Geschwindigkeit des ElektronsDie Geschwindigkeit eines Elektrons bezieht sich auf seine Geschwindigkeit und Bewegungsrichtung und wird durch das Energieerhaltungsprinzip bestimmt. Im Wesentlichen heißt es, dass die Änderung der kinetischen Energie des Elektrons gleich der Änderung der potentiellen Energie ist, die es aufgrund des elektrischen Feldes erfährt.
Geschwindigkeit von Elektronen in KraftfeldernDie ElektronenGeschwindigkeit in Kraftfeldern wird verwendet, um die Geschwindigkeit eines geladenen Teilchens in ein Feld zu berechnen, in dem sowohl ein elektrisches als auch ein magnetisches Feld vorhanden ist.
Geschwindigkeit von FluidpartikelnDie Geschwindigkeit von Fluidpartikeln in der Fluiddynamik-Terminologie wird verwendet, um die Bewegung eines Kontinuums mathematisch zu beschreiben.
Geschwindigkeitskoeffizient bei DruckverlustDie Formel für den Geschwindigkeitskoeffizienten bei gegebenem Druckverlust ist durch Anwendung der Bernoulli-Gleichung am Auslass der Düse und auf den Wasserstrahl bekannt.
Geschwindigkeit für gegebene Wenderate bei hohem LastfaktorDie Geschwindigkeit für eine bestimmte Wenderate bei hohem Lastfaktor ist die Geschwindigkeit, die ein Flugzeug benötigt, um eine bestimmte Wenderate bei hohem Lastfaktor beizubehalten. Diese Formel berechnet die Geschwindigkeit basierend auf der Erdbeschleunigung, dem Lastfaktor und der Wenderate. Das Verständnis und die Anwendung dieser Formel ist für Piloten und Ingenieure unerlässlich, um die Manövrierfähigkeit von Flugzeugen zu optimieren.
Geschwindigkeitsgradient bei ScherspannungDie Formel für den Geschwindigkeitsgradienten bei gegebener Scherspannung ist als Geschwindigkeitsdifferenz zwischen benachbarten Fluidschichten definiert. Es ist das Verhältnis zwischen Geschwindigkeitsänderung und Abstandsänderung zwischen den Schichten.
GeschwindigkeitsgradientDie Geschwindigkeitsgradientenformel ist definiert als ein Verhältnis zwischen der Änderung der Geschwindigkeit zwischen benachbarten Schichten und der Änderung des Abstands zwischen aufeinanderfolgenden Punkten zwischen benachbarten Schichten.
Geschwindigkeit des Körpers bei gegebenem ImpulsDie Formel für die Geschwindigkeit eines Körpers bei gegebenem Impuls ist definiert als Maß für die Geschwindigkeit eines Objekts in eine bestimmte Richtung. Sie wird berechnet, indem der Impuls des Objekts durch seine Masse geteilt wird. Sie liefert ein grundlegendes Konzept zum Verständnis der Bewegung eines Objekts und ihrer Beziehung zur Kraft.
Geschwindigkeit der Impulsänderung bei gegebener Beschleunigung und MasseDie Formel zur Änderungsrate des Impulses bei gegebener Beschleunigung und Masse ist definiert als ein Maß für die Rate, mit der sich der Impuls eines Objekts ändert, wenn auf es eine externe Kraft einwirkt, wobei die Masse des Objekts und seine Beschleunigung die Hauptfaktoren sind, die diese Änderung beeinflussen.
Geschwindigkeit des Projektils des Mach-Kegels im komprimierbaren FlüssigkeitsstromDie Geschwindigkeit des Projektils eines Mach-Kegels in einer kompressiblen Flüssigkeitsströmung beschreibt die Geschwindigkeit, mit der sich das Projektil bewegt, wenn es die SchallGeschwindigkeit im umgebenden Medium erreicht oder überschreitet. Das Verständnis dieser Geschwindigkeit ist in der Aerodynamik und Ballistik von entscheidender Bedeutung, da sie den Beginn von Stoßwellen und die aerodynamischen Herausforderungen anzeigt, die mit Überschall- und Hyperschallflügen verbunden sind.
Geschwindigkeit der Schallwelle unter Berücksichtigung des Mach-Winkels in einem komprimierbaren FlüssigkeitsstromDie Geschwindigkeit von Schallwellen unter Berücksichtigung des Mach-Winkels bei kompressibler Fluidströmung ist wichtig für das Verständnis, wie sich Schall durch ein Medium ausbreitet, wenn die FluidGeschwindigkeit die SchallGeschwindigkeit erreicht oder überschreitet. Diese Beziehung hilft bei der Vorhersage des Verhaltens von Stoßwellen und der Schallübertragung in verschiedenen Umgebungen und ist von wesentlicher Bedeutung in der Luft- und Raumfahrttechnik, der Akustik und der Untersuchung der HochGeschwindigkeitsfluiddynamik.
Geschwindigkeitskonstante der irreversiblen Reaktion zweiter OrdnungDie Formel für die Geschwindigkeitskonstante der irreversiblen Reaktion zweiter Ordnung ist definiert als die Proportionalitätskonstante in der Gleichung, die die Beziehung zwischen der Geschwindigkeit einer chemischen Reaktion und den Konzentrationen der reagierenden Substanzen ausdrückt.
Geschwindigkeitskonstante für die Reaktion erster Ordnung in Behälter iDie Geschwindigkeitskonstante für die Reaktion erster Ordnung in der Formel von Behälter i ist als die Proportionalitätskonstante definiert, die die Beziehung zwischen der Geschwindigkeit für die Reaktion erster Ordnung und der ersten Konzentrationskraft eines der Reaktanten angibt.
Geschwindigkeit für verzögerte Kohärenz bei der PhotodissoziationDie Geschwindigkeitsformel für die verzögerte Kohärenz bei der Photodissoziation ist definiert als die Größe der Änderung seiner Position über die Zeit oder die Größe der Änderung seiner Position pro Zeiteinheit während der verzögerten Kohärenz während der Photodissoziation des KrF-Moleküls.
Geschwindigkeit im schnellen WirbelbettDie Formel „Geschwindigkeit im schnellen Wirbelschichtbett“ bezieht sich auf die AufwärtsGeschwindigkeit des Fluidisierungsgases, das zum Schweben und Fluidisieren fester Partikel im Bett verwendet wird. Schnelle Wirbelschichten zeichnen sich durch hohe GasGeschwindigkeiten aus, und diese Geschwindigkeiten liegen typischerweise deutlich über der minimalen FluidisierungsGeschwindigkeit.
Geschwindigkeit in der pneumatischen FörderungDie Geschwindigkeitsformel bei der pneumatischen Förderung ist definiert als die Geschwindigkeit, typischerweise ausgedrückt als Luft- oder GasGeschwindigkeit am Punkt der Injektion oder Einführung der Feststoffpartikel in das Fördersystem.
Geschwindigkeitsschwankungskoeffizient für SchwungradDie Formel für den Geschwindigkeitsschwankungskoeffizienten für Schwungräder ist als Maß für die Geschwindigkeitsschwankung eines Schwungrads definiert, bei dem es sich um ein rotierendes Rad handelt, das Energie speichert und die Geschwindigkeitsschwankungen eines Motors oder einer anderen Maschine ausgleicht.
Geschwindigkeit der progressiven WelleDie Formel zur Geschwindigkeit fortschreitender Wellen ist definiert als Maß für die Geschwindigkeit, mit der sich eine Welle durch ein Medium ausbreitet. Sie beschreibt die Rate der Störungsübertragung in einem physikalischen System und ist ein grundlegendes Konzept zum Verständnis der Wellendynamik und ihrer Anwendungen in verschiedenen Bereichen der Physik.
Geschwindigkeit der progressiven Welle unter Verwendung der FrequenzDie Geschwindigkeit fortschreitender Wellen wird mithilfe der Frequenzformel als Maß für die Geschwindigkeit definiert, mit der sich eine Welle durch ein Medium ausbreitet. Dies ist für das Verständnis verschiedener physikalischer Phänomene wie Schallwellen, Lichtwellen und seismischer Wellen von wesentlicher Bedeutung und spielt in Bereichen wie Physik, Ingenieurwesen und Geologie eine entscheidende Rolle.
Geschwindigkeit einer progressiven Welle bei gegebener WinkelfrequenzDie Formel für die Geschwindigkeit einer fortschreitenden Welle bei gegebener Winkelfrequenz ist definiert als Maß für die Geschwindigkeit einer Welle, die sich in eine bestimmte Richtung bewegt, beeinflusst durch die Winkelfrequenz, und ist von entscheidender Bedeutung für das Verständnis des Verhaltens von Wellen in verschiedenen physikalischen Systemen, einschließlich Schall- und Lichtwellen.
Geschwindigkeit der Welle bei gegebener WellennummerDie Formel zur Berechnung der WellenGeschwindigkeit bei gegebener Wellenzahl ist ein Maß für die Geschwindigkeit, mit der sich eine Welle durch ein Medium ausbreitet. Sie bietet Aufschluss über die Frequenz und Wellenlänge der Welle und ist von entscheidender Bedeutung für das Verständnis verschiedener physikalischer Phänomene, wie etwa Schall- und Lichtwellen, in der Physik und in technischen Anwendungen.
Geschwindigkeit eines kleinen Elements für LängsschwingungDie Formel für die Geschwindigkeit kleiner Elemente bei Längsschwingungen ist als Maß für die Geschwindigkeit kleiner Elemente bei einer Längsschwingung definiert, die durch die Trägheit der Einschränkung beeinflusst wird, und wird zur Analyse der Schwingungen in verschiedenen mechanischen Systemen verwendet.
Geschwindigkeit von Teilchen, die durch Vibrationen gestört werdenDie Formel für die Geschwindigkeit von durch Vibrationen gestörten Partikeln ist definiert als die Geschwindigkeit von Partikeln, die durch Vibrationen beeinflusst werden, und drückt die Geschwindigkeit und Richtung ihrer Bewegung als Reaktion auf Störungen aus.
Geschwindigkeitsfaktor für exakt gefräste und gewälzte Verzahnungen bei v kleiner 20Geschwindigkeitsfaktor für genau gefräste und profilierte Zahnräder, wenn v kleiner als 20 m/s ist das Verhältnis der statischen Belastung beim Versagen zur dynamischen Belastung beim Versagen. Dieser Geschwindigkeitsfaktor Kv wird verwendet, um die Lewis-Gleichung zu modifizieren: Je höher die WälzlinienGeschwindigkeit, desto größer die Biegespannung an den Zahnradzähnen.
Geschwindigkeit des Teilchens nach einer bestimmten ZeitDie Formel zur PartikelGeschwindigkeit nach einer bestimmten Zeit ist definiert als Maß für die Geschwindigkeit eines Partikels zu einem bestimmten Zeitpunkt unter Berücksichtigung der AnfangsGeschwindigkeit, Beschleunigung und verstrichenen Zeit und bietet Aufschluss über die Bewegung des Partikels und seine sich im Laufe der Zeit ändernde Geschwindigkeit.
Geschwindigkeit beim Laufen bei voller EntladungDie Geschwindigkeit bei vollem Durchfluss wird als die Geschwindigkeit definiert, mit der sich eine Flüssigkeit durch ein vollständig gefülltes Rohr oder einen Kanal bewegt, normalerweise bei maximaler Kapazität.