Suche Formeln

Bitte geben Sie mindestens 3 Zeichen ein, um mit der Suche nach -Formeln zu beginnen.

Wählen Sie Filter

Grenzen Sie Ihre Suchergebnisse mithilfe dieser Filter ein.

50 Passende Formeln gefunden!

Geschwindigkeitskonstante der Reaktion erster Ordnung unter Verwendung des Logarithmus zur Basis 10

Die Geschwindigkeitskonstante der Reaktion erster Ordnung unter Verwendung des Logarithmus zur Basis-10-Formel ist definiert als die ReaktionsGeschwindigkeit pro Konzentration des Reaktanten. Die Formel ist der Logarithmus zur Basis 10 der Anfangskonzentration pro Konzentration zum Zeitpunkt t, das Ganze wird durch die Zeit dividiert, die für die Vervollständigung der Reaktion erforderlich ist.

kfirst=2.303tcompletionlog10(A0Ct)

Geschwindigkeitskonstante zur Halbzeit für die Reaktion erster Ordnung

Die Geschwindigkeitskonstante zur Halbzeit für die Reaktionsformel erster Ordnung ist definiert als die ReaktionsGeschwindigkeit pro Konzentration des Reaktanten. Die Formel ist ein natürlicher Logarithmus von 2 geteilt durch die Halbwertszeit der Reaktion.

kfirst=0.693t1/2

Geschwindigkeitskonstante für dasselbe Produkt für eine Reaktion zweiter Ordnung

Die Geschwindigkeitskonstante für dasselbe Produkt für die Reaktionsformel zweiter Ordnung ist definiert als die durchschnittliche ReaktionsGeschwindigkeit pro Konzentration des Reaktanten mit einer auf 2 erhöhten Leistung.

Ksecond=1axttcompletion-1atcompletion

Geschwindigkeitskonstante für verschiedene Produkte für die Reaktion zweiter Ordnung

Die Geschwindigkeitskonstante für verschiedene Produkte für die Reaktionsformel zweiter Ordnung ist definiert als die durchschnittliche ReaktionsGeschwindigkeit pro Konzentration der beiden verschiedenen Reaktanten, deren Leistung jeweils auf 1 erhöht ist.

Kfirst=2.303tcompletion(CAO-CBO)log10CBO(ax)CAO(bx)

Geschwindigkeitskonstante unter konstantem Druck und konstanter Temperatur für eine Reaktion nullter Ordnung

Die Geschwindigkeitskonstante unter konstantem Druck und konstanter Temperatur für die Reaktionsformel nullter Ordnung ist definiert als Fortschritt der Gasreaktion, die durch Messen des Gesamtdrucks bei einem festen Volumen und einer festen Temperatur überwacht werden kann. Da die Geschwindigkeitskonstante für eine Reaktion nullter Ordnung gilt, sollte die Reihenfolge der Reaktion (n) durch Null ersetzt werden.

k=(2.303t)log10(P0(n-1)(nP0)-Pt)

Geschwindigkeitskonstante nach Titrationsverfahren für Reaktionen erster Ordnung

Die Geschwindigkeitskonstante durch das Titrationsverfahren für die Formel des Reaktionsverfahrens erster Ordnung ist definiert als die ReaktionsGeschwindigkeit geteilt durch die Konzentration des Reaktanten, der auf die Potenz eins erhöht ist. Die Geschwindigkeitskonstante nach dem Titrationsverfahren ist direkt proportional zum Logarithmus des Anfangsvolumens des Reaktanten pro Volumen eines Reaktanten zum Zeitpunkt t.

kfirst=(2.303tcompletion)log10(V0Vt)

Geschwindigkeitsdruck mit Winddruck

Der Geschwindigkeitsdruck unter Verwendung des Winddrucks wird als Geschwindigkeitsdruck definiert, wenn wir eine vorherige Information über den äquivalenten statischen Winddruck haben.

q=pGCp

Geschwindigkeit für einen gegebenen Kurvenradius

Die Geschwindigkeit bei einem gegebenen Wenderadius ist ein Maß für die Geschwindigkeit eines Objekts, wenn es sich auf einer Kreisbahn dreht, abhängig vom Wenderadius, der Erdbeschleunigung und dem Lastfaktor.

V=R[g](n2-1)

Geschwindigkeitsdruck

Der Geschwindigkeitsdruck wird als Geschwindigkeitsdruck definiert, wenn wir die GrundwindGeschwindigkeit und andere Faktoren kennen, die den Geschwindigkeitsdruck beeinflussen, wie Windrichtungsfaktor, topografischer Faktor usw.

q=0.00256KzKztKd(VB2)I

Geschwindigkeit des Windkanal-Testabschnitts

Die Geschwindigkeitsformel des Windkanal-Testabschnitts basiert auf dem Bernoulli-Prinzip und ist eine Funktion der Druckdifferenz zwischen Reservoir und Testabschnitt.

V2=2(P1-P2)ρ0(1-1Alift2)

Geschwindigkeit des Teilchens nach einer bestimmten Zeit

Die Formel zur PartikelGeschwindigkeit nach einer bestimmten Zeit ist definiert als Maß für die Geschwindigkeit eines Partikels zu einem bestimmten Zeitpunkt unter Berücksichtigung der AnfangsGeschwindigkeit, Beschleunigung und verstrichenen Zeit und bietet Aufschluss über die Bewegung des Partikels und seine sich im Laufe der Zeit ändernde Geschwindigkeit.

vl=u+almt

Geschwindigkeit durch Sieb bei Druckverlust durch Sieb

Die Geschwindigkeit durch das Sieb, gegeben durch den Druckverlust durch das Sieb, ist die Änderungsrate seiner Position in Bezug auf einen Referenzrahmen und ist eine Funktion der Zeit.

v=(hL0.0729)+u2

Geschwindigkeit über Sieb bei Druckverlust durch Sieb

Die Geschwindigkeit über dem Bildschirm, gegeben durch den Druckverlust durch den Bildschirm, ist die Änderungsrate seiner Position in Bezug auf einen Referenzrahmen und ist eine Funktion der Zeit.

u=v2-(hL0.0729)

Geschwindigkeitsgradienten

Die Formel für Geschwindigkeitsgradienten wird als Änderung der Geschwindigkeit im Verhältnis zur Entfernungsänderung entlang der gemessenen Richtung definiert.

VG=πr2Ω30(r2-r1)

Geschwindigkeit des äußeren Zylinders bei gegebenem Geschwindigkeitsgradienten

Die Geschwindigkeit des äußeren Zylinders wird mit der Geschwindigkeitsgradientenformel als die Geschwindigkeit definiert, mit der sich der Zylinder in Umdrehungen pro Minute dreht.

Ω=VGπr230(r2-r1)

Geschwindigkeit des äußeren Zylinders bei gegebener dynamischer Viskosität der Flüssigkeit

Die Geschwindigkeit des Außenzylinders wird anhand der Formel zur dynamischen Viskosität einer Flüssigkeit als Geschwindigkeit des Zylinders in Umdrehungen pro Minute definiert.

Ω=15T(r2-r1)ππr1r1r2hμ

Geschwindigkeit des Außenzylinders bei gegebenem Drehmoment, das auf den Außenzylinder ausgeübt wird

Die Geschwindigkeit des Außenzylinders bei auf den Außenzylinder ausgeübtem Drehmoment wird gemäß der Formel als das auf ihn ausgeübte Drehmoment definiert, wobei die Beziehung zwischen Drehmoment, Rotationsträgheit und Winkelbeschleunigung gilt.

Ω=Toππμr1460C

Geschwindigkeit des äußeren Zylinders bei gegebenem Gesamtdrehmoment

Die Geschwindigkeit des äußeren Zylinders wird bei gegebener Gesamtdrehmomentformel als die Geschwindigkeit des Zylinders in Umdrehungen pro Minute definiert.

Ω=ΤTorqueVcμ

Geschwindigkeit des Strahls bei dynamischem Schub, der vom Strahl auf die Platte ausgeübt wird

Die Geschwindigkeit des Strahls bei dynamischem Schub, der durch den Strahl auf die Platte ausgeübt wird, ist die Änderungsrate seiner Position in Bezug auf einen Bezugssystem und ist eine Funktion der Zeit.

v=-(mfGγfAJet-Vabsolute)

Geschwindigkeit des Rades bei gegebener TangentialGeschwindigkeit an der Auslassspitze des Flügels

Die Geschwindigkeit des Rades bei gegebener TangentialGeschwindigkeit an der Auslassspitze des Flügels, der sich um die Achse dreht, ist die Anzahl der Umdrehungen des Objekts dividiert durch die Zeit, angegeben als Umdrehungen pro Minute (U/min).

Ω=vtangential602πrO

Geschwindigkeit bei gegebenem Tangentialimpuls von Flüssigkeit, die am Einlass auf Leitschaufeln auftrifft

Die Geschwindigkeit bei gegebenem Tangentialimpuls eines Fluids, das Schaufeln am Einlass eines Objekts trifft, ist die Änderungsrate seiner Position in Bezug auf einen Referenzrahmen und ist eine Funktion der Zeit.

u=TmGwf

Geschwindigkeit bei gegebenem Drehimpuls am Einlass

Die gegebene DrehimpulsGeschwindigkeit am Einlass ist die Änderungsrate seiner Position in Bezug auf einen Bezugssystem und ist eine Funktion der Zeit.

vf=LGwfr

Geschwindigkeit bei gegebenem Tangentialimpuls von Flüssigkeit, die am Auslass auf Leitschaufeln auftrifft

Die dem Tangentialimpuls gegebene Geschwindigkeit des Fluids, das am Auslass auf die Leitschaufeln trifft, ist die Änderungsrate seiner Position in Bezug auf den Referenzrahmen und ist eine Funktion der Zeit.

u=TmGwf

Geschwindigkeit bei gegebenem Drehimpuls am Outlet

Die Geschwindigkeit des gegebenen Drehimpulses am Auslass eines Objekts ist die Änderungsrate seiner Position in Bezug auf einen Bezugssystem und ist eine Funktion der Zeit.

v=TmGwfr

Geschwindigkeit des Fahrzeugs bei gegebenem Bremsweg

Die Geschwindigkeit des Fahrzeugs bei gegebener Bremswegformel ist definiert als die Geschwindigkeit, mit der sich das Fahrzeug auf der Straßenoberfläche bewegt.

Vb=(BD(2[g]f))0.5

Geschwindigkeitspotential für inkompressiblen 3D-Quellenfluss

Die Formel für das Geschwindigkeitspotential für dreidimensionalen inkompressiblen Quellfluss wird als Funktion der Quellstärke und des radialen Abstands für dreidimensionalen Quellfluss definiert.

ϕs=-Λ4πr

Geschwindigkeitspotential für 3D-inkompressible Dublettströmung

Mit der Formel „Geschwindigkeitspotenzial für dreidimensionale inkompressible Doublettenströmung“ wird das Geschwindigkeitspotenzial berechnet, das eine Funktion der Stärke der Doubletten-, Radial- und Polarkoordinaten für die dreidimensionale inkompressible Doublettenströmung ist.

ϕ=-μcos(θ)4πr2

Geschwindigkeitskonstante der irreversiblen Reaktion dritter Ordnung mit zwei gleichen Reaktantenkonzentrationen

Die Formel für die Geschwindigkeitskonstante der irreversiblen Reaktion dritter Ordnung mit zwei gleichen Reaktantenkonzentrationen ist als die Proportionalitätskonstante in der Gleichung definiert, die die Beziehung zwischen der Geschwindigkeit der chemischen Reaktion und den Konzentrationen der reagierenden Substanzen ausdrückt.

k3=rCA(CB)2

Geschwindigkeitskonstante für die Reaktion nullter Ordnung für Pfropfenströmung

Die Formel für die Geschwindigkeitskonstante für die Reaktion nullter Ordnung für Pfropfenströmung ist als die ReaktionsGeschwindigkeit für eine Reaktion nullter Ordnung definiert, bei der die fraktionelle Volumenänderung beträchtlich ist.

k0=XA-PFRCo pfr𝛕pfr

Geschwindigkeitskonstante für die Reaktion nullter Ordnung für gemischten Fluss

Die Formel für die Geschwindigkeitskonstante für die Reaktion nullter Ordnung für eine gemischte Strömung ist als die ReaktionsGeschwindigkeit für eine Reaktion nullter Ordnung definiert, bei der die fraktionelle Volumenänderung beträchtlich ist.

k0-MFR=XMFRCo-MFR𝛕MFR

Geschwindigkeitskonstante für die Reaktion erster Ordnung für Pfropfenströmung

Die Formel für die Geschwindigkeitskonstante für die Reaktion erster Ordnung für die Pfropfenströmung ist als die Proportionalitätskonstante definiert, die das Verhältnis zwischen der ReaktionsGeschwindigkeit und der ersten Potenz der Konzentration eines der Reaktanten angibt, wenn die fraktionelle Volumenänderung beträchtlich ist.

kplug flow=(1𝛕pfr)((1+εPFR)ln(11-XA-PFR)-(εPFRXA-PFR))

Geschwindigkeitskonstante für die Reaktion erster Ordnung für gemischte Strömung

Die Formel für die Geschwindigkeitskonstante für die Reaktion erster Ordnung bei gemischter Strömung ist als die Proportionalitätskonstante definiert, die die Beziehung zwischen der ReaktionsGeschwindigkeit und der ersten Potenz der Konzentration eines der Reaktanten für die gemischte Strömung angibt.

k1MFR=(1𝛕MFR)(XMFR(1+(εXMFR))1-XMFR)

Geschwindigkeitsmodulation von Elektronen im Klystron-Hohlraum

Die Formel für die Geschwindigkeitsmodulation von Elektronen im Klystron-Hohlraum ist definiert als die Variation der Geschwindigkeit eines Elektronenstrahls, die durch die abwechselnde Beschleunigung und Verlangsamung der Elektronen im Strahl verursacht wird.

vp=2[Charge-e]vh[Mass-e]

Geschwindigkeitskonstante basierend auf dem Gewicht des Katalysators in Batch-Feststoffen und Batch-Flüssigkeiten

Die Formel „Geschwindigkeitskonstante basierend auf dem Gewicht des Katalysators in Batch-Feststoffen und Batch-Flüssigkeiten“ ist definiert als die Geschwindigkeitskonstante basierend auf dem Gewicht des Katalysators, einem Parameter, der zur Beschreibung der Kinetik einer chemischen Reaktion, insbesondere im Zusammenhang mit der Katalyse, verwendet wird. Sie wird durch das Verhältnis der ReaktionsGeschwindigkeit zum Gewicht des vorhandenen Katalysators definiert.

k'=(VkdWd)exp(ln(ln(CACA∞))+kdt)

Geschwindigkeitskonstante basierend auf dem Gewicht des Katalysators in den Chargenfeststoffen und dem gemischten konstanten Flüssigkeitsfluss

Die Formel für die Geschwindigkeitskonstante basierend auf dem Gewicht des Katalysators in den Chargenfeststoffen und dem gemischten konstanten Flüssigkeitsfluss ist als Geschwindigkeitskonstante definiert, die berechnet wird, wenn die Chargenfeststoffe und der gemischte konstante Flüssigkeitsfluss in den Reaktoren bei der Deaktivierung des Katalysators berücksichtigt werden.

k'=exp(ln((CA0CA)-1)+kd,MFt)𝛕 '

Geschwindigkeitskonstante basierend auf dem Gewicht des Katalysators in den Chargenfeststoffen und dem gemischten, sich ändernden Flüssigkeitsfluss

Die Formel für die Geschwindigkeitskonstante basierend auf dem Gewicht des Katalysators in den Chargenfeststoffen und dem gemischten, sich ändernden Flüssigkeitsfluss ist als Geschwindigkeitskonstante definiert, die berechnet wird, wenn die Chargenfeststoffe und der gemischte Flüssigkeitsfluss in den Reaktoren bei der Deaktivierung des Katalysators berücksichtigt werden.

k'=CA0-CACAexp(ln(𝛕 ')-kd,MFt)

Geschwindigkeitsverhältnis

Die Formel für das Geschwindigkeitsverhältnis ist definiert als das Verhältnis der Drehzahl des angetriebenen Zahnrads zu der des treibenden Zahnrads in einem mechanischen System. Sie hilft dabei, die Effizienz und Drehmomentübertragung des Getriebes zu bestimmen.

i=TdTdr

Geschwindigkeit des Elektrons im Orbit bei gegebener WinkelGeschwindigkeit

Die Geschwindigkeit des Elektrons in der Umlaufbahn bei gegebener WinkelGeschwindigkeit ist eine Vektorgröße (sie hat sowohl Größe als auch Richtung) und ist die Zeitrate der Positionsänderung (eines Teilchens).

ve_AV=ωrorbit

Geschwindigkeit des Elektrons bei gegebener Zeitdauer des Elektrons

Die Geschwindigkeit des Elektrons bei gegebener Zeitdauer des Elektrons ist eine Vektorgröße (sie hat sowohl Größe als auch Richtung) und ist die Zeitrate der Positionsänderung (eines Teilchens).

velectron=2πrorbitT

Geschwindigkeit eines kleinen Elements für Längsschwingung

Die Formel für die Geschwindigkeit kleiner Elemente bei Längsschwingungen ist als Maß für die Geschwindigkeit kleiner Elemente bei einer Längsschwingung definiert, die durch die Trägheit der Einschränkung beeinflusst wird, und wird zur Analyse der Schwingungen in verschiedenen mechanischen Systemen verwendet.

vs=xVlongitudinall

Geschwindigkeitsdruck gemäß ASCE 7

Der Geschwindigkeitsdruck gemäß ASCE 7 ist definiert als der Geschwindigkeitsdruck gemäß den ASCE 7-Methode-II-Normen unter Berücksichtigung des Winddrucks sowie der externen und internen Druckkoeffizienten.

q=p+qiGCptGCep

Geschwindigkeitsdruck an einem bestimmten Punkt gemäß ASCE 7

Der Geschwindigkeitsdruck an einem bestimmten Punkt gemäß ASCE 7 ist definiert als der Geschwindigkeitsdruck an einem bestimmten Punkt zur Bestimmung des Innendrucks gemäß ASCE 7 Methode II.

qi=(qGCep)-pGCpt

Geschwindigkeit gegebener Wenderadius für hohen Lastfaktor

Die Geschwindigkeit bei Wenderadius unter Bedingungen mit hohem Lastfaktor ist die Geschwindigkeit, die ein Flugzeug benötigt, um einen bestimmten Wenderadius bei einem erheblichen Lastfaktor beizubehalten. Diese Formel berechnet die Geschwindigkeit basierend auf Wenderadius, Lastfaktor und Erdbeschleunigung. Das Verständnis und die Anwendung dieser Formel ist für Piloten und Ingenieure von entscheidender Bedeutung, um die Manövrierfähigkeit von Flugzeugen zu optimieren und die Sicherheit bei Manövern mit hohem Lastfaktor zu gewährleisten.

v=Rn[g]

Geschwindigkeit entlang der Gierachse bei kleinem Anstellwinkel

Die Geschwindigkeit entlang der Gierachse bei kleinem Anstellwinkel ist ein Maß für die Änderungsrate der Position eines Objekts entlang der Gierachse im Verhältnis zu seiner Bewegung aufgrund eines kleinen Anstellwinkels. Sie wird berechnet, indem die Geschwindigkeit entlang der Rollachse mit dem Anstellwinkel im Bogenmaß multipliziert wird und stellt einen entscheidenden Parameter in der Aerodynamik und Flugdynamik dar.

w=uα

Geschwindigkeit entlang der Rollachse bei kleinem Anstellwinkel

Die Geschwindigkeit entlang der Rollachse bei kleinem Anstellwinkel ist ein Maß für die Geschwindigkeit der Rotation eines Objekts um seine Rollachse, wenn der Anstellwinkel relativ klein ist, und wird berechnet, indem die Geschwindigkeit entlang der Gierbewegung durch den Anstellwinkel im Bogenmaß geteilt wird.

u=wα

Geschwindigkeit entlang der Nickachse bei kleinem Schwimmwinkel

Die Geschwindigkeit entlang der Nickachse bei kleinem Schwimmwinkel ist ein Maß für die Geschwindigkeit eines Flugzeugs oder Objekts, das sich mit kleinem Schwimmwinkel bewegt, und ist für das Verständnis und die Vorhersage seiner Flugbahn und Stabilität von entscheidender Bedeutung.

v=βu

Geschwindigkeit entlang der Rollachse bei kleinem Schwimmwinkel

Die Geschwindigkeit entlang der Rollachse bei kleinem Schwimmwinkel ist ein Maß für die Geschwindigkeit des Flugzeugs in Richtung der Rollachse bei kleinem Schwimmwinkel und gibt Aufschluss über die Stabilität und Reaktionsfähigkeit des Flugzeugs während des Fluges.

u=vβ

Geschwindigkeit des Kolbens für die Scherkraft, die der Bewegung des Kolbens widersteht

Die Geschwindigkeit des Kolbens zur Widerstandsfähigkeit gegen Scherkräfte ist definiert als die durchschnittliche Geschwindigkeit, mit der sich der Kolben bewegt.

vpiston=FsπμLP(1.5(DCR)2+4(DCR))

Geschwindigkeit der Flüssigkeit

Die FlüssigkeitsGeschwindigkeit ist definiert als die Geschwindigkeit, mit der sich Flüssigkeit oder Öl im Tank aufgrund der Anwendung der Kolbenkraft bewegt.

uOiltank=dp|dr0.5RR-CHRμ

Geschwindigkeit des Kolbens bei Scherspannung

Die Geschwindigkeit des Kolbens bei Scherbeanspruchung ist definiert als die durchschnittliche Geschwindigkeit im Tank aufgrund der Bewegung des Kolbens.

vpiston=𝜏1.5DμCHCH

Wie finde ich Formeln?

Hier sind ein paar Tipps für bessere Suchergebnisse.
Seien Sie konkret: Je konkreter Ihre Suchanfrage, desto besser sind Ihre Ergebnisse.
Verwenden Sie mehrere Schlüsselwörter: Kombinieren Sie mehrere Schlüsselwörter, um die Ergebnisse einzugrenzen.
Experimentieren Sie mit Synonymen: Unterschiedliche Begriffe können zu unterschiedlichen Ergebnissen führen.
Platzhaltersuche: Verwenden Sie den Operator * (Sternchen). BEACHTEN SIE, dass dieser Operator nur am Ende eines Wortes funktioniert. Beispiel: Bio*, Bereich* usw.

Alternativ können Sie durch die Unterkategorien innerhalb von navigieren, um die Formeln einzugrenzen, die Sie interessieren.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!