Suche Formeln

Bitte geben Sie mindestens 3 Zeichen ein, um mit der Suche nach -Formeln zu beginnen.

Wählen Sie Filter

Grenzen Sie Ihre Suchergebnisse mithilfe dieser Filter ein.

50 Passende Formeln gefunden!

Geschwindigkeit des Elektrons

Die Geschwindigkeit eines Elektrons bezieht sich auf seine Geschwindigkeit und Bewegungsrichtung und wird durch das Energieerhaltungsprinzip bestimmt. Im Wesentlichen heißt es, dass die Änderung der kinetischen Energie des Elektrons gleich der Änderung der potentiellen Energie ist, die es aufgrund des elektrischen Feldes erfährt.

Vv=2[Charge-e]V[Mass-e]

Geschwindigkeit von Elektronen in Kraftfeldern

Die ElektronenGeschwindigkeit in Kraftfeldern wird verwendet, um die Geschwindigkeit eines geladenen Teilchens in ein Feld zu berechnen, in dem sowohl ein elektrisches als auch ein magnetisches Feld vorhanden ist.

Vef=EIH

Geschwindigkeit des Flugzeugs bei gegebener Steigrate

Die Geschwindigkeit eines Flugzeugs bei einer bestimmten Steigrate ist die Geschwindigkeit, die ein Flugzeug benötigt, um eine bestimmte Steigrate zu erreichen. Diese Formel berechnet die Geschwindigkeit, indem sie die Steigrate durch den Sinus des Flugwegwinkels während des Steigens dividiert. Das Verständnis und die Anwendung dieser Formel ist für Piloten und Ingenieure von entscheidender Bedeutung, um die Steigleistung zu optimieren.

v=RCsin(γ)

Geschwindigkeit auf Meereshöhe bei gegebenem Auftriebskoeffizienten

Die Geschwindigkeit auf Meereshöhe bei gegebenem Auftriebskoeffizienten ist ein Maß zur Berechnung der Geschwindigkeit eines Objekts auf Meereshöhe unter Berücksichtigung des Körpergewichts, der Luftdichte auf Meereshöhe, der Referenzfläche und des Auftriebskoeffizienten und stellt einen entscheidenden Parameter in der Aerodynamik und im Flugzeugbau dar.

V0=2Wbody[Std-Air-Density-Sea]SCL

Geschwindigkeit in der Höhe

Die Geschwindigkeit in der Höhe ist ein Maß für die Geschwindigkeit eines Objekts in einer bestimmten Höhe über der Erdoberfläche. Unter Berücksichtigung des Körpergewichts, der Luftdichte, der Bezugsfläche und des Auftriebskoeffizienten ermöglicht diese Formel die Berechnung der Geschwindigkeit in aerodynamischen Systemen und liefert wertvolle Erkenntnisse für Ingenieure und Forscher in den Bereichen Luft- und Raumfahrt und Aerodynamik.

Valt=2Wbodyρ0SCL

Geschwindigkeit in Höhe gegeben Geschwindigkeit auf Meereshöhe

Geschwindigkeit in angegebener Höhe Die Geschwindigkeit auf Meereshöhe ist ein Maß für die Geschwindigkeit eines Objekts in einer bestimmten Höhe. Sie wird berechnet, indem die Geschwindigkeit auf Meereshöhe mit der Quadratwurzel des Verhältnisses zwischen der Standardluftdichte auf Meereshöhe und der Luftdichte in der angegebenen Höhe multipliziert wird.

Valt=V0[Std-Air-Density-Sea]ρ0

Geschwindigkeit bei gegebenem Pulldown-Manöverradius

Die Geschwindigkeit bei Pull-Down-Manöverradius ist die Geschwindigkeit, die ein Flugzeug benötigt, um während eines Pull-Down-Manövers einen bestimmten Wenderadius beizubehalten. Diese Formel berechnet die Geschwindigkeit basierend auf dem Wenderadius, der Erdbeschleunigung und dem Lastfaktor. Das Verständnis und die Anwendung dieser Formel ist für Piloten und Ingenieure von entscheidender Bedeutung, um sichere und kontrollierte Pull-Down-Manöver zu gewährleisten.

Vpull-down=R[g](n+1)

Geschwindigkeit für gegebene Pull-Down-Manöverrate

Die Geschwindigkeit für eine bestimmte Pull-Down-Manöverrate hängt vom Lastfaktor und der WendeGeschwindigkeit des Flugzeugs ab. Diese Formel bietet eine vereinfachte Annäherung an die Geschwindigkeit, die erforderlich ist, um die gewünschte Sinkrate während des Pull-Down-Manövers aufrechtzuerhalten.

Vpull-down=[g]1+nωpull-down

Geschwindigkeit am Auslass für Druckverlust am Rohrausgang

Die Formel für die Geschwindigkeit am Auslass für den Druckverlust am Rohrausgang ist unter Berücksichtigung der Quadratwurzel des Druckverlusts am Rohrausgang und der Erdbeschleunigung bekannt.

v=ho2[g]

Geschwindigkeitsgradient bei Scherspannung

Die Formel für den Geschwindigkeitsgradienten bei gegebener Scherspannung ist als Geschwindigkeitsdifferenz zwischen benachbarten Fluidschichten definiert. Es ist das Verhältnis zwischen Geschwindigkeitsänderung und Abstandsänderung zwischen den Schichten.

dvdy=τμ

Geschwindigkeitsgradient

Die Geschwindigkeitsgradientenformel ist definiert als ein Verhältnis zwischen der Änderung der Geschwindigkeit zwischen benachbarten Schichten und der Änderung des Abstands zwischen aufeinanderfolgenden Punkten zwischen benachbarten Schichten.

dvdy=dvdy

Geschwindigkeit der Flüssigkeit bei gegebener Scherspannung

Die Formel für die Geschwindigkeit der Flüssigkeit bei gegebener Scherspannung ist als Funktion der Scherspannung, der dynamischen Viskosität und des Abstands zwischen den benachbarten Flüssigkeitsschichten definiert.

V=Yτμ

Geschwindigkeit des Gasmoleküls bei gegebener Kraft

Die Geschwindigkeit des Gasmoleküls gegebene Kraftformel ist definiert als die Quadratwurzel des Produkts der Länge des rechteckigen Kastens und der Kraft pro Masse des Teilchens.

uF=FLm

Geschwindigkeit des Gasmoleküls in 1D bei gegebenem Druck

Die Geschwindigkeit des Gasmoleküls in der 1D gegebenen Druckformel ist definiert als unter der Wurzel des Verhältnisses des Gasdrucks multipliziert mit dem Volumen mit der Masse des Partikels.

up=PgasVboxm

Geschwindigkeit des Körpers bei gegebenem Impuls

Die Formel für die Geschwindigkeit eines Körpers bei gegebenem Impuls ist definiert als Maß für die Geschwindigkeit eines Objekts in eine bestimmte Richtung. Sie wird berechnet, indem der Impuls des Objekts durch seine Masse geteilt wird. Sie liefert ein grundlegendes Konzept zum Verständnis der Bewegung eines Objekts und ihrer Beziehung zur Kraft.

v=pmo

Geschwindigkeit der Impulsänderung bei gegebener Beschleunigung und Masse

Die Formel zur Änderungsrate des Impulses bei gegebener Beschleunigung und Masse ist definiert als ein Maß für die Rate, mit der sich der Impuls eines Objekts ändert, wenn auf es eine externe Kraft einwirkt, wobei die Masse des Objekts und seine Beschleunigung die Hauptfaktoren sind, die diese Änderung beeinflussen.

rm=moa

Geschwindigkeit des Projektils des Mach-Kegels im komprimierbaren Flüssigkeitsstrom

Die Geschwindigkeit des Projektils eines Mach-Kegels in einer kompressiblen Flüssigkeitsströmung beschreibt die Geschwindigkeit, mit der sich das Projektil bewegt, wenn es die SchallGeschwindigkeit im umgebenden Medium erreicht oder überschreitet. Das Verständnis dieser Geschwindigkeit ist in der Aerodynamik und Ballistik von entscheidender Bedeutung, da sie den Beginn von Stoßwellen und die aerodynamischen Herausforderungen anzeigt, die mit Überschall- und Hyperschallflügen verbunden sind.

V=Csin(μ)

Geschwindigkeit der Schallwelle unter Berücksichtigung des Mach-Winkels in einem komprimierbaren Flüssigkeitsstrom

Die Geschwindigkeit von Schallwellen unter Berücksichtigung des Mach-Winkels bei kompressibler Fluidströmung ist wichtig für das Verständnis, wie sich Schall durch ein Medium ausbreitet, wenn die FluidGeschwindigkeit die SchallGeschwindigkeit erreicht oder überschreitet. Diese Beziehung hilft bei der Vorhersage des Verhaltens von Stoßwellen und der Schallübertragung in verschiedenen Umgebungen und ist von wesentlicher Bedeutung in der Luft- und Raumfahrttechnik, der Akustik und der Untersuchung der HochGeschwindigkeitsfluiddynamik.

C=Vsin(μ)

Geschwindigkeit bei teilweise voller Fahrt bei gegebener proportionaler Geschwindigkeit

Die Geschwindigkeit bei teilweiser Füllung, angegeben als proportionale Geschwindigkeit, wird als die Durchflussrate einer Flüssigkeit in einer Leitung definiert, wenn diese nicht vollständig gefüllt ist und von Tiefe und Geschwindigkeit beeinflusst wird.

Vs=VPv

Geschwindigkeit beim Laufen mit voller gegebener proportionaler Geschwindigkeit

Die Geschwindigkeit bei vollem Durchfluss, angegeben als proportionale Geschwindigkeit, wird als die FließGeschwindigkeit einer Flüssigkeit in einem Rohr definiert, wenn dieses vollständig gefüllt ist, beeinflusst durch die Neigung und Rauheit des Rohrs.

V=VsPv

Geschwindigkeitskonstante bei gegebener Desoxygenierungskonstante

Die Geschwindigkeitskonstante wird in der Formel zur Desoxygenierungskonstanten als Oxidationsrate von organischer Materie definiert und hängt von der Art der darin vorhandenen organischen Materie und der Temperatur ab.

K=2.3KD

Geschwindigkeit des Strahls für dynamischen Schub, der vom Strahl auf die Platte ausgeübt wird

Die Geschwindigkeit des Strahls für den dynamischen Schub, der vom Strahl auf die Platte ausgeübt wird, ist die Änderungsrate seiner Position in Bezug auf einen Bezugssystem und ist eine Funktion der Zeit.

v=-(mfGγfAJet(∠D(180π))-Vabsolute)

Geschwindigkeit der Strömungsfelder

Die Formel für die Geschwindigkeit der Strömungsfelder ist definiert als die Geschwindigkeit, mit der Wasser im Kanal von Kopf bis Schwanz fließt.

vm=Hf1-Ke(2[g])+((n)2)l2.21rh1.33333

Geschwindigkeitskonstante bei gegebener AnfangsGeschwindigkeit und Konzentration des Enzymsubstratkomplexes

Die Formel für die Geschwindigkeitskonstante bei gegebener AnfangsGeschwindigkeit und Enzym-Substrat-Komplex-Konzentration ist als das Verhältnis der AnfangsGeschwindigkeit des Systems zur Konzentration des Enzym-Substrat-Komplexes definiert.

k2=V0ES

Geschwindigkeitskonstante bei maximaler Geschwindigkeit und anfänglicher Enzymkonzentration

Die Formel für die Geschwindigkeitskonstante bei maximaler Geschwindigkeit und anfänglicher Enzymkonzentration ist als das Verhältnis der maximalen Geschwindigkeit des Systems zur anfänglichen Enzymkonzentration definiert.

k2=Vmax[E0]

Geschwindigkeit bei gegebener Länge des Kabelkanals nach Verwendung des Bereichs des Rohrs im Abfluss

Die Geschwindigkeit bei gegebener Leitungslänge nach Verwendung des Rohrbereichs im Abfluss ist als Wasserdurchflussrate definiert.

Vmax=C1HfLpipe

Geschwindigkeit in Trockenbettkurve

Die Formel für die Geschwindigkeitskurve im Trockenbett ist als die Annahme definiert, dass die Strömung in jede Richtung über die halbe Tiefe erfolgt.

VDbc=0.45H2[g]d

Geschwindigkeitskonstante für Mixed-Flow-Reaktor mit Gewicht des Katalysators

Die Geschwindigkeitskonstante für einen Mischflussreaktor mit Katalysatorgewicht ist als Geschwindigkeitskonstante definiert, die unter Verwendung der Raumzeit des Reaktors unter Berücksichtigung des Katalysatorgewichts, der Reaktantenumwandlung und der fraktionierten Umwandlung berechnet wird.

k '=XA,out(1+εXA,out)(1-XA,out)𝛕'

Geschwindigkeitskonstante für Mixed-Flow-Reaktor mit Katalysatorvolumen

Die Geschwindigkeitskonstante für Mischströmungsreaktoren mit Katalysatorvolumen ist definiert als Geschwindigkeitskonstante, berechnet unter Verwendung der Reaktantenumwandlung, der fraktionierten Umwandlung und der berechneten Raumzeit unter Berücksichtigung des Katalysatorvolumens. Der Geschwindigkeitsausdruck für eine Reaktion erster Ordnung in Gegenwart eines Katalysators wird häufig geändert, um den Effekt des Katalysators einzubeziehen.

k'''=XA,out(1+εXA,out)(1-XA,out)𝛕'''

Geschwindigkeit der Synchronmaschine

Die Geschwindigkeit einer Synchronmaschine bei der Stabilität des Stromversorgungssystems ist definiert als das Produkt aus der Anzahl der Pole in der Maschine und der RotorGeschwindigkeit dieser Maschine.

ωes=(P2)ωr

Geschwindigkeitsverhältnis des Riemenantriebs

Die Formel für das Geschwindigkeitsverhältnis des Riemenantriebs ist definiert als das Verhältnis der WinkelGeschwindigkeit der Folgewelle zu der der Antriebswelle in einem Riemenantriebssystem, bei dem es sich um ein mechanisches Gerät zur Kraftübertragung über eine Distanz handelt.

i=NfNd

Geschwindigkeitsverhältnis des Verbundriemenantriebs bei gegebenem Produkt des Durchmessers des angetriebenen

Das Geschwindigkeitsverhältnis eines zusammengesetzten Riemenantriebs, gegeben durch das Produkt aus Durchmesser der angetriebenen Scheibe, wird als das Verhältnis der WinkelGeschwindigkeit der Antriebsscheibe zu der der angetriebenen Scheibe in einem zusammengesetzten Riemenantriebssystem definiert und stellt ein Maß für die mechanische Verstärkung des Systems dar.

i=P1P2

Geschwindigkeitsverhältnis des Verbundriemenantriebs

Die Formel für das Geschwindigkeitsverhältnis eines zusammengesetzten Riemenantriebs ist definiert als das Verhältnis der WinkelGeschwindigkeit der angetriebenen Welle zu der der Antriebswelle in einem zusammengesetzten Riemenantriebssystem, bei dem es sich um ein mechanisches System zur Kraftübertragung von einer Welle auf eine andere handelt.

i=NnNd′

Geschwindigkeitsverhältnis des einfachen Riemenantriebs, wenn die Dicke nicht berücksichtigt wird

Die Formel für das Geschwindigkeitsverhältnis eines einfachen Riemenantriebs ohne Berücksichtigung der Dicke ist definiert als Maß für das Verhältnis der WinkelGeschwindigkeit der Antriebsscheibe zur WinkelGeschwindigkeit der Folgescheibe in einem einfachen Riemenantriebssystem, bei dem die Dicke des Riemens nicht berücksichtigt wird, und stellt eine vereinfachte Berechnung für Maschinenbauingenieure dar.

i=dddf

Geschwindigkeitsverhältnis des einfachen Riemenantriebs unter Berücksichtigung der Dicke

Die Formel für das Geschwindigkeitsverhältnis eines einfachen Riemenantriebs unter Berücksichtigung der Dicke ist definiert als Maß für das Verhältnis der WinkelGeschwindigkeit der Antriebsscheibe zur WinkelGeschwindigkeit der Folgescheibe in einem einfachen Riemenantriebssystem unter Berücksichtigung der Dicke des Riemens.

i=dd+tdf+t

Geschwindigkeitsverhältnis des Riemens bei prozentualem Gesamtschlupf

Das Geschwindigkeitsverhältnis des Riemens bei gegebenem prozentualen Gesamtschlupf wird als das Verhältnis der Geschwindigkeit der Antriebsscheibe zur Geschwindigkeit der Folgescheibe in einem Riemenantriebssystem definiert, wobei der prozentuale Gesamtschlupf zwischen den beiden Scheiben berücksichtigt wird und ein Maß für die Effizienz des Systems bereitgestellt wird.

i=(dd+t)1-0.01sdf+t

Geschwindigkeitsverhältnis des Riemens bei gegebenem Kriechen des Riemens

Das Geschwindigkeitsverhältnis des Riemens bei gegebener Formel zur Kriechneigung des Riemens ist als dimensionslose Größe definiert, die das Verhältnis der Geschwindigkeit der Antriebsscheibe zur Geschwindigkeit der Folgescheibe in einem riemengetriebenen System ausdrückt, wobei die Kriechneigung des Riemens berücksichtigt wird, die sich auf die Gesamteffizienz des Systems auswirkt.

i=dd(E+σ2)df(E+σ1)

Geschwindigkeit für die Übertragung maximaler Leistung durch Riemen

Die Formel für die Geschwindigkeit zur Übertragung maximaler Leistung durch einen Riemen wird als die maximale LeistungsübertragungsGeschwindigkeit eines Riemenantriebssystems definiert und ist für die Konstruktion und Optimierung von Riemenantriebssystemen zur effizienten Leistungsübertragung von entscheidender Bedeutung.

v=Pm3m

Geschwindigkeit des Alpha-Teilchens unter Verwendung der Entfernung der nächsten Annäherung

Die Geschwindigkeit des Alpha-Teilchens unter Verwendung der Entfernung der nächsten Annäherung ist die Geschwindigkeit, mit der sich ein Alpha-Teilchen in einem Atomkern bewegt.

v=[Coulomb]Z([Charge-e]2)[Atomic-m]r0

Geschwindigkeit des Mitläufers nach der Zeit t für Zykloidenbewegung

Die Formel für die Geschwindigkeit des Stößels nach der Zeit t bei zykloider Bewegung ist definiert als Maß für die Geschwindigkeit des Stößels in einem Nocken- und Stößelsystem, das einer zykloiden Bewegung unterliegt. Sie beschreibt die Bewegung des Stößels, während dieser sich dreht und auf einer Kreisbahn verschiebt.

v=ωSθo(1-cos(2πθrotationθo))

Geschwindigkeitskonstante der Reaktion erster Ordnung unter Verwendung des Logarithmus zur Basis 10

Die Geschwindigkeitskonstante der Reaktion erster Ordnung unter Verwendung des Logarithmus zur Basis-10-Formel ist definiert als die ReaktionsGeschwindigkeit pro Konzentration des Reaktanten. Die Formel ist der Logarithmus zur Basis 10 der Anfangskonzentration pro Konzentration zum Zeitpunkt t, das Ganze wird durch die Zeit dividiert, die für die Vervollständigung der Reaktion erforderlich ist.

kfirst=2.303tcompletionlog10(A0Ct)

Geschwindigkeitskonstante zur Halbzeit für die Reaktion erster Ordnung

Die Geschwindigkeitskonstante zur Halbzeit für die Reaktionsformel erster Ordnung ist definiert als die ReaktionsGeschwindigkeit pro Konzentration des Reaktanten. Die Formel ist ein natürlicher Logarithmus von 2 geteilt durch die Halbwertszeit der Reaktion.

kfirst=0.693t1/2

Geschwindigkeitskonstante für dasselbe Produkt für eine Reaktion zweiter Ordnung

Die Geschwindigkeitskonstante für dasselbe Produkt für die Reaktionsformel zweiter Ordnung ist definiert als die durchschnittliche ReaktionsGeschwindigkeit pro Konzentration des Reaktanten mit einer auf 2 erhöhten Leistung.

Ksecond=1axttcompletion-1atcompletion

Geschwindigkeitskonstante für verschiedene Produkte für die Reaktion zweiter Ordnung

Die Geschwindigkeitskonstante für verschiedene Produkte für die Reaktionsformel zweiter Ordnung ist definiert als die durchschnittliche ReaktionsGeschwindigkeit pro Konzentration der beiden verschiedenen Reaktanten, deren Leistung jeweils auf 1 erhöht ist.

Kfirst=2.303tcompletion(CAO-CBO)log10CBO(ax)CAO(bx)

Geschwindigkeitskonstante unter konstantem Druck und konstanter Temperatur für eine Reaktion nullter Ordnung

Die Geschwindigkeitskonstante unter konstantem Druck und konstanter Temperatur für die Reaktionsformel nullter Ordnung ist definiert als Fortschritt der Gasreaktion, die durch Messen des Gesamtdrucks bei einem festen Volumen und einer festen Temperatur überwacht werden kann. Da die Geschwindigkeitskonstante für eine Reaktion nullter Ordnung gilt, sollte die Reihenfolge der Reaktion (n) durch Null ersetzt werden.

k=(2.303t)log10(P0(n-1)(nP0)-Pt)

Geschwindigkeitskonstante nach Titrationsverfahren für Reaktionen erster Ordnung

Die Geschwindigkeitskonstante durch das Titrationsverfahren für die Formel des Reaktionsverfahrens erster Ordnung ist definiert als die ReaktionsGeschwindigkeit geteilt durch die Konzentration des Reaktanten, der auf die Potenz eins erhöht ist. Die Geschwindigkeitskonstante nach dem Titrationsverfahren ist direkt proportional zum Logarithmus des Anfangsvolumens des Reaktanten pro Volumen eines Reaktanten zum Zeitpunkt t.

kfirst=(2.303tcompletion)log10(V0Vt)

Geschwindigkeitskoeffizient

Die Geschwindigkeitskoeffizientenformel ist definiert als das Verhältnis der tatsächlichen AustrittsGeschwindigkeit zum Verhältnis der idealen AustrittsGeschwindigkeit.

Cv=CactCideal

Geschwindigkeitskoeffizient gegebener Entladungskoeffizient

Der Geschwindigkeitskoeffizient wird in der Formel für den Abflusskoeffizienten als Reduktionsfaktor für die theoretische Geschwindigkeit durch die Öffnung definiert.

Cv=CdCc

Geschwindigkeitspotential für gleichmäßige inkompressible Strömung

Die Geschwindigkeitspotentialfunktion für gleichmäßige inkompressible Strömung (ϕ) steigt linear mit der Entfernung in Strömungsrichtung (x) an, was die gleichmäßige Natur der Strömung widerspiegelt. Folglich gibt es keine Variation des Geschwindigkeitspotentials in Bezug auf die y-Koordinate, was die Homogenität der Strömung in y-Richtung veranschaulicht.

ϕ=Vx

Geschwindigkeit am Punkt des Tragflächenprofils für gegebenen Druckkoeffizienten und freie StrömungsGeschwindigkeit

Die Geschwindigkeit an einem Punkt auf dem Schaufelblatt für einen gegebenen Druckkoeffizienten und eine Formel für die Geschwindigkeit im freien Strom ist das Produkt aus der Geschwindigkeit im freien Strom und der Quadratwurzel aus eins minus dem Druckkoeffizienten in inkompressibler Strömung.

V=u2(1-Cp)

Wie finde ich Formeln?

Hier sind ein paar Tipps für bessere Suchergebnisse.
Seien Sie konkret: Je konkreter Ihre Suchanfrage, desto besser sind Ihre Ergebnisse.
Verwenden Sie mehrere Schlüsselwörter: Kombinieren Sie mehrere Schlüsselwörter, um die Ergebnisse einzugrenzen.
Experimentieren Sie mit Synonymen: Unterschiedliche Begriffe können zu unterschiedlichen Ergebnissen führen.
Platzhaltersuche: Verwenden Sie den Operator * (Sternchen). BEACHTEN SIE, dass dieser Operator nur am Ende eines Wortes funktioniert. Beispiel: Bio*, Bereich* usw.

Alternativ können Sie durch die Unterkategorien innerhalb von navigieren, um die Formeln einzugrenzen, die Sie interessieren.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!