächlichen Geschwindigkeit des Wasserstrahls, der die Düse verlässt, zur theoretischen Geschwindigkeit. Er berücksichtigt die Verluste durch Reibung und andere Ineffizienzen in der Düse und wird verwendet, um die Effizienz der Strahlbildung zu bestimmen. Dieser Koeffizient ist normalerweise kleiner als 1.

Cv=V12[g]H

Geschwindigkeit des Stößels der Rollenstößel-Tangentennocke für den Kontakt mit der Nase

Die Formel für die Geschwindigkeit des Stößels eines Rollenstößels und des Tangentialnockens bei Kontakt mit der Nase ist definiert als die Geschwindigkeit des Stößels in einem Nocken- und Stößelsystem. Sie ist ein entscheidender Parameter bei der Bestimmung der Leistung und Effizienz des Systems, insbesondere wenn der Stößel mit der Nase des Nockens in Kontakt ist.

v=ωr(sin(θ1)+rsin(2θ1)2L2-r2(sin(θ1))2)

Geschwindigkeitsdruck mit Winddruck

Der Geschwindigkeitsdruck unter Verwendung des Winddrucks wird als Geschwindigkeitsdruck definiert, wenn wir eine vorherige Information über den äquivalenten statischen Winddruck haben.

q=pGCp

Geschwindigkeit für einen gegebenen Kurvenradius

Die Geschwindigkeit bei einem gegebenen Wenderadius ist ein Maß für die Geschwindigkeit eines Objekts, wenn es sich auf einer Kreisbahn dreht, abhängig vom Wenderadius, der Erdbeschleunigung und dem Lastfaktor.

V=R[g](n2-1)

Geschwindigkeitsdruck

Der Geschwindigkeitsdruck wird als Geschwindigkeitsdruck definiert, wenn wir die GrundwindGeschwindigkeit und andere Faktoren kennen, die den Geschwindigkeitsdruck beeinflussen, wie Windrichtungsfaktor, topografischer Faktor usw.

q=0.00256KzKztKd(VB2)I

Geschwindigkeitskoeffizient gegebener Entladungskoeffizient

Der Geschwindigkeitskoeffizient wird in der Formel für den Abflusskoeffizienten als Reduktionsfaktor für die theoretische Geschwindigkeit durch die Öffnung definiert.

Cv=CdCc

Geschwindigkeitspotential für gleichmäßige inkompressible Strömung

Die Geschwindigkeitspotentialfunktion für gleichmäßige inkompressible Strömung (ϕ) steigt linear mit der Entfernung in Strömungsrichtung (x) an, was die gleichmäßige Natur der Strömung widerspiegelt. Folglich gibt es keine Variation des Geschwindigkeitspotentials in Bezug auf die y-Koordinate, was die Homogenität der Strömung in y-Richtung veranschaulicht.

ϕ=Vx

Geschwindigkeit am Punkt des Tragflächenprofils für gegebenen Druckkoeffizienten und freie StrömungsGeschwindigkeit

Die Geschwindigkeit an einem Punkt auf dem Schaufelblatt für einen gegebenen Druckkoeffizienten und eine Formel für die Geschwindigkeit im freien Strom ist das Produkt aus der Geschwindigkeit im freien Strom und der Quadratwurzel aus eins minus dem Druckkoeffizienten in inkompressibler Strömung.

V=u2(1-Cp)

Geschwindigkeitspotential für gleichmäßige inkompressible Strömung in Polarkoordinaten

Das Geschwindigkeitspotential für gleichmäßige inkompressible Strömung in Polarkoordinaten besagt, dass die Funktion direkt proportional zum radialen Abstand vom Ursprung (r) und dem Kosinus der Winkelkoordinate (θ) ist, skaliert durch die StrömungsGeschwindigkeit (U). Dies bedeutet, dass der Wert der Geschwindigkeitspotentialfunktion linear mit dem radialen Abstand vom Ursprung zunimmt und mit dem Kosinus des Winkels variiert, was die gleichmäßige Natur der Strömung und ihre Abhängigkeit von der Winkelrichtung widerspiegelt.

ϕ=Vrcos(θ)

Geschwindigkeitspotential für den 2D-Quellenfluss

Die Formel für das Geschwindigkeitspotenzial für den zweidimensionalen Quellenfluss besagt, dass die Funktion direkt proportional zum natürlichen Logarithmus des radialen Abstands vom Quellpunkt und der Stärke der Quelle ist. Diese logarithmische Beziehung spiegelt die Eigenschaft des Potenzialflusses wider, bei dem die Geschwindigkeit mit zunehmendem Abstand von der Quelle logarithmisch abnimmt.

ϕ=Λ2πln(r)

Geschwindigkeit im radialen Abstand r1 bei gegebenem Drehmoment, das auf die Flüssigkeit ausgeübt wird

Die Geschwindigkeit im radialen Abstand r1 bei gegebenem auf die Flüssigkeit ausgeübtem Drehmoment ist definiert als das auf die Flüssigkeit ausgeübte Drehmoment, das zu einer Rotationsbewegung oder einem Fluss führt.

V1=qflowr2V2-(τΔ)r1qflow

Wie finde ich Formeln?

Hier sind ein paar Tipps für bessere Suchergebnisse.
Seien Sie konkret: Je konkreter Ihre Suchanfrage, desto besser sind Ihre Ergebnisse.
Verwenden Sie mehrere Schlüsselwörter: Kombinieren Sie mehrere Schlüsselwörter, um die Ergebnisse einzugrenzen.
Experimentieren Sie mit Synonymen: Unterschiedliche Begriffe können zu unterschiedlichen Ergebnissen führen.
Platzhaltersuche: Verwenden Sie den Operator * (Sternchen). BEACHTEN SIE, dass dieser Operator nur am Ende eines Wortes funktioniert. Beispiel: Bio*, Bereich* usw.

Alternativ können Sie durch die Unterkategorien innerhalb von navigieren, um die Formeln einzugrenzen, die Sie interessieren.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!