Suche Formeln

Bitte geben Sie mindestens 3 Zeichen ein, um mit der Suche nach -Formeln zu beginnen.

Wählen Sie Filter

Grenzen Sie Ihre Suchergebnisse mithilfe dieser Filter ein.

50 Passende Formeln gefunden!

Geschwindigkeit des Flugzeugs bei gegebener Steigrate

Die Geschwindigkeit eines Flugzeugs bei einer bestimmten Steigrate ist die Geschwindigkeit, die ein Flugzeug benötigt, um eine bestimmte Steigrate zu erreichen. Diese Formel berechnet die Geschwindigkeit, indem sie die Steigrate durch den Sinus des Flugwegwinkels während des Steigens dividiert. Das Verständnis und die Anwendung dieser Formel ist für Piloten und Ingenieure von entscheidender Bedeutung, um die Steigleistung zu optimieren.

v=RCsin(γ)

Geschwindigkeit auf Meereshöhe bei gegebenem Auftriebskoeffizienten

Die Geschwindigkeit auf Meereshöhe bei gegebenem Auftriebskoeffizienten ist ein Maß zur Berechnung der Geschwindigkeit eines Objekts auf Meereshöhe unter Berücksichtigung des Körpergewichts, der Luftdichte auf Meereshöhe, der Referenzfläche und des Auftriebskoeffizienten und stellt einen entscheidenden Parameter in der Aerodynamik und im Flugzeugbau dar.

V0=2Wbody[Std-Air-Density-Sea]SCL

Geschwindigkeit in der Höhe

Die Geschwindigkeit in der Höhe ist ein Maß für die Geschwindigkeit eines Objekts in einer bestimmten Höhe über der Erdoberfläche. Unter Berücksichtigung des Körpergewichts, der Luftdichte, der Bezugsfläche und des Auftriebskoeffizienten ermöglicht diese Formel die Berechnung der Geschwindigkeit in aerodynamischen Systemen und liefert wertvolle Erkenntnisse für Ingenieure und Forscher in den Bereichen Luft- und Raumfahrt und Aerodynamik.

Valt=2Wbodyρ0SCL

Geschwindigkeit in Höhe gegeben Geschwindigkeit auf Meereshöhe

Geschwindigkeit in angegebener Höhe Die Geschwindigkeit auf Meereshöhe ist ein Maß für die Geschwindigkeit eines Objekts in einer bestimmten Höhe. Sie wird berechnet, indem die Geschwindigkeit auf Meereshöhe mit der Quadratwurzel des Verhältnisses zwischen der Standardluftdichte auf Meereshöhe und der Luftdichte in der angegebenen Höhe multipliziert wird.

Valt=V0[Std-Air-Density-Sea]ρ0

Geschwindigkeit der durch Sprengung verursachten Vibrationen

Die Geschwindigkeit der durch Sprengungen verursachten Vibrationen ist definiert als die Änderungsrate der Verschiebung in der Vibrationsarbeit.

V=(λvf)

Geschwindigkeit von Teilchen, die durch Vibrationen gestört werden

Die Formel für die Geschwindigkeit von durch Vibrationen gestörten Partikeln ist definiert als die Geschwindigkeit von Partikeln, die durch Vibrationen beeinflusst werden, und drückt die Geschwindigkeit und Richtung ihrer Bewegung als Reaktion auf Störungen aus.

v=(2πfA)

Geschwindigkeit von Teilchen Eins im Abstand von der Explosion

Die Geschwindigkeit von Partikel Eins in der Entfernung von der Explosion ist definiert als die Geschwindigkeit eines Partikels vom Explosionspunkt in einer bestimmten Entfernung.

v1=v2(D2D1)1.5

Geschwindigkeit von Teilchen Zwei im Abstand von der Explosion

Die Geschwindigkeit von Partikel Zwei im Abstand von der Explosion ist als Änderungsrate der Verschiebung des Partikels definiert.

v2=v1(D1D2)1.5

Geschwindigkeitsverteilung in rauer turbulenter Strömung

Die Formel für die Geschwindigkeitsverteilung in rauer turbulenter Strömung ist als die Funktion definiert, die beschreibt, wie molekulare Geschwindigkeiten im Durchschnitt in einer rauen, turbulenten Strömung verteilt sind.

v=5.75vshearlog10(30yks)

Geschwindigkeit des beweglichen Bootes

Die Formel für die Geschwindigkeit eines fahrenden Bootes ist als Strömungsmesser vom Propellertyp definiert, der sich frei um eine vertikale Achse bewegen kann und in einem Boot mit einer bestimmten Geschwindigkeit gezogen wird.

vb=Vcos(θ)

Geschwindigkeit des sich bewegenden Bootes bei gegebener Breite zwischen zwei Vertikalen

Die Formel für die Geschwindigkeit des sich bewegenden Bootes bei gegebener Breite zwischen zwei Vertikalen ist definiert als die kombinierte Bewegung des Bootes relativ zum Wasser und die Bewegung des Wassers relativ zum Ufer.

vb=WΔt

Geschwindigkeitskonstante nach Titrationsverfahren für Reaktionen nullter Ordnung

Die Geschwindigkeitskonstante durch Titrationsmethode für die Reaktionsformel nullter Ordnung ist definiert als die Geschwindigkeitskonstante, die direkt proportional zur Volumendifferenz und umgekehrt proportional zum Zeitpunkt der Fertigstellung ist.

k=V0-Vtt

Geschwindigkeitskonstante für dasselbe Produkt durch Titrationsmethode für Reaktionen zweiter Ordnung

Die Ratenkonstante für dasselbe Produkt durch Titrationsverfahren für die Reaktionsformel zweiter Ordnung ist definiert als die Subtraktion des Kehrwerts des Anfangsvolumens und des Zeitintervalls vom Kehrwert des Volumens eines Reaktanten zum Zeitpunkt t und Zeitintervall.

Ksecond=(1Vttcompletion)-(1V0tcompletion)

Geschwindigkeit des Teilchens nach einer bestimmten Zeit

Die Formel zur PartikelGeschwindigkeit nach einer bestimmten Zeit ist definiert als Maß für die Geschwindigkeit eines Partikels zu einem bestimmten Zeitpunkt unter Berücksichtigung der AnfangsGeschwindigkeit, Beschleunigung und verstrichenen Zeit und bietet Aufschluss über die Bewegung des Partikels und seine sich im Laufe der Zeit ändernde Geschwindigkeit.

vl=u+almt

Geschwindigkeitsgradient gegebener piezometrischer Gradient mit Scherspannung

Der Geschwindigkeitsgradient bei einem gegebenen piezometrischen Gradienten mit Scherspannung ist als Änderung der Geschwindigkeit in Bezug auf den radialen Abstand definiert.

VG=(γfμ)dh/dx0.5dradial

Geschwindigkeitsverteilungsprofil

Das Geschwindigkeitsverteilungsprofil ist definiert als die Geschwindigkeit relativ zur Platte in Strömungsrichtung im Strom.

v=-(12μ)dp|dr(wR-(R2))

Geschwindigkeitskonstante bei gegebener Desoxygenierungskonstante

Die Geschwindigkeitskonstante wird in der Formel zur Desoxygenierungskonstanten als Oxidationsrate von organischer Materie definiert und hängt von der Art der darin vorhandenen organischen Materie und der Temperatur ab.

K=2.3KD

Geschwindigkeitsgradienten

Die Formel für Geschwindigkeitsgradienten wird als Änderung der Geschwindigkeit im Verhältnis zur Entfernungsänderung entlang der gemessenen Richtung definiert.

VG=πr2Ω30(r2-r1)

Geschwindigkeit des äußeren Zylinders bei gegebenem Geschwindigkeitsgradienten

Die Geschwindigkeit des äußeren Zylinders wird mit der Geschwindigkeitsgradientenformel als die Geschwindigkeit definiert, mit der sich der Zylinder in Umdrehungen pro Minute dreht.

Ω=VGπr230(r2-r1)

Geschwindigkeit des äußeren Zylinders bei gegebener dynamischer Viskosität der Flüssigkeit

Die Geschwindigkeit des Außenzylinders wird anhand der Formel zur dynamischen Viskosität einer Flüssigkeit als Geschwindigkeit des Zylinders in Umdrehungen pro Minute definiert.

Ω=15T(r2-r1)ππr1r1r2hμ

Geschwindigkeit des Außenzylinders bei gegebenem Drehmoment, das auf den Außenzylinder ausgeübt wird

Die Geschwindigkeit des Außenzylinders bei auf den Außenzylinder ausgeübtem Drehmoment wird gemäß der Formel als das auf ihn ausgeübte Drehmoment definiert, wobei die Beziehung zwischen Drehmoment, Rotationsträgheit und Winkelbeschleunigung gilt.

Ω=Toππμr1460C

Geschwindigkeit des äußeren Zylinders bei gegebenem Gesamtdrehmoment

Die Geschwindigkeit des äußeren Zylinders wird bei gegebener Gesamtdrehmomentformel als die Geschwindigkeit des Zylinders in Umdrehungen pro Minute definiert.

Ω=ΤTorqueVcμ

Geschwindigkeit der Schaufel bei ausgeübter Kraft durch den Strahl

Die Geschwindigkeit der Schaufel bei der vom Strahl ausgeübten Kraft ist definiert als die Geschwindigkeit, mit der sich die Schaufel als Reaktion auf den Aufprall des Strahls bewegt. Sie stellt die Änderungsrate der Position der Schaufel dar und wird durch die Größe und Richtung der vom Strahl ausgeübten Kraft bestimmt.

v=-(FGγfAJet(1+cos(θ))-Vabsolute)

Geschwindigkeit für die Wellenlänge der Welle

Die Formel zur Berechnung der Geschwindigkeit für die Wellenlänge einer Welle ist definiert als die Geschwindigkeit, mit der sich die Welle durch ein Medium ausbreitet, berechnet als Produkt ihrer Frequenz und Wellenlänge.

C=(λf)

Geschwindigkeit der Schallwelle

Die Formel zur Berechnung der SchallwellenGeschwindigkeit wird als Geschwindigkeit definiert, obwohl Geschwindigkeit eigentlich sowohl Geschwindigkeit als auch Richtung impliziert. Die Geschwindigkeit einer Welle ist gleich dem Produkt aus Wellenlänge und Frequenz (Anzahl der Schwingungen pro Sekunde) und ist unabhängig von ihrer Intensität.

C=20.05T

Geschwindigkeit der Schallwelle gegeben Schallintensität

Die Geschwindigkeit einer Schallwelle wird bei gegebener Schallintensitätsformel als Tempo definiert, obwohl Geschwindigkeit eigentlich sowohl Geschwindigkeit als auch Richtung impliziert. Die Geschwindigkeit einer Welle ist gleich dem Produkt aus Wellenlänge und Frequenz (Anzahl der Schwingungen pro Sekunde) und ist unabhängig von ihrer Intensität.

C=Prms2Iρ

Geschwindigkeit am Einlass für die Masse des Fluids, das pro Sekunde auf die Leitschaufel auftrifft

Die Geschwindigkeit am Einlass für die Masse des auf die Leitschaufel auftreffenden Fluids pro Sekunde ist die Änderungsrate ihrer Position in Bezug auf den Referenzrahmen und ist eine Funktion der Zeit.

v=mfGγfAJet

Geschwindigkeit der Einzelwelle

Die Geschwindigkeit der Einzelwelle ist definiert als die Geschwindigkeit, mit der sich eine einzelne Welle fortbewegt oder "ausbreitet". Bei einer Tiefwasserwelle ist die Geschwindigkeit direkt proportional zur Wellenperiode.

C=[g](Hw+Dw)

Geschwindigkeit des Einlasskanals

Die Formel für die EinlasskanalGeschwindigkeit ist definiert als die Darstellung einer KanalGeschwindigkeit in erster Näherung über die Zeit.

c1=Vmsin(2πtT)

Geschwindigkeit bei Wellenhöhen zwischen 1 und 7 Fuß

Die Formel für die Geschwindigkeit bei Wellenhöhen zwischen 1 und 7 Fuß ist als Geschwindigkeit der Windwelle des Schnittteils definiert.

Vw=7+2ha

Geschwindigkeitskonstante der irreversiblen Reaktion zweiter Ordnung

Die Formel für die Geschwindigkeitskonstante der irreversiblen Reaktion zweiter Ordnung ist definiert als die Proportionalitätskonstante in der Gleichung, die die Beziehung zwischen der Geschwindigkeit einer chemischen Reaktion und den Konzentrationen der reagierenden Substanzen ausdrückt.

k2=rCACB

Geschwindigkeitskonstante für eine Reaktion erster Ordnung in erster Ordnung, gefolgt von einer Reaktion nullter Ordnung

Die Formel für die Geschwindigkeitskonstante für eine Reaktion erster Ordnung gefolgt von einer Reaktion nullter Ordnung ist als die Proportionalitätskonstante einer Reaktion erster Ordnung definiert, der eine Reaktion nullter Ordnung folgt.

kI=(1Δt)ln(CA0Ck0)

Geschwindigkeit in krummliniger Bewegung bei gegebener WinkelGeschwindigkeit

Die Geschwindigkeit bei krummliniger Bewegung wird mithilfe der Formel für die WinkelGeschwindigkeit als Maß für die Änderungsrate der Position eines Objekts entlang eines gekrümmten Pfads definiert. Sie beschreibt die Bewegung eines Objekts, das sich auf einer Kreisbahn um eine feste Achse bewegt, wobei die Größe der Bewegung von der WinkelGeschwindigkeit und dem Radius der Kreisbahn abhängt.

vcm=ωr

Geschwindigkeitsausbreitung in einer verlustfreien Leitung

Die Formel für die Geschwindigkeitsausbreitung in einer verlustfreien Leitung ist umgekehrt proportional zur Quadratwurzel des Produkts aus Serieninduktivität und Serienkapazität einer Leitung.

Vp=1lc

Geschwindigkeitsverhältnis des Riemenantriebs

Die Formel für das Geschwindigkeitsverhältnis des Riemenantriebs ist definiert als das Verhältnis der WinkelGeschwindigkeit der Folgewelle zu der der Antriebswelle in einem Riemenantriebssystem, bei dem es sich um ein mechanisches Gerät zur Kraftübertragung über eine Distanz handelt.

i=NfNd

Geschwindigkeitsverhältnis des Verbundriemenantriebs bei gegebenem Produkt des Durchmessers des angetriebenen

Das Geschwindigkeitsverhältnis eines zusammengesetzten Riemenantriebs, gegeben durch das Produkt aus Durchmesser der angetriebenen Scheibe, wird als das Verhältnis der WinkelGeschwindigkeit der Antriebsscheibe zu der der angetriebenen Scheibe in einem zusammengesetzten Riemenantriebssystem definiert und stellt ein Maß für die mechanische Verstärkung des Systems dar.

i=P1P2

Geschwindigkeitsverhältnis des Verbundriemenantriebs

Die Formel für das Geschwindigkeitsverhältnis eines zusammengesetzten Riemenantriebs ist definiert als das Verhältnis der WinkelGeschwindigkeit der angetriebenen Welle zu der der Antriebswelle in einem zusammengesetzten Riemenantriebssystem, bei dem es sich um ein mechanisches System zur Kraftübertragung von einer Welle auf eine andere handelt.

i=NnNd′

Geschwindigkeitsverhältnis des einfachen Riemenantriebs, wenn die Dicke nicht berücksichtigt wird

Die Formel für das Geschwindigkeitsverhältnis eines einfachen Riemenantriebs ohne Berücksichtigung der Dicke ist definiert als Maß für das Verhältnis der WinkelGeschwindigkeit der Antriebsscheibe zur WinkelGeschwindigkeit der Folgescheibe in einem einfachen Riemenantriebssystem, bei dem die Dicke des Riemens nicht berücksichtigt wird, und stellt eine vereinfachte Berechnung für Maschinenbauingenieure dar.

i=dddf

Geschwindigkeitsverhältnis des einfachen Riemenantriebs unter Berücksichtigung der Dicke

Die Formel für das Geschwindigkeitsverhältnis eines einfachen Riemenantriebs unter Berücksichtigung der Dicke ist definiert als Maß für das Verhältnis der WinkelGeschwindigkeit der Antriebsscheibe zur WinkelGeschwindigkeit der Folgescheibe in einem einfachen Riemenantriebssystem unter Berücksichtigung der Dicke des Riemens.

i=dd+tdf+t

Geschwindigkeitsverhältnis des Riemens bei prozentualem Gesamtschlupf

Das Geschwindigkeitsverhältnis des Riemens bei gegebenem prozentualen Gesamtschlupf wird als das Verhältnis der Geschwindigkeit der Antriebsscheibe zur Geschwindigkeit der Folgescheibe in einem Riemenantriebssystem definiert, wobei der prozentuale Gesamtschlupf zwischen den beiden Scheiben berücksichtigt wird und ein Maß für die Effizienz des Systems bereitgestellt wird.

i=(dd+t)1-0.01sdf+t

Geschwindigkeitsverhältnis des Riemens bei gegebenem Kriechen des Riemens

Das Geschwindigkeitsverhältnis des Riemens bei gegebener Formel zur Kriechneigung des Riemens ist als dimensionslose Größe definiert, die das Verhältnis der Geschwindigkeit der Antriebsscheibe zur Geschwindigkeit der Folgescheibe in einem riemengetriebenen System ausdrückt, wobei die Kriechneigung des Riemens berücksichtigt wird, die sich auf die Gesamteffizienz des Systems auswirkt.

i=dd(E+σ2)df(E+σ1)

Geschwindigkeit für die Übertragung maximaler Leistung durch Riemen

Die Formel für die Geschwindigkeit zur Übertragung maximaler Leistung durch einen Riemen wird als die maximale LeistungsübertragungsGeschwindigkeit eines Riemenantriebssystems definiert und ist für die Konstruktion und Optimierung von Riemenantriebssystemen zur effizienten Leistungsübertragung von entscheidender Bedeutung.

v=Pm3m

Geschwindigkeit des Mitläufers nach der Zeit t für Zykloidenbewegung

Die Formel für die Geschwindigkeit des Stößels nach der Zeit t bei zykloider Bewegung ist definiert als Maß für die Geschwindigkeit des Stößels in einem Nocken- und Stößelsystem, das einer zykloiden Bewegung unterliegt. Sie beschreibt die Bewegung des Stößels, während dieser sich dreht und auf einer Kreisbahn verschiebt.

v=ωSθo(1-cos(2πθrotationθo))

Geschwindigkeitskoeffizient

Die Geschwindigkeitskoeffizientenformel ist definiert als das Verhältnis der tatsächlichen AustrittsGeschwindigkeit zum Verhältnis der idealen AustrittsGeschwindigkeit.

Cv=CactCideal

Geschwindigkeit des Windkanal-Testabschnitts

Die Geschwindigkeitsformel des Windkanal-Testabschnitts basiert auf dem Bernoulli-Prinzip und ist eine Funktion der Druckdifferenz zwischen Reservoir und Testabschnitt.

V2=2(P1-P2)ρ0(1-1Alift2)

Geschwindigkeitskoeffizient gegebener Entladungskoeffizient

Der Geschwindigkeitskoeffizient wird in der Formel für den Abflusskoeffizienten als Reduktionsfaktor für die theoretische Geschwindigkeit durch die Öffnung definiert.

Cv=CdCc

Geschwindigkeitspotential für gleichmäßige inkompressible Strömung

Die Geschwindigkeitspotentialfunktion für gleichmäßige inkompressible Strömung (ϕ) steigt linear mit der Entfernung in Strömungsrichtung (x) an, was die gleichmäßige Natur der Strömung widerspiegelt. Folglich gibt es keine Variation des Geschwindigkeitspotentials in Bezug auf die y-Koordinate, was die Homogenität der Strömung in y-Richtung veranschaulicht.

ϕ=Vx

Geschwindigkeit am Punkt des Tragflächenprofils für gegebenen Druckkoeffizienten und freie StrömungsGeschwindigkeit

Die Geschwindigkeit an einem Punkt auf dem Schaufelblatt für einen gegebenen Druckkoeffizienten und eine Formel für die Geschwindigkeit im freien Strom ist das Produkt aus der Geschwindigkeit im freien Strom und der Quadratwurzel aus eins minus dem Druckkoeffizienten in inkompressibler Strömung.

V=u2(1-Cp)

Geschwindigkeitspotential für gleichmäßige inkompressible Strömung in Polarkoordinaten

Das Geschwindigkeitspotential für gleichmäßige inkompressible Strömung in Polarkoordinaten besagt, dass die Funktion direkt proportional zum radialen Abstand vom Ursprung (r) und dem Kosinus der Winkelkoordinate (θ) ist, skaliert durch die StrömungsGeschwindigkeit (U). Dies bedeutet, dass der Wert der Geschwindigkeitspotentialfunktion linear mit dem radialen Abstand vom Ursprung zunimmt und mit dem Kosinus des Winkels variiert, was die gleichmäßige Natur der Strömung und ihre Abhängigkeit von der Winkelrichtung widerspiegelt.

ϕ=Vrcos(θ)

Geschwindigkeitspotential für den 2D-Quellenfluss

Die Formel für das Geschwindigkeitspotenzial für den zweidimensionalen Quellenfluss besagt, dass die Funktion direkt proportional zum natürlichen Logarithmus des radialen Abstands vom Quellpunkt und der Stärke der Quelle ist. Diese logarithmische Beziehung spiegelt die Eigenschaft des Potenzialflusses wider, bei dem die Geschwindigkeit mit zunehmendem Abstand von der Quelle logarithmisch abnimmt.

ϕ=Λ2πln(r)

Wie finde ich Formeln?

Hier sind ein paar Tipps für bessere Suchergebnisse.
Seien Sie konkret: Je konkreter Ihre Suchanfrage, desto besser sind Ihre Ergebnisse.
Verwenden Sie mehrere Schlüsselwörter: Kombinieren Sie mehrere Schlüsselwörter, um die Ergebnisse einzugrenzen.
Experimentieren Sie mit Synonymen: Unterschiedliche Begriffe können zu unterschiedlichen Ergebnissen führen.
Platzhaltersuche: Verwenden Sie den Operator * (Sternchen). BEACHTEN SIE, dass dieser Operator nur am Ende eines Wortes funktioniert. Beispiel: Bio*, Bereich* usw.

Alternativ können Sie durch die Unterkategorien innerhalb von navigieren, um die Formeln einzugrenzen, die Sie interessieren.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!