Suche Formeln

Bitte geben Sie mindestens 3 Zeichen ein, um mit der Suche nach -Formeln zu beginnen.

Wählen Sie Filter

Grenzen Sie Ihre Suchergebnisse mithilfe dieser Filter ein.

50 Passende Formeln gefunden!

Geschwindigkeitsschwankungskoeffizient für Schwungrad

Die Formel für den Geschwindigkeitsschwankungskoeffizienten für Schwungräder ist als Maß für die Geschwindigkeitsschwankung eines Schwungrads definiert, bei dem es sich um ein rotierendes Rad handelt, das Energie speichert und die Geschwindigkeitsschwankungen eines Motors oder einer anderen Maschine ausgleicht.

Cs=2ω1-ω2ω1+ω2

Geschwindigkeit der progressiven Welle

Die Formel zur Geschwindigkeit fortschreitender Wellen ist definiert als Maß für die Geschwindigkeit, mit der sich eine Welle durch ein Medium ausbreitet. Sie beschreibt die Rate der Störungsübertragung in einem physikalischen System und ist ein grundlegendes Konzept zum Verständnis der Wellendynamik und ihrer Anwendungen in verschiedenen Bereichen der Physik.

Vw=λTW

Geschwindigkeit der progressiven Welle unter Verwendung der Frequenz

Die Geschwindigkeit fortschreitender Wellen wird mithilfe der Frequenzformel als Maß für die Geschwindigkeit definiert, mit der sich eine Welle durch ein Medium ausbreitet. Dies ist für das Verständnis verschiedener physikalischer Phänomene wie Schallwellen, Lichtwellen und seismischer Wellen von wesentlicher Bedeutung und spielt in Bereichen wie Physik, Ingenieurwesen und Geologie eine entscheidende Rolle.

Vw=λfw

Geschwindigkeit einer progressiven Welle bei gegebener Winkelfrequenz

Die Formel für die Geschwindigkeit einer fortschreitenden Welle bei gegebener Winkelfrequenz ist definiert als Maß für die Geschwindigkeit einer Welle, die sich in eine bestimmte Richtung bewegt, beeinflusst durch die Winkelfrequenz, und ist von entscheidender Bedeutung für das Verständnis des Verhaltens von Wellen in verschiedenen physikalischen Systemen, einschließlich Schall- und Lichtwellen.

Vw=λωf2π

Geschwindigkeit der Welle bei gegebener Wellennummer

Die Formel zur Berechnung der WellenGeschwindigkeit bei gegebener Wellenzahl ist ein Maß für die Geschwindigkeit, mit der sich eine Welle durch ein Medium ausbreitet. Sie bietet Aufschluss über die Frequenz und Wellenlänge der Welle und ist von entscheidender Bedeutung für das Verständnis verschiedener physikalischer Phänomene, wie etwa Schall- und Lichtwellen, in der Physik und in technischen Anwendungen.

Vw=ωfk

Geschwindigkeit des Elektrons in Bohrs Umlaufbahn

Die Geschwindigkeit des Elektrons in Bohrs Umlaufbahn ist eine Vektorgröße (sie hat sowohl Größe als auch Richtung) und ist die zeitliche Änderungsrate der Position (eines Teilchens).

ve_BO=[Charge-e]22[Permitivity-vacuum]nquantum[hP]

Geschwindigkeit des Elektrons im Orbit bei gegebener WinkelGeschwindigkeit

Die Geschwindigkeit des Elektrons in der Umlaufbahn bei gegebener WinkelGeschwindigkeit ist eine Vektorgröße (sie hat sowohl Größe als auch Richtung) und ist die Zeitrate der Positionsänderung (eines Teilchens).

ve_AV=ωrorbit

Geschwindigkeit des Elektrons bei gegebener Zeitdauer des Elektrons

Die Geschwindigkeit des Elektrons bei gegebener Zeitdauer des Elektrons ist eine Vektorgröße (sie hat sowohl Größe als auch Richtung) und ist die Zeitrate der Positionsänderung (eines Teilchens).

velectron=2πrorbitT

Geschwindigkeit eines kleinen Elements für Längsschwingung

Die Formel für die Geschwindigkeit kleiner Elemente bei Längsschwingungen ist als Maß für die Geschwindigkeit kleiner Elemente bei einer Längsschwingung definiert, die durch die Trägheit der Einschränkung beeinflusst wird, und wird zur Analyse der Schwingungen in verschiedenen mechanischen Systemen verwendet.

vs=xVlongitudinall

Geschwindigkeit von Teilchen 1 bei gegebener kinetischer Energie

Die Formel für die Geschwindigkeit von Teilchen 1 bei gegebener kinetischer Energie ist eine Methode zur Berechnung der Geschwindigkeit eines Teilchens, wenn wir die Geschwindigkeit anderer Teilchen und die gesamte kinetische Energie des Systems kennen. Da die gesamte kinetische Energie die Summe der individuellen kinetischen Energie beider Teilchen ist, bleibt uns nur eine Variable, und durch Lösen der Gleichung erhalten wir die erforderliche Geschwindigkeit.

v1=(2KE)-(m2v22)m1

Geschwindigkeit von Teilchen 2 bei gegebener kinetischer Energie

Die Formel für die Geschwindigkeit von Teilchen 2 bei gegebener kinetischer Energie ist eine Methode zur Berechnung der Geschwindigkeit eines Teilchens, wenn wir die Geschwindigkeit anderer Teilchen und die gesamte kinetische Energie des Systems kennen. Kinetische Energie ist die Arbeit, die erforderlich ist, um einen Körper einer bestimmten Masse aus dem Ruhezustand zu beschleunigen zu seiner angegebenen Geschwindigkeit. Da die kinetische Energie KE eine Summe der kinetischen Energie für jede Masse ist, haben wir nur eine Variable übrig gelassen und durch Lösen der Gleichung erhalten wir die erforderliche Geschwindigkeit.

v2=(2KE)-(m1v12)m2

Geschwindigkeit hinter Normal Shock

Die Geschwindigkeit hinter dem Normalstoß berechnet die Geschwindigkeit einer Flüssigkeit stromabwärts einer normalen Stoßwelle. Diese Formel berücksichtigt Parameter wie die Geschwindigkeit vor dem Stoß, das Verhältnis der spezifischen Wärme für die Flüssigkeit und die Machzahl der Strömung. Es liefert wertvolle Einblicke in die Geschwindigkeitsänderung, die sich aus dem Durchgang der Stoßwelle ergibt.

V2=V1γ+1(γ-1)+2M2

Geschwindigkeit unter Verwendung der Wasserströmungsgleichung

Die Geschwindigkeit wird mithilfe der Wasserdurchflussgleichung als FließGeschwindigkeit definiert, wenn der Querschnittsbereich des Rohrs und der Wasserdurchfluss gegeben sind.

Vf=QwAcs

Geschwindigkeit bei gegebenem Pulldown-Manöverradius

Die Geschwindigkeit bei Pull-Down-Manöverradius ist die Geschwindigkeit, die ein Flugzeug benötigt, um während eines Pull-Down-Manövers einen bestimmten Wenderadius beizubehalten. Diese Formel berechnet die Geschwindigkeit basierend auf dem Wenderadius, der Erdbeschleunigung und dem Lastfaktor. Das Verständnis und die Anwendung dieser Formel ist für Piloten und Ingenieure von entscheidender Bedeutung, um sichere und kontrollierte Pull-Down-Manöver zu gewährleisten.

Vpull-down=R[g](n+1)

Geschwindigkeit für gegebene Pull-Down-Manöverrate

Die Geschwindigkeit für eine bestimmte Pull-Down-Manöverrate hängt vom Lastfaktor und der WendeGeschwindigkeit des Flugzeugs ab. Diese Formel bietet eine vereinfachte Annäherung an die Geschwindigkeit, die erforderlich ist, um die gewünschte Sinkrate während des Pull-Down-Manövers aufrechtzuerhalten.

Vpull-down=[g]1+nωpull-down

Geschwindigkeit in Abschnitt 1 für stetigen Fluss

Die Formel „Geschwindigkeit in Abschnitt 1 für stetigen Fluss“ ist als StrömungsGeschwindigkeit an einem bestimmten Punkt im Strom definiert.

u01=QAcsρ1

Geschwindigkeit in Abschnitt 2 bei gegebenem Durchfluss in Abschnitt 1 für stetigen Durchfluss

Die Geschwindigkeit in Abschnitt 2 bei gegebener Strömung in Abschnitt 1 für die Formel „Steady Flow“ ist als StrömungsGeschwindigkeit an einem bestimmten Punkt im Strom definiert.

u02=QAcsρ2

Geschwindigkeit am Abschnitt für die Entladung durch den Abschnitt für eine stationäre inkompressible Flüssigkeit

Die Geschwindigkeit am Abschnitt für den Austritt durch den Abschnitt für stationäres inkompressibles Fluid ist als StrömungsGeschwindigkeit in der Querschnittsfläche definiert.

uFluid=QAcs

Geschwindigkeit des Gasmoleküls bei gegebener Kraft

Die Geschwindigkeit des Gasmoleküls gegebene Kraftformel ist definiert als die Quadratwurzel des Produkts der Länge des rechteckigen Kastens und der Kraft pro Masse des Teilchens.

uF=FLm

Geschwindigkeit des Gasmoleküls in 1D bei gegebenem Druck

Die Geschwindigkeit des Gasmoleküls in der 1D gegebenen Druckformel ist definiert als unter der Wurzel des Verhältnisses des Gasdrucks multipliziert mit dem Volumen mit der Masse des Partikels.

up=PgasVboxm

Geschwindigkeit des Körpers bei gegebenem Impuls

Die Formel für die Geschwindigkeit eines Körpers bei gegebenem Impuls ist definiert als Maß für die Geschwindigkeit eines Objekts in eine bestimmte Richtung. Sie wird berechnet, indem der Impuls des Objekts durch seine Masse geteilt wird. Sie liefert ein grundlegendes Konzept zum Verständnis der Bewegung eines Objekts und ihrer Beziehung zur Kraft.

v=pmo

Geschwindigkeit der Impulsänderung bei gegebener Beschleunigung und Masse

Die Formel zur Änderungsrate des Impulses bei gegebener Beschleunigung und Masse ist definiert als ein Maß für die Rate, mit der sich der Impuls eines Objekts ändert, wenn auf es eine externe Kraft einwirkt, wobei die Masse des Objekts und seine Beschleunigung die Hauptfaktoren sind, die diese Änderung beeinflussen.

rm=moa

Geschwindigkeit des Projektils des Mach-Kegels im komprimierbaren Flüssigkeitsstrom

Die Geschwindigkeit des Projektils eines Mach-Kegels in einer kompressiblen Flüssigkeitsströmung beschreibt die Geschwindigkeit, mit der sich das Projektil bewegt, wenn es die SchallGeschwindigkeit im umgebenden Medium erreicht oder überschreitet. Das Verständnis dieser Geschwindigkeit ist in der Aerodynamik und Ballistik von entscheidender Bedeutung, da sie den Beginn von Stoßwellen und die aerodynamischen Herausforderungen anzeigt, die mit Überschall- und Hyperschallflügen verbunden sind.

V=Csin(μ)

Geschwindigkeit der Schallwelle unter Berücksichtigung des Mach-Winkels in einem komprimierbaren Flüssigkeitsstrom

Die Geschwindigkeit von Schallwellen unter Berücksichtigung des Mach-Winkels bei kompressibler Fluidströmung ist wichtig für das Verständnis, wie sich Schall durch ein Medium ausbreitet, wenn die FluidGeschwindigkeit die SchallGeschwindigkeit erreicht oder überschreitet. Diese Beziehung hilft bei der Vorhersage des Verhaltens von Stoßwellen und der Schallübertragung in verschiedenen Umgebungen und ist von wesentlicher Bedeutung in der Luft- und Raumfahrttechnik, der Akustik und der Untersuchung der HochGeschwindigkeitsfluiddynamik.

C=Vsin(μ)

Geschwindigkeitskonstante bei gegebenem Sauerstoffäquivalent

Die Geschwindigkeitskonstante der Formel zum Sauerstoffäquivalent wird als Oxidationsrate organischer Stoffe definiert und hängt von der Art der organischen Stoffe und der Temperatur ab.

Kh=c-log(Lt,e)t

Geschwindigkeitskonstante bei gegebener Desoxygenierungskonstante

Die Geschwindigkeitskonstante in der Formel zur Sauerstoffentzugskonstante wird als Oxidationsrate organischer Stoffe definiert. Sie hängt von der Temperatur und der Art der im Abwasser vorhandenen organischen Stoffe ab.

K=KD0.434

Geschwindigkeitsgradienten

Die Formel für Geschwindigkeitsgradienten wird als Änderung der Geschwindigkeit im Verhältnis zur Entfernungsänderung entlang der gemessenen Richtung definiert.

VG=πr2Ω30(r2-r1)

Geschwindigkeit des äußeren Zylinders bei gegebenem Geschwindigkeitsgradienten

Die Geschwindigkeit des äußeren Zylinders wird mit der Geschwindigkeitsgradientenformel als die Geschwindigkeit definiert, mit der sich der Zylinder in Umdrehungen pro Minute dreht.

Ω=VGπr230(r2-r1)

Geschwindigkeit des äußeren Zylinders bei gegebener dynamischer Viskosität der Flüssigkeit

Die Geschwindigkeit des Außenzylinders wird anhand der Formel zur dynamischen Viskosität einer Flüssigkeit als Geschwindigkeit des Zylinders in Umdrehungen pro Minute definiert.

Ω=15T(r2-r1)ππr1r1r2hμ

Geschwindigkeit des Außenzylinders bei gegebenem Drehmoment, das auf den Außenzylinder ausgeübt wird

Die Geschwindigkeit des Außenzylinders bei auf den Außenzylinder ausgeübtem Drehmoment wird gemäß der Formel als das auf ihn ausgeübte Drehmoment definiert, wobei die Beziehung zwischen Drehmoment, Rotationsträgheit und Winkelbeschleunigung gilt.

Ω=Toππμr1460C

Geschwindigkeit des äußeren Zylinders bei gegebenem Gesamtdrehmoment

Die Geschwindigkeit des äußeren Zylinders wird bei gegebener Gesamtdrehmomentformel als die Geschwindigkeit des Zylinders in Umdrehungen pro Minute definiert.

Ω=ΤTorqueVcμ

Geschwindigkeit des Strahls für dynamischen Schub, der vom Strahl auf die Platte ausgeübt wird

Die Geschwindigkeit des Strahls für den dynamischen Schub, der vom Strahl auf die Platte ausgeübt wird, ist die Änderungsrate seiner Position in Bezug auf einen Bezugssystem und ist eine Funktion der Zeit.

v=-(mfGγfAJet(∠D(180π))-Vabsolute)

Geschwindigkeit des Rades bei gegebener TangentialGeschwindigkeit an der Einlassspitze der Leitschaufel

Die Geschwindigkeit des Rades, gegeben durch die TangentialGeschwindigkeit an der Einlassspitze der Schaufel, die sich um eine Achse dreht, ist die Anzahl der Umdrehungen des Objekts dividiert durch die Zeit, angegeben als Umdrehungen pro Minute (U/min).

Ω=vtangential602πr

Geschwindigkeitskoeffizient bei gegebener Düseneffizienz

Geschwindigkeitskoeffizient bei gegebener Düseneffizienzformel ist definiert als das Verhältnis der tatsächlichen Geschwindigkeit des aus einer Düse austretenden Gases zur unter idealen Bedingungen berechneten Geschwindigkeit.

Cv=ηnozlze

Geschwindigkeit nach Expansion bei idealem Schub

Die Geschwindigkeit nach der Expansion bei idealem Schub ist ein Maß für die Geschwindigkeit, die ein Objekt nach der Expansion erreicht. Sie wird unter Berücksichtigung des idealen Schubs, der Massenstromrate und der FlugGeschwindigkeit des Objekts berechnet und liefert wertvolle Einblicke in die Bewegung und das Verhalten des Objekts.

Ve=Tidealma+V

Geschwindigkeitskonstante der Reaktion nullter Ordnung in Reaktion nullter Ordnung, gefolgt von Reaktion erster Ordnung

Die Geschwindigkeitskonstante der Reaktion nullter Ordnung in der Formel „Reaktion nullter Ordnung“, gefolgt von der Formel „Reaktion erster Ordnung“, ist definiert als die Beziehung zwischen ReaktionsGeschwindigkeit und reagierenden Substanzen.

k0=CA0-CAΔt

Geschwindigkeitskonstante für Mixed-Flow-Reaktor mit Gewicht des Katalysators

Die Geschwindigkeitskonstante für einen Mischflussreaktor mit Katalysatorgewicht ist als Geschwindigkeitskonstante definiert, die unter Verwendung der Raumzeit des Reaktors unter Berücksichtigung des Katalysatorgewichts, der Reaktantenumwandlung und der fraktionierten Umwandlung berechnet wird.

k '=XA,out(1+εXA,out)(1-XA,out)𝛕'

Geschwindigkeitskonstante für Mixed-Flow-Reaktor mit Katalysatorvolumen

Die Geschwindigkeitskonstante für Mischströmungsreaktoren mit Katalysatorvolumen ist definiert als Geschwindigkeitskonstante, berechnet unter Verwendung der Reaktantenumwandlung, der fraktionierten Umwandlung und der berechneten Raumzeit unter Berücksichtigung des Katalysatorvolumens. Der Geschwindigkeitsausdruck für eine Reaktion erster Ordnung in Gegenwart eines Katalysators wird häufig geändert, um den Effekt des Katalysators einzubeziehen.

k'''=XA,out(1+εXA,out)(1-XA,out)𝛕'''

Geschwindigkeitsverhältnis

Die Formel für das Geschwindigkeitsverhältnis ist definiert als das Verhältnis der Drehzahl des angetriebenen Zahnrads zu der des treibenden Zahnrads in einem mechanischen System. Sie hilft dabei, die Effizienz und Drehmomentübertragung des Getriebes zu bestimmen.

i=TdTdr

Geschwindigkeit des Serien-DC-Motors

Die Formel für die Geschwindigkeit des Serien-DC-Motors ist definiert als die Geschwindigkeit, mit der sich der Rotor dreht, und die SynchronGeschwindigkeit ist die Geschwindigkeit des Statormagnetfelds im Dreiphasen-Induktionsmotor.

N=Vs-Ia(Ra+Rsh)KfΦ

Geschwindigkeit an mittlerer Position

Die Formel für die Geschwindigkeit an der mittleren Position ist definiert als Maß für die Geschwindigkeit eines Objekts an seiner mittleren Position während freier Längsschwingungen und bietet Einblick in das Schwingungsverhalten des Objekts und seine Eigenfrequenz.

v=(ωfx)cos(ωfttotal)

Geschwindigkeitskoeffizient

Die Formel für den Geschwindigkeitskoeffizienten ist definiert als das Verhältnis zwischen der tatsächlichen Geschwindigkeit des Strahls an der Vena-Contracta und der theoretischen Geschwindigkeit am Strahl.

Cv=vaVth

Geschwindigkeitskoeffizient für horizontalen und vertikalen Abstand

Die Formel für den Geschwindigkeitskoeffizienten für die horizontale und vertikale Entfernung wird aus der experimentellen Bestimmung der hydraulischen Koeffizienten definiert.

Cv=R4VH

Geschwindigkeit der Walze bei der Verdichtungsproduktion durch Verdichtungsgeräte

Die Formel für die Geschwindigkeit der Walze bei gegebener Verdichtungsleistung durch Verdichtungsgeräte ist definiert als die Geschwindigkeit, mit der Verdichtungsgeräte wie Walzen während des Verdichtungsprozesses arbeiten. Effiziente Geschwindigkeiten tragen zu einer höheren Produktivität bei Bauprojekten bei, da die Geräte in kürzerer Zeit mehr Fläche abdecken können, ohne die Qualität zu beeinträchtigen.

S=yP16WLPRE

Geschwindigkeitsdruck gemäß ASCE 7

Der Geschwindigkeitsdruck gemäß ASCE 7 ist definiert als der Geschwindigkeitsdruck gemäß den ASCE 7-Methode-II-Normen unter Berücksichtigung des Winddrucks sowie der externen und internen Druckkoeffizienten.

q=p+qiGCptGCep

Geschwindigkeitsdruck an einem bestimmten Punkt gemäß ASCE 7

Der Geschwindigkeitsdruck an einem bestimmten Punkt gemäß ASCE 7 ist definiert als der Geschwindigkeitsdruck an einem bestimmten Punkt zur Bestimmung des Innendrucks gemäß ASCE 7 Methode II.

qi=(qGCep)-pGCpt

Geschwindigkeit gegebener Wenderadius für hohen Lastfaktor

Die Geschwindigkeit bei Wenderadius unter Bedingungen mit hohem Lastfaktor ist die Geschwindigkeit, die ein Flugzeug benötigt, um einen bestimmten Wenderadius bei einem erheblichen Lastfaktor beizubehalten. Diese Formel berechnet die Geschwindigkeit basierend auf Wenderadius, Lastfaktor und Erdbeschleunigung. Das Verständnis und die Anwendung dieser Formel ist für Piloten und Ingenieure von entscheidender Bedeutung, um die Manövrierfähigkeit von Flugzeugen zu optimieren und die Sicherheit bei Manövern mit hohem Lastfaktor zu gewährleisten.

v=Rn[g]

Geschwindigkeit am Auslass für Druckverlust am Rohrausgang

Die Formel für die Geschwindigkeit am Auslass für den Druckverlust am Rohrausgang ist unter Berücksichtigung der Quadratwurzel des Druckverlusts am Rohrausgang und der Erdbeschleunigung bekannt.

v=ho2[g]

Geschwindigkeitsgradient bei Scherspannung

Die Formel für den Geschwindigkeitsgradienten bei gegebener Scherspannung ist als Geschwindigkeitsdifferenz zwischen benachbarten Fluidschichten definiert. Es ist das Verhältnis zwischen Geschwindigkeitsänderung und Abstandsänderung zwischen den Schichten.

dvdy=τμ

Geschwindigkeitsgradient

Die Geschwindigkeitsgradientenformel ist definiert als ein Verhältnis zwischen der Änderung der Geschwindigkeit zwischen benachbarten Schichten und der Änderung des Abstands zwischen aufeinanderfolgenden Punkten zwischen benachbarten Schichten.

dvdy=dvdy

Wie finde ich Formeln?

Hier sind ein paar Tipps für bessere Suchergebnisse.
Seien Sie konkret: Je konkreter Ihre Suchanfrage, desto besser sind Ihre Ergebnisse.
Verwenden Sie mehrere Schlüsselwörter: Kombinieren Sie mehrere Schlüsselwörter, um die Ergebnisse einzugrenzen.
Experimentieren Sie mit Synonymen: Unterschiedliche Begriffe können zu unterschiedlichen Ergebnissen führen.
Platzhaltersuche: Verwenden Sie den Operator * (Sternchen). BEACHTEN SIE, dass dieser Operator nur am Ende eines Wortes funktioniert. Beispiel: Bio*, Bereich* usw.

Alternativ können Sie durch die Unterkategorien innerhalb von navigieren, um die Formeln einzugrenzen, die Sie interessieren.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!