Suche Formeln

Bitte geben Sie mindestens 3 Zeichen ein, um mit der Suche nach -Formeln zu beginnen.

Wählen Sie Filter

Grenzen Sie Ihre Suchergebnisse mithilfe dieser Filter ein.

50 Passende Formeln gefunden!

Geschwindigkeitsverhältnis des Verbundgetriebes

Das Übersetzungsverhältnis eines zusammengesetzten Getriebes ist das Produkt der Übersetzungsverhältnisse jedes Zahnradpaars im Getriebe. Es wird durch Multiplikation der einzelnen Übersetzungsverhältnisse berechnet, wobei jedes Übersetzungsverhältnis das Verhältnis der Anzahl der Zähne des Antriebsrads zur Anzahl der Zähne des angetriebenen Rads ist.

i=PdP'd

Geschwindigkeit des Mitnehmers für Kreisbogennocken, wenn der Kontakt auf der Kreisflanke erfolgt

Die Formel für die Geschwindigkeit des Stößels für einen Kreisbogennocken, wenn der Kontakt auf einer Kreisflanke liegt, ist definiert als Maß für die Geschwindigkeit des Stößels in einem Kreisbogennockenmechanismus, wenn sich der Kontaktpunkt auf der Kreisflanke befindet. Dies ist ein kritischer Parameter bei der Konstruktion und Optimierung von Nockenstößelsystemen.

v=ω(R-r1)sin(θturned)

Geschwindigkeit hinter Normal Shock

Die Geschwindigkeit hinter dem Normalstoß berechnet die Geschwindigkeit einer Flüssigkeit stromabwärts einer normalen Stoßwelle. Diese Formel berücksichtigt Parameter wie die Geschwindigkeit vor dem Stoß, das Verhältnis der spezifischen Wärme für die Flüssigkeit und die Machzahl der Strömung. Es liefert wertvolle Einblicke in die Geschwindigkeitsänderung, die sich aus dem Durchgang der Stoßwelle ergibt.

V2=V1γ+1(γ-1)+2M2

Geschwindigkeit der Walze bei der Verdichtungsproduktion durch Verdichtungsgeräte

Die Formel für die Geschwindigkeit der Walze bei gegebener Verdichtungsleistung durch Verdichtungsgeräte ist definiert als die Geschwindigkeit, mit der Verdichtungsgeräte wie Walzen während des Verdichtungsprozesses arbeiten. Effiziente Geschwindigkeiten tragen zu einer höheren Produktivität bei Bauprojekten bei, da die Geräte in kürzerer Zeit mehr Fläche abdecken können, ohne die Qualität zu beeinträchtigen.

S=yP16WLPRE

Geschwindigkeitsdruck gemäß ASCE 7

Der Geschwindigkeitsdruck gemäß ASCE 7 ist definiert als der Geschwindigkeitsdruck gemäß den ASCE 7-Methode-II-Normen unter Berücksichtigung des Winddrucks sowie der externen und internen Druckkoeffizienten.

q=p+qiGCptGCep

Geschwindigkeitsdruck an einem bestimmten Punkt gemäß ASCE 7

Der Geschwindigkeitsdruck an einem bestimmten Punkt gemäß ASCE 7 ist definiert als der Geschwindigkeitsdruck an einem bestimmten Punkt zur Bestimmung des Innendrucks gemäß ASCE 7 Methode II.

qi=(qGCep)-pGCpt

Geschwindigkeit gegebener Wenderadius für hohen Lastfaktor

Die Geschwindigkeit bei Wenderadius unter Bedingungen mit hohem Lastfaktor ist die Geschwindigkeit, die ein Flugzeug benötigt, um einen bestimmten Wenderadius bei einem erheblichen Lastfaktor beizubehalten. Diese Formel berechnet die Geschwindigkeit basierend auf Wenderadius, Lastfaktor und Erdbeschleunigung. Das Verständnis und die Anwendung dieser Formel ist für Piloten und Ingenieure von entscheidender Bedeutung, um die Manövrierfähigkeit von Flugzeugen zu optimieren und die Sicherheit bei Manövern mit hohem Lastfaktor zu gewährleisten.

v=Rn[g]

Geschwindigkeit des Gasmoleküls bei gegebener Kraft

Die Geschwindigkeit des Gasmoleküls gegebene Kraftformel ist definiert als die Quadratwurzel des Produkts der Länge des rechteckigen Kastens und der Kraft pro Masse des Teilchens.

uF=FLm

Geschwindigkeit des Gasmoleküls in 1D bei gegebenem Druck

Die Geschwindigkeit des Gasmoleküls in der 1D gegebenen Druckformel ist definiert als unter der Wurzel des Verhältnisses des Gasdrucks multipliziert mit dem Volumen mit der Masse des Partikels.

up=PgasVboxm

Geschwindigkeit des Körpers bei gegebenem Impuls

Die Formel für die Geschwindigkeit eines Körpers bei gegebenem Impuls ist definiert als Maß für die Geschwindigkeit eines Objekts in eine bestimmte Richtung. Sie wird berechnet, indem der Impuls des Objekts durch seine Masse geteilt wird. Sie liefert ein grundlegendes Konzept zum Verständnis der Bewegung eines Objekts und ihrer Beziehung zur Kraft.

v=pmo

Geschwindigkeit der Impulsänderung bei gegebener Beschleunigung und Masse

Die Formel zur Änderungsrate des Impulses bei gegebener Beschleunigung und Masse ist definiert als ein Maß für die Rate, mit der sich der Impuls eines Objekts ändert, wenn auf es eine externe Kraft einwirkt, wobei die Masse des Objekts und seine Beschleunigung die Hauptfaktoren sind, die diese Änderung beeinflussen.

rm=moa

Geschwindigkeit des Projektils des Mach-Kegels im komprimierbaren Flüssigkeitsstrom

Die Geschwindigkeit des Projektils eines Mach-Kegels in einer kompressiblen Flüssigkeitsströmung beschreibt die Geschwindigkeit, mit der sich das Projektil bewegt, wenn es die SchallGeschwindigkeit im umgebenden Medium erreicht oder überschreitet. Das Verständnis dieser Geschwindigkeit ist in der Aerodynamik und Ballistik von entscheidender Bedeutung, da sie den Beginn von Stoßwellen und die aerodynamischen Herausforderungen anzeigt, die mit Überschall- und Hyperschallflügen verbunden sind.

V=Csin(μ)

Geschwindigkeit der Schallwelle unter Berücksichtigung des Mach-Winkels in einem komprimierbaren Flüssigkeitsstrom

Die Geschwindigkeit von Schallwellen unter Berücksichtigung des Mach-Winkels bei kompressibler Fluidströmung ist wichtig für das Verständnis, wie sich Schall durch ein Medium ausbreitet, wenn die FluidGeschwindigkeit die SchallGeschwindigkeit erreicht oder überschreitet. Diese Beziehung hilft bei der Vorhersage des Verhaltens von Stoßwellen und der Schallübertragung in verschiedenen Umgebungen und ist von wesentlicher Bedeutung in der Luft- und Raumfahrttechnik, der Akustik und der Untersuchung der HochGeschwindigkeitsfluiddynamik.

C=Vsin(μ)

Geschwindigkeit des Strahls bei dynamischem Schub, der vom Strahl auf die Platte ausgeübt wird

Die Geschwindigkeit des Strahls bei dynamischem Schub, der durch den Strahl auf die Platte ausgeübt wird, ist die Änderungsrate seiner Position in Bezug auf einen Bezugssystem und ist eine Funktion der Zeit.

v=-(mfGγfAJet-Vabsolute)

Geschwindigkeit des Rades bei gegebener TangentialGeschwindigkeit an der Auslassspitze des Flügels

Die Geschwindigkeit des Rades bei gegebener TangentialGeschwindigkeit an der Auslassspitze des Flügels, der sich um die Achse dreht, ist die Anzahl der Umdrehungen des Objekts dividiert durch die Zeit, angegeben als Umdrehungen pro Minute (U/min).

Ω=vtangential602πrO

Geschwindigkeit bei gegebenem Tangentialimpuls von Flüssigkeit, die am Einlass auf Leitschaufeln auftrifft

Die Geschwindigkeit bei gegebenem Tangentialimpuls eines Fluids, das Schaufeln am Einlass eines Objekts trifft, ist die Änderungsrate seiner Position in Bezug auf einen Referenzrahmen und ist eine Funktion der Zeit.

u=TmGwf

Geschwindigkeit bei gegebenem Drehimpuls am Einlass

Die gegebene DrehimpulsGeschwindigkeit am Einlass ist die Änderungsrate seiner Position in Bezug auf einen Bezugssystem und ist eine Funktion der Zeit.

vf=LGwfr

Geschwindigkeit bei gegebenem Tangentialimpuls von Flüssigkeit, die am Auslass auf Leitschaufeln auftrifft

Die dem Tangentialimpuls gegebene Geschwindigkeit des Fluids, das am Auslass auf die Leitschaufeln trifft, ist die Änderungsrate seiner Position in Bezug auf den Referenzrahmen und ist eine Funktion der Zeit.

u=TmGwf

Geschwindigkeit bei gegebenem Drehimpuls am Outlet

Die Geschwindigkeit des gegebenen Drehimpulses am Auslass eines Objekts ist die Änderungsrate seiner Position in Bezug auf einen Bezugssystem und ist eine Funktion der Zeit.

v=TmGwfr

Geschwindigkeit der Strömungsfelder

Die Formel für die Geschwindigkeit der Strömungsfelder ist definiert als die Geschwindigkeit, mit der Wasser im Kanal von Kopf bis Schwanz fließt.

vm=Hf1-Ke(2[g])+((n)2)l2.21rh1.33333

Geschwindigkeit des Riemens bei Spannung des Riemens im Zugtrum

Die Geschwindigkeit des Riemens bei Spannung des Riemens auf der straffen Seite ist ein Maß für die RotationsGeschwindigkeit des Riemens, bei der die Rotationskraft von einer Riemenscheibe auf eine andere übertragen wird.

vb=((eμα)P2)-P1m((eμα)-1)

Geschwindigkeit bei Leckage

Geschwindigkeit bei Leckage: Im Kontext der Strömungsdynamik, speziell im Umgang mit Leckagen, bezieht sich der Begriff „Geschwindigkeit“ auf die Geschwindigkeit, mit der die Flüssigkeit durch ein Leck entweicht.

v=QoA

Geschwindigkeit bei maximaler Ausdauer bei vorläufiger Ausdauer für Propeller-angetriebene Flugzeuge

Die Formel zur Berechnung der Geschwindigkeit bei maximaler Ausdauer bei vorläufiger Ausdauer für Propellerflugzeuge gibt Ihnen die Geschwindigkeit an, bei der das Flugzeug seine maximale Ausdauer erreicht. Dies ermöglicht eine effiziente Flugplanung und Optimierung des Treibstoffverbrauchs bei Ausdauermissionen.

V(Emax)=LDEmaxratioηln(WL(beg)WL,end)cE

Geschwindigkeitskonstante für Reaktion A bis B für einen Satz von zwei parallelen Reaktionen

Die Formel für die Geschwindigkeitskonstante der Reaktionen A bis B für den Satz aus zwei parallelen Reaktionen ist definiert als die Beziehung zwischen der molaren Konzentration der Reaktanten und der Geschwindigkeit der stattfindenden chemischen Reaktion.

k1=1tln(A0RA)-k2

Geschwindigkeitskonstante für Reaktion A bis C in einem Satz von zwei Parallelreaktionen

Die Formel für die Geschwindigkeitskonstante für die Reaktionen A bis C im Satz aus zwei parallelen Reaktionen ist definiert als die Beziehung zwischen der molaren Konzentration der Reaktanten und der Geschwindigkeit der stattfindenden chemischen Reaktion.

k2=1tln(A0RA)-k1

Geschwindigkeit des Satelliten im kreisförmigen LEO als Funktion der Höhe

Die Formel zur Berechnung der SatellitenGeschwindigkeit in einer kreisförmigen erdnahen Umlaufbahn als Funktion der Höhe ist definiert als die Geschwindigkeit, mit der ein Satellit die Erde in einer kreisförmigen erdnahen Umlaufbahn umkreist. Sie ist abhängig von der Höhe des Satelliten über der Erdoberfläche und stellt einen entscheidenden Parameter bei der Konstruktion und dem Betrieb von Satelliten in Weltraummissionen dar.

v=[GM.Earth][Earth-R]+z

Geschwindigkeit des Satelliten in seinem kreisförmigen GEO-Radius

Die Geschwindigkeit eines Satelliten in seiner kreisförmigen geosynchronen Umlaufbahn wird in Abhängigkeit von der Gravitationskonstante und dem Radius der Umlaufbahn als die Geschwindigkeit definiert, mit der ein Satellit die Erde in einer kreisförmigen geosynchronen Umlaufbahn umkreist.

v=[GM.Earth]Rgso

Geschwindigkeitskonstante der Phase zwischen Blase und Wolke

Die Formel für die Geschwindigkeitskonstante der Phase zwischen Blase und Wolke wird als berechnete Geschwindigkeitskonstante definiert, wenn im Wirbelreaktor Blasenbildung auftritt.

Kbc=4.50(umfdb)+5.85(Df R)12([g])14db54

Geschwindigkeitskonstante der Phase zwischen Wolkenwache und Emulsion

Die Geschwindigkeitskonstante der Phase zwischen Wolkenwache und Emulsionsformel wird als berechnete Geschwindigkeitskonstante definiert, wenn Blasenbildung an der Grenzfläche im Wirbelschichtreaktor beim Kunii-Levenspiel-Modell auftritt.

Kce=6.77(εmfDf Rubrdb3)12

Geschwindigkeit für verzögerte Kohärenz bei der Photodissoziation

Die Geschwindigkeitsformel für die verzögerte Kohärenz bei der Photodissoziation ist definiert als die Größe der Änderung seiner Position über die Zeit oder die Größe der Änderung seiner Position pro Zeiteinheit während der verzögerten Kohärenz während der Photodissoziation des KrF-Moleküls.

vcov=2(Vcov_R0-Vcov_R)μcov

Geschwindigkeit im schnellen Wirbelbett

Die Formel „Geschwindigkeit im schnellen Wirbelschichtbett“ bezieht sich auf die AufwärtsGeschwindigkeit des Fluidisierungsgases, das zum Schweben und Fluidisieren fester Partikel im Bett verwendet wird. Schnelle Wirbelschichten zeichnen sich durch hohe GasGeschwindigkeiten aus, und diese Geschwindigkeiten liegen typischerweise deutlich über der minimalen FluidisierungsGeschwindigkeit.

uTB-FF=1.53(ρsolids-ρgas)[g]dpρgas

Geschwindigkeit in der pneumatischen Förderung

Die Geschwindigkeitsformel bei der pneumatischen Förderung ist definiert als die Geschwindigkeit, typischerweise ausgedrückt als Luft- oder GasGeschwindigkeit am Punkt der Injektion oder Einführung der Feststoffpartikel in das Fördersystem.

uFF-PC=((21.6((GSρgas)0.542)(d'p 0.315))[g]dp)11.542

Geschwindigkeit von Fluidpartikeln

Die Geschwindigkeit von Fluidpartikeln in der Fluiddynamik-Terminologie wird verwendet, um die Bewegung eines Kontinuums mathematisch zu beschreiben.

vf=dta

Geschwindigkeit des Flugzeugs bei gegebener Überschussleistung

Die Geschwindigkeit des Flugzeugs bei gegebener Überschussleistung ist die LuftGeschwindigkeit, die erforderlich ist, um eine gegebene Steigrate beizubehalten, wobei die verfügbare Überschussleistung und das Gleichgewicht zwischen Schub- und Widerstandskräften während des Steigflugs berücksichtigt werden. Das Verständnis und die Anwendung dieser Formel ist für Piloten und Ingenieure von entscheidender Bedeutung, um die Steigleistung zu optimieren.

v=PexcessT-FD

Geschwindigkeit an jedem Punkt für den Staurohrkoeffizienten

Die Geschwindigkeit an jedem Punkt für den Koeffizienten der Pitotrohrformel ist bekannt, wenn man den Anstieg der Flüssigkeit im Rohr über die freie Oberfläche betrachtet, die die Höhe der Flüssigkeit am oberen Rand des Pitotrohrs ist.

Vp=Cv29.81hp

Geschwindigkeit über dem Normalschock aus der Normalschockenergiegleichung

Die Geschwindigkeit vor dem normalen Schock aus der Formel der normalen Schockenergiegleichung ist definiert als die Funktion der Gesamtenthalpie und der AufwärtsGeschwindigkeit vor dem normalen Schock. Die in der Formel verwendete Enthalpie ist die Enthalpie pro Masseneinheit.

V1=2(h2+V222-h1)

Geschwindigkeit hinter dem Normalschock aus der Normalschock-Energiegleichung

Die Geschwindigkeit hinter dem Normalschock aus der Normalschock-Energiegleichung berechnet die Geschwindigkeit einer Flüssigkeit stromabwärts einer normalen Stoßwelle unter Verwendung der Normalschock-Energiegleichung. Diese Formel berücksichtigt Parameter wie die Enthalpie vor und hinter dem Stoß und die Geschwindigkeit vor dem Stoß. Es liefert wesentliche Erkenntnisse über die Geschwindigkeitsänderung, die sich aus dem Durchgang der Stoßwelle ergibt.

V2=2(h1+V122-h2)

Geschwindigkeitsverhältnis bei gegebenem Verhältnis der Bettneigung

Das Geschwindigkeitsverhältnis (Verhältnis der Sohlenneigung) wird als die FließGeschwindigkeit in einem teilweise gefüllten Rohr im Vergleich zu der in einem voll gefüllten Rohr definiert und gibt Effizienzunterschiede an.

νsVratio=(Nnp)(rpfRrf)23S

Geschwindigkeit bei voller Fahrt unter Verwendung des Bettneigungsverhältnisses

Die Geschwindigkeit bei vollem Betrieb unter Verwendung des Bettneigungsverhältnisses wird als die FließGeschwindigkeit einer Flüssigkeit in einem Rohr definiert, wenn dieses vollständig gefüllt ist, beeinflusst durch die Rohrneigung und Rauheit.

V=Vs(Nnp)(rpfRrf)23S

Geschwindigkeit bei Vollbetrieb unter Verwendung von Bed Slope für Partial Flow

Die Geschwindigkeit bei Volldurchfluss unter Verwendung der Bettneigung für Teildurchfluss wird als die Geschwindigkeit des Flüssigkeitsflusses in einem Rohr definiert, wenn dieses vollständig gefüllt ist, beeinflusst durch die Rohrneigung und -rauheit.

V=Vs(Nnp)(rpfRrf)23sss

Geschwindigkeit des Einlasskanals

Die Formel für die EinlasskanalGeschwindigkeit ist definiert als die Darstellung einer KanalGeschwindigkeit in erster Näherung über die Zeit.

c1=Vmsin(2πtT)

Geschwindigkeit an der Oberfläche bei gegebener Scherspannung an der Wasseroberfläche

Die Formel für die Geschwindigkeit an der Oberfläche bei gegebener Scherspannung an der Wasseroberfläche ist definiert als die Bestimmung der Geschwindigkeit des Wassers an der Oberfläche eines Gewässers basierend auf der auf die Wasseroberfläche ausgeübten Scherspannung. Scherspannung an der Wasseroberfläche wird typischerweise durch Wind oder andere Kräfte erzeugt, die tangential auf die Oberfläche wirken. Es handelt sich um einen Geschwindigkeitsparameter an der Oberfläche, der das Strömungsprofil beeinflusst.

Vs=πτ2DFρwaterΩEsin(L)

Geschwindigkeitsdruck in Kanälen

Die Formel für den Geschwindigkeitsdruck in Kanälen ist definiert als der Druck, der durch den Luft- oder Gasstrom in einem Kanal ausgeübt wird. Dieser ist ein entscheidender Faktor bei der Bestimmung der Leistung von Heizungs-, Lüftungs- und Klimaanlagen sowie anderen industriellen Prozessen, bei denen ein Luftstrom eine Rolle spielt.

Pv=0.6Vm2

Geschwindigkeit des Wassers am Auslass des Saugrohrs bei gegebenem Wirkungsgrad des Saugrohrs

Die WasserGeschwindigkeit am Auslass des Saugrohrs bei gegebenem Saugrohrwirkungsgrad wird verwendet, um die Geschwindigkeit des Wassers am Auslass des Saugrohrs zu ermitteln, der das Ende mit einer größeren Querschnittsfläche ist.

V2=(V12)(1-ηd)-(hf2[g])

Geschwindigkeit des Wassers am Einlass des Saugrohrs bei gegebenem Wirkungsgrad des Saugrohrs

Die WasserGeschwindigkeit am Einlass des Saugrohrs bei gegebenem Saugrohrwirkungsgrad wird verwendet, um die Geschwindigkeit des Wassers am Einlass des Saugrohrs zu ermitteln, der das Ende des Saugrohrs mit einer geringeren Querschnittsfläche ist.

V1=(V22)+(hf2[g])1-ηd

Geschwindigkeitsverhältnis des Hooke-Gelenks

Das Geschwindigkeitsverhältnis der Hakengelenkformel wird verwendet, um das Verhältnis der WinkelGeschwindigkeiten der angetriebenen Welle zur antreibenden Welle zu finden.

V=cos(α)1-cos(θ)2sin(α)2

Geschwindigkeitskonstante für die Reaktion erster Ordnung unter Verwendung von Raumzeit für Pfropfenströmung

Die Geschwindigkeitskonstante für die Reaktion erster Ordnung unter Verwendung der Raum-Zeit-Formel für Pfropfenströmung ist als die Proportionalitätskonstante definiert, die die Beziehung zwischen der ReaktionsGeschwindigkeit und der ersten Potenz der Konzentration eines der Reaktanten angibt.

kbatch=(1𝛕Batch)ln(11-XA Batch)

Geschwindigkeitskonstante für die Reaktion erster Ordnung unter Verwendung der Reaktantenkonzentration für Pfropfenströmung

Die Geschwindigkeitskonstante für die Reaktion erster Ordnung unter Verwendung der Reaktantenkonzentration für die Pfropfenströmungsformel ist als die Proportionalitätskonstante definiert, die die Beziehung zwischen der ReaktionsGeschwindigkeit und der ersten Potenz der Konzentration eines der Reaktanten angibt.

kbatch=(1𝛕Batch)ln(Co BatchCBatch)

Geschwindigkeitskonstante für die Reaktion zweiter Ordnung unter Verwendung von Raumzeit für Pfropfenströmung

Die Geschwindigkeitskonstante für die Reaktion zweiter Ordnung unter Verwendung der Raum-Zeit-Formel für Pfropfenströmung ist definiert als die Proportionalitätskonstante in der Gleichung, die die Beziehung zwischen der Geschwindigkeit einer chemischen Reaktion und den Konzentrationen der reagierenden Substanzen ausdrückt.

k''=(1𝛕BatchCo Batch)(XA Batch1-XA Batch)

Geschwindigkeitskonstante für die Reaktion erster Ordnung unter Verwendung des Recyclingverhältnisses

Die Geschwindigkeitskonstante für die Reaktion erster Ordnung unter Verwendung der Rückführungsverhältnisformel ist als die Proportionalitätskonstante definiert, die die Beziehung zwischen der Geschwindigkeit für die Reaktion erster Ordnung und der ersten Potenz der Konzentration eines der Reaktanten für eine fraktionelle Volumenänderung von Null angibt.

k'=(R+1𝛕)ln(Co+(RCf)(R+1)Cf)

Wie finde ich Formeln?

Hier sind ein paar Tipps für bessere Suchergebnisse.
Seien Sie konkret: Je konkreter Ihre Suchanfrage, desto besser sind Ihre Ergebnisse.
Verwenden Sie mehrere Schlüsselwörter: Kombinieren Sie mehrere Schlüsselwörter, um die Ergebnisse einzugrenzen.
Experimentieren Sie mit Synonymen: Unterschiedliche Begriffe können zu unterschiedlichen Ergebnissen führen.
Platzhaltersuche: Verwenden Sie den Operator * (Sternchen). BEACHTEN SIE, dass dieser Operator nur am Ende eines Wortes funktioniert. Beispiel: Bio*, Bereich* usw.

Alternativ können Sie durch die Unterkategorien innerhalb von navigieren, um die Formeln einzugrenzen, die Sie interessieren.

Copied!