Suche Formeln

Bitte geben Sie mindestens 3 Zeichen ein, um mit der Suche nach -Formeln zu beginnen.

Wählen Sie Filter

Grenzen Sie Ihre Suchergebnisse mithilfe dieser Filter ein.

50 Passende Formeln gefunden!

Geschwindigkeit des Alpha-Teilchens unter Verwendung der Entfernung der nächsten Annäherung

Die Geschwindigkeit des Alpha-Teilchens unter Verwendung der Entfernung der nächsten Annäherung ist die Geschwindigkeit, mit der sich ein Alpha-Teilchen in einem Atomkern bewegt.

v=[Coulomb]Z([Charge-e]2)[Atomic-m]r0

Geschwindigkeit des Serien-DC-Motors

Die Formel für die Geschwindigkeit des Serien-DC-Motors ist definiert als die Geschwindigkeit, mit der sich der Rotor dreht, und die SynchronGeschwindigkeit ist die Geschwindigkeit des Statormagnetfelds im Dreiphasen-Induktionsmotor.

N=Vs-Ia(Ra+Rsh)KfΦ

Geschwindigkeit an mittlerer Position

Die Formel für die Geschwindigkeit an der mittleren Position ist definiert als Maß für die Geschwindigkeit eines Objekts an seiner mittleren Position während freier Längsschwingungen und bietet Einblick in das Schwingungsverhalten des Objekts und seine Eigenfrequenz.

v=(ωfx)cos(ωfttotal)

Geschwindigkeit des Wasserflusses durch gesättigten Boden nach Darcys Gesetz

Die FließGeschwindigkeit von Wasser durch gesättigten Boden wird nach Darcys Gesetz als der Fluss einer Flüssigkeit durch ein poröses Medium definiert. In der Geotechnik wird sie häufig verwendet, um die Bewegung von Wasser durch Boden zu beschreiben.

qflow=(kiAcs)

Geschwindigkeit bei gegebenem Pulldown-Manöverradius

Die Geschwindigkeit bei Pull-Down-Manöverradius ist die Geschwindigkeit, die ein Flugzeug benötigt, um während eines Pull-Down-Manövers einen bestimmten Wenderadius beizubehalten. Diese Formel berechnet die Geschwindigkeit basierend auf dem Wenderadius, der Erdbeschleunigung und dem Lastfaktor. Das Verständnis und die Anwendung dieser Formel ist für Piloten und Ingenieure von entscheidender Bedeutung, um sichere und kontrollierte Pull-Down-Manöver zu gewährleisten.

Vpull-down=R[g](n+1)

Geschwindigkeit für gegebene Pull-Down-Manöverrate

Die Geschwindigkeit für eine bestimmte Pull-Down-Manöverrate hängt vom Lastfaktor und der WendeGeschwindigkeit des Flugzeugs ab. Diese Formel bietet eine vereinfachte Annäherung an die Geschwindigkeit, die erforderlich ist, um die gewünschte Sinkrate während des Pull-Down-Manövers aufrechtzuerhalten.

Vpull-down=[g]1+nωpull-down

Geschwindigkeit in Abschnitt 1 für stetigen Fluss

Die Formel „Geschwindigkeit in Abschnitt 1 für stetigen Fluss“ ist als StrömungsGeschwindigkeit an einem bestimmten Punkt im Strom definiert.

u01=QAcsρ1

Geschwindigkeit in Abschnitt 2 bei gegebenem Durchfluss in Abschnitt 1 für stetigen Durchfluss

Die Geschwindigkeit in Abschnitt 2 bei gegebener Strömung in Abschnitt 1 für die Formel „Steady Flow“ ist als StrömungsGeschwindigkeit an einem bestimmten Punkt im Strom definiert.

u02=QAcsρ2

Geschwindigkeit am Abschnitt für die Entladung durch den Abschnitt für eine stationäre inkompressible Flüssigkeit

Die Geschwindigkeit am Abschnitt für den Austritt durch den Abschnitt für stationäres inkompressibles Fluid ist als StrömungsGeschwindigkeit in der Querschnittsfläche definiert.

uFluid=QAcs

Geschwindigkeit des Projektils bei gegebener Höhe über dem Projektionspunkt

Die Formel für die Geschwindigkeit eines Projektils in einer bestimmten Höhe über dem Projektilpunkt ist definiert als Maß für die Geschwindigkeit eines Projektils in einer bestimmten Höhe über dem Projektilpunkt, wobei die AnfangsGeschwindigkeit, die Erdbeschleunigung und die Höhe über dem Projektilpunkt berücksichtigt werden.

vp=vpm2-2[g]h

Geschwindigkeitsfaktor

Der Geschwindigkeitsfaktor ist definiert als der Wert, der zum Erhöhen des statischen Lastwerts verwendet wird, um den dynamischen Effekt bei der Konstruktion von Schienen zu berücksichtigen. Es wird allgemein als indische Formel bezeichnet.

Fsf=Vt18.2k

Geschwindigkeit gegebener Geschwindigkeitsfaktor

Gegebener Geschwindigkeitsfaktor ist die Geschwindigkeit des Zuges, die als Geschwindigkeit bezeichnet wird, mit der ein Objekt oder Zug eine bestimmte Entfernung zurücklegt. Einheit in km/h.

Vt=Fsf(18.2k)

Geschwindigkeitsfaktor nach deutscher Formel

Der Geschwindigkeitsfaktor nach deutscher Formel ist definiert als der Faktor, der zur Umwandlung der statischen Vertikallast auf die Schiene in eine dynamische Last verwendet wird. Diese Gleichung wird im Allgemeinen für Geschwindigkeiten bis zu 100 km/h verwendet.

Fsf=Vt230000

Geschwindigkeit mit deutscher Formel

Die Geschwindigkeit nach deutscher Formel ist definiert als die Geschwindigkeit des Zuges auf der Strecke. Im Allgemeinen liegt die Geschwindigkeit unter 100 km / h, um diese Gleichung zu verwenden.

Vt=Fsf30000

Geschwindigkeitsfaktor nach deutscher Formel und Geschwindigkeit über 100 km/h

Der Geschwindigkeitsfaktor unter Verwendung der deutschen Formel und Geschwindigkeit über 100 km/h ist definiert als der Faktor, der zur Umrechnung der statischen vertikalen Last auf der Schiene in eine dynamische Last verwendet wird.

Fsf=(4.5Vt2105)-(1.5Vt3107)

Geschwindigkeit in Tiefe 1 bei gegebener absoluter Geschwindigkeit der Welle, die sich nach rechts bewegt

Die Geschwindigkeit in der Tiefe1 ist nach der Formel „Absolute Geschwindigkeit der Welle, die sich nach rechts bewegt“ als die resultierende Geschwindigkeit in einer bestimmten Tiefe aufgrund der Kombination von Welle und horizontaler Bewegung definiert.

VNegativesurges=(vabs(D2-h 1))+(V2D2)h 1

Geschwindigkeit in Tiefe2 bei gegebener absoluter Geschwindigkeit der Wellen, die sich nach rechts bewegen

Die Geschwindigkeit in Tiefe 2 ist nach der Formel „Absolute Geschwindigkeit der Wellen, die sich nach rechts bewegen“ als die resultierende Geschwindigkeit in Tiefe 2 unter Berücksichtigung der Wellenbewegung definiert.

V2=(vabs(h 1-D2))+(VNegativesurgesh 1)D2

Geschwindigkeit in Tiefe 1 bei absoluter AnstiegsGeschwindigkeit, wenn der Fluss vollständig gestoppt ist

Die Geschwindigkeit in Tiefe 1, wenn die Formel „Absolute SchwallGeschwindigkeit bei vollständig gestopptem Fluss“ definiert ist, ist als anfängliche WasserGeschwindigkeit während eines abrupten Stopps definiert.

VNegativesurges=vabs(D2-h 1)h 1

Geschwindigkeit der Welle in Wellen

Die Formel für die WellenGeschwindigkeit in Wellen ist definiert als die Addition zur normalen WasserGeschwindigkeit von Kanälen in offener Kanalströmung.

Cw=[g]D2(D2+h 1)2h 1

Geschwindigkeit der Welle bei gegebener Geschwindigkeit in Tiefe1

Die Formel „WellenGeschwindigkeit bei gegebener Geschwindigkeit in der Tiefe“1 ist definiert als die Höhe der Strömungsänderung, die im Kanal auftritt.

Cw=VNegativesurges([g](D2+h 1)2h 1Hch)

Geschwindigkeit in Tiefe 1, wenn die Höhe des Schwalls für die Schwallhöhe eine vernachlässigbare Fließtiefe ist

Die Geschwindigkeit in Tiefe1, wenn die Schwallhöhe für die Schwallhöhe vernachlässigbar ist. Die Formel für die Strömungstiefe ist als Geschwindigkeit des Strömungsschwalls an einem Punkt definiert.

VNegativesurges=(Hch[g]Cw)+V2

Geschwindigkeit der Welle bei gegebener Schwallhöhe, da die Schwallhöhe eine vernachlässigbare Strömungstiefe ist

Die Geschwindigkeit der Welle bei gegebener Schwallhöhe für Schwallhöhe ist vernachlässigbar. Die Formel für die Tiefe der Strömung ist definiert als plötzliche Änderungen in der Strömung.

Cw=Hch[g]VNegativesurges

Geschwindigkeit der Welle bei gegebener absoluter Geschwindigkeit von Überspannungen

Die Wellenschnelligkeit bei absoluter StoßGeschwindigkeit ist definiert als plötzliche Änderungen der Strömung durch Stoßwellen.

Cw=vabs-vm

Geschwindigkeit bei gewünschter Höhe

Die Formel für die Geschwindigkeit auf der gewünschten Höhe ist definiert als die Geschwindigkeit des Wassers auf einer gewünschten Höhe innerhalb eines Strömungsprofils. Es ist wichtig, die Art der Strömung und die relevanten Bedingungen zu verstehen.

Vz=V10(z10)0.11

Geschwindigkeit des Flüssigkeitsflusses in den Luftbehälter bei gegebener Hublänge

Die Formel für die Durchflussrate von Flüssigkeit in einen Luftbehälter bei gegebener Hublänge ist definiert als die volumetrische Durchflussrate einer Flüssigkeit, die in einen Luftbehälter einer Kolbenpumpe eintritt. Sie wird beeinflusst durch Faktoren wie Hublänge, WinkelGeschwindigkeit und Neigungswinkel, die sich erheblich auf die Gesamtleistung und Effizienz der Pumpe auswirken.

Qr=(Aω(L2))(sin(θ)-(2π))

Geschwindigkeitsdruck in Kanälen

Die Formel für den Geschwindigkeitsdruck in Kanälen ist definiert als der Druck, der durch den Luft- oder Gasstrom in einem Kanal ausgeübt wird. Dieser ist ein entscheidender Faktor bei der Bestimmung der Leistung von Heizungs-, Lüftungs- und Klimaanlagen sowie anderen industriellen Prozessen, bei denen ein Luftstrom eine Rolle spielt.

Pv=0.6Vm2

Geschwindigkeit des Wassers am Auslass des Saugrohrs bei gegebenem Wirkungsgrad des Saugrohrs

Die WasserGeschwindigkeit am Auslass des Saugrohrs bei gegebenem Saugrohrwirkungsgrad wird verwendet, um die Geschwindigkeit des Wassers am Auslass des Saugrohrs zu ermitteln, der das Ende mit einer größeren Querschnittsfläche ist.

V2=(V12)(1-ηd)-(hf2[g])

Geschwindigkeit des Wassers am Einlass des Saugrohrs bei gegebenem Wirkungsgrad des Saugrohrs

Die WasserGeschwindigkeit am Einlass des Saugrohrs bei gegebenem Saugrohrwirkungsgrad wird verwendet, um die Geschwindigkeit des Wassers am Einlass des Saugrohrs zu ermitteln, der das Ende des Saugrohrs mit einer geringeren Querschnittsfläche ist.

V1=(V22)+(hf2[g])1-ηd

Geschwindigkeitskonstante bei Temperatur 2

Die Geschwindigkeitskonstante bei Temperatur 2 ist definiert als die Proportionalitätskonstante in der chemischen Reaktion, die bei Temperatur 2 abläuft. Arrhenius-Gleichung, um die Auswirkung einer Temperaturänderung auf die Geschwindigkeitskonstante und damit auf die ReaktionsGeschwindigkeit zu zeigen.

K2=((K1)(Φ)T2-T110)

Geschwindigkeitskonstante für die Reaktion erster Ordnung unter Verwendung des Recyclingverhältnisses

Die Geschwindigkeitskonstante für die Reaktion erster Ordnung unter Verwendung der Rückführungsverhältnisformel ist als die Proportionalitätskonstante definiert, die die Beziehung zwischen der Geschwindigkeit für die Reaktion erster Ordnung und der ersten Potenz der Konzentration eines der Reaktanten für eine fraktionelle Volumenänderung von Null angibt.

k'=(R+1𝛕)ln(Co+(RCf)(R+1)Cf)

Geschwindigkeitskonstante für die Reaktion zweiter Ordnung unter Verwendung des Recyclingverhältnisses

Die Ratenkonstante für die Reaktion zweiter Ordnung unter Verwendung der Recycle-Ratio-Formel ist als die Proportionalitätskonstante für die Reaktion zweiter Ordnung für eine fraktionelle Volumenänderung von Null definiert.

k''=(R+1)Co(Co-Cf)Co𝛕Cf(Co+(RCf))

Geschwindigkeitskonstante für Reaktion A bis B für einen Satz von drei Parallelreaktionen

Die Formel für die Geschwindigkeitskonstante für die Reaktionen A bis B für den Satz aus drei parallelen Reaktionen ist definiert als die Beziehung zwischen der molaren Konzentration der Reaktanten und der Geschwindigkeit der stattfindenden chemischen Reaktion.

k1=1tln(A0RA)-(k2+k3)

Geschwindigkeitskonstante für Reaktion A bis C für Satz von drei Parallelreaktionen

Die Formel für die Geschwindigkeitskonstante für die Reaktionen A bis C für den Satz aus drei parallelen Reaktionen ist definiert als die Beziehung zwischen der molaren Konzentration der Reaktanten und der Geschwindigkeit der stattfindenden chemischen Reaktion.

k2=1tln(A0RA)-(k1+k3)

Geschwindigkeitskonstante für Reaktion A bis D für Satz von drei Parallelreaktionen

Die Formel für die Geschwindigkeitskonstante für die Reaktionen A bis D für den Satz aus drei parallelen Reaktionen ist definiert als die Beziehung zwischen der molaren Konzentration der Reaktanten und der Geschwindigkeit der stattfindenden chemischen Reaktion.

k3=1tln(A0RA)-(k1+k2)

Geschwindigkeit des Fahrzeugs bei gegebenem Bremsweg nach dem Bremsvorgang

Die Formel zur Ermittlung der FahrzeugGeschwindigkeit bei gegebenem Bremsweg nach Bremsvorgang ist definiert als Maß für die Geschwindigkeit eines Fahrzeugs in dem Moment, in dem es mit dem Bremsen beginnt. Dies ist ein entscheidender Parameter bei der Bestimmung des Bremswegs und der Sicherheit eines Fahrzeugs unter verschiedenen Straßen- und Verkehrsbedingungen.

vvehicle=2[g]fl

Geschwindigkeit der Kreisbahn

Die Formel für die KreisbahnGeschwindigkeit ist definiert als Maß für die Geschwindigkeit, mit der ein Objekt auf einer Kreisbahn um einen Himmelskörper, beispielsweise einen Planeten, kreist. Dabei wird die Geschwindigkeit von der Schwerkraft des Zentralkörpers und dem Radius der Umlaufbahn beeinflusst.

vcir=[GM.Earth]r

Geschwindigkeit in krummliniger Bewegung bei gegebener WinkelGeschwindigkeit

Die Geschwindigkeit bei krummliniger Bewegung wird mithilfe der Formel für die WinkelGeschwindigkeit als Maß für die Änderungsrate der Position eines Objekts entlang eines gekrümmten Pfads definiert. Sie beschreibt die Bewegung eines Objekts, das sich auf einer Kreisbahn um eine feste Achse bewegt, wobei die Größe der Bewegung von der WinkelGeschwindigkeit und dem Radius der Kreisbahn abhängt.

vcm=ωr

Geschwindigkeit der Führungsrolle

Die Formel für die Geschwindigkeit der Führungsrolle ist definiert als Maß für die RotationsGeschwindigkeit der Führungsrolle in einem mechanischen System, die für die Bestimmung der Bewegung des Systems von entscheidender Bedeutung ist, insbesondere im Kontext der Bewegungskinetik, wo die Geschwindigkeit der Führungsrolle die Gesamtleistung und Effizienz des Systems beeinflusst.

NP=NDdd1

Geschwindigkeit des Objekts in Kreisbewegung

Die Formel zur Berechnung der Geschwindigkeit eines Objekts bei einer Kreisbewegung ist definiert als die Rate, mit der sich ein Objekt auf einer Kreisbahn bewegt. Dabei spielt der Radius des Kreises und die Rotationsfrequenz eine Rolle. Sie bietet ein grundlegendes Konzept zum Verständnis der Kreisbewegung und ihrer Anwendungen in der Physik und Technik.

V=2πrf

Geschwindigkeit hinter Normalschock durch Normalschock-Impulsgleichung

Die Geschwindigkeit hinter dem Normalschock durch die Normalschock-Impulsgleichung berechnet die Geschwindigkeit einer Flüssigkeit stromabwärts einer normalen Stoßwelle unter Verwendung der Normalschock-Impulsgleichung. Diese Formel berücksichtigt Parameter wie die statischen Drücke vor und hinter dem Stoß, die Dichte vor dem Stoß und die Geschwindigkeit vor dem Stoß. Es liefert entscheidende Einblicke in die Geschwindigkeitsänderung, die sich aus dem Durchgang der Stoßwelle ergibt.

V2=P1-P2+ρ1V12ρ2

Geschwindigkeit vor Normalschock durch Normalschock-Impulsgleichung

Die Gleichung „Geschwindigkeit vor Normalstoß durch Normalstoßimpuls“ berechnet die Geschwindigkeit einer Flüssigkeit vor einer Normalstoßwelle mithilfe der Gleichung „Normalschockimpuls“. Diese Formel berücksichtigt Parameter wie den statischen Druck vor und hinter dem Stoß, die Dichte hinter dem Stoß und die Geschwindigkeit hinter dem Stoß. Es liefert wichtige Informationen über die FlüssigkeitsGeschwindigkeit vor dem Auftreffen auf die Stoßwelle und hilft bei der Analyse des kompressiblen Strömungsverhaltens.

V1=P2-P1+ρ2V22ρ1

Geschwindigkeit des Kolbens beim Ausfahren

Die Formel für die KolbenGeschwindigkeit während der Ausdehnung ist definiert als die Bewegungsrate eines Kolbens in einem hydraulischen Aktuator oder Motor. Sie ist ein entscheidender Parameter bei der Bestimmung der Leistung und Effizienz des Systems und wird von der Durchflussrate und der Kolbenfläche beeinflusst.

vpiston=QextAp

Geschwindigkeit des Kolbens beim Einfahren

Die Formel für die KolbenGeschwindigkeit während des Rückzugs ist definiert als die Bewegungsrate eines Kolbens während der Rückzugsphase in einem Hydrauliksystem, die für die Bestimmung der Gesamtleistung und Effizienz von Hydraulikantrieben und -motoren entscheidend ist.

vpiston=QretAp-Ar

Geschwindigkeitsverhältnis

Die Formel für das Drehzahlverhältnis ist eine dimensionslose Größe, die das Strömungsverhalten einer Kreiselpumpe charakterisiert. Sie stellt eine Beziehung zwischen der UmfangsGeschwindigkeit des Laufrads und der SpritzGeschwindigkeit der Flüssigkeit her, die für die Konstruktion und Optimierung der Pumpenleistung von wesentlicher Bedeutung ist.

Ku=u22[g]Hm

Geschwindigkeit des freien Stroms der laminaren Strömung der flachen Platte

Die Formel für die freie StrömungsGeschwindigkeit einer laminaren Flachplatte ist definiert als die Geschwindigkeit der Flüssigkeit, die sich der Flachplatte in einem laminaren Strömungsregime nähert. Dies ist ein entscheidender Parameter bei konvektiven Massenübertragungsprozessen, insbesondere im Zusammenhang mit der Strömungsdynamik und der Wärmeübertragung.

u=kL(Sc0.67)(Re0.5)0.322

Geschwindigkeit des Kolbens

Die Formel zur Berechnung der KolbenGeschwindigkeit ist definiert als die Geschwindigkeit, mit der sich der Kolben in einer Kolbenpumpe bewegt. Dabei handelt es sich um eine wichtige Komponente in zahlreichen Industrieanwendungen und einen Schlüsselfaktor bei der Bestimmung der Gesamtleistung und Effizienz der Pumpe.

vpiston=ωrsin(ωtsec)

Geschwindigkeit der Flüssigkeit im Rohr

Die Formel für die Geschwindigkeit von Flüssigkeit in einer Leitung ist definiert als die Fließrate einer Flüssigkeit durch eine Leitung in einem Kolbenpumpensystem. Sie wird von Faktoren wie der Querschnittsfläche der Leitung, der WinkelGeschwindigkeit, dem Radius und der Zeit beeinflusst, die zusammen die Bewegung und den Druck der Flüssigkeit beeinflussen.

vl=Aaωrsin(ωts)

Geschwindigkeit im Abfluss bei gegebener Kanaldurchflusszeit

Die Formel für die Geschwindigkeit im Abfluss bei gegebener Kanalfließzeit wird als die Geschwindigkeit des durch den Abfluss fließenden Wassers definiert.

V=LTm/f

Geschwindigkeit des freien Stroms bei lokalem Reibungskoeffizienten

Die Formel für die freie StrömungsGeschwindigkeit bei gegebenem lokalen Reibungskoeffizienten ist definiert als die Geschwindigkeit einer Flüssigkeit, wenn diese weit entfernt von einer Begrenzung oder Wand ist und von der Anwesenheit der Wand unbeeinflusst bleibt. Sie ist ein entscheidender Parameter zum Verständnis des Verhaltens einer Flüssigkeitsströmung über einer flachen Platte.

u=2τwρCfx

Geschwindigkeitsverhältnis bei gegebenem hydraulischen mittleren Tiefenverhältnis

Das Geschwindigkeitsverhältnis bei gegebener hydraulischer mittlerer Tiefe wird als die FließGeschwindigkeit in einer teilweise gefüllten Leitung im Vergleich zu der in einer voll gefüllten Leitung definiert und gibt Effizienzunterschiede an.

νsVratio=((Nnp)(R)16)

Wie finde ich Formeln?

Hier sind ein paar Tipps für bessere Suchergebnisse.
Seien Sie konkret: Je konkreter Ihre Suchanfrage, desto besser sind Ihre Ergebnisse.
Verwenden Sie mehrere Schlüsselwörter: Kombinieren Sie mehrere Schlüsselwörter, um die Ergebnisse einzugrenzen.
Experimentieren Sie mit Synonymen: Unterschiedliche Begriffe können zu unterschiedlichen Ergebnissen führen.
Platzhaltersuche: Verwenden Sie den Operator * (Sternchen). BEACHTEN SIE, dass dieser Operator nur am Ende eines Wortes funktioniert. Beispiel: Bio*, Bereich* usw.

Alternativ können Sie durch die Unterkategorien innerhalb von navigieren, um die Formeln einzugrenzen, die Sie interessieren.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!