Geschwindigkeit der FührungsrolleDie Formel für die Geschwindigkeit der Führungsrolle ist definiert als Maß für die RotationsGeschwindigkeit der Führungsrolle in einem mechanischen System, die für die Bestimmung der Bewegung des Systems von entscheidender Bedeutung ist, insbesondere im Kontext der Bewegungskinetik, wo die Geschwindigkeit der Führungsrolle die Gesamtleistung und Effizienz des Systems beeinflusst.
Geschwindigkeit des Objekts in KreisbewegungDie Formel zur Berechnung der Geschwindigkeit eines Objekts bei einer Kreisbewegung ist definiert als die Rate, mit der sich ein Objekt auf einer Kreisbahn bewegt. Dabei spielt der Radius des Kreises und die Rotationsfrequenz eine Rolle. Sie bietet ein grundlegendes Konzept zum Verständnis der Kreisbewegung und ihrer Anwendungen in der Physik und Technik.
GeschwindigkeitskoeffizientDie Formel für den Geschwindigkeitskoeffizienten ist definiert als das Verhältnis zwischen der tatsächlichen Geschwindigkeit des Strahls an der Vena-Contracta und der theoretischen Geschwindigkeit am Strahl.
Geschwindigkeitsdruck mit WinddruckDer Geschwindigkeitsdruck unter Verwendung des Winddrucks wird als Geschwindigkeitsdruck definiert, wenn wir eine vorherige Information über den äquivalenten statischen Winddruck haben.
Geschwindigkeit für einen gegebenen KurvenradiusDie Geschwindigkeit bei einem gegebenen Wenderadius ist ein Maß für die Geschwindigkeit eines Objekts, wenn es sich auf einer Kreisbahn dreht, abhängig vom Wenderadius, der Erdbeschleunigung und dem Lastfaktor.
GeschwindigkeitsdruckDer Geschwindigkeitsdruck wird als Geschwindigkeitsdruck definiert, wenn wir die GrundwindGeschwindigkeit und andere Faktoren kennen, die den Geschwindigkeitsdruck beeinflussen, wie Windrichtungsfaktor, topografischer Faktor usw.
Geschwindigkeit in Abschnitt 1-1 für plötzliche VergrößerungDie Geschwindigkeit in Abschnitt 1-1 für die Formel für plötzliche Vergrößerung ist bekannt, wenn die StrömungsGeschwindigkeit in Abschnitt 2-2 nach der Vergrößerung und der Druckverlust aufgrund der Reibung für eine durch das Rohr fließende Flüssigkeit berücksichtigt werden.
Geschwindigkeit in Abschnitt 2-2 für plötzliche VergrößerungDie Geschwindigkeit in Abschnitt 2-2 für die Formel für plötzliche Vergrößerung ist bekannt, wenn die StrömungsGeschwindigkeit in Abschnitt 1-1 vor der Vergrößerung und der Druckverlust aufgrund der Reibung für eine durch das Rohr fließende Flüssigkeit berücksichtigt werden.
Geschwindigkeitskonstante für die Reaktion nullter Ordnung aus der Arrhenius-GleichungDie Geschwindigkeitskonstante für eine Reaktion nullter Ordnung aus der Arrhenius-Gleichungsformel ist definiert als das Produkt des Frequenzfaktors mit einer empirischen Form der negativen Aktivierungsenergie pro universeller Gaskonstante multipliziert mit der Temperatur, und die Geschwindigkeitskonstante der Arrhenius-Gleichung ist umgekehrt proportional zur Reaktionstemperatur.
Geschwindigkeitskonstante für die Reaktion erster Ordnung aus der Arrhenius-GleichungDie Geschwindigkeitskonstante für die Reaktion erster Ordnung aus der Arrhenius-Gleichungsformel ist definiert als der Frequenzfaktor multipliziert mit dem Exponential der negativen Aktivierungsenergie pro universeller Gaskonstante und Temperatur. Die Geschwindigkeitskonstante der Reaktion erster Ordnung ist umgekehrt proportional zur Reaktionstemperatur. Mit steigender Reaktionstemperatur nimmt die Geschwindigkeitskonstante ab.
Geschwindigkeitskonstante für die Reaktion zweiter Ordnung aus der Arrhenius-GleichungDie Geschwindigkeitskonstante für die Reaktion zweiter Ordnung aus der Arrhenius-Gleichungsformel ist definiert als Frequenzfaktor multipliziert mit der Exponentialform der negativen Aktivierungsenergie pro universeller Gaskonstante und Temperatur. Die Geschwindigkeitskonstante der Reaktion zweiter Ordnung ist umgekehrt proportional zur Reaktionstemperatur.
Geschwindigkeitsfaktor für exakt gefräste und gewälzte Verzahnungen bei v kleiner 20Geschwindigkeitsfaktor für genau gefräste und profilierte Zahnräder, wenn v kleiner als 20 m/s ist das Verhältnis der statischen Belastung beim Versagen zur dynamischen Belastung beim Versagen. Dieser Geschwindigkeitsfaktor Kv wird verwendet, um die Lewis-Gleichung zu modifizieren: Je höher die WälzlinienGeschwindigkeit, desto größer die Biegespannung an den Zahnradzähnen.
Geschwindigkeit des freien Stroms bei lokalem ReibungskoeffizientenDie Formel für die freie StrömungsGeschwindigkeit bei gegebenem lokalen Reibungskoeffizienten ist definiert als die Geschwindigkeit einer Flüssigkeit, wenn diese weit entfernt von einer Begrenzung oder Wand ist und von der Anwesenheit der Wand unbeeinflusst bleibt. Sie ist ein entscheidender Parameter zum Verständnis des Verhaltens einer Flüssigkeitsströmung über einer flachen Platte.
Geschwindigkeit der FlüssigkeitDie FlüssigkeitsGeschwindigkeit ist definiert als die Geschwindigkeit, mit der sich Flüssigkeit oder Öl im Tank aufgrund der Anwendung der Kolbenkraft bewegt.
Geschwindigkeit am Auslass bei geleisteter Arbeit am RadDie Geschwindigkeit am Ausgang bei gegebener am Rad geleisteter Arbeit ist die Änderungsrate seiner Position in Bezug auf einen Bezugsrahmen und eine Funktion der Zeit am Ausgang eines beliebigen Objekts.
Geschwindigkeit des FörderbandesDie Formel für die Geschwindigkeit des Förderbands ist definiert als Förderer bewegen Kisten mit etwa der gleichen Geschwindigkeit wie eine Person, die sie trägt. Das sind etwa 65 Fuß pro Minute.
Geschwindigkeit sich bewegender GrenzenDie Formel für die Geschwindigkeit sich bewegender Grenzen ist definiert als der Bereich oder die Oberfläche der Grenze oder des Objekts, das sich mit konstanter Geschwindigkeit bewegt.
Geschwindigkeitspotential für 3D-inkompressible DublettströmungMit der Formel „Geschwindigkeitspotenzial für dreidimensionale inkompressible Doublettenströmung“ wird das Geschwindigkeitspotenzial berechnet, das eine Funktion der Stärke der Doubletten-, Radial- und Polarkoordinaten für die dreidimensionale inkompressible Doublettenströmung ist.
Geschwindigkeit des Satelliten im kreisförmigen LEO als Funktion der HöheDie Formel zur Berechnung der SatellitenGeschwindigkeit in einer kreisförmigen erdnahen Umlaufbahn als Funktion der Höhe ist definiert als die Geschwindigkeit, mit der ein Satellit die Erde in einer kreisförmigen erdnahen Umlaufbahn umkreist. Sie ist abhängig von der Höhe des Satelliten über der Erdoberfläche und stellt einen entscheidenden Parameter bei der Konstruktion und dem Betrieb von Satelliten in Weltraummissionen dar.
Geschwindigkeit des Satelliten in seinem kreisförmigen GEO-RadiusDie Geschwindigkeit eines Satelliten in seiner kreisförmigen geosynchronen Umlaufbahn wird in Abhängigkeit von der Gravitationskonstante und dem Radius der Umlaufbahn als die Geschwindigkeit definiert, mit der ein Satellit die Erde in einer kreisförmigen geosynchronen Umlaufbahn umkreist.
Geschwindigkeit in krummliniger Bewegung bei gegebener WinkelGeschwindigkeitDie Geschwindigkeit bei krummliniger Bewegung wird mithilfe der Formel für die WinkelGeschwindigkeit als Maß für die Änderungsrate der Position eines Objekts entlang eines gekrümmten Pfads definiert. Sie beschreibt die Bewegung eines Objekts, das sich auf einer Kreisbahn um eine feste Achse bewegt, wobei die Größe der Bewegung von der WinkelGeschwindigkeit und dem Radius der Kreisbahn abhängt.
Geschwindigkeit des Flugzeugs bei gegebener ÜberschussleistungDie Geschwindigkeit des Flugzeugs bei gegebener Überschussleistung ist die LuftGeschwindigkeit, die erforderlich ist, um eine gegebene Steigrate beizubehalten, wobei die verfügbare Überschussleistung und das Gleichgewicht zwischen Schub- und Widerstandskräften während des Steigflugs berücksichtigt werden. Das Verständnis und die Anwendung dieser Formel ist für Piloten und Ingenieure von entscheidender Bedeutung, um die Steigleistung zu optimieren.
Geschwindigkeit an jedem Punkt für den StaurohrkoeffizientenDie Geschwindigkeit an jedem Punkt für den Koeffizienten der Pitotrohrformel ist bekannt, wenn man den Anstieg der Flüssigkeit im Rohr über die freie Oberfläche betrachtet, die die Höhe der Flüssigkeit am oberen Rand des Pitotrohrs ist.
Geschwindigkeit hinter dem Normalschock aus der Normalschock-EnergiegleichungDie Geschwindigkeit hinter dem Normalschock aus der Normalschock-Energiegleichung berechnet die Geschwindigkeit einer Flüssigkeit stromabwärts einer normalen Stoßwelle unter Verwendung der Normalschock-Energiegleichung. Diese Formel berücksichtigt Parameter wie die Enthalpie vor und hinter dem Stoß und die Geschwindigkeit vor dem Stoß. Es liefert wesentliche Erkenntnisse über die Geschwindigkeitsänderung, die sich aus dem Durchgang der Stoßwelle ergibt.
Geschwindigkeit für eine gegebene WenderateDie Geschwindigkeit bei einer gegebenen Wenderate ist ein Maß für die Geschwindigkeit eines Flugzeugs während einer Kurve und wird auf Grundlage des Lastfaktors, der Erdbeschleunigung und der Wenderate berechnet.
Geschwindigkeit des Körpers in einfacher harmonischer BewegungDie Formel für die Geschwindigkeit eines Körpers bei einer einfachen harmonischen Bewegung wird als die MaximalGeschwindigkeit eines Objekts definiert, während es um seine Gleichgewichtsposition schwingt. Sie liefert ein Maß für die kinetische Energie des Objekts während seiner Schwingungsbewegung.
Geschwindigkeit für gegebenen Pull-Up-ManöverradiusDie Geschwindigkeit für einen bestimmten Pull-Up-Manöverradius eines Flugzeugs hängt vom Manöverradius und der Auslastung des Flugzeugs ab. Diese Formel bietet eine vereinfachte Annäherung an die Geschwindigkeit, die erforderlich ist, um während des Pull-Up-Manövers die gewünschte SinkGeschwindigkeit aufrechtzuerhalten.
Geschwindigkeit für eine gegebene Pull-up-ManöverrateDie Geschwindigkeit für eine bestimmte Pull-up-Manöverrate ist die Geschwindigkeit, die ein Flugzeug benötigt, um während eines Pull-up-Manövers eine bestimmte Steigrate beizubehalten. Diese Formel berechnet die Geschwindigkeit basierend auf der Erdbeschleunigung, dem Pull-up-Lastfaktor und der Wenderate. Das Verständnis und die Anwendung dieser Formel ist für Piloten und Ingenieure unerlässlich, um sichere und effektive Pull-up-Manöver zu gewährleisten.