Suche Formeln

Bitte geben Sie mindestens 3 Zeichen ein, um mit der Suche nach -Formeln zu beginnen.

Wählen Sie Filter

Grenzen Sie Ihre Suchergebnisse mithilfe dieser Filter ein.

50 Passende Formeln gefunden!

Geschwindigkeit des Elektrons

Die Geschwindigkeit eines Elektrons bezieht sich auf seine Geschwindigkeit und Bewegungsrichtung und wird durch das Energieerhaltungsprinzip bestimmt. Im Wesentlichen heißt es, dass die Änderung der kinetischen Energie des Elektrons gleich der Änderung der potentiellen Energie ist, die es aufgrund des elektrischen Feldes erfährt.

Vv=2[Charge-e]V[Mass-e]

Geschwindigkeit von Elektronen in Kraftfeldern

Die ElektronenGeschwindigkeit in Kraftfeldern wird verwendet, um die Geschwindigkeit eines geladenen Teilchens in ein Feld zu berechnen, in dem sowohl ein elektrisches als auch ein magnetisches Feld vorhanden ist.

Vef=EIH

Geschwindigkeit von Teilchen 1 bei gegebener kinetischer Energie

Die Formel für die Geschwindigkeit von Teilchen 1 bei gegebener kinetischer Energie ist eine Methode zur Berechnung der Geschwindigkeit eines Teilchens, wenn wir die Geschwindigkeit anderer Teilchen und die gesamte kinetische Energie des Systems kennen. Da die gesamte kinetische Energie die Summe der individuellen kinetischen Energie beider Teilchen ist, bleibt uns nur eine Variable, und durch Lösen der Gleichung erhalten wir die erforderliche Geschwindigkeit.

v1=(2KE)-(m2v22)m1

Geschwindigkeit von Teilchen 2 bei gegebener kinetischer Energie

Die Formel für die Geschwindigkeit von Teilchen 2 bei gegebener kinetischer Energie ist eine Methode zur Berechnung der Geschwindigkeit eines Teilchens, wenn wir die Geschwindigkeit anderer Teilchen und die gesamte kinetische Energie des Systems kennen. Kinetische Energie ist die Arbeit, die erforderlich ist, um einen Körper einer bestimmten Masse aus dem Ruhezustand zu beschleunigen zu seiner angegebenen Geschwindigkeit. Da die kinetische Energie KE eine Summe der kinetischen Energie für jede Masse ist, haben wir nur eine Variable übrig gelassen und durch Lösen der Gleichung erhalten wir die erforderliche Geschwindigkeit.

v2=(2KE)-(m1v12)m2

Geschwindigkeit hinter Normal Shock

Die Geschwindigkeit hinter dem Normalstoß berechnet die Geschwindigkeit einer Flüssigkeit stromabwärts einer normalen Stoßwelle. Diese Formel berücksichtigt Parameter wie die Geschwindigkeit vor dem Stoß, das Verhältnis der spezifischen Wärme für die Flüssigkeit und die Machzahl der Strömung. Es liefert wertvolle Einblicke in die Geschwindigkeitsänderung, die sich aus dem Durchgang der Stoßwelle ergibt.

V2=V1γ+1(γ-1)+2M2

Geschwindigkeitskonstante der Reaktion erster Ordnung unter Verwendung des Logarithmus zur Basis 10

Die Geschwindigkeitskonstante der Reaktion erster Ordnung unter Verwendung des Logarithmus zur Basis-10-Formel ist definiert als die ReaktionsGeschwindigkeit pro Konzentration des Reaktanten. Die Formel ist der Logarithmus zur Basis 10 der Anfangskonzentration pro Konzentration zum Zeitpunkt t, das Ganze wird durch die Zeit dividiert, die für die Vervollständigung der Reaktion erforderlich ist.

kfirst=2.303tcompletionlog10(A0Ct)

Geschwindigkeitskonstante zur Halbzeit für die Reaktion erster Ordnung

Die Geschwindigkeitskonstante zur Halbzeit für die Reaktionsformel erster Ordnung ist definiert als die ReaktionsGeschwindigkeit pro Konzentration des Reaktanten. Die Formel ist ein natürlicher Logarithmus von 2 geteilt durch die Halbwertszeit der Reaktion.

kfirst=0.693t1/2

Geschwindigkeitskonstante für dasselbe Produkt für eine Reaktion zweiter Ordnung

Die Geschwindigkeitskonstante für dasselbe Produkt für die Reaktionsformel zweiter Ordnung ist definiert als die durchschnittliche ReaktionsGeschwindigkeit pro Konzentration des Reaktanten mit einer auf 2 erhöhten Leistung.

Ksecond=1axttcompletion-1atcompletion

Geschwindigkeitskonstante für verschiedene Produkte für die Reaktion zweiter Ordnung

Die Geschwindigkeitskonstante für verschiedene Produkte für die Reaktionsformel zweiter Ordnung ist definiert als die durchschnittliche ReaktionsGeschwindigkeit pro Konzentration der beiden verschiedenen Reaktanten, deren Leistung jeweils auf 1 erhöht ist.

Kfirst=2.303tcompletion(CAO-CBO)log10CBO(ax)CAO(bx)

Geschwindigkeitskonstante unter konstantem Druck und konstanter Temperatur für eine Reaktion nullter Ordnung

Die Geschwindigkeitskonstante unter konstantem Druck und konstanter Temperatur für die Reaktionsformel nullter Ordnung ist definiert als Fortschritt der Gasreaktion, die durch Messen des Gesamtdrucks bei einem festen Volumen und einer festen Temperatur überwacht werden kann. Da die Geschwindigkeitskonstante für eine Reaktion nullter Ordnung gilt, sollte die Reihenfolge der Reaktion (n) durch Null ersetzt werden.

k=(2.303t)log10(P0(n-1)(nP0)-Pt)

Geschwindigkeitskonstante nach Titrationsverfahren für Reaktionen erster Ordnung

Die Geschwindigkeitskonstante durch das Titrationsverfahren für die Formel des Reaktionsverfahrens erster Ordnung ist definiert als die ReaktionsGeschwindigkeit geteilt durch die Konzentration des Reaktanten, der auf die Potenz eins erhöht ist. Die Geschwindigkeitskonstante nach dem Titrationsverfahren ist direkt proportional zum Logarithmus des Anfangsvolumens des Reaktanten pro Volumen eines Reaktanten zum Zeitpunkt t.

kfirst=(2.303tcompletion)log10(V0Vt)

Geschwindigkeit für eine gegebene Wenderate

Die Geschwindigkeit bei einer gegebenen Wenderate ist ein Maß für die Geschwindigkeit eines Flugzeugs während einer Kurve und wird auf Grundlage des Lastfaktors, der Erdbeschleunigung und der Wenderate berechnet.

V=[g]n2-1ω

Geschwindigkeit des Körpers in einfacher harmonischer Bewegung

Die Formel für die Geschwindigkeit eines Körpers bei einer einfachen harmonischen Bewegung wird als die MaximalGeschwindigkeit eines Objekts definiert, während es um seine Gleichgewichtsposition schwingt. Sie liefert ein Maß für die kinetische Energie des Objekts während seiner Schwingungsbewegung.

V=A'ωcos(ωtsec)

Geschwindigkeit für gegebenen Pull-Up-Manöverradius

Die Geschwindigkeit für einen bestimmten Pull-Up-Manöverradius eines Flugzeugs hängt vom Manöverradius und der Auslastung des Flugzeugs ab. Diese Formel bietet eine vereinfachte Annäherung an die Geschwindigkeit, die erforderlich ist, um während des Pull-Up-Manövers die gewünschte SinkGeschwindigkeit aufrechtzuerhalten.

Vpull-up=R[g](n-1)

Geschwindigkeit für eine gegebene Pull-up-Manöverrate

Die Geschwindigkeit für eine bestimmte Pull-up-Manöverrate ist die Geschwindigkeit, die ein Flugzeug benötigt, um während eines Pull-up-Manövers eine bestimmte Steigrate beizubehalten. Diese Formel berechnet die Geschwindigkeit basierend auf der Erdbeschleunigung, dem Pull-up-Lastfaktor und der Wenderate. Das Verständnis und die Anwendung dieser Formel ist für Piloten und Ingenieure unerlässlich, um sichere und effektive Pull-up-Manöver zu gewährleisten.

Vpull-up=[g]npull-up-1ω

Geschwindigkeitsverhältnis im Differenzial-Riemenscheibenblock von Weston

Das Geschwindigkeitsverhältnis im Differential-Flaschenzug von Weston ist ein Maß für den mechanischen Vorteil, den das System bietet. Es stellt das Verhältnis der durch die Kraft zurückgelegten Strecke (die gezogene Kette) zur zurückgelegten Strecke durch die Last dar.

Vi=2dldl-ds

Geschwindigkeitsfaktor für handelsüblich geschnittene Zahnräder, die mit Formfräsern hergestellt wurden, wenn v kleiner als 10 ist

Geschwindigkeitsfaktor für industriell geschnittene Zahnräder, die mit Formfräsern hergestellt werden, wenn v kleiner als 10 m/s ist, ist das Verhältnis der statischen Belastung beim Versagen zur dynamischen Belastung beim Versagen. Dieser Geschwindigkeitsfaktor Kv wird verwendet, um die Lewis-Gleichung zu modifizieren: Je höher die WälzlinienGeschwindigkeit, desto größer die Biegespannung an den Zahnradzähnen.

Cv=33+v

Geschwindigkeitsfaktor für exakt gefräste und gewälzte Verzahnungen bei v kleiner 20

Geschwindigkeitsfaktor für genau gefräste und profilierte Zahnräder, wenn v kleiner als 20 m/s ist das Verhältnis der statischen Belastung beim Versagen zur dynamischen Belastung beim Versagen. Dieser Geschwindigkeitsfaktor Kv wird verwendet, um die Lewis-Gleichung zu modifizieren: Je höher die WälzlinienGeschwindigkeit, desto größer die Biegespannung an den Zahnradzähnen.

Cv=66+v

Geschwindigkeitsfaktor für Präzisionsgetriebe mit Schab- und Schleifoperationen, wenn v größer als 20 ist

Geschwindigkeitsfaktor für Präzisionsgetriebe mit Schäl- und Schleifvorgängen, wenn v größer als 20 m/s ist das Verhältnis der statischen Belastung beim Versagen zur dynamischen Belastung beim Versagen. Dieser Geschwindigkeitsfaktor Kv wird verwendet, um die Lewis-Gleichung zu modifizieren: Je höher die WälzlinienGeschwindigkeit, desto größer die Biegespannung an den Zahnradzähnen.

Cv=5.65.6+v

Geschwindigkeit von Chezys Formel

Die Geschwindigkeit der Chezy-Formel ist bekannt, wenn man die Chezy-Konstante, die Quadratwurzel der hydraulischen mittleren Tiefe und die Neigung des Bettes berücksichtigt.

v=Cmi

Geschwindigkeit des Kolbens für die Scherkraft, die der Bewegung des Kolbens widersteht

Die Geschwindigkeit des Kolbens zur Widerstandsfähigkeit gegen Scherkräfte ist definiert als die durchschnittliche Geschwindigkeit, mit der sich der Kolben bewegt.

vpiston=FsπμLP(1.5(DCR)2+4(DCR))

Geschwindigkeit der Flüssigkeit

Die FlüssigkeitsGeschwindigkeit ist definiert als die Geschwindigkeit, mit der sich Flüssigkeit oder Öl im Tank aufgrund der Anwendung der Kolbenkraft bewegt.

uOiltank=dp|dr0.5RR-CHRμ

Geschwindigkeit des Kolbens bei Scherspannung

Die Geschwindigkeit des Kolbens bei Scherbeanspruchung ist definiert als die durchschnittliche Geschwindigkeit im Tank aufgrund der Bewegung des Kolbens.

vpiston=𝜏1.5DμCHCH

Geschwindigkeitsfaktor

Der Geschwindigkeitsfaktor ist definiert als der Wert, der zum Erhöhen des statischen Lastwerts verwendet wird, um den dynamischen Effekt bei der Konstruktion von Schienen zu berücksichtigen. Es wird allgemein als indische Formel bezeichnet.

Fsf=Vt18.2k

Geschwindigkeit gegebener Geschwindigkeitsfaktor

Gegebener Geschwindigkeitsfaktor ist die Geschwindigkeit des Zuges, die als Geschwindigkeit bezeichnet wird, mit der ein Objekt oder Zug eine bestimmte Entfernung zurücklegt. Einheit in km/h.

Vt=Fsf(18.2k)

Geschwindigkeitsfaktor nach deutscher Formel

Der Geschwindigkeitsfaktor nach deutscher Formel ist definiert als der Faktor, der zur Umwandlung der statischen Vertikallast auf die Schiene in eine dynamische Last verwendet wird. Diese Gleichung wird im Allgemeinen für Geschwindigkeiten bis zu 100 km/h verwendet.

Fsf=Vt230000

Geschwindigkeit mit deutscher Formel

Die Geschwindigkeit nach deutscher Formel ist definiert als die Geschwindigkeit des Zuges auf der Strecke. Im Allgemeinen liegt die Geschwindigkeit unter 100 km / h, um diese Gleichung zu verwenden.

Vt=Fsf30000

Geschwindigkeitsfaktor nach deutscher Formel und Geschwindigkeit über 100 km/h

Der Geschwindigkeitsfaktor unter Verwendung der deutschen Formel und Geschwindigkeit über 100 km/h ist definiert als der Faktor, der zur Umrechnung der statischen vertikalen Last auf der Schiene in eine dynamische Last verwendet wird.

Fsf=(4.5Vt2105)-(1.5Vt3107)

Geschwindigkeit für die Wellenlänge der Welle

Die Formel zur Berechnung der Geschwindigkeit für die Wellenlänge einer Welle ist definiert als die Geschwindigkeit, mit der sich die Welle durch ein Medium ausbreitet, berechnet als Produkt ihrer Frequenz und Wellenlänge.

C=(λf)

Geschwindigkeit der Schallwelle

Die Formel zur Berechnung der SchallwellenGeschwindigkeit wird als Geschwindigkeit definiert, obwohl Geschwindigkeit eigentlich sowohl Geschwindigkeit als auch Richtung impliziert. Die Geschwindigkeit einer Welle ist gleich dem Produkt aus Wellenlänge und Frequenz (Anzahl der Schwingungen pro Sekunde) und ist unabhängig von ihrer Intensität.

C=20.05T

Geschwindigkeit der Schallwelle gegeben Schallintensität

Die Geschwindigkeit einer Schallwelle wird bei gegebener Schallintensitätsformel als Tempo definiert, obwohl Geschwindigkeit eigentlich sowohl Geschwindigkeit als auch Richtung impliziert. Die Geschwindigkeit einer Welle ist gleich dem Produkt aus Wellenlänge und Frequenz (Anzahl der Schwingungen pro Sekunde) und ist unabhängig von ihrer Intensität.

C=Prms2Iρ

Geschwindigkeit am Einlass für die Masse des Fluids, das pro Sekunde auf die Leitschaufel auftrifft

Die Geschwindigkeit am Einlass für die Masse des auf die Leitschaufel auftreffenden Fluids pro Sekunde ist die Änderungsrate ihrer Position in Bezug auf den Referenzrahmen und ist eine Funktion der Zeit.

v=mfGγfAJet

Geschwindigkeit in der Tiefe bei gegebener absoluter Geschwindigkeit der Welle, die sich nach rechts bewegt

Die Geschwindigkeit in der Tiefe, gegeben durch die Formel „Absolute Geschwindigkeit des Schwalls, der sich nach rechts bewegt“, ist definiert als die resultierende Geschwindigkeit der Flüssigkeitspartikel, die für die Schwallbewegung verantwortlich sind.

VNegativesurges=(vabs(h 1-D2))+(V2D2)h 1

Geschwindigkeit der Welle bei zwei Tiefen

Die Geschwindigkeit der Welle bei zwei Tiefen ist definiert als die Addition der normalen WasserGeschwindigkeit der Kanäle im offenen Kanalfluss.

Cw=[g]D2(D2+h 1)2h 1

Geschwindigkeit in Tiefe 1, wenn die Schwallhöhe vernachlässigbar ist

Die Geschwindigkeit in Tiefe1, wenn die Schwallhöhe vernachlässigbar ist, wird als Geschwindigkeit des Strömungsstoßes an einem Punkt definiert.

VNegativesurges=(Hch[g]Cw)+V2

Geschwindigkeit der Welle bei ungleichmäßiger Strömung

Die Formel „WellenGeschwindigkeit bei ungleichmäßiger Strömung“ ist definiert als die Geschwindigkeit der Wellenausbreitung bei unterschiedlichen Strömungsbedingungen.

Cw=[g]h 1(1+1.5(Hchh 1)+0.5(Hchh 1)(Hchh 1))

Geschwindigkeit der Welle aus der Geschwindigkeitsgleichung von Lagrange

Die WellenGeschwindigkeit aus Lagranges Geschwindigkeitsgleichungsformel ist definiert als plötzliche Änderungen der Strömungstiefe, die zusätzlich zur normalen WasserGeschwindigkeit der Kanäle eine Geschwindigkeit (WellenGeschwindigkeit) in der Strömung erzeugen.

Cw=[g]h 1

Geschwindigkeit an der Oberfläche bei gegebener Volumenstromrate pro Einheit der Meeresbreite

Die Formel „Geschwindigkeit an der Oberfläche“ bei gegebener Volumenstromrate pro Einheit der Meeresbreite ist definiert als der Geschwindigkeitsparameter an der Oberfläche, der das aktuelle Profil beeinflusst.

Vs=qxπ2DF

Geschwindigkeit des Fahrzeugs bei gegebenem Bremsweg

Die Geschwindigkeit des Fahrzeugs bei gegebener Bremswegformel ist definiert als die Geschwindigkeit, mit der sich das Fahrzeug auf der Straßenoberfläche bewegt.

Vb=(BD(2[g]f))0.5

Geschwindigkeitspotential für inkompressiblen 3D-Quellenfluss

Die Formel für das Geschwindigkeitspotential für dreidimensionalen inkompressiblen Quellfluss wird als Funktion der Quellstärke und des radialen Abstands für dreidimensionalen Quellfluss definiert.

ϕs=-Λ4πr

Geschwindigkeitspotential für 3D-inkompressible Dublettströmung

Mit der Formel „Geschwindigkeitspotenzial für dreidimensionale inkompressible Doublettenströmung“ wird das Geschwindigkeitspotenzial berechnet, das eine Funktion der Stärke der Doubletten-, Radial- und Polarkoordinaten für die dreidimensionale inkompressible Doublettenströmung ist.

ϕ=-μcos(θ)4πr2

Geschwindigkeitskonstante der irreversiblen Reaktion zweiter Ordnung mit gleichen Reaktantenkonzentrationen

Die Formel für die Geschwindigkeitskonstante der irreversiblen Reaktion zweiter Ordnung mit gleichen Reaktantenkonzentrationen ist definiert als die Proportionalitätskonstante in der Gleichung, die die Beziehung zwischen der Geschwindigkeit einer chemischen Reaktion und den Konzentrationen der reagierenden Substanzen ausdrückt.

k2=r(CA)2

Geschwindigkeitskonstante der irreversiblen Reaktion dritter Ordnung

Die Formel für die Geschwindigkeitskonstante der irreversiblen Reaktion dritter Ordnung ist definiert als die Proportionalitätskonstante in der Gleichung, die die Beziehung zwischen der Geschwindigkeit einer chemischen Reaktion und den Konzentrationen der reagierenden Substanzen ausdrückt.

k3=rCACBCD

Geschwindigkeitsfaktor

Die Formel für den Geschwindigkeitsfaktor ist definiert als der Bruchwert, der sich auf die AusbreitungsGeschwindigkeit einer Übertragungsleitung und die LichtGeschwindigkeit im Vakuum bezieht. Der Geschwindigkeitsfaktor stellt das Verhältnis der Geschwindigkeit einer elektromagnetischen Welle in der Antennenstruktur zur LichtGeschwindigkeit dar.

Vf=1K

Geschwindigkeitskonstante für die Reaktion erster Ordnung unter Verwendung von Raumzeit für Pfropfenströmung

Die Geschwindigkeitskonstante für die Reaktion erster Ordnung unter Verwendung der Raum-Zeit-Formel für Pfropfenströmung ist als die Proportionalitätskonstante definiert, die die Beziehung zwischen der ReaktionsGeschwindigkeit und der ersten Potenz der Konzentration eines der Reaktanten angibt.

kbatch=(1𝛕Batch)ln(11-XA Batch)

Geschwindigkeitskonstante für die Reaktion erster Ordnung unter Verwendung der Reaktantenkonzentration für Pfropfenströmung

Die Geschwindigkeitskonstante für die Reaktion erster Ordnung unter Verwendung der Reaktantenkonzentration für die Pfropfenströmungsformel ist als die Proportionalitätskonstante definiert, die die Beziehung zwischen der ReaktionsGeschwindigkeit und der ersten Potenz der Konzentration eines der Reaktanten angibt.

kbatch=(1𝛕Batch)ln(Co BatchCBatch)

Geschwindigkeitskonstante für die Reaktion zweiter Ordnung unter Verwendung von Raumzeit für Pfropfenströmung

Die Geschwindigkeitskonstante für die Reaktion zweiter Ordnung unter Verwendung der Raum-Zeit-Formel für Pfropfenströmung ist definiert als die Proportionalitätskonstante in der Gleichung, die die Beziehung zwischen der Geschwindigkeit einer chemischen Reaktion und den Konzentrationen der reagierenden Substanzen ausdrückt.

k''=(1𝛕BatchCo Batch)(XA Batch1-XA Batch)

Geschwindigkeitskonstante für eine Reaktion erster Ordnung in erster Ordnung, gefolgt von einer Reaktion nullter Ordnung

Die Formel für die Geschwindigkeitskonstante für eine Reaktion erster Ordnung gefolgt von einer Reaktion nullter Ordnung ist als die Proportionalitätskonstante einer Reaktion erster Ordnung definiert, der eine Reaktion nullter Ordnung folgt.

kI=(1Δt)ln(CA0Ck0)

Geschwindigkeitskonstante der Phase zwischen Blase und Wolke

Die Formel für die Geschwindigkeitskonstante der Phase zwischen Blase und Wolke wird als berechnete Geschwindigkeitskonstante definiert, wenn im Wirbelreaktor Blasenbildung auftritt.

Kbc=4.50(umfdb)+5.85(Df R)12([g])14db54

Geschwindigkeitskonstante der Phase zwischen Wolkenwache und Emulsion

Die Geschwindigkeitskonstante der Phase zwischen Wolkenwache und Emulsionsformel wird als berechnete Geschwindigkeitskonstante definiert, wenn Blasenbildung an der Grenzfläche im Wirbelschichtreaktor beim Kunii-Levenspiel-Modell auftritt.

Kce=6.77(εmfDf Rubrdb3)12

Wie finde ich Formeln?

Hier sind ein paar Tipps für bessere Suchergebnisse.
Seien Sie konkret: Je konkreter Ihre Suchanfrage, desto besser sind Ihre Ergebnisse.
Verwenden Sie mehrere Schlüsselwörter: Kombinieren Sie mehrere Schlüsselwörter, um die Ergebnisse einzugrenzen.
Experimentieren Sie mit Synonymen: Unterschiedliche Begriffe können zu unterschiedlichen Ergebnissen führen.
Platzhaltersuche: Verwenden Sie den Operator * (Sternchen). BEACHTEN SIE, dass dieser Operator nur am Ende eines Wortes funktioniert. Beispiel: Bio*, Bereich* usw.

Alternativ können Sie durch die Unterkategorien innerhalb von navigieren, um die Formeln einzugrenzen, die Sie interessieren.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!