Suche Formeln

Bitte geben Sie mindestens 3 Zeichen ein, um mit der Suche nach -Formeln zu beginnen.

Wählen Sie Filter

Grenzen Sie Ihre Suchergebnisse mithilfe dieser Filter ein.

50 Passende Formeln gefunden!

Geschwindigkeitsverhältnis des Verbundgetriebes

Das Übersetzungsverhältnis eines zusammengesetzten Getriebes ist das Produkt der Übersetzungsverhältnisse jedes Zahnradpaars im Getriebe. Es wird durch Multiplikation der einzelnen Übersetzungsverhältnisse berechnet, wobei jedes Übersetzungsverhältnis das Verhältnis der Anzahl der Zähne des Antriebsrads zur Anzahl der Zähne des angetriebenen Rads ist.

i=PdP'd

Geschwindigkeit des Serien-DC-Motors

Die Formel für die Geschwindigkeit des Serien-DC-Motors ist definiert als die Geschwindigkeit, mit der sich der Rotor dreht, und die SynchronGeschwindigkeit ist die Geschwindigkeit des Statormagnetfelds im Dreiphasen-Induktionsmotor.

N=Vs-Ia(Ra+Rsh)KfΦ

Geschwindigkeit an mittlerer Position

Die Formel für die Geschwindigkeit an der mittleren Position ist definiert als Maß für die Geschwindigkeit eines Objekts an seiner mittleren Position während freier Längsschwingungen und bietet Einblick in das Schwingungsverhalten des Objekts und seine Eigenfrequenz.

v=(ωfx)cos(ωfttotal)

Geschwindigkeit des Wasserflusses durch gesättigten Boden nach Darcys Gesetz

Die FließGeschwindigkeit von Wasser durch gesättigten Boden wird nach Darcys Gesetz als der Fluss einer Flüssigkeit durch ein poröses Medium definiert. In der Geotechnik wird sie häufig verwendet, um die Bewegung von Wasser durch Boden zu beschreiben.

qflow=(kiAcs)

Geschwindigkeit bei gegebenem Pulldown-Manöverradius

Die Geschwindigkeit bei Pull-Down-Manöverradius ist die Geschwindigkeit, die ein Flugzeug benötigt, um während eines Pull-Down-Manövers einen bestimmten Wenderadius beizubehalten. Diese Formel berechnet die Geschwindigkeit basierend auf dem Wenderadius, der Erdbeschleunigung und dem Lastfaktor. Das Verständnis und die Anwendung dieser Formel ist für Piloten und Ingenieure von entscheidender Bedeutung, um sichere und kontrollierte Pull-Down-Manöver zu gewährleisten.

Vpull-down=R[g](n+1)

Geschwindigkeit für gegebene Pull-Down-Manöverrate

Die Geschwindigkeit für eine bestimmte Pull-Down-Manöverrate hängt vom Lastfaktor und der WendeGeschwindigkeit des Flugzeugs ab. Diese Formel bietet eine vereinfachte Annäherung an die Geschwindigkeit, die erforderlich ist, um die gewünschte Sinkrate während des Pull-Down-Manövers aufrechtzuerhalten.

Vpull-down=[g]1+nωpull-down

Geschwindigkeit in Abschnitt 1 für stetigen Fluss

Die Formel „Geschwindigkeit in Abschnitt 1 für stetigen Fluss“ ist als StrömungsGeschwindigkeit an einem bestimmten Punkt im Strom definiert.

u01=QAcsρ1

Geschwindigkeit in Abschnitt 2 bei gegebenem Durchfluss in Abschnitt 1 für stetigen Durchfluss

Die Geschwindigkeit in Abschnitt 2 bei gegebener Strömung in Abschnitt 1 für die Formel „Steady Flow“ ist als StrömungsGeschwindigkeit an einem bestimmten Punkt im Strom definiert.

u02=QAcsρ2

Geschwindigkeit am Abschnitt für die Entladung durch den Abschnitt für eine stationäre inkompressible Flüssigkeit

Die Geschwindigkeit am Abschnitt für den Austritt durch den Abschnitt für stationäres inkompressibles Fluid ist als StrömungsGeschwindigkeit in der Querschnittsfläche definiert.

uFluid=QAcs

Geschwindigkeit entlang der Gierachse bei kleinem Anstellwinkel

Die Geschwindigkeit entlang der Gierachse bei kleinem Anstellwinkel ist ein Maß für die Änderungsrate der Position eines Objekts entlang der Gierachse im Verhältnis zu seiner Bewegung aufgrund eines kleinen Anstellwinkels. Sie wird berechnet, indem die Geschwindigkeit entlang der Rollachse mit dem Anstellwinkel im Bogenmaß multipliziert wird und stellt einen entscheidenden Parameter in der Aerodynamik und Flugdynamik dar.

w=uα

Geschwindigkeit entlang der Rollachse bei kleinem Anstellwinkel

Die Geschwindigkeit entlang der Rollachse bei kleinem Anstellwinkel ist ein Maß für die Geschwindigkeit der Rotation eines Objekts um seine Rollachse, wenn der Anstellwinkel relativ klein ist, und wird berechnet, indem die Geschwindigkeit entlang der Gierbewegung durch den Anstellwinkel im Bogenmaß geteilt wird.

u=wα

Geschwindigkeit entlang der Nickachse bei kleinem Schwimmwinkel

Die Geschwindigkeit entlang der Nickachse bei kleinem Schwimmwinkel ist ein Maß für die Geschwindigkeit eines Flugzeugs oder Objekts, das sich mit kleinem Schwimmwinkel bewegt, und ist für das Verständnis und die Vorhersage seiner Flugbahn und Stabilität von entscheidender Bedeutung.

v=βu

Geschwindigkeit entlang der Rollachse bei kleinem Schwimmwinkel

Die Geschwindigkeit entlang der Rollachse bei kleinem Schwimmwinkel ist ein Maß für die Geschwindigkeit des Flugzeugs in Richtung der Rollachse bei kleinem Schwimmwinkel und gibt Aufschluss über die Stabilität und Reaktionsfähigkeit des Flugzeugs während des Fluges.

u=vβ

Geschwindigkeit durch Sieb bei Druckverlust durch Sieb

Die Geschwindigkeit durch das Sieb, gegeben durch den Druckverlust durch das Sieb, ist die Änderungsrate seiner Position in Bezug auf einen Referenzrahmen und ist eine Funktion der Zeit.

v=(hL0.0729)+u2

Geschwindigkeit über Sieb bei Druckverlust durch Sieb

Die Geschwindigkeit über dem Bildschirm, gegeben durch den Druckverlust durch den Bildschirm, ist die Änderungsrate seiner Position in Bezug auf einen Referenzrahmen und ist eine Funktion der Zeit.

u=v2-(hL0.0729)

Geschwindigkeitsgradienten

Die Formel für Geschwindigkeitsgradienten wird als Änderung der Geschwindigkeit im Verhältnis zur Entfernungsänderung entlang der gemessenen Richtung definiert.

VG=πr2Ω30(r2-r1)

Geschwindigkeit des äußeren Zylinders bei gegebenem Geschwindigkeitsgradienten

Die Geschwindigkeit des äußeren Zylinders wird mit der Geschwindigkeitsgradientenformel als die Geschwindigkeit definiert, mit der sich der Zylinder in Umdrehungen pro Minute dreht.

Ω=VGπr230(r2-r1)

Geschwindigkeit des äußeren Zylinders bei gegebener dynamischer Viskosität der Flüssigkeit

Die Geschwindigkeit des Außenzylinders wird anhand der Formel zur dynamischen Viskosität einer Flüssigkeit als Geschwindigkeit des Zylinders in Umdrehungen pro Minute definiert.

Ω=15T(r2-r1)ππr1r1r2hμ

Geschwindigkeit des Außenzylinders bei gegebenem Drehmoment, das auf den Außenzylinder ausgeübt wird

Die Geschwindigkeit des Außenzylinders bei auf den Außenzylinder ausgeübtem Drehmoment wird gemäß der Formel als das auf ihn ausgeübte Drehmoment definiert, wobei die Beziehung zwischen Drehmoment, Rotationsträgheit und Winkelbeschleunigung gilt.

Ω=Toππμr1460C

Geschwindigkeit des äußeren Zylinders bei gegebenem Gesamtdrehmoment

Die Geschwindigkeit des äußeren Zylinders wird bei gegebener Gesamtdrehmomentformel als die Geschwindigkeit des Zylinders in Umdrehungen pro Minute definiert.

Ω=ΤTorqueVcμ

Geschwindigkeit des Strahls bei dynamischem Schub, der vom Strahl auf die Platte ausgeübt wird

Die Geschwindigkeit des Strahls bei dynamischem Schub, der durch den Strahl auf die Platte ausgeübt wird, ist die Änderungsrate seiner Position in Bezug auf einen Bezugssystem und ist eine Funktion der Zeit.

v=-(mfGγfAJet-Vabsolute)

Geschwindigkeit des Rades bei gegebener TangentialGeschwindigkeit an der Einlassspitze der Leitschaufel

Die Geschwindigkeit des Rades, gegeben durch die TangentialGeschwindigkeit an der Einlassspitze der Schaufel, die sich um eine Achse dreht, ist die Anzahl der Umdrehungen des Objekts dividiert durch die Zeit, angegeben als Umdrehungen pro Minute (U/min).

Ω=vtangential602πr

Geschwindigkeit der Strömungsfelder

Die Formel für die Geschwindigkeit der Strömungsfelder ist definiert als die Geschwindigkeit, mit der Wasser im Kanal von Kopf bis Schwanz fließt.

vm=Hf1-Ke(2[g])+((n)2)l2.21rh1.33333

Geschwindigkeit des Riemens bei Spannung des Riemens im Zugtrum

Die Geschwindigkeit des Riemens bei Spannung des Riemens auf der straffen Seite ist ein Maß für die RotationsGeschwindigkeit des Riemens, bei der die Rotationskraft von einer Riemenscheibe auf eine andere übertragen wird.

vb=((eμα)P2)-P1m((eμα)-1)

Geschwindigkeit der größeren Riemenscheibe gegebene Geschwindigkeit der kleineren Riemenscheibe

Drehzahl der größeren Scheibe bei gegebener Drehzahl der kleineren Scheibe ist definiert als die Drehzahl, mit der sich die größere Scheibe des Riementriebs dreht.

n2=d(n1D)

Geschwindigkeitsverhältnis von Kettenantrieben

Die Formel für das Geschwindigkeitsverhältnis von Kettenantrieben ist definiert als das Verhältnis der Anzahl der Zähne des Antriebsrads zur Anzahl der Zähne des angetriebenen Rads in einem Kettenantriebssystem, das die Geschwindigkeit der Ausgangswelle im Verhältnis zur Eingangswelle bestimmt.

i=N1N2

Geschwindigkeitskonstante für irreversible Reaktionen erster Ordnung

Die Geschwindigkeitskonstante für irreversible Reaktionen erster Ordnung ist definiert als die UmwandlungsGeschwindigkeit von Reaktanten in Produkte.

K1st order=-ln(1-XA)t

Geschwindigkeitskonstante für irreversible Reaktionen erster Ordnung unter Verwendung von log10

Die Geschwindigkeitskonstante für irreversible Reaktionen erster Ordnung unter Verwendung der log10-Formel ist definiert als die UmwandlungsGeschwindigkeit von Reaktanten in Produkte.

K1st order=-2.303log10(1-XA)t

Geschwindigkeitskonstante für die Reaktion nullter Ordnung unter Verwendung von Raumzeit für gemischte Strömung

Die Ratenkonstante für die Reaktion nullter Ordnung unter Verwendung der Raum-Zeit-Formel für gemischte Strömung ist definiert als die Reaktionsrate für eine Reaktion nullter Ordnung für eine gemischte Strömung, bei der die fraktionelle Volumenänderung null ist.

kmixed flow=XmfrCo𝛕mixed

Geschwindigkeitskonstante für die Reaktion erster Ordnung unter Verwendung der Reaktantenkonzentration für gemischten Fluss

Die Geschwindigkeitskonstante für die Reaktion erster Ordnung unter Verwendung der Reaktantenkonzentration für die Mischströmungsformel ist als die Proportionalitätskonstante definiert, die die Beziehung zwischen der ReaktionsGeschwindigkeit und der ersten Potenz der Konzentration eines der Reaktanten für die Mischströmung angibt.

k'=(1𝛕mixed)(Co-CC)

Geschwindigkeitskonstante für die Reaktion erster Ordnung unter Verwendung von Raumzeit für gemischte Strömung

Die Geschwindigkeitskonstante für die Reaktion erster Ordnung unter Verwendung der Raum-Zeit-Formel für gemischte Strömung ist definiert als die Proportionalitätskonstante, die die Beziehung zwischen der ReaktionsGeschwindigkeit und der ersten Potenz der Konzentration eines der Reaktanten für die gemischte Strömung angibt.

k'=(1𝛕mixed)(Xmfr1-Xmfr)

Geschwindigkeitskonstante für die Reaktion nullter Ordnung unter Verwendung der Geschwindigkeitskonstante für die Reaktion erster Ordnung

Die Geschwindigkeitskonstante für die Reaktion nullter Ordnung unter Verwendung der Formel 'Geschwindigkeitskonstante für die Reaktion erster Ordnung' ist definiert als die Proportionalitätskonstante für die Reaktion nullter Ordnung, die auf die Reaktion erster Ordnung folgt, unter Verwendung der Geschwindigkeitskonstante für die Reaktion erster Ordnung.

k0,k1=(CA0Δt)(1-exp((-kI)Δt)-(CRCA0))

Geschwindigkeitskonstante für Reaktion A bis B für einen Satz von drei Parallelreaktionen

Die Formel für die Geschwindigkeitskonstante für die Reaktionen A bis B für den Satz aus drei parallelen Reaktionen ist definiert als die Beziehung zwischen der molaren Konzentration der Reaktanten und der Geschwindigkeit der stattfindenden chemischen Reaktion.

k1=1tln(A0RA)-(k2+k3)

Geschwindigkeitskonstante für Reaktion A bis C für Satz von drei Parallelreaktionen

Die Formel für die Geschwindigkeitskonstante für die Reaktionen A bis C für den Satz aus drei parallelen Reaktionen ist definiert als die Beziehung zwischen der molaren Konzentration der Reaktanten und der Geschwindigkeit der stattfindenden chemischen Reaktion.

k2=1tln(A0RA)-(k1+k3)

Geschwindigkeitskonstante für Reaktion A bis D für Satz von drei Parallelreaktionen

Die Formel für die Geschwindigkeitskonstante für die Reaktionen A bis D für den Satz aus drei parallelen Reaktionen ist definiert als die Beziehung zwischen der molaren Konzentration der Reaktanten und der Geschwindigkeit der stattfindenden chemischen Reaktion.

k3=1tln(A0RA)-(k1+k2)

Geschwindigkeit des Satelliten im kreisförmigen LEO als Funktion der Höhe

Die Formel zur Berechnung der SatellitenGeschwindigkeit in einer kreisförmigen erdnahen Umlaufbahn als Funktion der Höhe ist definiert als die Geschwindigkeit, mit der ein Satellit die Erde in einer kreisförmigen erdnahen Umlaufbahn umkreist. Sie ist abhängig von der Höhe des Satelliten über der Erdoberfläche und stellt einen entscheidenden Parameter bei der Konstruktion und dem Betrieb von Satelliten in Weltraummissionen dar.

v=[GM.Earth][Earth-R]+z

Geschwindigkeit des Satelliten in seinem kreisförmigen GEO-Radius

Die Geschwindigkeit eines Satelliten in seiner kreisförmigen geosynchronen Umlaufbahn wird in Abhängigkeit von der Gravitationskonstante und dem Radius der Umlaufbahn als die Geschwindigkeit definiert, mit der ein Satellit die Erde in einer kreisförmigen geosynchronen Umlaufbahn umkreist.

v=[GM.Earth]Rgso

Geschwindigkeitskonstante der Phase zwischen Blase und Wolke

Die Formel für die Geschwindigkeitskonstante der Phase zwischen Blase und Wolke wird als berechnete Geschwindigkeitskonstante definiert, wenn im Wirbelreaktor Blasenbildung auftritt.

Kbc=4.50(umfdb)+5.85(Df R)12([g])14db54

Geschwindigkeitskonstante der Phase zwischen Wolkenwache und Emulsion

Die Geschwindigkeitskonstante der Phase zwischen Wolkenwache und Emulsionsformel wird als berechnete Geschwindigkeitskonstante definiert, wenn Blasenbildung an der Grenzfläche im Wirbelschichtreaktor beim Kunii-Levenspiel-Modell auftritt.

Kce=6.77(εmfDf Rubrdb3)12

Geschwindigkeit für verzögerte Kohärenz bei der Photodissoziation

Die Geschwindigkeitsformel für die verzögerte Kohärenz bei der Photodissoziation ist definiert als die Größe der Änderung seiner Position über die Zeit oder die Größe der Änderung seiner Position pro Zeiteinheit während der verzögerten Kohärenz während der Photodissoziation des KrF-Moleküls.

vcov=2(Vcov_R0-Vcov_R)μcov

Geschwindigkeit im schnellen Wirbelbett

Die Formel „Geschwindigkeit im schnellen Wirbelschichtbett“ bezieht sich auf die AufwärtsGeschwindigkeit des Fluidisierungsgases, das zum Schweben und Fluidisieren fester Partikel im Bett verwendet wird. Schnelle Wirbelschichten zeichnen sich durch hohe GasGeschwindigkeiten aus, und diese Geschwindigkeiten liegen typischerweise deutlich über der minimalen FluidisierungsGeschwindigkeit.

uTB-FF=1.53(ρsolids-ρgas)[g]dpρgas

Geschwindigkeit in der pneumatischen Förderung

Die Geschwindigkeitsformel bei der pneumatischen Förderung ist definiert als die Geschwindigkeit, typischerweise ausgedrückt als Luft- oder GasGeschwindigkeit am Punkt der Injektion oder Einführung der Feststoffpartikel in das Fördersystem.

uFF-PC=((21.6((GSρgas)0.542)(d'p 0.315))[g]dp)11.542

Geschwindigkeit des Elektrons im Orbit bei gegebener WinkelGeschwindigkeit

Die Geschwindigkeit des Elektrons in der Umlaufbahn bei gegebener WinkelGeschwindigkeit ist eine Vektorgröße (sie hat sowohl Größe als auch Richtung) und ist die Zeitrate der Positionsänderung (eines Teilchens).

ve_AV=ωrorbit

Geschwindigkeit des Elektrons bei gegebener Zeitdauer des Elektrons

Die Geschwindigkeit des Elektrons bei gegebener Zeitdauer des Elektrons ist eine Vektorgröße (sie hat sowohl Größe als auch Richtung) und ist die Zeitrate der Positionsänderung (eines Teilchens).

velectron=2πrorbitT

Geschwindigkeit eines kleinen Elements für Längsschwingung

Die Formel für die Geschwindigkeit kleiner Elemente bei Längsschwingungen ist als Maß für die Geschwindigkeit kleiner Elemente bei einer Längsschwingung definiert, die durch die Trägheit der Einschränkung beeinflusst wird, und wird zur Analyse der Schwingungen in verschiedenen mechanischen Systemen verwendet.

vs=xVlongitudinall

Geschwindigkeit von Teilchen 1 bei gegebener kinetischer Energie

Die Formel für die Geschwindigkeit von Teilchen 1 bei gegebener kinetischer Energie ist eine Methode zur Berechnung der Geschwindigkeit eines Teilchens, wenn wir die Geschwindigkeit anderer Teilchen und die gesamte kinetische Energie des Systems kennen. Da die gesamte kinetische Energie die Summe der individuellen kinetischen Energie beider Teilchen ist, bleibt uns nur eine Variable, und durch Lösen der Gleichung erhalten wir die erforderliche Geschwindigkeit.

v1=(2KE)-(m2v22)m1

Geschwindigkeit von Teilchen 2 bei gegebener kinetischer Energie

Die Formel für die Geschwindigkeit von Teilchen 2 bei gegebener kinetischer Energie ist eine Methode zur Berechnung der Geschwindigkeit eines Teilchens, wenn wir die Geschwindigkeit anderer Teilchen und die gesamte kinetische Energie des Systems kennen. Kinetische Energie ist die Arbeit, die erforderlich ist, um einen Körper einer bestimmten Masse aus dem Ruhezustand zu beschleunigen zu seiner angegebenen Geschwindigkeit. Da die kinetische Energie KE eine Summe der kinetischen Energie für jede Masse ist, haben wir nur eine Variable übrig gelassen und durch Lösen der Gleichung erhalten wir die erforderliche Geschwindigkeit.

v2=(2KE)-(m1v12)m2

Geschwindigkeitskoeffizient

Die Formel für den Geschwindigkeitskoeffizienten ist definiert als das Verhältnis zwischen der tatsächlichen Geschwindigkeit des Strahls an der Vena-Contracta und der theoretischen Geschwindigkeit am Strahl.

Cv=vaVth

Geschwindigkeitskoeffizient für horizontalen und vertikalen Abstand

Die Formel für den Geschwindigkeitskoeffizienten für die horizontale und vertikale Entfernung wird aus der experimentellen Bestimmung der hydraulischen Koeffizienten definiert.

Cv=R4VH

Geschwindigkeit unter Verwendung der Wasserströmungsgleichung

Die Geschwindigkeit wird mithilfe der Wasserdurchflussgleichung als FließGeschwindigkeit definiert, wenn der Querschnittsbereich des Rohrs und der Wasserdurchfluss gegeben sind.

Vf=QwAcs

Wie finde ich Formeln?

Hier sind ein paar Tipps für bessere Suchergebnisse.
Seien Sie konkret: Je konkreter Ihre Suchanfrage, desto besser sind Ihre Ergebnisse.
Verwenden Sie mehrere Schlüsselwörter: Kombinieren Sie mehrere Schlüsselwörter, um die Ergebnisse einzugrenzen.
Experimentieren Sie mit Synonymen: Unterschiedliche Begriffe können zu unterschiedlichen Ergebnissen führen.
Platzhaltersuche: Verwenden Sie den Operator * (Sternchen). BEACHTEN SIE, dass dieser Operator nur am Ende eines Wortes funktioniert. Beispiel: Bio*, Bereich* usw.

Alternativ können Sie durch die Unterkategorien innerhalb von navigieren, um die Formeln einzugrenzen, die Sie interessieren.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!