Suche Formeln

Bitte geben Sie mindestens 3 Zeichen ein, um mit der Suche nach -Formeln zu beginnen.

Wählen Sie Filter

Grenzen Sie Ihre Suchergebnisse mithilfe dieser Filter ein.

50 Passende Formeln gefunden!

Geschwindigkeit des Stößels für Rollenstößel-Tangentennocken, wenn der Kontakt mit geraden Flanken erfolgt

Die Formel für die Geschwindigkeit des Stößels für einen Rollenstößel mit tangentialem Nocken bei Kontakt mit geraden Flanken ist als Maß für die Geschwindigkeit des Stößels in einem Nockenstößelsystem definiert, bei dem der Kontakt mit geraden Flanken erfolgt. Sie bietet Einblick in die Kinematik des Systems und ermöglicht die Entwicklung effizienter mechanischer Systeme.

v=ω(r1+rroller)sin(θ)(cos(θ))2

Geschwindigkeitskoeffizient für das Peltonrad

Der Geschwindigkeitskoeffizient für das Peltonrad ist das Verhältnis der tatsächlichen Geschwindigkeit des Wasserstrahls, der die Düse verlässt, zur theoretischen Geschwindigkeit. Er berücksichtigt die Verluste durch Reibung und andere Ineffizienzen in der Düse und wird verwendet, um die Effizienz der Strahlbildung zu bestimmen. Dieser Koeffizient ist normalerweise kleiner als 1.

Cv=V12[g]H

Geschwindigkeit des Stößels der Rollenstößel-Tangentennocke für den Kontakt mit der Nase

Die Formel für die Geschwindigkeit des Stößels eines Rollenstößels und des Tangentialnockens bei Kontakt mit der Nase ist definiert als die Geschwindigkeit des Stößels in einem Nocken- und Stößelsystem. Sie ist ein entscheidender Parameter bei der Bestimmung der Leistung und Effizienz des Systems, insbesondere wenn der Stößel mit der Nase des Nockens in Kontakt ist.

v=ωr(sin(θ1)+rsin(2θ1)2L2-r2(sin(θ1))2)

Geschwindigkeit hinter Normalschock durch Normalschock-Impulsgleichung

Die Geschwindigkeit hinter dem Normalschock durch die Normalschock-Impulsgleichung berechnet die Geschwindigkeit einer Flüssigkeit stromabwärts einer normalen Stoßwelle unter Verwendung der Normalschock-Impulsgleichung. Diese Formel berücksichtigt Parameter wie die statischen Drücke vor und hinter dem Stoß, die Dichte vor dem Stoß und die Geschwindigkeit vor dem Stoß. Es liefert entscheidende Einblicke in die Geschwindigkeitsänderung, die sich aus dem Durchgang der Stoßwelle ergibt.

V2=P1-P2+ρ1V12ρ2

Geschwindigkeit vor Normalschock durch Normalschock-Impulsgleichung

Die Gleichung „Geschwindigkeit vor Normalstoß durch Normalstoßimpuls“ berechnet die Geschwindigkeit einer Flüssigkeit vor einer Normalstoßwelle mithilfe der Gleichung „Normalschockimpuls“. Diese Formel berücksichtigt Parameter wie den statischen Druck vor und hinter dem Stoß, die Dichte hinter dem Stoß und die Geschwindigkeit hinter dem Stoß. Es liefert wichtige Informationen über die FlüssigkeitsGeschwindigkeit vor dem Auftreffen auf die Stoßwelle und hilft bei der Analyse des kompressiblen Strömungsverhaltens.

V1=P2-P1+ρ2V22ρ1

Geschwindigkeit des Kolbens beim Ausfahren

Die Formel für die KolbenGeschwindigkeit während der Ausdehnung ist definiert als die Bewegungsrate eines Kolbens in einem hydraulischen Aktuator oder Motor. Sie ist ein entscheidender Parameter bei der Bestimmung der Leistung und Effizienz des Systems und wird von der Durchflussrate und der Kolbenfläche beeinflusst.

vpiston=QextAp

Geschwindigkeit des Kolbens beim Einfahren

Die Formel für die KolbenGeschwindigkeit während des Rückzugs ist definiert als die Bewegungsrate eines Kolbens während der Rückzugsphase in einem Hydrauliksystem, die für die Bestimmung der Gesamtleistung und Effizienz von Hydraulikantrieben und -motoren entscheidend ist.

vpiston=QretAp-Ar

Geschwindigkeit der durch Sprengung verursachten Vibrationen

Die Geschwindigkeit der durch Sprengungen verursachten Vibrationen ist definiert als die Änderungsrate der Verschiebung in der Vibrationsarbeit.

V=(λvf)

Geschwindigkeit von Teilchen, die durch Vibrationen gestört werden

Die Formel für die Geschwindigkeit von durch Vibrationen gestörten Partikeln ist definiert als die Geschwindigkeit von Partikeln, die durch Vibrationen beeinflusst werden, und drückt die Geschwindigkeit und Richtung ihrer Bewegung als Reaktion auf Störungen aus.

v=(2πfA)

Geschwindigkeit von Teilchen Eins im Abstand von der Explosion

Die Geschwindigkeit von Partikel Eins in der Entfernung von der Explosion ist definiert als die Geschwindigkeit eines Partikels vom Explosionspunkt in einer bestimmten Entfernung.

v1=v2(D2D1)1.5

Geschwindigkeit von Teilchen Zwei im Abstand von der Explosion

Die Geschwindigkeit von Partikel Zwei im Abstand von der Explosion ist als Änderungsrate der Verschiebung des Partikels definiert.

v2=v1(D1D2)1.5

Geschwindigkeit in Abschnitt 1 aus der Bernoulli-Gleichung

Die Geschwindigkeit in Abschnitt 1 aus der Bernoulli-Gleichung ist als Geschwindigkeit in einem bestimmten Rohrabschnitt definiert.

V1=2[g]((P2γf)+(0.5(Vp22[g]))+Z2-Z1-P1γf)

Geschwindigkeitskopf für gleichmäßigen, nicht viskosen Fluss

Die Geschwindigkeitshöhe für eine stationäre, nicht viskose Strömung wird als Energiehöhe aufgrund der StrömungsGeschwindigkeit definiert.

Vh=V22[g]

Geschwindigkeit des Kolbens

Die Formel zur Berechnung der KolbenGeschwindigkeit ist definiert als die Geschwindigkeit, mit der sich der Kolben in einer Kolbenpumpe bewegt. Dabei handelt es sich um eine wichtige Komponente in zahlreichen Industrieanwendungen und einen Schlüsselfaktor bei der Bestimmung der Gesamtleistung und Effizienz der Pumpe.

vpiston=ωrsin(ωtsec)

Geschwindigkeit der Flüssigkeit im Rohr

Die Formel für die Geschwindigkeit von Flüssigkeit in einer Leitung ist definiert als die Fließrate einer Flüssigkeit durch eine Leitung in einem Kolbenpumpensystem. Sie wird von Faktoren wie der Querschnittsfläche der Leitung, der WinkelGeschwindigkeit, dem Radius und der Zeit beeinflusst, die zusammen die Bewegung und den Druck der Flüssigkeit beeinflussen.

vl=Aaωrsin(ωts)

Geschwindigkeitsgradient gegebener piezometrischer Gradient mit Scherspannung

Der Geschwindigkeitsgradient bei einem gegebenen piezometrischen Gradienten mit Scherspannung ist als Änderung der Geschwindigkeit in Bezug auf den radialen Abstand definiert.

VG=(γfμ)dh/dx0.5dradial

Geschwindigkeitsverteilungsprofil

Das Geschwindigkeitsverteilungsprofil ist definiert als die Geschwindigkeit relativ zur Platte in Strömungsrichtung im Strom.

v=-(12μ)dp|dr(wR-(R2))

Geschwindigkeit des Strahls für dynamischen Schub, der vom Strahl auf die Platte ausgeübt wird

Die Geschwindigkeit des Strahls für den dynamischen Schub, der vom Strahl auf die Platte ausgeübt wird, ist die Änderungsrate seiner Position in Bezug auf einen Bezugssystem und ist eine Funktion der Zeit.

v=-(mfGγfAJet(∠D(180π))-Vabsolute)

Geschwindigkeitsskala angesichts der relativen Bedeutung der Viskosität

Die Geschwindigkeitsskala mit der relativen Bedeutung der Viskosität wird als typische Strömungssituation im Küstenbereich definiert. Bei einer Geschwindigkeitsskala von 1 ms−1 und einer Längenskala von 2 m ergibt sich ein Verhältnis von etwa 0,5 × 10−6, sodass wir die Auswirkungen der Viskosität vernachlässigen können.

V=vkLRi

Geschwindigkeit der Welle bei TiefwasserGeschwindigkeit und Wellenlänge

Die Wellenschnelligkeit bei Tiefwasserschnelligkeit und -wellenlänge ist definiert als die Geschwindigkeit, mit der sich eine einzelne Welle fortbewegt oder „ausbreitet“.

Cs=Coλsλo

Geschwindigkeit gegebenes Verhältnis von Trägheitskräften und viskosen Kräften unter Verwendung des Newtonschen Reibungsmodells

Das der Geschwindigkeit gegebene Verhältnis von Trägheitskräften und viskosen Kräften unter Verwendung des Newtonschen Reibungsmodells wird unter Verwendung des Newtonschen Reibungsmodells ausgedrückt, während die Trägheitskräfte (von oben) proportional zu den jeweiligen Parametern sind.

Vf=FiμviscosityFvρfluidL

Geschwindigkeit bei gegebener kinematischer Viskosität, Verhältnis von Trägheitskräften und viskosen Kräften

Die Geschwindigkeit gegebene kinematische Viskosität, das Verhältnis von Trägheitskräften und viskosen Kräften können unter Verwendung des Newtonschen Reibungsmodells ausgedrückt werden, während die Trägheitskräfte (von oben) proportional zu den jeweiligen Parametern sind.

Vf=FiνFvL

Geschwindigkeit für Froude-Skalierung

Die Geschwindigkeitsformel für die Froude-Skalierung ist definiert als die Geschwindigkeit, die proportional zur Quadratwurzel des Kräfteverhältnisses angepasst wird.

Vf=Fn[g]Lf

Geschwindigkeit des Flüssigkeitsflusses in den Luftbehälter bei gegebener Hublänge

Die Formel für die Durchflussrate von Flüssigkeit in einen Luftbehälter bei gegebener Hublänge ist definiert als die volumetrische Durchflussrate einer Flüssigkeit, die in einen Luftbehälter einer Kolbenpumpe eintritt. Sie wird beeinflusst durch Faktoren wie Hublänge, WinkelGeschwindigkeit und Neigungswinkel, die sich erheblich auf die Gesamtleistung und Effizienz der Pumpe auswirken.

Qr=(Aω(L2))(sin(θ)-(2π))

Geschwindigkeitsdruck in Kanälen

Die Formel für den Geschwindigkeitsdruck in Kanälen ist definiert als der Druck, der durch den Luft- oder Gasstrom in einem Kanal ausgeübt wird. Dieser ist ein entscheidender Faktor bei der Bestimmung der Leistung von Heizungs-, Lüftungs- und Klimaanlagen sowie anderen industriellen Prozessen, bei denen ein Luftstrom eine Rolle spielt.

Pv=0.6Vm2

Geschwindigkeit des Wassers am Auslass des Saugrohrs bei gegebenem Wirkungsgrad des Saugrohrs

Die WasserGeschwindigkeit am Auslass des Saugrohrs bei gegebenem Saugrohrwirkungsgrad wird verwendet, um die Geschwindigkeit des Wassers am Auslass des Saugrohrs zu ermitteln, der das Ende mit einer größeren Querschnittsfläche ist.

V2=(V12)(1-ηd)-(hf2[g])

Geschwindigkeit des Wassers am Einlass des Saugrohrs bei gegebenem Wirkungsgrad des Saugrohrs

Die WasserGeschwindigkeit am Einlass des Saugrohrs bei gegebenem Saugrohrwirkungsgrad wird verwendet, um die Geschwindigkeit des Wassers am Einlass des Saugrohrs zu ermitteln, der das Ende des Saugrohrs mit einer geringeren Querschnittsfläche ist.

V1=(V22)+(hf2[g])1-ηd

Geschwindigkeitskonstante für die Reaktion nullter Ordnung unter Verwendung von Raumzeit für Pfropfenströmung

Die Geschwindigkeitskonstante für die Reaktion nullter Ordnung unter Verwendung der Raum-Zeit-Formel für Pfropfenströmung ist definiert als die ReaktionsGeschwindigkeit für die Reaktion nullter Ordnung, bei der die fraktionale Volumenänderung null ist.

kBatch=XA BatchCo Batch𝛕Batch

Geschwindigkeitskonstante für die Reaktion erster Stufe im ersten Schritt für MFR bei maximaler Zwischenkonzentration

Die Geschwindigkeitskonstante für die Reaktion erster Stufe im ersten Schritt für MFR bei maximaler Zwischenkonzentration ist definiert als die Proportionalitätskonstante für die Reaktion im ersten Schritt in einer irreversiblen Reaktion erster Ordnung in zwei Schritten in Reihe für Reaktoren mit gemischter Strömung bei maximaler Zwischenkonzentration.

kI=1k2(τR,max2)

Geschwindigkeitskonstante für die Reaktion erster Ordnung im zweiten Schritt für MFR bei maximaler Zwischenkonzentration

Die Geschwindigkeitskonstante für die Reaktion erster Ordnung im zweiten Schritt für MFR bei maximaler Zwischenkonzentration ist definiert als die Proportionalitätskonstante für die Reaktion im zweiten Schritt in einer irreversiblen Reaktion erster Ordnung in zwei Schritten in Reihe für Reaktoren mit gemischter Strömung bei maximaler Zwischenkonzentration.

k2=1kI(τR,max2)

Geschwindigkeitskonstante für Reaktion A bis B für einen Satz von drei Parallelreaktionen

Die Formel für die Geschwindigkeitskonstante für die Reaktionen A bis B für den Satz aus drei parallelen Reaktionen ist definiert als die Beziehung zwischen der molaren Konzentration der Reaktanten und der Geschwindigkeit der stattfindenden chemischen Reaktion.

k1=1tln(A0RA)-(k2+k3)

Geschwindigkeitskonstante für Reaktion A bis C für Satz von drei Parallelreaktionen

Die Formel für die Geschwindigkeitskonstante für die Reaktionen A bis C für den Satz aus drei parallelen Reaktionen ist definiert als die Beziehung zwischen der molaren Konzentration der Reaktanten und der Geschwindigkeit der stattfindenden chemischen Reaktion.

k2=1tln(A0RA)-(k1+k3)

Geschwindigkeitskonstante für Reaktion A bis D für Satz von drei Parallelreaktionen

Die Formel für die Geschwindigkeitskonstante für die Reaktionen A bis D für den Satz aus drei parallelen Reaktionen ist definiert als die Beziehung zwischen der molaren Konzentration der Reaktanten und der Geschwindigkeit der stattfindenden chemischen Reaktion.

k3=1tln(A0RA)-(k1+k2)

Geschwindigkeit des Satelliten im kreisförmigen LEO als Funktion der Höhe

Die Formel zur Berechnung der SatellitenGeschwindigkeit in einer kreisförmigen erdnahen Umlaufbahn als Funktion der Höhe ist definiert als die Geschwindigkeit, mit der ein Satellit die Erde in einer kreisförmigen erdnahen Umlaufbahn umkreist. Sie ist abhängig von der Höhe des Satelliten über der Erdoberfläche und stellt einen entscheidenden Parameter bei der Konstruktion und dem Betrieb von Satelliten in Weltraummissionen dar.

v=[GM.Earth][Earth-R]+z

Geschwindigkeit des Satelliten in seinem kreisförmigen GEO-Radius

Die Geschwindigkeit eines Satelliten in seiner kreisförmigen geosynchronen Umlaufbahn wird in Abhängigkeit von der Gravitationskonstante und dem Radius der Umlaufbahn als die Geschwindigkeit definiert, mit der ein Satellit die Erde in einer kreisförmigen geosynchronen Umlaufbahn umkreist.

v=[GM.Earth]Rgso

Geschwindigkeitskonstante für Mixed-Flow-Reaktor mit Gewicht des Katalysators

Die Geschwindigkeitskonstante für einen Mischflussreaktor mit Katalysatorgewicht ist als Geschwindigkeitskonstante definiert, die unter Verwendung der Raumzeit des Reaktors unter Berücksichtigung des Katalysatorgewichts, der Reaktantenumwandlung und der fraktionierten Umwandlung berechnet wird.

k '=XA,out(1+εXA,out)(1-XA,out)𝛕'

Geschwindigkeitskonstante für Mixed-Flow-Reaktor mit Katalysatorvolumen

Die Geschwindigkeitskonstante für Mischströmungsreaktoren mit Katalysatorvolumen ist definiert als Geschwindigkeitskonstante, berechnet unter Verwendung der Reaktantenumwandlung, der fraktionierten Umwandlung und der berechneten Raumzeit unter Berücksichtigung des Katalysatorvolumens. Der Geschwindigkeitsausdruck für eine Reaktion erster Ordnung in Gegenwart eines Katalysators wird häufig geändert, um den Effekt des Katalysators einzubeziehen.

k'''=XA,out(1+εXA,out)(1-XA,out)𝛕'''

Geschwindigkeit der Synchronmaschine

Die Geschwindigkeit einer Synchronmaschine bei der Stabilität des Stromversorgungssystems ist definiert als das Produkt aus der Anzahl der Pole in der Maschine und der RotorGeschwindigkeit dieser Maschine.

ωes=(P2)ωr

Geschwindigkeitsschwankungskoeffizient für Schwungrad

Die Formel für den Geschwindigkeitsschwankungskoeffizienten für Schwungräder ist als Maß für die Geschwindigkeitsschwankung eines Schwungrads definiert, bei dem es sich um ein rotierendes Rad handelt, das Energie speichert und die Geschwindigkeitsschwankungen eines Motors oder einer anderen Maschine ausgleicht.

Cs=2ω1-ω2ω1+ω2

Geschwindigkeit der progressiven Welle

Die Formel zur Geschwindigkeit fortschreitender Wellen ist definiert als Maß für die Geschwindigkeit, mit der sich eine Welle durch ein Medium ausbreitet. Sie beschreibt die Rate der Störungsübertragung in einem physikalischen System und ist ein grundlegendes Konzept zum Verständnis der Wellendynamik und ihrer Anwendungen in verschiedenen Bereichen der Physik.

Vw=λTW

Geschwindigkeit der progressiven Welle unter Verwendung der Frequenz

Die Geschwindigkeit fortschreitender Wellen wird mithilfe der Frequenzformel als Maß für die Geschwindigkeit definiert, mit der sich eine Welle durch ein Medium ausbreitet. Dies ist für das Verständnis verschiedener physikalischer Phänomene wie Schallwellen, Lichtwellen und seismischer Wellen von wesentlicher Bedeutung und spielt in Bereichen wie Physik, Ingenieurwesen und Geologie eine entscheidende Rolle.

Vw=λfw

Geschwindigkeit einer progressiven Welle bei gegebener Winkelfrequenz

Die Formel für die Geschwindigkeit einer fortschreitenden Welle bei gegebener Winkelfrequenz ist definiert als Maß für die Geschwindigkeit einer Welle, die sich in eine bestimmte Richtung bewegt, beeinflusst durch die Winkelfrequenz, und ist von entscheidender Bedeutung für das Verständnis des Verhaltens von Wellen in verschiedenen physikalischen Systemen, einschließlich Schall- und Lichtwellen.

Vw=λωf2π

Geschwindigkeit der Welle bei gegebener Wellennummer

Die Formel zur Berechnung der WellenGeschwindigkeit bei gegebener Wellenzahl ist ein Maß für die Geschwindigkeit, mit der sich eine Welle durch ein Medium ausbreitet. Sie bietet Aufschluss über die Frequenz und Wellenlänge der Welle und ist von entscheidender Bedeutung für das Verständnis verschiedener physikalischer Phänomene, wie etwa Schall- und Lichtwellen, in der Physik und in technischen Anwendungen.

Vw=ωfk

Geschwindigkeit der chemischen Reaktion

Die Formel für die Geschwindigkeit der chemischen Reaktion ist definiert als die Geschwindigkeitsänderung der Konzentration eines der Reaktanten oder Produkte pro Zeiteinheit. Die Geschwindigkeit der chemischen Reaktion bedeutet die Geschwindigkeit, mit der die Reaktion stattfindet.

r=ΔcΔt

Geschwindigkeitskonstante der Reaktion nullter Ordnung

Die Formel für die Geschwindigkeitskonstante der Reaktion nullter Ordnung ist definiert als die Subtraktion der Konzentration eines Reaktanten zum Zeitpunkt t von der Anfangskonzentration des Reaktanten in einem bestimmten Zeitintervall der Reaktion.

k=C0-Cttreaction

Geschwindigkeitskonstante zur Halbzeit der Reaktion nullter Ordnung

Die Geschwindigkeitskonstante zur Halbwertszeit der Reaktionsformel nullter Ordnung ist definiert als die Anfangskonzentration des Reaktanten geteilt durch die doppelte Halbwertszeit der Reaktion. Die doppelte Hälfte der Reaktion ist die Gesamtzeit für den Abschluss der Reaktion.

k=C02T1/2

Geschwindigkeitskonstante der Reaktion erster Ordnung unter Verwendung des Logarithmus zur Basis 10

Die Geschwindigkeitskonstante der Reaktion erster Ordnung unter Verwendung des Logarithmus zur Basis-10-Formel ist definiert als die ReaktionsGeschwindigkeit pro Konzentration des Reaktanten. Die Formel ist der Logarithmus zur Basis 10 der Anfangskonzentration pro Konzentration zum Zeitpunkt t, das Ganze wird durch die Zeit dividiert, die für die Vervollständigung der Reaktion erforderlich ist.

kfirst=2.303tcompletionlog10(A0Ct)

Geschwindigkeitskonstante zur Halbzeit für die Reaktion erster Ordnung

Die Geschwindigkeitskonstante zur Halbzeit für die Reaktionsformel erster Ordnung ist definiert als die ReaktionsGeschwindigkeit pro Konzentration des Reaktanten. Die Formel ist ein natürlicher Logarithmus von 2 geteilt durch die Halbwertszeit der Reaktion.

kfirst=0.693t1/2

Geschwindigkeitskonstante für dasselbe Produkt für eine Reaktion zweiter Ordnung

Die Geschwindigkeitskonstante für dasselbe Produkt für die Reaktionsformel zweiter Ordnung ist definiert als die durchschnittliche ReaktionsGeschwindigkeit pro Konzentration des Reaktanten mit einer auf 2 erhöhten Leistung.

Ksecond=1axttcompletion-1atcompletion

Geschwindigkeitskonstante für verschiedene Produkte für die Reaktion zweiter Ordnung

Die Geschwindigkeitskonstante für verschiedene Produkte für die Reaktionsformel zweiter Ordnung ist definiert als die durchschnittliche ReaktionsGeschwindigkeit pro Konzentration der beiden verschiedenen Reaktanten, deren Leistung jeweils auf 1 erhöht ist.

Kfirst=2.303tcompletion(CAO-CBO)log10CBO(ax)CAO(bx)

Wie finde ich Formeln?

Hier sind ein paar Tipps für bessere Suchergebnisse.
Seien Sie konkret: Je konkreter Ihre Suchanfrage, desto besser sind Ihre Ergebnisse.
Verwenden Sie mehrere Schlüsselwörter: Kombinieren Sie mehrere Schlüsselwörter, um die Ergebnisse einzugrenzen.
Experimentieren Sie mit Synonymen: Unterschiedliche Begriffe können zu unterschiedlichen Ergebnissen führen.
Platzhaltersuche: Verwenden Sie den Operator * (Sternchen). BEACHTEN SIE, dass dieser Operator nur am Ende eines Wortes funktioniert. Beispiel: Bio*, Bereich* usw.

Alternativ können Sie durch die Unterkategorien innerhalb von navigieren, um die Formeln einzugrenzen, die Sie interessieren.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!