Suche Formeln

Bitte geben Sie mindestens 3 Zeichen ein, um mit der Suche nach -Formeln zu beginnen.

Wählen Sie Filter

Grenzen Sie Ihre Suchergebnisse mithilfe dieser Filter ein.

50 Passende Formeln gefunden!

Geschwindigkeitskonstante der Reaktion erster Ordnung

Die Geschwindigkeitskonstante der Reaktion erster Ordnung ist die Proportionalitätskonstante zur Anfangskonzentration und die Menge des umgesetzten Reaktanten oder des gebildeten Produkts.

Kh=ln(C0C0-x)treaction

Geschwindigkeitsschwankungskoeffizient für Schwungrad

Die Formel für den Geschwindigkeitsschwankungskoeffizienten für Schwungräder ist als Maß für die Geschwindigkeitsschwankung eines Schwungrads definiert, bei dem es sich um ein rotierendes Rad handelt, das Energie speichert und die Geschwindigkeitsschwankungen eines Motors oder einer anderen Maschine ausgleicht.

Cs=2ω1-ω2ω1+ω2

Geschwindigkeit der progressiven Welle

Die Formel zur Geschwindigkeit fortschreitender Wellen ist definiert als Maß für die Geschwindigkeit, mit der sich eine Welle durch ein Medium ausbreitet. Sie beschreibt die Rate der Störungsübertragung in einem physikalischen System und ist ein grundlegendes Konzept zum Verständnis der Wellendynamik und ihrer Anwendungen in verschiedenen Bereichen der Physik.

Vw=λTW

Geschwindigkeit der progressiven Welle unter Verwendung der Frequenz

Die Geschwindigkeit fortschreitender Wellen wird mithilfe der Frequenzformel als Maß für die Geschwindigkeit definiert, mit der sich eine Welle durch ein Medium ausbreitet. Dies ist für das Verständnis verschiedener physikalischer Phänomene wie Schallwellen, Lichtwellen und seismischer Wellen von wesentlicher Bedeutung und spielt in Bereichen wie Physik, Ingenieurwesen und Geologie eine entscheidende Rolle.

Vw=λfw

Geschwindigkeit einer progressiven Welle bei gegebener Winkelfrequenz

Die Formel für die Geschwindigkeit einer fortschreitenden Welle bei gegebener Winkelfrequenz ist definiert als Maß für die Geschwindigkeit einer Welle, die sich in eine bestimmte Richtung bewegt, beeinflusst durch die Winkelfrequenz, und ist von entscheidender Bedeutung für das Verständnis des Verhaltens von Wellen in verschiedenen physikalischen Systemen, einschließlich Schall- und Lichtwellen.

Vw=λωf2π

Geschwindigkeit der Welle bei gegebener Wellennummer

Die Formel zur Berechnung der WellenGeschwindigkeit bei gegebener Wellenzahl ist ein Maß für die Geschwindigkeit, mit der sich eine Welle durch ein Medium ausbreitet. Sie bietet Aufschluss über die Frequenz und Wellenlänge der Welle und ist von entscheidender Bedeutung für das Verständnis verschiedener physikalischer Phänomene, wie etwa Schall- und Lichtwellen, in der Physik und in technischen Anwendungen.

Vw=ωfk

Geschwindigkeit unter Verwendung der Wasserströmungsgleichung

Die Geschwindigkeit wird mithilfe der Wasserdurchflussgleichung als FließGeschwindigkeit definiert, wenn der Querschnittsbereich des Rohrs und der Wasserdurchfluss gegeben sind.

Vf=QwAcs

Geschwindigkeit bei jedem gegebenen Radius des Rohrs und maximale Geschwindigkeit

Geschwindigkeit bei jedem Radius bei gegebenem Rohrradius und MaximalGeschwindigkeit hängt von der MaximalGeschwindigkeit und dem Rohrradius ab. Die Geschwindigkeitsverteilung variiert normalerweise mit dem Radius und folgt oft einem bestimmten Profil, abhängig von den Strömungsbedingungen.

V=Vm(1-(rpdo2)2)

Geschwindigkeit der Kugel bei der Widerstandsmethode der fallenden Kugel

Die Geschwindigkeit der Kugel in der Formel der Widerstandsmethode für fallende Kugeln ist unter Berücksichtigung der Viskosität von Flüssigkeit oder Öl, des Kugeldurchmessers und der Widerstandskraft bekannt.

U=FD3πμd

Geschwindigkeitsverteilung in rauer turbulenter Strömung

Die Formel für die Geschwindigkeitsverteilung in rauer turbulenter Strömung ist als die Funktion definiert, die beschreibt, wie molekulare Geschwindigkeiten im Durchschnitt in einer rauen, turbulenten Strömung verteilt sind.

v=5.75vshearlog10(30yks)

Geschwindigkeit des beweglichen Bootes

Die Formel für die Geschwindigkeit eines fahrenden Bootes ist als Strömungsmesser vom Propellertyp definiert, der sich frei um eine vertikale Achse bewegen kann und in einem Boot mit einer bestimmten Geschwindigkeit gezogen wird.

vb=Vcos(θ)

Geschwindigkeit des sich bewegenden Bootes bei gegebener Breite zwischen zwei Vertikalen

Die Formel für die Geschwindigkeit des sich bewegenden Bootes bei gegebener Breite zwischen zwei Vertikalen ist definiert als die kombinierte Bewegung des Bootes relativ zum Wasser und die Bewegung des Wassers relativ zum Ufer.

vb=WΔt

Geschwindigkeitskonstante nach Titrationsverfahren für Reaktionen nullter Ordnung

Die Geschwindigkeitskonstante durch Titrationsmethode für die Reaktionsformel nullter Ordnung ist definiert als die Geschwindigkeitskonstante, die direkt proportional zur Volumendifferenz und umgekehrt proportional zum Zeitpunkt der Fertigstellung ist.

k=V0-Vtt

Geschwindigkeitskonstante für dasselbe Produkt durch Titrationsmethode für Reaktionen zweiter Ordnung

Die Ratenkonstante für dasselbe Produkt durch Titrationsverfahren für die Reaktionsformel zweiter Ordnung ist definiert als die Subtraktion des Kehrwerts des Anfangsvolumens und des Zeitintervalls vom Kehrwert des Volumens eines Reaktanten zum Zeitpunkt t und Zeitintervall.

Ksecond=(1Vttcompletion)-(1V0tcompletion)

Geschwindigkeit entlang der Gierachse bei kleinem Anstellwinkel

Die Geschwindigkeit entlang der Gierachse bei kleinem Anstellwinkel ist ein Maß für die Änderungsrate der Position eines Objekts entlang der Gierachse im Verhältnis zu seiner Bewegung aufgrund eines kleinen Anstellwinkels. Sie wird berechnet, indem die Geschwindigkeit entlang der Rollachse mit dem Anstellwinkel im Bogenmaß multipliziert wird und stellt einen entscheidenden Parameter in der Aerodynamik und Flugdynamik dar.

w=uα

Geschwindigkeit entlang der Rollachse bei kleinem Anstellwinkel

Die Geschwindigkeit entlang der Rollachse bei kleinem Anstellwinkel ist ein Maß für die Geschwindigkeit der Rotation eines Objekts um seine Rollachse, wenn der Anstellwinkel relativ klein ist, und wird berechnet, indem die Geschwindigkeit entlang der Gierbewegung durch den Anstellwinkel im Bogenmaß geteilt wird.

u=wα

Geschwindigkeit entlang der Nickachse bei kleinem Schwimmwinkel

Die Geschwindigkeit entlang der Nickachse bei kleinem Schwimmwinkel ist ein Maß für die Geschwindigkeit eines Flugzeugs oder Objekts, das sich mit kleinem Schwimmwinkel bewegt, und ist für das Verständnis und die Vorhersage seiner Flugbahn und Stabilität von entscheidender Bedeutung.

v=βu

Geschwindigkeit entlang der Rollachse bei kleinem Schwimmwinkel

Die Geschwindigkeit entlang der Rollachse bei kleinem Schwimmwinkel ist ein Maß für die Geschwindigkeit des Flugzeugs in Richtung der Rollachse bei kleinem Schwimmwinkel und gibt Aufschluss über die Stabilität und Reaktionsfähigkeit des Flugzeugs während des Fluges.

u=vβ

Geschwindigkeit beim Laufen bei teilweise voller Entladung

Die Geschwindigkeit bei teilweiser Füllung eines Abwasserkanals wird als die FließGeschwindigkeit bei nicht vollständig gefülltem Abwasserkanal definiert und ist von der Tiefe und dem Gefälle abhängig.

Vs=qa

Geschwindigkeit beim Laufen bei voller Entladung

Die Geschwindigkeit bei vollem Durchfluss wird als die Geschwindigkeit definiert, mit der sich eine Flüssigkeit durch ein vollständig gefülltes Rohr oder einen Kanal bewegt, normalerweise bei maximaler Kapazität.

V=QA

Geschwindigkeit bei teilweise vollem Lauf bei proportionaler Entladung

Die Geschwindigkeit bei teilweiser Füllung und anteiliger Abflussmenge ist definiert als die FließGeschwindigkeit bei nicht vollständig gefülltem Abwasserkanal, beeinflusst durch Tiefe und Neigung.

Vs=PqVAa

Geschwindigkeit während des Volllaufs bei proportionaler Entladung

Die Geschwindigkeit bei vollem Betrieb und proportionaler Entladung wird als die FließGeschwindigkeit einer Flüssigkeit in einem Rohr definiert, wenn dieses vollständig gefüllt ist, beeinflusst durch die Neigung und Rauheit des Rohrs.

V=VsaPqA

Geschwindigkeit für die von der stationären Platte auf den Jet ausgeübte Kraft

Die Geschwindigkeit der Kraft, die von der stationären Platte auf den Jet ausgeübt wird, ist die Änderungsrate seiner Position in Bezug auf einen Referenzrahmen und eine Funktion der Zeit.

vjet=FSt,⊥p[g]γfAJet

Geschwindigkeit bei gegebener Flüssigkeitsmasse

Die Geschwindigkeit bei gegebener Masse des Fluids ist die Änderungsrate seiner Position in Bezug auf den Referenzrahmen und ist eine Funktion der Zeit.

vjet=mpS[g]γfAJet

Geschwindigkeit des Einlasskanals

Die Formel für die EinlasskanalGeschwindigkeit ist definiert als die Darstellung einer KanalGeschwindigkeit in erster Näherung über die Zeit.

c1=Vmsin(2πtT)

Geschwindigkeitsverhältnis der Francis-Turbine

Das Francis-Turbinen-Drehzahlverhältnis ist das Verhältnis der tatsächlichen Drehzahl der Turbine zur idealen Drehzahl für maximale Effizienz. Es hilft bei der Beurteilung, wie nahe die Turbine an ihrer optimalen Drehzahl für die Stromerzeugung arbeitet.

Ku=u12gHi

Geschwindigkeit der Schaufel am Einlass bei gegebenem Geschwindigkeitsverhältnis der Francis-Turbine

Die Geschwindigkeit der Leitschaufel am Einlass bei gegebenem Drehzahlverhältnis der Francis-Turbine ist definiert als die Geschwindigkeit der Leitschaufel am Einlass der Turbine.

u1=Ku2gHi

Geschwindigkeit bei Wellenhöhen zwischen 1 und 7 Fuß

Die Formel für die Geschwindigkeit bei Wellenhöhen zwischen 1 und 7 Fuß ist als Geschwindigkeit der Windwelle des Schnittteils definiert.

Vw=7+2ha

Geschwindigkeit des freien Stroms bei gegebener Strouhal-Zahl

Die Formel für die FreistromGeschwindigkeit bei gegebener Strouhal-Zahl ist definiert als der Durchschnitt zwischen der KanaleintrittsGeschwindigkeit und der DurchschnittsGeschwindigkeit.

V=nDvortexS

Geschwindigkeitskonstante bei Temperatur 2

Die Geschwindigkeitskonstante bei Temperatur 2 ist definiert als die Proportionalitätskonstante in der chemischen Reaktion, die bei Temperatur 2 abläuft. Arrhenius-Gleichung, um die Auswirkung einer Temperaturänderung auf die Geschwindigkeitskonstante und damit auf die ReaktionsGeschwindigkeit zu zeigen.

K2=((K1)(Φ)T2-T110)

Geschwindigkeitskonstante für die Reaktion nullter Ordnung unter Verwendung von Raumzeit für Pfropfenströmung

Die Geschwindigkeitskonstante für die Reaktion nullter Ordnung unter Verwendung der Raum-Zeit-Formel für Pfropfenströmung ist definiert als die ReaktionsGeschwindigkeit für die Reaktion nullter Ordnung, bei der die fraktionale Volumenänderung null ist.

kBatch=XA BatchCo Batch𝛕Batch

Geschwindigkeitskonstante für die Reaktion erster Ordnung unter Verwendung des Recyclingverhältnisses

Die Geschwindigkeitskonstante für die Reaktion erster Ordnung unter Verwendung der Rückführungsverhältnisformel ist als die Proportionalitätskonstante definiert, die die Beziehung zwischen der Geschwindigkeit für die Reaktion erster Ordnung und der ersten Potenz der Konzentration eines der Reaktanten für eine fraktionelle Volumenänderung von Null angibt.

k'=(R+1𝛕)ln(Co+(RCf)(R+1)Cf)

Geschwindigkeitskonstante für die Reaktion zweiter Ordnung unter Verwendung des Recyclingverhältnisses

Die Ratenkonstante für die Reaktion zweiter Ordnung unter Verwendung der Recycle-Ratio-Formel ist als die Proportionalitätskonstante für die Reaktion zweiter Ordnung für eine fraktionelle Volumenänderung von Null definiert.

k''=(R+1)Co(Co-Cf)Co𝛕Cf(Co+(RCf))

Geschwindigkeit des Insassen im Verhältnis zum Fahrzeug nach der Kollision

Die Formel für die Geschwindigkeit des Insassen im Verhältnis zum Fahrzeug nach einer Kollision ist definiert als Maß für die Geschwindigkeit eines Insassen im Verhältnis zum Fahrzeug nach einer Kollision. Sie ist von entscheidender Bedeutung für die Einschätzung der Schwere des Aufpralls und der daraus resultierenden Verletzungen.

Vr=Voδoccd

Geschwindigkeitsausbreitung in einer verlustfreien Leitung

Die Formel für die Geschwindigkeitsausbreitung in einer verlustfreien Leitung ist umgekehrt proportional zur Quadratwurzel des Produkts aus Serieninduktivität und Serienkapazität einer Leitung.

Vp=1lc

Geschwindigkeitskonstante der Reaktion erster Ordnung unter Verwendung des Logarithmus zur Basis 10

Die Geschwindigkeitskonstante der Reaktion erster Ordnung unter Verwendung des Logarithmus zur Basis-10-Formel ist definiert als die ReaktionsGeschwindigkeit pro Konzentration des Reaktanten. Die Formel ist der Logarithmus zur Basis 10 der Anfangskonzentration pro Konzentration zum Zeitpunkt t, das Ganze wird durch die Zeit dividiert, die für die Vervollständigung der Reaktion erforderlich ist.

kfirst=2.303tcompletionlog10(A0Ct)

Geschwindigkeitskonstante zur Halbzeit für die Reaktion erster Ordnung

Die Geschwindigkeitskonstante zur Halbzeit für die Reaktionsformel erster Ordnung ist definiert als die ReaktionsGeschwindigkeit pro Konzentration des Reaktanten. Die Formel ist ein natürlicher Logarithmus von 2 geteilt durch die Halbwertszeit der Reaktion.

kfirst=0.693t1/2

Geschwindigkeitskonstante für dasselbe Produkt für eine Reaktion zweiter Ordnung

Die Geschwindigkeitskonstante für dasselbe Produkt für die Reaktionsformel zweiter Ordnung ist definiert als die durchschnittliche ReaktionsGeschwindigkeit pro Konzentration des Reaktanten mit einer auf 2 erhöhten Leistung.

Ksecond=1axttcompletion-1atcompletion

Geschwindigkeitskonstante für verschiedene Produkte für die Reaktion zweiter Ordnung

Die Geschwindigkeitskonstante für verschiedene Produkte für die Reaktionsformel zweiter Ordnung ist definiert als die durchschnittliche ReaktionsGeschwindigkeit pro Konzentration der beiden verschiedenen Reaktanten, deren Leistung jeweils auf 1 erhöht ist.

Kfirst=2.303tcompletion(CAO-CBO)log10CBO(ax)CAO(bx)

Geschwindigkeitskonstante unter konstantem Druck und konstanter Temperatur für eine Reaktion nullter Ordnung

Die Geschwindigkeitskonstante unter konstantem Druck und konstanter Temperatur für die Reaktionsformel nullter Ordnung ist definiert als Fortschritt der Gasreaktion, die durch Messen des Gesamtdrucks bei einem festen Volumen und einer festen Temperatur überwacht werden kann. Da die Geschwindigkeitskonstante für eine Reaktion nullter Ordnung gilt, sollte die Reihenfolge der Reaktion (n) durch Null ersetzt werden.

k=(2.303t)log10(P0(n-1)(nP0)-Pt)

Geschwindigkeitskonstante nach Titrationsverfahren für Reaktionen erster Ordnung

Die Geschwindigkeitskonstante durch das Titrationsverfahren für die Formel des Reaktionsverfahrens erster Ordnung ist definiert als die ReaktionsGeschwindigkeit geteilt durch die Konzentration des Reaktanten, der auf die Potenz eins erhöht ist. Die Geschwindigkeitskonstante nach dem Titrationsverfahren ist direkt proportional zum Logarithmus des Anfangsvolumens des Reaktanten pro Volumen eines Reaktanten zum Zeitpunkt t.

kfirst=(2.303tcompletion)log10(V0Vt)

Geschwindigkeitskoeffizient

Die Geschwindigkeitskoeffizientenformel ist definiert als das Verhältnis der tatsächlichen AustrittsGeschwindigkeit zum Verhältnis der idealen AustrittsGeschwindigkeit.

Cv=CactCideal

Geschwindigkeitsverhältnis im Differenzial-Riemenscheibenblock von Weston

Das Geschwindigkeitsverhältnis im Differential-Flaschenzug von Weston ist ein Maß für den mechanischen Vorteil, den das System bietet. Es stellt das Verhältnis der durch die Kraft zurückgelegten Strecke (die gezogene Kette) zur zurückgelegten Strecke durch die Last dar.

Vi=2dldl-ds

Geschwindigkeit der Schallwelle bei gegebenem Volumenmodul

Die Geschwindigkeit der Schallwelle in Abhängigkeit vom Kompressionsmodul des Mediums gibt Aufschluss darüber, wie schnell sich Schall durch das Material bewegt. Das Verständnis dieser Beziehung ist in der Akustik, der Materialwissenschaft und in technischen Anwendungen von entscheidender Bedeutung, bei denen die Schallausbreitung und die mechanischen Eigenschaften von Materialien wichtige Überlegungen darstellen.

C=Kρa

Geschwindigkeit der Schallwelle unter Verwendung eines isothermen Prozesses

Die Geschwindigkeit von Schallwellen mithilfe isothermer Prozesse bietet Einblicke in die Auswirkungen der Temperatur und der physikalischen Eigenschaften von Gasen auf die Geschwindigkeit, mit der sich Schall ausbreitet. Dies ermöglicht präzise Berechnungen und fundierte Designentscheidungen in der Akustik, Aerodynamik und verschiedenen technologischen Anwendungen.

C=Rc

Geschwindigkeit der Schallwelle unter Verwendung des adiabatischen Prozesses

Die Geschwindigkeit einer Schallwelle hängt bei einem adiabatischen Prozess vom Adiabatenindex (Verhältnis der spezifischen Wärmekapazitäten), der universellen Gaskonstante, der absoluten Temperatur des Gases und der Molmasse des Gases ab.

C=yRc

Geschwindigkeit der Schallwelle bei gegebener Machzahl für komprimierbare Flüssigkeitsströmung

Die Geschwindigkeit der Schallwelle bei gegebener Mach-Zahl für kompressible Flüssigkeitsströmungen gibt die Geschwindigkeit an, mit der sich Schall durch das Medium ausbreitet, relativ zur SchallGeschwindigkeit in diesem Medium. Diese Beziehung ist von grundlegender Bedeutung in der Aerodynamik, der Luft- und Raumfahrttechnik und der Akustik, wo die Mach-Zahl das Strömungsregime charakterisiert und das Verhalten von Stoßwellen und Schallübertragung beeinflusst.

C=VM

Geschwindigkeitskonstante bei gegebenem Sauerstoffäquivalent

Die Geschwindigkeitskonstante der Formel zum Sauerstoffäquivalent wird als Oxidationsrate organischer Stoffe definiert und hängt von der Art der organischen Stoffe und der Temperatur ab.

Kh=c-log(Lt,e)t

Geschwindigkeitskonstante bei gegebener Desoxygenierungskonstante

Die Geschwindigkeitskonstante in der Formel zur Sauerstoffentzugskonstante wird als Oxidationsrate organischer Stoffe definiert. Sie hängt von der Temperatur und der Art der im Abwasser vorhandenen organischen Stoffe ab.

K=KD0.434

Geschwindigkeit des Strahls für dynamischen Schub, der vom Strahl auf die Platte ausgeübt wird

Die Geschwindigkeit des Strahls für den dynamischen Schub, der vom Strahl auf die Platte ausgeübt wird, ist die Änderungsrate seiner Position in Bezug auf einen Bezugssystem und ist eine Funktion der Zeit.

v=-(mfGγfAJet(∠D(180π))-Vabsolute)

Wie finde ich Formeln?

Hier sind ein paar Tipps für bessere Suchergebnisse.
Seien Sie konkret: Je konkreter Ihre Suchanfrage, desto besser sind Ihre Ergebnisse.
Verwenden Sie mehrere Schlüsselwörter: Kombinieren Sie mehrere Schlüsselwörter, um die Ergebnisse einzugrenzen.
Experimentieren Sie mit Synonymen: Unterschiedliche Begriffe können zu unterschiedlichen Ergebnissen führen.
Platzhaltersuche: Verwenden Sie den Operator * (Sternchen). BEACHTEN SIE, dass dieser Operator nur am Ende eines Wortes funktioniert. Beispiel: Bio*, Bereich* usw.

Alternativ können Sie durch die Unterkategorien innerhalb von navigieren, um die Formeln einzugrenzen, die Sie interessieren.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!