Suche Formeln

Bitte geben Sie mindestens 3 Zeichen ein, um mit der Suche nach -Formeln zu beginnen.

Wählen Sie Filter

Grenzen Sie Ihre Suchergebnisse mithilfe dieser Filter ein.

50 Passende Formeln gefunden!

Geschwindigkeitsverhältnis bei gegebener zurückgelegter Distanz aufgrund von Anstrengung und zurückgelegter Distanz aufgrund von Last

Das Geschwindigkeitsverhältnis bei durch Kraftaufwand zurückgelegter Strecke und durch Last zurückgelegter Strecke ist das Verhältnis der durch Kraftaufwand zurückgelegten Strecke zu der durch Last zurückgelegten Strecke. Es gibt an, wie die Maschine die durch Kraftaufwand zurückgelegte Strecke in die durch Last zurückgelegte Strecke umwandelt.

Vi=DeDl

Geschwindigkeitskoeffizient bei Druckverlust

Die Formel für den Geschwindigkeitskoeffizienten bei gegebenem Druckverlust ist durch Anwendung der Bernoulli-Gleichung am Auslass der Düse und auf den Wasserstrahl bekannt.

Cv=1-(hfH)

Geschwindigkeit unter Verwendung der Wasserströmungsgleichung

Die Geschwindigkeit wird mithilfe der Wasserdurchflussgleichung als FließGeschwindigkeit definiert, wenn der Querschnittsbereich des Rohrs und der Wasserdurchfluss gegeben sind.

Vf=QwAcs

Geschwindigkeit bei gegebenem Pulldown-Manöverradius

Die Geschwindigkeit bei Pull-Down-Manöverradius ist die Geschwindigkeit, die ein Flugzeug benötigt, um während eines Pull-Down-Manövers einen bestimmten Wenderadius beizubehalten. Diese Formel berechnet die Geschwindigkeit basierend auf dem Wenderadius, der Erdbeschleunigung und dem Lastfaktor. Das Verständnis und die Anwendung dieser Formel ist für Piloten und Ingenieure von entscheidender Bedeutung, um sichere und kontrollierte Pull-Down-Manöver zu gewährleisten.

Vpull-down=R[g](n+1)

Geschwindigkeit für gegebene Pull-Down-Manöverrate

Die Geschwindigkeit für eine bestimmte Pull-Down-Manöverrate hängt vom Lastfaktor und der WendeGeschwindigkeit des Flugzeugs ab. Diese Formel bietet eine vereinfachte Annäherung an die Geschwindigkeit, die erforderlich ist, um die gewünschte Sinkrate während des Pull-Down-Manövers aufrechtzuerhalten.

Vpull-down=[g]1+nωpull-down

Geschwindigkeit des Windkanal-Testabschnitts

Die Geschwindigkeitsformel des Windkanal-Testabschnitts basiert auf dem Bernoulli-Prinzip und ist eine Funktion der Druckdifferenz zwischen Reservoir und Testabschnitt.

V2=2(P1-P2)ρ0(1-1Alift2)

Geschwindigkeitsverteilung in rauer turbulenter Strömung

Die Formel für die Geschwindigkeitsverteilung in rauer turbulenter Strömung ist als die Funktion definiert, die beschreibt, wie molekulare Geschwindigkeiten im Durchschnitt in einer rauen, turbulenten Strömung verteilt sind.

v=5.75vshearlog10(30yks)

Geschwindigkeit des beweglichen Bootes

Die Formel für die Geschwindigkeit eines fahrenden Bootes ist als Strömungsmesser vom Propellertyp definiert, der sich frei um eine vertikale Achse bewegen kann und in einem Boot mit einer bestimmten Geschwindigkeit gezogen wird.

vb=Vcos(θ)

Geschwindigkeit des sich bewegenden Bootes bei gegebener Breite zwischen zwei Vertikalen

Die Formel für die Geschwindigkeit des sich bewegenden Bootes bei gegebener Breite zwischen zwei Vertikalen ist definiert als die kombinierte Bewegung des Bootes relativ zum Wasser und die Bewegung des Wassers relativ zum Ufer.

vb=WΔt

Geschwindigkeitskonstante nach Titrationsverfahren für Reaktionen nullter Ordnung

Die Geschwindigkeitskonstante durch Titrationsmethode für die Reaktionsformel nullter Ordnung ist definiert als die Geschwindigkeitskonstante, die direkt proportional zur Volumendifferenz und umgekehrt proportional zum Zeitpunkt der Fertigstellung ist.

k=V0-Vtt

Geschwindigkeitskonstante für dasselbe Produkt durch Titrationsmethode für Reaktionen zweiter Ordnung

Die Ratenkonstante für dasselbe Produkt durch Titrationsverfahren für die Reaktionsformel zweiter Ordnung ist definiert als die Subtraktion des Kehrwerts des Anfangsvolumens und des Zeitintervalls vom Kehrwert des Volumens eines Reaktanten zum Zeitpunkt t und Zeitintervall.

Ksecond=(1Vttcompletion)-(1V0tcompletion)

Geschwindigkeit des Kolbens

Die Formel zur Berechnung der KolbenGeschwindigkeit ist definiert als die Geschwindigkeit, mit der sich der Kolben in einer Kolbenpumpe bewegt. Dabei handelt es sich um eine wichtige Komponente in zahlreichen Industrieanwendungen und einen Schlüsselfaktor bei der Bestimmung der Gesamtleistung und Effizienz der Pumpe.

vpiston=ωrsin(ωtsec)

Geschwindigkeit der Flüssigkeit im Rohr

Die Formel für die Geschwindigkeit von Flüssigkeit in einer Leitung ist definiert als die Fließrate einer Flüssigkeit durch eine Leitung in einem Kolbenpumpensystem. Sie wird von Faktoren wie der Querschnittsfläche der Leitung, der WinkelGeschwindigkeit, dem Radius und der Zeit beeinflusst, die zusammen die Bewegung und den Druck der Flüssigkeit beeinflussen.

vl=Aaωrsin(ωts)

Geschwindigkeit des Teilchens nach einer bestimmten Zeit

Die Formel zur PartikelGeschwindigkeit nach einer bestimmten Zeit ist definiert als Maß für die Geschwindigkeit eines Partikels zu einem bestimmten Zeitpunkt unter Berücksichtigung der AnfangsGeschwindigkeit, Beschleunigung und verstrichenen Zeit und bietet Aufschluss über die Bewegung des Partikels und seine sich im Laufe der Zeit ändernde Geschwindigkeit.

vl=u+almt

Geschwindigkeit des Kolbens für die Scherkraft, die der Bewegung des Kolbens widersteht

Die Geschwindigkeit des Kolbens zur Widerstandsfähigkeit gegen Scherkräfte ist definiert als die durchschnittliche Geschwindigkeit, mit der sich der Kolben bewegt.

vpiston=FsπμLP(1.5(DCR)2+4(DCR))

Geschwindigkeit der Flüssigkeit

Die FlüssigkeitsGeschwindigkeit ist definiert als die Geschwindigkeit, mit der sich Flüssigkeit oder Öl im Tank aufgrund der Anwendung der Kolbenkraft bewegt.

uOiltank=dp|dr0.5RR-CHRμ

Geschwindigkeit des Kolbens bei Scherspannung

Die Geschwindigkeit des Kolbens bei Scherbeanspruchung ist definiert als die durchschnittliche Geschwindigkeit im Tank aufgrund der Bewegung des Kolbens.

vpiston=𝜏1.5DμCHCH

Geschwindigkeit des Rades bei gegebener TangentialGeschwindigkeit an der Auslassspitze des Flügels

Die Geschwindigkeit des Rades bei gegebener TangentialGeschwindigkeit an der Auslassspitze des Flügels, der sich um die Achse dreht, ist die Anzahl der Umdrehungen des Objekts dividiert durch die Zeit, angegeben als Umdrehungen pro Minute (U/min).

Ω=vtangential602πrO

Geschwindigkeit bei gegebenem Tangentialimpuls von Flüssigkeit, die am Einlass auf Leitschaufeln auftrifft

Die Geschwindigkeit bei gegebenem Tangentialimpuls eines Fluids, das Schaufeln am Einlass eines Objekts trifft, ist die Änderungsrate seiner Position in Bezug auf einen Referenzrahmen und ist eine Funktion der Zeit.

u=TmGwf

Geschwindigkeit bei gegebenem Drehimpuls am Einlass

Die gegebene DrehimpulsGeschwindigkeit am Einlass ist die Änderungsrate seiner Position in Bezug auf einen Bezugssystem und ist eine Funktion der Zeit.

vf=LGwfr

Geschwindigkeit bei gegebenem Tangentialimpuls von Flüssigkeit, die am Auslass auf Leitschaufeln auftrifft

Die dem Tangentialimpuls gegebene Geschwindigkeit des Fluids, das am Auslass auf die Leitschaufeln trifft, ist die Änderungsrate seiner Position in Bezug auf den Referenzrahmen und ist eine Funktion der Zeit.

u=TmGwf

Geschwindigkeit bei gegebenem Drehimpuls am Outlet

Die Geschwindigkeit des gegebenen Drehimpulses am Auslass eines Objekts ist die Änderungsrate seiner Position in Bezug auf einen Bezugssystem und ist eine Funktion der Zeit.

v=TmGwfr

Geschwindigkeit des Förderbandes

Die Formel für die Geschwindigkeit des Förderbands ist definiert als Förderer bewegen Kisten mit etwa der gleichen Geschwindigkeit wie eine Person, die sie trägt. Das sind etwa 65 Fuß pro Minute.

S=LQWm

Geschwindigkeit sich bewegender Grenzen

Die Formel für die Geschwindigkeit sich bewegender Grenzen ist definiert als der Bereich oder die Oberfläche der Grenze oder des Objekts, das sich mit konstanter Geschwindigkeit bewegt.

V=FyμA

Geschwindigkeit gegebenes Verhältnis von Trägheitskräften und viskosen Kräften unter Verwendung des Newtonschen Reibungsmodells

Das der Geschwindigkeit gegebene Verhältnis von Trägheitskräften und viskosen Kräften unter Verwendung des Newtonschen Reibungsmodells wird unter Verwendung des Newtonschen Reibungsmodells ausgedrückt, während die Trägheitskräfte (von oben) proportional zu den jeweiligen Parametern sind.

Vf=FiμviscosityFvρfluidL

Geschwindigkeit bei gegebener kinematischer Viskosität, Verhältnis von Trägheitskräften und viskosen Kräften

Die Geschwindigkeit gegebene kinematische Viskosität, das Verhältnis von Trägheitskräften und viskosen Kräften können unter Verwendung des Newtonschen Reibungsmodells ausgedrückt werden, während die Trägheitskräfte (von oben) proportional zu den jeweiligen Parametern sind.

Vf=FiνFvL

Geschwindigkeit für Froude-Skalierung

Die Geschwindigkeitsformel für die Froude-Skalierung ist definiert als die Geschwindigkeit, die proportional zur Quadratwurzel des Kräfteverhältnisses angepasst wird.

Vf=Fn[g]Lf

Geschwindigkeitskoeffizient bei gegebener Düseneffizienz

Geschwindigkeitskoeffizient bei gegebener Düseneffizienzformel ist definiert als das Verhältnis der tatsächlichen Geschwindigkeit des aus einer Düse austretenden Gases zur unter idealen Bedingungen berechneten Geschwindigkeit.

Cv=ηnozlze

Geschwindigkeitskonstante der Reaktion nach Erying-Gleichung

Die Geschwindigkeitskonstante der Reaktion nach der Erying-Gleichung ist definiert als die Geschwindigkeit einer Reaktion, die gleich der Anzahl der aktivierten Komplexe ist, die sich unter Bildung von Produkten zersetzen. Daher ist es die Konzentration des hochenergetischen Komplexes multipliziert mit der Frequenz, mit der er die Barriere überwindet.

k=[BoltZ]Texp(SActivation[Molar-g])exp(-HActivation[Molar-g]T)[hP]

Geschwindigkeitskoeffizient

Die Formel für den Geschwindigkeitskoeffizienten ist definiert als das Verhältnis zwischen der tatsächlichen Geschwindigkeit des Strahls an der Vena-Contracta und der theoretischen Geschwindigkeit am Strahl.

Cv=vaVth

Geschwindigkeitskoeffizient für horizontalen und vertikalen Abstand

Die Formel für den Geschwindigkeitskoeffizienten für die horizontale und vertikale Entfernung wird aus der experimentellen Bestimmung der hydraulischen Koeffizienten definiert.

Cv=R4VH

Geschwindigkeitsverhältnis

Die Formel für das Drehzahlverhältnis ist eine dimensionslose Größe, die das Strömungsverhalten einer Kreiselpumpe charakterisiert. Sie stellt eine Beziehung zwischen der UmfangsGeschwindigkeit des Laufrads und der SpritzGeschwindigkeit der Flüssigkeit her, die für die Konstruktion und Optimierung der Pumpenleistung von wesentlicher Bedeutung ist.

Ku=u22[g]Hm

Geschwindigkeitsverhältnis in Westons Differentialriemenscheibe bei gegebener Anzahl von Zähnen

Das Geschwindigkeitsverhältnis in der Differentialriemenscheibe von Weston bei gegebener Zähnezahl kann auch anhand der Zähnezahl der beiden Zahnräder (die den beiden Riemenscheiben entsprechen) ausgedrückt werden.

Vi=2T1T1-T2

Geschwindigkeitsverhältnis in Westons Differenzialriemenscheibe bei gegebenem Riemenscheibenradius

Das Geschwindigkeitsverhältnis in Westons Differentialriemenscheibe bei gegebenem Riemenscheibenradius kann mithilfe der Radien der beiden beteiligten Riemenscheiben ermittelt werden.

Vi=2r1r1-r2

Geschwindigkeitsverhältnis von Schnecke und Schneckenrad

Das Übersetzungsverhältnis von Schnecken- und Schneckenradgetrieben gibt den mechanischen Vorteil an, den das System bietet. Es ist das Verhältnis der durch die Kraft (Eingang) zurückgelegten Strecke zur durch die Last (Ausgang) zurückgelegten Strecke.

Vi=DmTw2Rd

Geschwindigkeitsverhältnis von Schnecke und Schneckenrad, wenn die Schnecke ein Doppelgewinde hat

Das Geschwindigkeitsverhältnis von Schnecke und Schneckenrad ist bei einer Schnecke mit zwei Gewinden das Verhältnis der Anzahl der Zähne auf dem Schneckenrad zur Anzahl der Gewinde auf der Schnecke. Diese Formel berechnet den mechanischen Vorteil des Schneckengetriebesystems und gibt an, wie viele Umdrehungen der Schnecke erforderlich sind, um eine Umdrehung des Schneckenrads auszuführen.

Vi=dwTw4Rd

Geschwindigkeitsverhältnis von Schnecke und Schneckenrad, wenn die Schnecke mehrere Gewindegänge hat

Das Geschwindigkeitsverhältnis von Schnecke und Schneckenrad ist bei Schnecken mit mehreren Gewinden das Verhältnis der Anzahl der Zähne auf dem Schneckenrad zur Anzahl der Gewindegänge (Anfänge) auf der Schnecke. Diese Formel bestimmt, wie viele Umdrehungen der Schnecke erforderlich sind, um das Schneckenrad einmal zu drehen, und gibt den mechanischen Vorteil und die Untersetzung an, die das System bietet.

Vi=dwTw2nRd

Geschwindigkeitsverhältnis des Schneckenrad-Riemenscheibenblocks

Das Geschwindigkeitsverhältnis eines Flaschenzugs mit Schneckengetriebe bezieht sich auf das Verhältnis der durch die Kraft zurückgelegten Distanz zur durch die Last zurückgelegten Distanz. Es ist ein Maß für den mechanischen Vorteil, den der Schneckengetriebemechanismus bietet.

Vi=dwTwR

Geschwindigkeitsverhältnis eines einfachen Spindelhubgetriebes

Das Geschwindigkeitsverhältnis eines einfachen Spindelhubgetriebes beschreibt das Verhältnis zwischen der durch die Kraft zurückgelegten Distanz und der durch die Last zurückgelegten Distanz. Es spiegelt den mechanischen Vorteil wider, den das Spindelhubsystem bietet.

Vi=2πlPs

Geschwindigkeitsverhältnis des Differenzial-Spindelhubgetriebes

Das Geschwindigkeitsverhältnis eines Differentialspindelhubgetriebes ist ein Maß für den mechanischen Vorteil, den das System bietet. Es beschreibt das Verhältnis der durch die Kraft zurückgelegten Distanz zur durch die Last zurückgelegten Distanz.

Vi=2πlpa-pb

Geschwindigkeitsverhältnis des Spindelhubgetriebes mit Schneckengetriebe

Das Übersetzungsverhältnis eines Spindelhubgetriebes mit Schneckengetriebe misst den mechanischen Vorteil des Systems, indem es die durch die Kraft zurückgelegte Distanz mit der durch die Last zurückgelegten Distanz vergleicht. Bei einem Spindelhubgetriebe mit Schneckengetriebe treibt das Schneckengetriebe den Schraubmechanismus an, und das Übersetzungsverhältnis wird durch die Getriebe- und Schraubparameter beeinflusst.

Vi=2πRwTsPs

Geschwindigkeitsverhältnis eines Spindelhubgetriebes mit Schneckengetriebe und Doppelgewinde

Geschwindigkeitsverhältnis eines Spindelhubelements mit Schneckengetriebe und parallel verlaufenden Doppelgewinden, die sich auf die Steigung und damit auf das Geschwindigkeitsverhältnis auswirken.

Vi=2πRwTw2Ps

Geschwindigkeitsverhältnis eines Spindelhubgetriebes mit Schneckengetriebe und mehreren Gewindegängen

Das Geschwindigkeitsverhältnis eines Spindelhubgetriebes mit Schneckengetriebe und mehreren Gewinden wird durch die Anzahl der Gewinde beeinflusst, die wiederum die Steigung der Schraube bestimmen.

Vi=2πRwTwnPs

Geschwindigkeitskonstante für die Reaktion nullter Ordnung aus der Arrhenius-Gleichung

Die Geschwindigkeitskonstante für eine Reaktion nullter Ordnung aus der Arrhenius-Gleichungsformel ist definiert als das Produkt des Frequenzfaktors mit einer empirischen Form der negativen Aktivierungsenergie pro universeller Gaskonstante multipliziert mit der Temperatur, und die Geschwindigkeitskonstante der Arrhenius-Gleichung ist umgekehrt proportional zur Reaktionstemperatur.

k0=Afactor-zeroorderexp(-Ea1[R]TZeroOrder)

Geschwindigkeitskonstante für die Reaktion erster Ordnung aus der Arrhenius-Gleichung

Die Geschwindigkeitskonstante für die Reaktion erster Ordnung aus der Arrhenius-Gleichungsformel ist definiert als der Frequenzfaktor multipliziert mit dem Exponential der negativen Aktivierungsenergie pro universeller Gaskonstante und Temperatur. Die Geschwindigkeitskonstante der Reaktion erster Ordnung ist umgekehrt proportional zur Reaktionstemperatur. Mit steigender Reaktionstemperatur nimmt die Geschwindigkeitskonstante ab.

kfirst=Afactor-firstorderexp(-Ea1[R]TFirstOrder)

Geschwindigkeitskonstante für die Reaktion zweiter Ordnung aus der Arrhenius-Gleichung

Die Geschwindigkeitskonstante für die Reaktion zweiter Ordnung aus der Arrhenius-Gleichungsformel ist definiert als Frequenzfaktor multipliziert mit der Exponentialform der negativen Aktivierungsenergie pro universeller Gaskonstante und Temperatur. Die Geschwindigkeitskonstante der Reaktion zweiter Ordnung ist umgekehrt proportional zur Reaktionstemperatur.

Ksecond=Afactor-secondorderexp(-Ea1[R]TSecondOrder)

Geschwindigkeitsfaktor für handelsüblich geschnittene Zahnräder, die mit Formfräsern hergestellt wurden, wenn v kleiner als 10 ist

Geschwindigkeitsfaktor für industriell geschnittene Zahnräder, die mit Formfräsern hergestellt werden, wenn v kleiner als 10 m/s ist, ist das Verhältnis der statischen Belastung beim Versagen zur dynamischen Belastung beim Versagen. Dieser Geschwindigkeitsfaktor Kv wird verwendet, um die Lewis-Gleichung zu modifizieren: Je höher die WälzlinienGeschwindigkeit, desto größer die Biegespannung an den Zahnradzähnen.

Cv=33+v

Geschwindigkeitsfaktor für exakt gefräste und gewälzte Verzahnungen bei v kleiner 20

Geschwindigkeitsfaktor für genau gefräste und profilierte Zahnräder, wenn v kleiner als 20 m/s ist das Verhältnis der statischen Belastung beim Versagen zur dynamischen Belastung beim Versagen. Dieser Geschwindigkeitsfaktor Kv wird verwendet, um die Lewis-Gleichung zu modifizieren: Je höher die WälzlinienGeschwindigkeit, desto größer die Biegespannung an den Zahnradzähnen.

Cv=66+v

Geschwindigkeitsfaktor für Präzisionsgetriebe mit Schab- und Schleifoperationen, wenn v größer als 20 ist

Geschwindigkeitsfaktor für Präzisionsgetriebe mit Schäl- und Schleifvorgängen, wenn v größer als 20 m/s ist das Verhältnis der statischen Belastung beim Versagen zur dynamischen Belastung beim Versagen. Dieser Geschwindigkeitsfaktor Kv wird verwendet, um die Lewis-Gleichung zu modifizieren: Je höher die WälzlinienGeschwindigkeit, desto größer die Biegespannung an den Zahnradzähnen.

Cv=5.65.6+v

Geschwindigkeitsgradient gegebener Druckgradient am zylindrischen Element

Der Geschwindigkeitsgradient wird durch die Formel für den Druckgradienten am zylindrischen Element als Geschwindigkeitsvariation in Bezug auf den Rohrradius definiert.

VG=(12μ)dp|drdradial

Wie finde ich Formeln?

Hier sind ein paar Tipps für bessere Suchergebnisse.
Seien Sie konkret: Je konkreter Ihre Suchanfrage, desto besser sind Ihre Ergebnisse.
Verwenden Sie mehrere Schlüsselwörter: Kombinieren Sie mehrere Schlüsselwörter, um die Ergebnisse einzugrenzen.
Experimentieren Sie mit Synonymen: Unterschiedliche Begriffe können zu unterschiedlichen Ergebnissen führen.
Platzhaltersuche: Verwenden Sie den Operator * (Sternchen). BEACHTEN SIE, dass dieser Operator nur am Ende eines Wortes funktioniert. Beispiel: Bio*, Bereich* usw.

Alternativ können Sie durch die Unterkategorien innerhalb von navigieren, um die Formeln einzugrenzen, die Sie interessieren.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!