Suche Formeln

Bitte geben Sie mindestens 3 Zeichen ein, um mit der Suche nach -Formeln zu beginnen.

Wählen Sie Filter

Grenzen Sie Ihre Suchergebnisse mithilfe dieser Filter ein.

50 Passende Formeln gefunden!

Geschwindigkeitsverhältnis des Riemenantriebs

Die Formel für das Geschwindigkeitsverhältnis des Riemenantriebs ist definiert als das Verhältnis der WinkelGeschwindigkeit der Folgewelle zu der der Antriebswelle in einem Riemenantriebssystem, bei dem es sich um ein mechanisches Gerät zur Kraftübertragung über eine Distanz handelt.

i=NfNd

Geschwindigkeitsverhältnis des Verbundriemenantriebs bei gegebenem Produkt des Durchmessers des angetriebenen

Das Geschwindigkeitsverhältnis eines zusammengesetzten Riemenantriebs, gegeben durch das Produkt aus Durchmesser der angetriebenen Scheibe, wird als das Verhältnis der WinkelGeschwindigkeit der Antriebsscheibe zu der der angetriebenen Scheibe in einem zusammengesetzten Riemenantriebssystem definiert und stellt ein Maß für die mechanische Verstärkung des Systems dar.

i=P1P2

Geschwindigkeitsverhältnis des Verbundriemenantriebs

Die Formel für das Geschwindigkeitsverhältnis eines zusammengesetzten Riemenantriebs ist definiert als das Verhältnis der WinkelGeschwindigkeit der angetriebenen Welle zu der der Antriebswelle in einem zusammengesetzten Riemenantriebssystem, bei dem es sich um ein mechanisches System zur Kraftübertragung von einer Welle auf eine andere handelt.

i=NnNd′

Geschwindigkeitsverhältnis des einfachen Riemenantriebs, wenn die Dicke nicht berücksichtigt wird

Die Formel für das Geschwindigkeitsverhältnis eines einfachen Riemenantriebs ohne Berücksichtigung der Dicke ist definiert als Maß für das Verhältnis der WinkelGeschwindigkeit der Antriebsscheibe zur WinkelGeschwindigkeit der Folgescheibe in einem einfachen Riemenantriebssystem, bei dem die Dicke des Riemens nicht berücksichtigt wird, und stellt eine vereinfachte Berechnung für Maschinenbauingenieure dar.

i=dddf

Geschwindigkeitsverhältnis des einfachen Riemenantriebs unter Berücksichtigung der Dicke

Die Formel für das Geschwindigkeitsverhältnis eines einfachen Riemenantriebs unter Berücksichtigung der Dicke ist definiert als Maß für das Verhältnis der WinkelGeschwindigkeit der Antriebsscheibe zur WinkelGeschwindigkeit der Folgescheibe in einem einfachen Riemenantriebssystem unter Berücksichtigung der Dicke des Riemens.

i=dd+tdf+t

Geschwindigkeitsverhältnis des Riemens bei prozentualem Gesamtschlupf

Das Geschwindigkeitsverhältnis des Riemens bei gegebenem prozentualen Gesamtschlupf wird als das Verhältnis der Geschwindigkeit der Antriebsscheibe zur Geschwindigkeit der Folgescheibe in einem Riemenantriebssystem definiert, wobei der prozentuale Gesamtschlupf zwischen den beiden Scheiben berücksichtigt wird und ein Maß für die Effizienz des Systems bereitgestellt wird.

i=(dd+t)1-0.01sdf+t

Geschwindigkeitsverhältnis des Riemens bei gegebenem Kriechen des Riemens

Das Geschwindigkeitsverhältnis des Riemens bei gegebener Formel zur Kriechneigung des Riemens ist als dimensionslose Größe definiert, die das Verhältnis der Geschwindigkeit der Antriebsscheibe zur Geschwindigkeit der Folgescheibe in einem riemengetriebenen System ausdrückt, wobei die Kriechneigung des Riemens berücksichtigt wird, die sich auf die Gesamteffizienz des Systems auswirkt.

i=dd(E+σ2)df(E+σ1)

Geschwindigkeit für die Übertragung maximaler Leistung durch Riemen

Die Formel für die Geschwindigkeit zur Übertragung maximaler Leistung durch einen Riemen wird als die maximale LeistungsübertragungsGeschwindigkeit eines Riemenantriebssystems definiert und ist für die Konstruktion und Optimierung von Riemenantriebssystemen zur effizienten Leistungsübertragung von entscheidender Bedeutung.

v=Pm3m

Geschwindigkeit des Stößels für Rollenstößel-Tangentennocken, wenn der Kontakt mit geraden Flanken erfolgt

Die Formel für die Geschwindigkeit des Stößels für einen Rollenstößel mit tangentialem Nocken bei Kontakt mit geraden Flanken ist als Maß für die Geschwindigkeit des Stößels in einem Nockenstößelsystem definiert, bei dem der Kontakt mit geraden Flanken erfolgt. Sie bietet Einblick in die Kinematik des Systems und ermöglicht die Entwicklung effizienter mechanischer Systeme.

v=ω(r1+rroller)sin(θ)(cos(θ))2

Geschwindigkeitskoeffizient für das Peltonrad

Der Geschwindigkeitskoeffizient für das Peltonrad ist das Verhältnis der tatsächlichen Geschwindigkeit des Wasserstrahls, der die Düse verlässt, zur theoretischen Geschwindigkeit. Er berücksichtigt die Verluste durch Reibung und andere Ineffizienzen in der Düse und wird verwendet, um die Effizienz der Strahlbildung zu bestimmen. Dieser Koeffizient ist normalerweise kleiner als 1.

Cv=V12[g]H

Geschwindigkeit des Stößels der Rollenstößel-Tangentennocke für den Kontakt mit der Nase

Die Formel für die Geschwindigkeit des Stößels eines Rollenstößels und des Tangentialnockens bei Kontakt mit der Nase ist definiert als die Geschwindigkeit des Stößels in einem Nocken- und Stößelsystem. Sie ist ein entscheidender Parameter bei der Bestimmung der Leistung und Effizienz des Systems, insbesondere wenn der Stößel mit der Nase des Nockens in Kontakt ist.

v=ωr(sin(θ1)+rsin(2θ1)2L2-r2(sin(θ1))2)

Geschwindigkeit der chemischen Reaktion

Die Formel für die Geschwindigkeit der chemischen Reaktion ist definiert als die Geschwindigkeitsänderung der Konzentration eines der Reaktanten oder Produkte pro Zeiteinheit. Die Geschwindigkeit der chemischen Reaktion bedeutet die Geschwindigkeit, mit der die Reaktion stattfindet.

r=ΔcΔt

Geschwindigkeitskonstante der Reaktion nullter Ordnung

Die Formel für die Geschwindigkeitskonstante der Reaktion nullter Ordnung ist definiert als die Subtraktion der Konzentration eines Reaktanten zum Zeitpunkt t von der Anfangskonzentration des Reaktanten in einem bestimmten Zeitintervall der Reaktion.

k=C0-Cttreaction

Geschwindigkeitskonstante zur Halbzeit der Reaktion nullter Ordnung

Die Geschwindigkeitskonstante zur Halbwertszeit der Reaktionsformel nullter Ordnung ist definiert als die Anfangskonzentration des Reaktanten geteilt durch die doppelte Halbwertszeit der Reaktion. Die doppelte Hälfte der Reaktion ist die Gesamtzeit für den Abschluss der Reaktion.

k=C02T1/2

Geschwindigkeit des Flugzeugs bei gegebener Überschussleistung

Die Geschwindigkeit des Flugzeugs bei gegebener Überschussleistung ist die LuftGeschwindigkeit, die erforderlich ist, um eine gegebene Steigrate beizubehalten, wobei die verfügbare Überschussleistung und das Gleichgewicht zwischen Schub- und Widerstandskräften während des Steigflugs berücksichtigt werden. Das Verständnis und die Anwendung dieser Formel ist für Piloten und Ingenieure von entscheidender Bedeutung, um die Steigleistung zu optimieren.

v=PexcessT-FD

Geschwindigkeit an jedem Punkt für den Staurohrkoeffizienten

Die Geschwindigkeit an jedem Punkt für den Koeffizienten der Pitotrohrformel ist bekannt, wenn man den Anstieg der Flüssigkeit im Rohr über die freie Oberfläche betrachtet, die die Höhe der Flüssigkeit am oberen Rand des Pitotrohrs ist.

Vp=Cv29.81hp

Geschwindigkeit über dem Normalschock aus der Normalschockenergiegleichung

Die Geschwindigkeit vor dem normalen Schock aus der Formel der normalen Schockenergiegleichung ist definiert als die Funktion der Gesamtenthalpie und der AufwärtsGeschwindigkeit vor dem normalen Schock. Die in der Formel verwendete Enthalpie ist die Enthalpie pro Masseneinheit.

V1=2(h2+V222-h1)

Geschwindigkeit hinter dem Normalschock aus der Normalschock-Energiegleichung

Die Geschwindigkeit hinter dem Normalschock aus der Normalschock-Energiegleichung berechnet die Geschwindigkeit einer Flüssigkeit stromabwärts einer normalen Stoßwelle unter Verwendung der Normalschock-Energiegleichung. Diese Formel berücksichtigt Parameter wie die Enthalpie vor und hinter dem Stoß und die Geschwindigkeit vor dem Stoß. Es liefert wesentliche Erkenntnisse über die Geschwindigkeitsänderung, die sich aus dem Durchgang der Stoßwelle ergibt.

V2=2(h1+V122-h2)

Geschwindigkeitsverhältnis in Westons Differentialriemenscheibe bei gegebener Anzahl von Zähnen

Das Geschwindigkeitsverhältnis in der Differentialriemenscheibe von Weston bei gegebener Zähnezahl kann auch anhand der Zähnezahl der beiden Zahnräder (die den beiden Riemenscheiben entsprechen) ausgedrückt werden.

Vi=2T1T1-T2

Geschwindigkeitsverhältnis in Westons Differenzialriemenscheibe bei gegebenem Riemenscheibenradius

Das Geschwindigkeitsverhältnis in Westons Differentialriemenscheibe bei gegebenem Riemenscheibenradius kann mithilfe der Radien der beiden beteiligten Riemenscheiben ermittelt werden.

Vi=2r1r1-r2

Geschwindigkeitsverhältnis von Schnecke und Schneckenrad

Das Übersetzungsverhältnis von Schnecken- und Schneckenradgetrieben gibt den mechanischen Vorteil an, den das System bietet. Es ist das Verhältnis der durch die Kraft (Eingang) zurückgelegten Strecke zur durch die Last (Ausgang) zurückgelegten Strecke.

Vi=DmTw2Rd

Geschwindigkeitsverhältnis von Schnecke und Schneckenrad, wenn die Schnecke ein Doppelgewinde hat

Das Geschwindigkeitsverhältnis von Schnecke und Schneckenrad ist bei einer Schnecke mit zwei Gewinden das Verhältnis der Anzahl der Zähne auf dem Schneckenrad zur Anzahl der Gewinde auf der Schnecke. Diese Formel berechnet den mechanischen Vorteil des Schneckengetriebesystems und gibt an, wie viele Umdrehungen der Schnecke erforderlich sind, um eine Umdrehung des Schneckenrads auszuführen.

Vi=dwTw4Rd

Geschwindigkeitsverhältnis von Schnecke und Schneckenrad, wenn die Schnecke mehrere Gewindegänge hat

Das Geschwindigkeitsverhältnis von Schnecke und Schneckenrad ist bei Schnecken mit mehreren Gewinden das Verhältnis der Anzahl der Zähne auf dem Schneckenrad zur Anzahl der Gewindegänge (Anfänge) auf der Schnecke. Diese Formel bestimmt, wie viele Umdrehungen der Schnecke erforderlich sind, um das Schneckenrad einmal zu drehen, und gibt den mechanischen Vorteil und die Untersetzung an, die das System bietet.

Vi=dwTw2nRd

Geschwindigkeitsverhältnis des Schneckenrad-Riemenscheibenblocks

Das Geschwindigkeitsverhältnis eines Flaschenzugs mit Schneckengetriebe bezieht sich auf das Verhältnis der durch die Kraft zurückgelegten Distanz zur durch die Last zurückgelegten Distanz. Es ist ein Maß für den mechanischen Vorteil, den der Schneckengetriebemechanismus bietet.

Vi=dwTwR

Geschwindigkeitsverhältnis eines einfachen Spindelhubgetriebes

Das Geschwindigkeitsverhältnis eines einfachen Spindelhubgetriebes beschreibt das Verhältnis zwischen der durch die Kraft zurückgelegten Distanz und der durch die Last zurückgelegten Distanz. Es spiegelt den mechanischen Vorteil wider, den das Spindelhubsystem bietet.

Vi=2πlPs

Geschwindigkeitsverhältnis des Differenzial-Spindelhubgetriebes

Das Geschwindigkeitsverhältnis eines Differentialspindelhubgetriebes ist ein Maß für den mechanischen Vorteil, den das System bietet. Es beschreibt das Verhältnis der durch die Kraft zurückgelegten Distanz zur durch die Last zurückgelegten Distanz.

Vi=2πlpa-pb

Geschwindigkeitsverhältnis des Spindelhubgetriebes mit Schneckengetriebe

Das Übersetzungsverhältnis eines Spindelhubgetriebes mit Schneckengetriebe misst den mechanischen Vorteil des Systems, indem es die durch die Kraft zurückgelegte Distanz mit der durch die Last zurückgelegten Distanz vergleicht. Bei einem Spindelhubgetriebe mit Schneckengetriebe treibt das Schneckengetriebe den Schraubmechanismus an, und das Übersetzungsverhältnis wird durch die Getriebe- und Schraubparameter beeinflusst.

Vi=2πRwTsPs

Geschwindigkeitsverhältnis eines Spindelhubgetriebes mit Schneckengetriebe und Doppelgewinde

Geschwindigkeitsverhältnis eines Spindelhubelements mit Schneckengetriebe und parallel verlaufenden Doppelgewinden, die sich auf die Steigung und damit auf das Geschwindigkeitsverhältnis auswirken.

Vi=2πRwTw2Ps

Geschwindigkeitsverhältnis eines Spindelhubgetriebes mit Schneckengetriebe und mehreren Gewindegängen

Das Geschwindigkeitsverhältnis eines Spindelhubgetriebes mit Schneckengetriebe und mehreren Gewinden wird durch die Anzahl der Gewinde beeinflusst, die wiederum die Steigung der Schraube bestimmen.

Vi=2πRwTwnPs

Geschwindigkeit von Chezys Formel

Die Geschwindigkeit der Chezy-Formel ist bekannt, wenn man die Chezy-Konstante, die Quadratwurzel der hydraulischen mittleren Tiefe und die Neigung des Bettes berücksichtigt.

v=Cmi

Geschwindigkeitsverhältnis bei gegebenem Verhältnis der Bettneigung

Das Geschwindigkeitsverhältnis (Verhältnis der Sohlenneigung) wird als die FließGeschwindigkeit in einem teilweise gefüllten Rohr im Vergleich zu der in einem voll gefüllten Rohr definiert und gibt Effizienzunterschiede an.

νsVratio=(Nnp)(rpfRrf)23S

Geschwindigkeit bei voller Fahrt unter Verwendung des Bettneigungsverhältnisses

Die Geschwindigkeit bei vollem Betrieb unter Verwendung des Bettneigungsverhältnisses wird als die FließGeschwindigkeit einer Flüssigkeit in einem Rohr definiert, wenn dieses vollständig gefüllt ist, beeinflusst durch die Rohrneigung und Rauheit.

V=Vs(Nnp)(rpfRrf)23S

Geschwindigkeit bei Vollbetrieb unter Verwendung von Bed Slope für Partial Flow

Die Geschwindigkeit bei Volldurchfluss unter Verwendung der Bettneigung für Teildurchfluss wird als die Geschwindigkeit des Flüssigkeitsflusses in einem Rohr definiert, wenn dieses vollständig gefüllt ist, beeinflusst durch die Rohrneigung und -rauheit.

V=Vs(Nnp)(rpfRrf)23sss

Geschwindigkeit der Flüssigkeit bei gegebenem Schub, der senkrecht zur Platte ausgeübt wird

Die Geschwindigkeit des Fluids bei gegebenem Schub, der senkrecht zur Platte ausgeübt wird, ist definiert als die Änderungsrate seiner Position in Bezug auf einen Referenzrahmen und ist eine Funktion der Zeit.

vjet=Fp[g]γfAJet(sin(∠D))

Geschwindigkeit der Flüssigkeit bei gegebenem Schub parallel zum Strahl

Die Geschwindigkeit des Fluids bei gegebenem Schub parallel zum Strahl ist die Änderungsrate seiner Position in Bezug auf einen Bezugsrahmen und eine Funktion der Zeit.

vjet=FX[g]γfAJet(sin(∠D))2

Geschwindigkeit der Flüssigkeit bei gegebenem Schub normal zum Strahl

Die Geschwindigkeit des Fluids bei gegebenem Schub normal zum Jet ist die Änderungsrate seiner Position in Bezug auf einen Referenzrahmen und eine Funktion der Zeit.

vjet=FY[g]γfAJet(sin(∠D))cos(∠D)

Geschwindigkeitsfaktor

Der Geschwindigkeitsfaktor ist definiert als der Wert, der zum Erhöhen des statischen Lastwerts verwendet wird, um den dynamischen Effekt bei der Konstruktion von Schienen zu berücksichtigen. Es wird allgemein als indische Formel bezeichnet.

Fsf=Vt18.2k

Geschwindigkeit gegebener Geschwindigkeitsfaktor

Gegebener Geschwindigkeitsfaktor ist die Geschwindigkeit des Zuges, die als Geschwindigkeit bezeichnet wird, mit der ein Objekt oder Zug eine bestimmte Entfernung zurücklegt. Einheit in km/h.

Vt=Fsf(18.2k)

Geschwindigkeitsfaktor nach deutscher Formel

Der Geschwindigkeitsfaktor nach deutscher Formel ist definiert als der Faktor, der zur Umwandlung der statischen Vertikallast auf die Schiene in eine dynamische Last verwendet wird. Diese Gleichung wird im Allgemeinen für Geschwindigkeiten bis zu 100 km/h verwendet.

Fsf=Vt230000

Geschwindigkeit mit deutscher Formel

Die Geschwindigkeit nach deutscher Formel ist definiert als die Geschwindigkeit des Zuges auf der Strecke. Im Allgemeinen liegt die Geschwindigkeit unter 100 km / h, um diese Gleichung zu verwenden.

Vt=Fsf30000

Geschwindigkeitsfaktor nach deutscher Formel und Geschwindigkeit über 100 km/h

Der Geschwindigkeitsfaktor unter Verwendung der deutschen Formel und Geschwindigkeit über 100 km/h ist definiert als der Faktor, der zur Umrechnung der statischen vertikalen Last auf der Schiene in eine dynamische Last verwendet wird.

Fsf=(4.5Vt2105)-(1.5Vt3107)

Geschwindigkeit am Auslass bei gegebener an das Rad abgegebener Leistung

Die Geschwindigkeit am Auslass bei gegebener Leistung, die an das Rad geliefert wird, ist die Geschwindigkeit, mit der sich die Position ändert. Die durchschnittliche Geschwindigkeit ist das Verhältnis von Verschiebung oder Positionsänderung (eine Vektorgröße) pro Zeit.

v=(PdcGwf)-(vfu)vf

Geschwindigkeit am Auslass bei geleisteter Arbeit, wenn der Jet in Bewegung des Rades abfliegt

Die Geschwindigkeit am Auslass bei gegebener Arbeit, wenn der Strahl in Bewegung des Rades austritt, ist die Geschwindigkeit, mit der sich die Position ändert. Die DurchschnittsGeschwindigkeit ist die Verschiebung oder Positionsänderung (eine Vektorgröße) pro Zeitverhältnis.

v=(wGwf)-(vfu)vf

Geschwindigkeit am Einlass, wenn die Arbeit im Schaufelwinkel 90 beträgt und die Geschwindigkeit Null ist

Die Geschwindigkeit am Einlass, wenn die Arbeit bei einem Flügelwinkel von 90 und die Geschwindigkeit Null ist, ist die Änderungsrate seiner Position in Bezug auf einen Bezugssystem und ist eine Funktion der Zeit.

vf=wGwfu

Geschwindigkeit der sich bewegenden Platte in Bezug auf die absolute Viskosität

Die Formel für die Geschwindigkeit der sich bewegenden Platte in Bezug auf die absolute Viskosität ist definiert als das Verhältnis des Produkts aus Tangentialkraft und Filmdicke zum Produkt aus absoluter Viskosität und Fläche.

Vm=PhμoApo

Geschwindigkeit an der Oberfläche bei gegebener Scherspannung an der Wasseroberfläche

Die Formel für die Geschwindigkeit an der Oberfläche bei gegebener Scherspannung an der Wasseroberfläche ist definiert als die Bestimmung der Geschwindigkeit des Wassers an der Oberfläche eines Gewässers basierend auf der auf die Wasseroberfläche ausgeübten Scherspannung. Scherspannung an der Wasseroberfläche wird typischerweise durch Wind oder andere Kräfte erzeugt, die tangential auf die Oberfläche wirken. Es handelt sich um einen Geschwindigkeitsparameter an der Oberfläche, der das Strömungsprofil beeinflusst.

Vs=πτ2DFρwaterΩEsin(L)

Geschwindigkeit bei Leckage

Geschwindigkeit bei Leckage: Im Kontext der Strömungsdynamik, speziell im Umgang mit Leckagen, bezieht sich der Begriff „Geschwindigkeit“ auf die Geschwindigkeit, mit der die Flüssigkeit durch ein Leck entweicht.

v=QoA

Geschwindigkeitskonstante für die Reaktion zweiter Ordnung unter Verwendung der Reaktantenkonzentration für Pfropfenströmung

Die Geschwindigkeitskonstante für die Reaktion zweiter Ordnung unter Verwendung der Reaktantenkonzentration für die Formel Pfropfenströmung ist definiert als die Proportionalitätskonstante in der Gleichung, die die Beziehung zwischen der Geschwindigkeit einer chemischen Reaktion und den Konzentrationen der reagierenden Substanzen ausdrückt.

k''=Co Batch-CBatch𝛕BatchCo BatchCBatch

Geschwindigkeitskonstante für die Reaktion zweiter Ordnung unter Verwendung der Reaktantenkonzentration für gemischten Fluss

Die Formel „Geschwindigkeitskonstante für Reaktionen zweiter Ordnung unter Verwendung der Reaktantenkonzentration für Mischströmung“ ist als die Proportionalitätskonstante in der Gleichung definiert, die die Beziehung zwischen der Geschwindigkeit einer chemischen Reaktion und den Konzentrationen der reagierenden Substanzen für Mischströmung ausdrückt.

kmixed=Co-C(𝛕mixed)(C)2

Geschwindigkeitskonstante für die Reaktion zweiter Ordnung unter Verwendung von Raumzeit für gemischte Strömung

Die Formel „Geschwindigkeitskonstante für Reaktionen zweiter Ordnung unter Verwendung von Raumzeit für Mischströmung“ ist definiert als die Proportionalitätskonstante in der Gleichung, die die Beziehung zwischen der Geschwindigkeit einer chemischen Reaktion und den Konzentrationen der reagierenden Substanzen für Mischströmung ausdrückt.

kmixed=Xmfr(1-Xmfr)2(𝛕mixed)(Co)

Wie finde ich Formeln?

Hier sind ein paar Tipps für bessere Suchergebnisse.
Seien Sie konkret: Je konkreter Ihre Suchanfrage, desto besser sind Ihre Ergebnisse.
Verwenden Sie mehrere Schlüsselwörter: Kombinieren Sie mehrere Schlüsselwörter, um die Ergebnisse einzugrenzen.
Experimentieren Sie mit Synonymen: Unterschiedliche Begriffe können zu unterschiedlichen Ergebnissen führen.
Platzhaltersuche: Verwenden Sie den Operator * (Sternchen). BEACHTEN SIE, dass dieser Operator nur am Ende eines Wortes funktioniert. Beispiel: Bio*, Bereich* usw.

Alternativ können Sie durch die Unterkategorien innerhalb von navigieren, um die Formeln einzugrenzen, die Sie interessieren.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!