Suche Formeln

Bitte geben Sie mindestens 3 Zeichen ein, um mit der Suche nach -Formeln zu beginnen.

Wählen Sie Filter

Grenzen Sie Ihre Suchergebnisse mithilfe dieser Filter ein.

50 Passende Formeln gefunden!

Geschwindigkeitsgradient bei gegebener Scherkraft pro Flächeneinheit oder Scherspannung

Der Geschwindigkeitsgradient bei gegebener Scherkraft pro Flächeneinheit oder Scherspannungsformel wird als Geschwindigkeitsunterschied zwischen benachbarten Schichten der Flüssigkeit definiert.

du/dy=σμ

Geschwindigkeit der oberen Platte bei gegebener Scherkraft pro Flächeneinheit oder Scherspannung

Die Geschwindigkeit der oberen Platte wird bei gegebener Scherkraft pro Flächeneinheit oder Scherspannungsformel als die beiden parallelen Platten mit jeweils einer Flächeneinheit definiert, die durch die mit Flüssigkeit gefüllte Breite zwischen den Platten getrennt sind.

Vf=σyμ

Geschwindigkeitskonstante für die Reaktion erster Stufe im ersten Schritt für MFR bei maximaler Zwischenkonzentration

Die Geschwindigkeitskonstante für die Reaktion erster Stufe im ersten Schritt für MFR bei maximaler Zwischenkonzentration ist definiert als die Proportionalitätskonstante für die Reaktion im ersten Schritt in einer irreversiblen Reaktion erster Ordnung in zwei Schritten in Reihe für Reaktoren mit gemischter Strömung bei maximaler Zwischenkonzentration.

kI=1k2(τR,max2)

Geschwindigkeitskonstante für die Reaktion erster Ordnung im zweiten Schritt für MFR bei maximaler Zwischenkonzentration

Die Geschwindigkeitskonstante für die Reaktion erster Ordnung im zweiten Schritt für MFR bei maximaler Zwischenkonzentration ist definiert als die Proportionalitätskonstante für die Reaktion im zweiten Schritt in einer irreversiblen Reaktion erster Ordnung in zwei Schritten in Reihe für Reaktoren mit gemischter Strömung bei maximaler Zwischenkonzentration.

k2=1kI(τR,max2)

Geschwindigkeitskonstante für Reaktion A bis B für einen Satz von zwei parallelen Reaktionen

Die Formel für die Geschwindigkeitskonstante der Reaktionen A bis B für den Satz aus zwei parallelen Reaktionen ist definiert als die Beziehung zwischen der molaren Konzentration der Reaktanten und der Geschwindigkeit der stattfindenden chemischen Reaktion.

k1=1tln(A0RA)-k2

Geschwindigkeitskonstante für Reaktion A bis C in einem Satz von zwei Parallelreaktionen

Die Formel für die Geschwindigkeitskonstante für die Reaktionen A bis C im Satz aus zwei parallelen Reaktionen ist definiert als die Beziehung zwischen der molaren Konzentration der Reaktanten und der Geschwindigkeit der stattfindenden chemischen Reaktion.

k2=1tln(A0RA)-k1

Geschwindigkeit des Satelliten im kreisförmigen LEO als Funktion der Höhe

Die Formel zur Berechnung der SatellitenGeschwindigkeit in einer kreisförmigen erdnahen Umlaufbahn als Funktion der Höhe ist definiert als die Geschwindigkeit, mit der ein Satellit die Erde in einer kreisförmigen erdnahen Umlaufbahn umkreist. Sie ist abhängig von der Höhe des Satelliten über der Erdoberfläche und stellt einen entscheidenden Parameter bei der Konstruktion und dem Betrieb von Satelliten in Weltraummissionen dar.

v=[GM.Earth][Earth-R]+z

Geschwindigkeit des Satelliten in seinem kreisförmigen GEO-Radius

Die Geschwindigkeit eines Satelliten in seiner kreisförmigen geosynchronen Umlaufbahn wird in Abhängigkeit von der Gravitationskonstante und dem Radius der Umlaufbahn als die Geschwindigkeit definiert, mit der ein Satellit die Erde in einer kreisförmigen geosynchronen Umlaufbahn umkreist.

v=[GM.Earth]Rgso

Geschwindigkeitskonstante der Phase zwischen Blase und Wolke

Die Formel für die Geschwindigkeitskonstante der Phase zwischen Blase und Wolke wird als berechnete Geschwindigkeitskonstante definiert, wenn im Wirbelreaktor Blasenbildung auftritt.

Kbc=4.50(umfdb)+5.85(Df R)12([g])14db54

Geschwindigkeitskonstante der Phase zwischen Wolkenwache und Emulsion

Die Geschwindigkeitskonstante der Phase zwischen Wolkenwache und Emulsionsformel wird als berechnete Geschwindigkeitskonstante definiert, wenn Blasenbildung an der Grenzfläche im Wirbelschichtreaktor beim Kunii-Levenspiel-Modell auftritt.

Kce=6.77(εmfDf Rubrdb3)12

Geschwindigkeit für verzögerte Kohärenz bei der Photodissoziation

Die Geschwindigkeitsformel für die verzögerte Kohärenz bei der Photodissoziation ist definiert als die Größe der Änderung seiner Position über die Zeit oder die Größe der Änderung seiner Position pro Zeiteinheit während der verzögerten Kohärenz während der Photodissoziation des KrF-Moleküls.

vcov=2(Vcov_R0-Vcov_R)μcov

Geschwindigkeit im schnellen Wirbelbett

Die Formel „Geschwindigkeit im schnellen Wirbelschichtbett“ bezieht sich auf die AufwärtsGeschwindigkeit des Fluidisierungsgases, das zum Schweben und Fluidisieren fester Partikel im Bett verwendet wird. Schnelle Wirbelschichten zeichnen sich durch hohe GasGeschwindigkeiten aus, und diese Geschwindigkeiten liegen typischerweise deutlich über der minimalen FluidisierungsGeschwindigkeit.

uTB-FF=1.53(ρsolids-ρgas)[g]dpρgas

Geschwindigkeit in der pneumatischen Förderung

Die Geschwindigkeitsformel bei der pneumatischen Förderung ist definiert als die Geschwindigkeit, typischerweise ausgedrückt als Luft- oder GasGeschwindigkeit am Punkt der Injektion oder Einführung der Feststoffpartikel in das Fördersystem.

uFF-PC=((21.6((GSρgas)0.542)(d'p 0.315))[g]dp)11.542

Geschwindigkeitskoeffizient

Die Formel für den Geschwindigkeitskoeffizienten ist definiert als das Verhältnis zwischen der tatsächlichen Geschwindigkeit des Strahls an der Vena-Contracta und der theoretischen Geschwindigkeit am Strahl.

Cv=vaVth

Geschwindigkeitskoeffizient für horizontalen und vertikalen Abstand

Die Formel für den Geschwindigkeitskoeffizienten für die horizontale und vertikale Entfernung wird aus der experimentellen Bestimmung der hydraulischen Koeffizienten definiert.

Cv=R4VH

Geschwindigkeitsverhältnis

Die Formel für das Drehzahlverhältnis ist eine dimensionslose Größe, die das Strömungsverhalten einer Kreiselpumpe charakterisiert. Sie stellt eine Beziehung zwischen der UmfangsGeschwindigkeit des Laufrads und der SpritzGeschwindigkeit der Flüssigkeit her, die für die Konstruktion und Optimierung der Pumpenleistung von wesentlicher Bedeutung ist.

Ku=u22[g]Hm

Geschwindigkeitsverhältnis in Westons Differentialriemenscheibe bei gegebener Anzahl von Zähnen

Das Geschwindigkeitsverhältnis in der Differentialriemenscheibe von Weston bei gegebener Zähnezahl kann auch anhand der Zähnezahl der beiden Zahnräder (die den beiden Riemenscheiben entsprechen) ausgedrückt werden.

Vi=2T1T1-T2

Geschwindigkeitsverhältnis in Westons Differenzialriemenscheibe bei gegebenem Riemenscheibenradius

Das Geschwindigkeitsverhältnis in Westons Differentialriemenscheibe bei gegebenem Riemenscheibenradius kann mithilfe der Radien der beiden beteiligten Riemenscheiben ermittelt werden.

Vi=2r1r1-r2

Geschwindigkeitsverhältnis von Schnecke und Schneckenrad

Das Übersetzungsverhältnis von Schnecken- und Schneckenradgetrieben gibt den mechanischen Vorteil an, den das System bietet. Es ist das Verhältnis der durch die Kraft (Eingang) zurückgelegten Strecke zur durch die Last (Ausgang) zurückgelegten Strecke.

Vi=DmTw2Rd

Geschwindigkeitsverhältnis von Schnecke und Schneckenrad, wenn die Schnecke ein Doppelgewinde hat

Das Geschwindigkeitsverhältnis von Schnecke und Schneckenrad ist bei einer Schnecke mit zwei Gewinden das Verhältnis der Anzahl der Zähne auf dem Schneckenrad zur Anzahl der Gewinde auf der Schnecke. Diese Formel berechnet den mechanischen Vorteil des Schneckengetriebesystems und gibt an, wie viele Umdrehungen der Schnecke erforderlich sind, um eine Umdrehung des Schneckenrads auszuführen.

Vi=dwTw4Rd

Geschwindigkeitsverhältnis von Schnecke und Schneckenrad, wenn die Schnecke mehrere Gewindegänge hat

Das Geschwindigkeitsverhältnis von Schnecke und Schneckenrad ist bei Schnecken mit mehreren Gewinden das Verhältnis der Anzahl der Zähne auf dem Schneckenrad zur Anzahl der Gewindegänge (Anfänge) auf der Schnecke. Diese Formel bestimmt, wie viele Umdrehungen der Schnecke erforderlich sind, um das Schneckenrad einmal zu drehen, und gibt den mechanischen Vorteil und die Untersetzung an, die das System bietet.

Vi=dwTw2nRd

Geschwindigkeitsverhältnis des Schneckenrad-Riemenscheibenblocks

Das Geschwindigkeitsverhältnis eines Flaschenzugs mit Schneckengetriebe bezieht sich auf das Verhältnis der durch die Kraft zurückgelegten Distanz zur durch die Last zurückgelegten Distanz. Es ist ein Maß für den mechanischen Vorteil, den der Schneckengetriebemechanismus bietet.

Vi=dwTwR

Geschwindigkeitsverhältnis eines einfachen Spindelhubgetriebes

Das Geschwindigkeitsverhältnis eines einfachen Spindelhubgetriebes beschreibt das Verhältnis zwischen der durch die Kraft zurückgelegten Distanz und der durch die Last zurückgelegten Distanz. Es spiegelt den mechanischen Vorteil wider, den das Spindelhubsystem bietet.

Vi=2πlPs

Geschwindigkeitsverhältnis des Differenzial-Spindelhubgetriebes

Das Geschwindigkeitsverhältnis eines Differentialspindelhubgetriebes ist ein Maß für den mechanischen Vorteil, den das System bietet. Es beschreibt das Verhältnis der durch die Kraft zurückgelegten Distanz zur durch die Last zurückgelegten Distanz.

Vi=2πlpa-pb

Geschwindigkeitsverhältnis des Spindelhubgetriebes mit Schneckengetriebe

Das Übersetzungsverhältnis eines Spindelhubgetriebes mit Schneckengetriebe misst den mechanischen Vorteil des Systems, indem es die durch die Kraft zurückgelegte Distanz mit der durch die Last zurückgelegten Distanz vergleicht. Bei einem Spindelhubgetriebe mit Schneckengetriebe treibt das Schneckengetriebe den Schraubmechanismus an, und das Übersetzungsverhältnis wird durch die Getriebe- und Schraubparameter beeinflusst.

Vi=2πRwTsPs

Geschwindigkeitsverhältnis eines Spindelhubgetriebes mit Schneckengetriebe und Doppelgewinde

Geschwindigkeitsverhältnis eines Spindelhubelements mit Schneckengetriebe und parallel verlaufenden Doppelgewinden, die sich auf die Steigung und damit auf das Geschwindigkeitsverhältnis auswirken.

Vi=2πRwTw2Ps

Geschwindigkeitsverhältnis eines Spindelhubgetriebes mit Schneckengetriebe und mehreren Gewindegängen

Das Geschwindigkeitsverhältnis eines Spindelhubgetriebes mit Schneckengetriebe und mehreren Gewinden wird durch die Anzahl der Gewinde beeinflusst, die wiederum die Steigung der Schraube bestimmen.

Vi=2πRwTwnPs

Geschwindigkeit des Kolbens

Die Formel zur Berechnung der KolbenGeschwindigkeit ist definiert als die Geschwindigkeit, mit der sich der Kolben in einer Kolbenpumpe bewegt. Dabei handelt es sich um eine wichtige Komponente in zahlreichen Industrieanwendungen und einen Schlüsselfaktor bei der Bestimmung der Gesamtleistung und Effizienz der Pumpe.

vpiston=ωrsin(ωtsec)

Geschwindigkeit der Flüssigkeit im Rohr

Die Formel für die Geschwindigkeit von Flüssigkeit in einer Leitung ist definiert als die Fließrate einer Flüssigkeit durch eine Leitung in einem Kolbenpumpensystem. Sie wird von Faktoren wie der Querschnittsfläche der Leitung, der WinkelGeschwindigkeit, dem Radius und der Zeit beeinflusst, die zusammen die Bewegung und den Druck der Flüssigkeit beeinflussen.

vl=Aaωrsin(ωts)

Geschwindigkeit der Welle bei TiefwasserGeschwindigkeit und Wellenlänge

Die Wellenschnelligkeit bei Tiefwasserschnelligkeit und -wellenlänge ist definiert als die Geschwindigkeit, mit der sich eine einzelne Welle fortbewegt oder „ausbreitet“.

Cs=Coλsλo

Geschwindigkeit des Wasserflusses mit bekannter Wassersäule und Stützpfeilerwiderstand

Die FließGeschwindigkeit des Wassers bei bekannter Wassersäule und bekanntem Pfeilerwiderstand wird als der Wert der FließGeschwindigkeit des Wassers durch die Wasserleitung unter Berücksichtigung der Wassersäule und des Pfeilerwiderstands definiert.

Vfw=(([g]γwater)((PBR2Acssin(θb2)-Hγwater)))

Geschwindigkeit bei Wellenhöhen zwischen 1 und 7 Fuß

Die Formel für die Geschwindigkeit bei Wellenhöhen zwischen 1 und 7 Fuß ist als Geschwindigkeit der Windwelle des Schnittteils definiert.

Vw=7+2ha

Geschwindigkeitskonstante für irreversible Reaktionen erster Ordnung

Die Geschwindigkeitskonstante für irreversible Reaktionen erster Ordnung ist definiert als die UmwandlungsGeschwindigkeit von Reaktanten in Produkte.

K1st order=-ln(1-XA)t

Geschwindigkeitskonstante für irreversible Reaktionen erster Ordnung unter Verwendung von log10

Die Geschwindigkeitskonstante für irreversible Reaktionen erster Ordnung unter Verwendung der log10-Formel ist definiert als die UmwandlungsGeschwindigkeit von Reaktanten in Produkte.

K1st order=-2.303log10(1-XA)t

Geschwindigkeitskonstante für die Reaktion zweiter Ordnung unter Verwendung der Reaktantenkonzentration für Pfropfenströmung

Die Geschwindigkeitskonstante für die Reaktion zweiter Ordnung unter Verwendung der Reaktantenkonzentration für die Formel Pfropfenströmung ist definiert als die Proportionalitätskonstante in der Gleichung, die die Beziehung zwischen der Geschwindigkeit einer chemischen Reaktion und den Konzentrationen der reagierenden Substanzen ausdrückt.

k''=Co Batch-CBatch𝛕BatchCo BatchCBatch

Geschwindigkeitskonstante für die Reaktion zweiter Ordnung unter Verwendung der Reaktantenkonzentration für gemischten Fluss

Die Formel „Geschwindigkeitskonstante für Reaktionen zweiter Ordnung unter Verwendung der Reaktantenkonzentration für Mischströmung“ ist als die Proportionalitätskonstante in der Gleichung definiert, die die Beziehung zwischen der Geschwindigkeit einer chemischen Reaktion und den Konzentrationen der reagierenden Substanzen für Mischströmung ausdrückt.

kmixed=Co-C(𝛕mixed)(C)2

Geschwindigkeitskonstante für die Reaktion zweiter Ordnung unter Verwendung von Raumzeit für gemischte Strömung

Die Formel „Geschwindigkeitskonstante für Reaktionen zweiter Ordnung unter Verwendung von Raumzeit für Mischströmung“ ist definiert als die Proportionalitätskonstante in der Gleichung, die die Beziehung zwischen der Geschwindigkeit einer chemischen Reaktion und den Konzentrationen der reagierenden Substanzen für Mischströmung ausdrückt.

kmixed=Xmfr(1-Xmfr)2(𝛕mixed)(Co)

Geschwindigkeiten aus der Länge der Übergangskurven für normale Geschwindigkeiten

Geschwindigkeiten aus Übergangsbogenlänge für NormalGeschwindigkeiten ist definiert als die Geschwindigkeit, mit der Eisenbahnkurven mit normalen Überhöhungswerten bei normaler Geschwindigkeit ausgelegt werden. Umrechnungsfaktor von mm in Meter wird hinzugefügt.

VNormal=134Le1000

Geschwindigkeiten aus der Länge der Übergangskurven für hohe Geschwindigkeiten

Geschwindigkeiten aus der Formel Länge der Übergangsbögen für hohe Geschwindigkeiten ist definiert als die Geschwindigkeit, mit der Eisenbahnkurven mit normalen Überhöhungswerten ausgelegt werden, wenn die Geschwindigkeit hoch ist. Umrechnungsfaktor von mm in Meter wird hinzugefügt.

VHigh=198Le1000

Geschwindigkeit des Insassen im Verhältnis zum Fahrzeug nach der Kollision

Die Formel für die Geschwindigkeit des Insassen im Verhältnis zum Fahrzeug nach einer Kollision ist definiert als Maß für die Geschwindigkeit eines Insassen im Verhältnis zum Fahrzeug nach einer Kollision. Sie ist von entscheidender Bedeutung für die Einschätzung der Schwere des Aufpralls und der daraus resultierenden Verletzungen.

Vr=Voδoccd

Geschwindigkeit der Führungsrolle

Die Formel für die Geschwindigkeit der Führungsrolle ist definiert als Maß für die RotationsGeschwindigkeit der Führungsrolle in einem mechanischen System, die für die Bestimmung der Bewegung des Systems von entscheidender Bedeutung ist, insbesondere im Kontext der Bewegungskinetik, wo die Geschwindigkeit der Führungsrolle die Gesamtleistung und Effizienz des Systems beeinflusst.

NP=NDdd1

Geschwindigkeit des Objekts in Kreisbewegung

Die Formel zur Berechnung der Geschwindigkeit eines Objekts bei einer Kreisbewegung ist definiert als die Rate, mit der sich ein Objekt auf einer Kreisbahn bewegt. Dabei spielt der Radius des Kreises und die Rotationsfrequenz eine Rolle. Sie bietet ein grundlegendes Konzept zum Verständnis der Kreisbewegung und ihrer Anwendungen in der Physik und Technik.

V=2πrf

Geschwindigkeit der chemischen Reaktion

Die Formel für die Geschwindigkeit der chemischen Reaktion ist definiert als die Geschwindigkeitsänderung der Konzentration eines der Reaktanten oder Produkte pro Zeiteinheit. Die Geschwindigkeit der chemischen Reaktion bedeutet die Geschwindigkeit, mit der die Reaktion stattfindet.

r=ΔcΔt

Geschwindigkeitskonstante der Reaktion nullter Ordnung

Die Formel für die Geschwindigkeitskonstante der Reaktion nullter Ordnung ist definiert als die Subtraktion der Konzentration eines Reaktanten zum Zeitpunkt t von der Anfangskonzentration des Reaktanten in einem bestimmten Zeitintervall der Reaktion.

k=C0-Cttreaction

Geschwindigkeitskonstante zur Halbzeit der Reaktion nullter Ordnung

Die Geschwindigkeitskonstante zur Halbwertszeit der Reaktionsformel nullter Ordnung ist definiert als die Anfangskonzentration des Reaktanten geteilt durch die doppelte Halbwertszeit der Reaktion. Die doppelte Hälfte der Reaktion ist die Gesamtzeit für den Abschluss der Reaktion.

k=C02T1/2

Geschwindigkeitskoeffizient gegebener Entladungskoeffizient

Der Geschwindigkeitskoeffizient wird in der Formel für den Abflusskoeffizienten als Reduktionsfaktor für die theoretische Geschwindigkeit durch die Öffnung definiert.

Cv=CdCc

Geschwindigkeitspotential für gleichmäßige inkompressible Strömung

Die Geschwindigkeitspotentialfunktion für gleichmäßige inkompressible Strömung (ϕ) steigt linear mit der Entfernung in Strömungsrichtung (x) an, was die gleichmäßige Natur der Strömung widerspiegelt. Folglich gibt es keine Variation des Geschwindigkeitspotentials in Bezug auf die y-Koordinate, was die Homogenität der Strömung in y-Richtung veranschaulicht.

ϕ=Vx

Geschwindigkeit am Punkt des Tragflächenprofils für gegebenen Druckkoeffizienten und freie StrömungsGeschwindigkeit

Die Geschwindigkeit an einem Punkt auf dem Schaufelblatt für einen gegebenen Druckkoeffizienten und eine Formel für die Geschwindigkeit im freien Strom ist das Produkt aus der Geschwindigkeit im freien Strom und der Quadratwurzel aus eins minus dem Druckkoeffizienten in inkompressibler Strömung.

V=u2(1-Cp)

Geschwindigkeitspotential für gleichmäßige inkompressible Strömung in Polarkoordinaten

Das Geschwindigkeitspotential für gleichmäßige inkompressible Strömung in Polarkoordinaten besagt, dass die Funktion direkt proportional zum radialen Abstand vom Ursprung (r) und dem Kosinus der Winkelkoordinate (θ) ist, skaliert durch die StrömungsGeschwindigkeit (U). Dies bedeutet, dass der Wert der Geschwindigkeitspotentialfunktion linear mit dem radialen Abstand vom Ursprung zunimmt und mit dem Kosinus des Winkels variiert, was die gleichmäßige Natur der Strömung und ihre Abhängigkeit von der Winkelrichtung widerspiegelt.

ϕ=Vrcos(θ)

Geschwindigkeitspotential für den 2D-Quellenfluss

Die Formel für das Geschwindigkeitspotenzial für den zweidimensionalen Quellenfluss besagt, dass die Funktion direkt proportional zum natürlichen Logarithmus des radialen Abstands vom Quellpunkt und der Stärke der Quelle ist. Diese logarithmische Beziehung spiegelt die Eigenschaft des Potenzialflusses wider, bei dem die Geschwindigkeit mit zunehmendem Abstand von der Quelle logarithmisch abnimmt.

ϕ=Λ2πln(r)

Wie finde ich Formeln?

Hier sind ein paar Tipps für bessere Suchergebnisse.
Seien Sie konkret: Je konkreter Ihre Suchanfrage, desto besser sind Ihre Ergebnisse.
Verwenden Sie mehrere Schlüsselwörter: Kombinieren Sie mehrere Schlüsselwörter, um die Ergebnisse einzugrenzen.
Experimentieren Sie mit Synonymen: Unterschiedliche Begriffe können zu unterschiedlichen Ergebnissen führen.
Platzhaltersuche: Verwenden Sie den Operator * (Sternchen). BEACHTEN SIE, dass dieser Operator nur am Ende eines Wortes funktioniert. Beispiel: Bio*, Bereich* usw.

Alternativ können Sie durch die Unterkategorien innerhalb von navigieren, um die Formeln einzugrenzen, die Sie interessieren.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!