Suche Formeln

Bitte geben Sie mindestens 3 Zeichen ein, um mit der Suche nach -Formeln zu beginnen.

Wählen Sie Filter

Grenzen Sie Ihre Suchergebnisse mithilfe dieser Filter ein.

50 Passende Formeln gefunden!

Geschwindigkeit von Fluidpartikeln

Die Geschwindigkeit von Fluidpartikeln in der Fluiddynamik-Terminologie wird verwendet, um die Bewegung eines Kontinuums mathematisch zu beschreiben.

vf=dta

Geschwindigkeit der chemischen Reaktion

Die Formel für die Geschwindigkeit der chemischen Reaktion ist definiert als die Geschwindigkeitsänderung der Konzentration eines der Reaktanten oder Produkte pro Zeiteinheit. Die Geschwindigkeit der chemischen Reaktion bedeutet die Geschwindigkeit, mit der die Reaktion stattfindet.

r=ΔcΔt

Geschwindigkeitskonstante der Reaktion nullter Ordnung

Die Formel für die Geschwindigkeitskonstante der Reaktion nullter Ordnung ist definiert als die Subtraktion der Konzentration eines Reaktanten zum Zeitpunkt t von der Anfangskonzentration des Reaktanten in einem bestimmten Zeitintervall der Reaktion.

k=C0-Cttreaction

Geschwindigkeitskonstante zur Halbzeit der Reaktion nullter Ordnung

Die Geschwindigkeitskonstante zur Halbwertszeit der Reaktionsformel nullter Ordnung ist definiert als die Anfangskonzentration des Reaktanten geteilt durch die doppelte Halbwertszeit der Reaktion. Die doppelte Hälfte der Reaktion ist die Gesamtzeit für den Abschluss der Reaktion.

k=C02T1/2

Geschwindigkeit des Flugzeugs bei gegebener Steigrate

Die Geschwindigkeit eines Flugzeugs bei einer bestimmten Steigrate ist die Geschwindigkeit, die ein Flugzeug benötigt, um eine bestimmte Steigrate zu erreichen. Diese Formel berechnet die Geschwindigkeit, indem sie die Steigrate durch den Sinus des Flugwegwinkels während des Steigens dividiert. Das Verständnis und die Anwendung dieser Formel ist für Piloten und Ingenieure von entscheidender Bedeutung, um die Steigleistung zu optimieren.

v=RCsin(γ)

Geschwindigkeit auf Meereshöhe bei gegebenem Auftriebskoeffizienten

Die Geschwindigkeit auf Meereshöhe bei gegebenem Auftriebskoeffizienten ist ein Maß zur Berechnung der Geschwindigkeit eines Objekts auf Meereshöhe unter Berücksichtigung des Körpergewichts, der Luftdichte auf Meereshöhe, der Referenzfläche und des Auftriebskoeffizienten und stellt einen entscheidenden Parameter in der Aerodynamik und im Flugzeugbau dar.

V0=2Wbody[Std-Air-Density-Sea]SCL

Geschwindigkeit in der Höhe

Die Geschwindigkeit in der Höhe ist ein Maß für die Geschwindigkeit eines Objekts in einer bestimmten Höhe über der Erdoberfläche. Unter Berücksichtigung des Körpergewichts, der Luftdichte, der Bezugsfläche und des Auftriebskoeffizienten ermöglicht diese Formel die Berechnung der Geschwindigkeit in aerodynamischen Systemen und liefert wertvolle Erkenntnisse für Ingenieure und Forscher in den Bereichen Luft- und Raumfahrt und Aerodynamik.

Valt=2Wbodyρ0SCL

Geschwindigkeit in Höhe gegeben Geschwindigkeit auf Meereshöhe

Geschwindigkeit in angegebener Höhe Die Geschwindigkeit auf Meereshöhe ist ein Maß für die Geschwindigkeit eines Objekts in einer bestimmten Höhe. Sie wird berechnet, indem die Geschwindigkeit auf Meereshöhe mit der Quadratwurzel des Verhältnisses zwischen der Standardluftdichte auf Meereshöhe und der Luftdichte in der angegebenen Höhe multipliziert wird.

Valt=V0[Std-Air-Density-Sea]ρ0

Geschwindigkeitsdruck gemäß ASCE 7

Der Geschwindigkeitsdruck gemäß ASCE 7 ist definiert als der Geschwindigkeitsdruck gemäß den ASCE 7-Methode-II-Normen unter Berücksichtigung des Winddrucks sowie der externen und internen Druckkoeffizienten.

q=p+qiGCptGCep

Geschwindigkeitsdruck an einem bestimmten Punkt gemäß ASCE 7

Der Geschwindigkeitsdruck an einem bestimmten Punkt gemäß ASCE 7 ist definiert als der Geschwindigkeitsdruck an einem bestimmten Punkt zur Bestimmung des Innendrucks gemäß ASCE 7 Methode II.

qi=(qGCep)-pGCpt

Geschwindigkeit gegebener Wenderadius für hohen Lastfaktor

Die Geschwindigkeit bei Wenderadius unter Bedingungen mit hohem Lastfaktor ist die Geschwindigkeit, die ein Flugzeug benötigt, um einen bestimmten Wenderadius bei einem erheblichen Lastfaktor beizubehalten. Diese Formel berechnet die Geschwindigkeit basierend auf Wenderadius, Lastfaktor und Erdbeschleunigung. Das Verständnis und die Anwendung dieser Formel ist für Piloten und Ingenieure von entscheidender Bedeutung, um die Manövrierfähigkeit von Flugzeugen zu optimieren und die Sicherheit bei Manövern mit hohem Lastfaktor zu gewährleisten.

v=Rn[g]

Geschwindigkeit in Abschnitt 1 für stetigen Fluss

Die Formel „Geschwindigkeit in Abschnitt 1 für stetigen Fluss“ ist als StrömungsGeschwindigkeit an einem bestimmten Punkt im Strom definiert.

u01=QAcsρ1

Geschwindigkeit in Abschnitt 2 bei gegebenem Durchfluss in Abschnitt 1 für stetigen Durchfluss

Die Geschwindigkeit in Abschnitt 2 bei gegebener Strömung in Abschnitt 1 für die Formel „Steady Flow“ ist als StrömungsGeschwindigkeit an einem bestimmten Punkt im Strom definiert.

u02=QAcsρ2

Geschwindigkeit am Abschnitt für die Entladung durch den Abschnitt für eine stationäre inkompressible Flüssigkeit

Die Geschwindigkeit am Abschnitt für den Austritt durch den Abschnitt für stationäres inkompressibles Fluid ist als StrömungsGeschwindigkeit in der Querschnittsfläche definiert.

uFluid=QAcs

Geschwindigkeit im radialen Abstand r1 bei gegebenem Drehmoment, das auf die Flüssigkeit ausgeübt wird

Die Geschwindigkeit im radialen Abstand r1 bei gegebenem auf die Flüssigkeit ausgeübtem Drehmoment ist definiert als das auf die Flüssigkeit ausgeübte Drehmoment, das zu einer Rotationsbewegung oder einem Fluss führt.

V1=qflowr2V2-(τΔ)r1qflow

Geschwindigkeit im radialen Abstand r2 bei gegebenem Drehmoment, das auf die Flüssigkeit ausgeübt wird

Die Geschwindigkeit bei radialem Abstand r2 bei gegebenem auf die Flüssigkeit ausgeübtem Drehmoment ist definiert als das Drehmoment, das die WinkelGeschwindigkeit beeinflusst. Es führt zu einer entsprechenden Änderung der Geschwindigkeit der Flüssigkeit, was zu einem bestimmten Wert bei gegebenem radialen Abstand führt.

V2=qflowr1V1+(τΔ)qflowr2

Geschwindigkeit des Kolbens bei gegebener StrömungsGeschwindigkeit im Öltank

Die Geschwindigkeit des Kolbens bei gegebener StrömungsGeschwindigkeit im Öltank ist definiert als die Geschwindigkeit, mit der der Kolben in Bezug auf den vertikalen Abstand nach unten geht.

vpiston=((0.5dp|drRR-CHRμ)-uOiltank)(CHR)

Geschwindigkeit für auf die Platte ausgeübte Kraft in Strömungsrichtung des Strahls

Die Geschwindigkeit der auf die Platte in Strömungsrichtung des Strahls ausgeübten Kraft ist die Änderungsrate ihrer Position in Bezug auf einen Bezugsrahmen und eine Funktion der Zeit.

vjet=Fjet[g]γfAJet(1+cos(θt))

Geschwindigkeit der vom Strahl auf die Leitschaufel ausgeübten Kraft in x-Richtung

Die KraftGeschwindigkeit, die vom Strahl auf die Leitschaufel in x-Richtung ausgeübt wird, ist die Änderungsrate ihrer Position in Bezug auf einen Bezugssystem und ist eine Funktion der Zeit.

vjet=FxgγfAJet(cos(θ)+cos(∠D))

Geschwindigkeit gegebene Kraft, die von Jet auf Vane in Y-Richtung ausgeübt wird

Die Geschwindigkeit bei gegebener Kraft, die der Strahl auf die Schaufel in Y-Richtung ausübt, ist definiert als die Änderungsrate seiner Position in Bezug auf einen Bezugsrahmen und ist eine Funktion der Zeit.

vjet=FygγfAJet((sin(θ))-sin(∠D))

Geschwindigkeit der sich bewegenden Platte in Bezug auf die absolute Viskosität

Die Formel für die Geschwindigkeit der sich bewegenden Platte in Bezug auf die absolute Viskosität ist definiert als das Verhältnis des Produkts aus Tangentialkraft und Filmdicke zum Produkt aus absoluter Viskosität und Fläche.

Vm=PhμoApo

Geschwindigkeit an der Oberfläche bei gegebener Scherspannung an der Wasseroberfläche

Die Formel für die Geschwindigkeit an der Oberfläche bei gegebener Scherspannung an der Wasseroberfläche ist definiert als die Bestimmung der Geschwindigkeit des Wassers an der Oberfläche eines Gewässers basierend auf der auf die Wasseroberfläche ausgeübten Scherspannung. Scherspannung an der Wasseroberfläche wird typischerweise durch Wind oder andere Kräfte erzeugt, die tangential auf die Oberfläche wirken. Es handelt sich um einen Geschwindigkeitsparameter an der Oberfläche, der das Strömungsprofil beeinflusst.

Vs=πτ2DFρwaterΩEsin(L)

Geschwindigkeit des Fahrzeugs bei gegebenem Verzögerungsabstand oder Reaktionsabstand

Die Geschwindigkeit des Fahrzeugs bei gegebener Verzögerungsentfernungs- oder Reaktionsentfernungsformel ist definiert als Geschwindigkeit, mit der sich das Fahrzeug auf der Straßenoberfläche bewegt.

Vb=LDt

Geschwindigkeit bei Leckage

Geschwindigkeit bei Leckage: Im Kontext der Strömungsdynamik, speziell im Umgang mit Leckagen, bezieht sich der Begriff „Geschwindigkeit“ auf die Geschwindigkeit, mit der die Flüssigkeit durch ein Leck entweicht.

v=QoA

Geschwindigkeitskonstante für die Reaktion nullter Ordnung unter Verwendung von Raumzeit für gemischte Strömung

Die Ratenkonstante für die Reaktion nullter Ordnung unter Verwendung der Raum-Zeit-Formel für gemischte Strömung ist definiert als die Reaktionsrate für eine Reaktion nullter Ordnung für eine gemischte Strömung, bei der die fraktionelle Volumenänderung null ist.

kmixed flow=XmfrCo𝛕mixed

Geschwindigkeitskonstante für die Reaktion erster Ordnung unter Verwendung der Reaktantenkonzentration für gemischten Fluss

Die Geschwindigkeitskonstante für die Reaktion erster Ordnung unter Verwendung der Reaktantenkonzentration für die Mischströmungsformel ist als die Proportionalitätskonstante definiert, die die Beziehung zwischen der ReaktionsGeschwindigkeit und der ersten Potenz der Konzentration eines der Reaktanten für die Mischströmung angibt.

k'=(1𝛕mixed)(Co-CC)

Geschwindigkeitskonstante für die Reaktion erster Ordnung unter Verwendung von Raumzeit für gemischte Strömung

Die Geschwindigkeitskonstante für die Reaktion erster Ordnung unter Verwendung der Raum-Zeit-Formel für gemischte Strömung ist definiert als die Proportionalitätskonstante, die die Beziehung zwischen der ReaktionsGeschwindigkeit und der ersten Potenz der Konzentration eines der Reaktanten für die gemischte Strömung angibt.

k'=(1𝛕mixed)(Xmfr1-Xmfr)

Geschwindigkeiten aus der Länge der Übergangskurven für normale Geschwindigkeiten

Geschwindigkeiten aus Übergangsbogenlänge für NormalGeschwindigkeiten ist definiert als die Geschwindigkeit, mit der Eisenbahnkurven mit normalen Überhöhungswerten bei normaler Geschwindigkeit ausgelegt werden. Umrechnungsfaktor von mm in Meter wird hinzugefügt.

VNormal=134Le1000

Geschwindigkeiten aus der Länge der Übergangskurven für hohe Geschwindigkeiten

Geschwindigkeiten aus der Formel Länge der Übergangsbögen für hohe Geschwindigkeiten ist definiert als die Geschwindigkeit, mit der Eisenbahnkurven mit normalen Überhöhungswerten ausgelegt werden, wenn die Geschwindigkeit hoch ist. Umrechnungsfaktor von mm in Meter wird hinzugefügt.

VHigh=198Le1000

Geschwindigkeitskonstante für eine Reaktion erster Ordnung in erster Ordnung, gefolgt von einer Reaktion nullter Ordnung

Die Formel für die Geschwindigkeitskonstante für eine Reaktion erster Ordnung gefolgt von einer Reaktion nullter Ordnung ist als die Proportionalitätskonstante einer Reaktion erster Ordnung definiert, der eine Reaktion nullter Ordnung folgt.

kI=(1Δt)ln(CA0Ck0)

Geschwindigkeit des Insassen im Verhältnis zum Fahrzeug nach der Kollision

Die Formel für die Geschwindigkeit des Insassen im Verhältnis zum Fahrzeug nach einer Kollision ist definiert als Maß für die Geschwindigkeit eines Insassen im Verhältnis zum Fahrzeug nach einer Kollision. Sie ist von entscheidender Bedeutung für die Einschätzung der Schwere des Aufpralls und der daraus resultierenden Verletzungen.

Vr=Voδoccd

Geschwindigkeitskonstante der Phase zwischen Blase und Wolke

Die Formel für die Geschwindigkeitskonstante der Phase zwischen Blase und Wolke wird als berechnete Geschwindigkeitskonstante definiert, wenn im Wirbelreaktor Blasenbildung auftritt.

Kbc=4.50(umfdb)+5.85(Df R)12([g])14db54

Geschwindigkeitskonstante der Phase zwischen Wolkenwache und Emulsion

Die Geschwindigkeitskonstante der Phase zwischen Wolkenwache und Emulsionsformel wird als berechnete Geschwindigkeitskonstante definiert, wenn Blasenbildung an der Grenzfläche im Wirbelschichtreaktor beim Kunii-Levenspiel-Modell auftritt.

Kce=6.77(εmfDf Rubrdb3)12

Geschwindigkeit für verzögerte Kohärenz bei der Photodissoziation

Die Geschwindigkeitsformel für die verzögerte Kohärenz bei der Photodissoziation ist definiert als die Größe der Änderung seiner Position über die Zeit oder die Größe der Änderung seiner Position pro Zeiteinheit während der verzögerten Kohärenz während der Photodissoziation des KrF-Moleküls.

vcov=2(Vcov_R0-Vcov_R)μcov

Geschwindigkeit im schnellen Wirbelbett

Die Formel „Geschwindigkeit im schnellen Wirbelschichtbett“ bezieht sich auf die AufwärtsGeschwindigkeit des Fluidisierungsgases, das zum Schweben und Fluidisieren fester Partikel im Bett verwendet wird. Schnelle Wirbelschichten zeichnen sich durch hohe GasGeschwindigkeiten aus, und diese Geschwindigkeiten liegen typischerweise deutlich über der minimalen FluidisierungsGeschwindigkeit.

uTB-FF=1.53(ρsolids-ρgas)[g]dpρgas

Geschwindigkeit in der pneumatischen Förderung

Die Geschwindigkeitsformel bei der pneumatischen Förderung ist definiert als die Geschwindigkeit, typischerweise ausgedrückt als Luft- oder GasGeschwindigkeit am Punkt der Injektion oder Einführung der Feststoffpartikel in das Fördersystem.

uFF-PC=((21.6((GSρgas)0.542)(d'p 0.315))[g]dp)11.542

Geschwindigkeitsverhältnis

Die Formel für das Geschwindigkeitsverhältnis ist definiert als das Verhältnis der Drehzahl des angetriebenen Zahnrads zu der des treibenden Zahnrads in einem mechanischen System. Sie hilft dabei, die Effizienz und Drehmomentübertragung des Getriebes zu bestimmen.

i=TdTdr

Geschwindigkeit des Alpha-Teilchens unter Verwendung der Entfernung der nächsten Annäherung

Die Geschwindigkeit des Alpha-Teilchens unter Verwendung der Entfernung der nächsten Annäherung ist die Geschwindigkeit, mit der sich ein Alpha-Teilchen in einem Atomkern bewegt.

v=[Coulomb]Z([Charge-e]2)[Atomic-m]r0

Geschwindigkeit des Stößels für Rollenstößel-Tangentennocken, wenn der Kontakt mit geraden Flanken erfolgt

Die Formel für die Geschwindigkeit des Stößels für einen Rollenstößel mit tangentialem Nocken bei Kontakt mit geraden Flanken ist als Maß für die Geschwindigkeit des Stößels in einem Nockenstößelsystem definiert, bei dem der Kontakt mit geraden Flanken erfolgt. Sie bietet Einblick in die Kinematik des Systems und ermöglicht die Entwicklung effizienter mechanischer Systeme.

v=ω(r1+rroller)sin(θ)(cos(θ))2

Geschwindigkeitskoeffizient für das Peltonrad

Der Geschwindigkeitskoeffizient für das Peltonrad ist das Verhältnis der tatsächlichen Geschwindigkeit des Wasserstrahls, der die Düse verlässt, zur theoretischen Geschwindigkeit. Er berücksichtigt die Verluste durch Reibung und andere Ineffizienzen in der Düse und wird verwendet, um die Effizienz der Strahlbildung zu bestimmen. Dieser Koeffizient ist normalerweise kleiner als 1.

Cv=V12[g]H

Geschwindigkeit des Stößels der Rollenstößel-Tangentennocke für den Kontakt mit der Nase

Die Formel für die Geschwindigkeit des Stößels eines Rollenstößels und des Tangentialnockens bei Kontakt mit der Nase ist definiert als die Geschwindigkeit des Stößels in einem Nocken- und Stößelsystem. Sie ist ein entscheidender Parameter bei der Bestimmung der Leistung und Effizienz des Systems, insbesondere wenn der Stößel mit der Nase des Nockens in Kontakt ist.

v=ωr(sin(θ1)+rsin(2θ1)2L2-r2(sin(θ1))2)

Geschwindigkeit im beschleunigten Flug

Die Geschwindigkeit im beschleunigten Flug bezieht sich auf die Geschwindigkeit des Flugzeugs, wenn es Geschwindigkeits- oder Richtungsänderungen durchläuft, um bestimmte Flugziele zu erreichen. Sie wird normalerweise als LuftGeschwindigkeit des Flugzeugs gemessen, d. h. die Geschwindigkeit des Flugzeugs im Verhältnis zur umgebenden Luft.

v=(Rcurvaturem(FL+Tsin(σT)-m[g]cos(γ)))12

Geschwindigkeit des freien Stroms der laminaren Strömung der flachen Platte

Die Formel für die freie StrömungsGeschwindigkeit einer laminaren Flachplatte ist definiert als die Geschwindigkeit der Flüssigkeit, die sich der Flachplatte in einem laminaren Strömungsregime nähert. Dies ist ein entscheidender Parameter bei konvektiven Massenübertragungsprozessen, insbesondere im Zusammenhang mit der Strömungsdynamik und der Wärmeübertragung.

u=kL(Sc0.67)(Re0.5)0.322

Geschwindigkeit bei teilweise voller Fahrt bei gegebener proportionaler Geschwindigkeit

Die Geschwindigkeit bei teilweiser Füllung, angegeben als proportionale Geschwindigkeit, wird als die Durchflussrate einer Flüssigkeit in einer Leitung definiert, wenn diese nicht vollständig gefüllt ist und von Tiefe und Geschwindigkeit beeinflusst wird.

Vs=VPv

Geschwindigkeit beim Laufen mit voller gegebener proportionaler Geschwindigkeit

Die Geschwindigkeit bei vollem Durchfluss, angegeben als proportionale Geschwindigkeit, wird als die FließGeschwindigkeit einer Flüssigkeit in einem Rohr definiert, wenn dieses vollständig gefüllt ist, beeinflusst durch die Neigung und Rauheit des Rohrs.

V=VsPv

Geschwindigkeitskonstante bei gegebener Desoxygenierungskonstante

Die Geschwindigkeitskonstante wird in der Formel zur Desoxygenierungskonstanten als Oxidationsrate von organischer Materie definiert und hängt von der Art der darin vorhandenen organischen Materie und der Temperatur ab.

K=2.3KD

Geschwindigkeit des Strahls bei normalem Schub parallel zur Richtung des Strahls

Die Geschwindigkeit des Strahls bei normalem Schub parallel zur Richtung des Strahls ist die Änderungsrate seiner Position in Bezug auf einen Bezugsrahmen und eine Funktion der Zeit.

v=-(FtGγfAJet(∠D(180π))2-Vabsolute)

Geschwindigkeit des Strahls bei normalem Schub Normal zur Richtung des Strahls

Die Geschwindigkeit des Strahls bei normalem Schub normal zur Richtung des Strahls ist die Änderungsrate seiner Position in Bezug auf einen Bezugsrahmen und eine Funktion der Zeit.

v=-(FtGγfAJet(∠D(180π))cos(θ))+Vabsolute

Geschwindigkeit im Turn

Die Geschwindigkeit in der Kurve ist als Geschwindigkeit des Flugzeugs in der Kurve oder Kurve definiert und ist eine Funktion des Kurvenradius.

VTurning Speed=4.1120RTaxiway0.5

Geschwindigkeit in der Tiefsee bei gegebener Wellenkraft in der Tiefsee

Die Formel zur Berechnung der TiefseeGeschwindigkeit anhand der Wellenkraft in der Tiefsee wird als die Geschwindigkeit definiert, mit der sich eine einzelne Welle fortbewegt oder „ausbreitet“.

Co=Pd0.5E

Wie finde ich Formeln?

Hier sind ein paar Tipps für bessere Suchergebnisse.
Seien Sie konkret: Je konkreter Ihre Suchanfrage, desto besser sind Ihre Ergebnisse.
Verwenden Sie mehrere Schlüsselwörter: Kombinieren Sie mehrere Schlüsselwörter, um die Ergebnisse einzugrenzen.
Experimentieren Sie mit Synonymen: Unterschiedliche Begriffe können zu unterschiedlichen Ergebnissen führen.
Platzhaltersuche: Verwenden Sie den Operator * (Sternchen). BEACHTEN SIE, dass dieser Operator nur am Ende eines Wortes funktioniert. Beispiel: Bio*, Bereich* usw.

Alternativ können Sie durch die Unterkategorien innerhalb von navigieren, um die Formeln einzugrenzen, die Sie interessieren.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!