Suche Formeln

Bitte geben Sie mindestens 3 Zeichen ein, um mit der Suche nach -Formeln zu beginnen.

Wählen Sie Filter

Grenzen Sie Ihre Suchergebnisse mithilfe dieser Filter ein.

50 Passende Formeln gefunden!

Geschwindigkeit des freien Stroms der laminaren Strömung der flachen Platte

Die Formel für die freie StrömungsGeschwindigkeit einer laminaren Flachplatte ist definiert als die Geschwindigkeit der Flüssigkeit, die sich der Flachplatte in einem laminaren Strömungsregime nähert. Dies ist ein entscheidender Parameter bei konvektiven Massenübertragungsprozessen, insbesondere im Zusammenhang mit der Strömungsdynamik und der Wärmeübertragung.

u=kL(Sc0.67)(Re0.5)0.322

Geschwindigkeitsgradient gegebener Druckgradient am zylindrischen Element

Der Geschwindigkeitsgradient wird durch die Formel für den Druckgradienten am zylindrischen Element als Geschwindigkeitsvariation in Bezug auf den Rohrradius definiert.

VG=(12μ)dp|drdradial

Geschwindigkeit an jedem Punkt im zylindrischen Element

Die Geschwindigkeit an jedem Punkt in der Formel für das zylindrische Element wird als Rate definiert, mit der Flüssigkeit in das Rohr eindringt und ein parabolisches Profil bildet.

vFluid=-(14μ)dp|dr((R2)-(dradial2))

Geschwindigkeit am Auslass der Düse für maximalen Flüssigkeitsdurchfluss

Die Geschwindigkeit am Düsenauslass für die maximale Durchflussrate der Flüssigkeit ist entscheidend für die Bestimmung der Effizienz und Leistung von Fluiddynamiksystemen. Sie korreliert direkt mit dem Druckverhältnis über der Düse, der Flüssigkeitsdichte und den Düsendesignmerkmalen und beeinflusst die Durchflussrate und Antriebseffizienz in Anwendungen wie Raketentriebwerken und industriellen Sprühsystemen. Das Verständnis und die Optimierung dieser Geschwindigkeit ist für das Erreichen der gewünschten Betriebsergebnisse in technischen und technologischen Anwendungen von entscheidender Bedeutung.

Vf=2yP1(y+1)ρa

Geschwindigkeit im Abfluss bei gegebener Kanaldurchflusszeit

Die Formel für die Geschwindigkeit im Abfluss bei gegebener Kanalfließzeit wird als die Geschwindigkeit des durch den Abfluss fließenden Wassers definiert.

V=LTm/f

Geschwindigkeit des freien Stroms bei lokalem Reibungskoeffizienten

Die Formel für die freie StrömungsGeschwindigkeit bei gegebenem lokalen Reibungskoeffizienten ist definiert als die Geschwindigkeit einer Flüssigkeit, wenn diese weit entfernt von einer Begrenzung oder Wand ist und von der Anwesenheit der Wand unbeeinflusst bleibt. Sie ist ein entscheidender Parameter zum Verständnis des Verhaltens einer Flüssigkeitsströmung über einer flachen Platte.

u=2τwρCfx

Geschwindigkeitsgradient gegebener piezometrischer Gradient mit Scherspannung

Der Geschwindigkeitsgradient bei einem gegebenen piezometrischen Gradienten mit Scherspannung ist als Änderung der Geschwindigkeit in Bezug auf den radialen Abstand definiert.

VG=(γfμ)dh/dx0.5dradial

Geschwindigkeitsverteilungsprofil

Das Geschwindigkeitsverteilungsprofil ist definiert als die Geschwindigkeit relativ zur Platte in Strömungsrichtung im Strom.

v=-(12μ)dp|dr(wR-(R2))

Geschwindigkeitsverhältnis bei gegebenem Verhältnis der Bettneigung

Das Geschwindigkeitsverhältnis (Verhältnis der Sohlenneigung) wird als die FließGeschwindigkeit in einem teilweise gefüllten Rohr im Vergleich zu der in einem voll gefüllten Rohr definiert und gibt Effizienzunterschiede an.

νsVratio=(Nnp)(rpfRrf)23S

Geschwindigkeit bei voller Fahrt unter Verwendung des Bettneigungsverhältnisses

Die Geschwindigkeit bei vollem Betrieb unter Verwendung des Bettneigungsverhältnisses wird als die FließGeschwindigkeit einer Flüssigkeit in einem Rohr definiert, wenn dieses vollständig gefüllt ist, beeinflusst durch die Rohrneigung und Rauheit.

V=Vs(Nnp)(rpfRrf)23S

Geschwindigkeit bei Vollbetrieb unter Verwendung von Bed Slope für Partial Flow

Die Geschwindigkeit bei Volldurchfluss unter Verwendung der Bettneigung für Teildurchfluss wird als die Geschwindigkeit des Flüssigkeitsflusses in einem Rohr definiert, wenn dieses vollständig gefüllt ist, beeinflusst durch die Rohrneigung und -rauheit.

V=Vs(Nnp)(rpfRrf)23sss

Geschwindigkeit am Einlass bei gegebenem Drehmoment durch die Flüssigkeit

Die Geschwindigkeit am Einlass eines gegebenen Drehmoments durch Fluid ist die Änderungsrate seiner Position in Bezug auf einen Referenzrahmen und ist eine Funktion der Zeit am Einlass eines beliebigen Objekts.

vf=(τGwf)+(vr)rO

Geschwindigkeit am Auslass bei gegebenem Drehmoment durch Flüssigkeit

Die Geschwindigkeit am Auslass bei gegebenem Drehmoment durch Flüssigkeit ist die Änderungsrate ihrer Position in Bezug auf einen Bezugsrahmen und eine Funktion der Zeit am Auslass eines beliebigen Objekts.

v=(τGwf)-(vfr)rO

Geschwindigkeit am Einlass bei gegebener am Rad geleisteter Arbeit

Die Geschwindigkeit am Einlass bei gegebener am Rad geleisteter Arbeit ist die Änderungsrate seiner Position in Bezug auf einen Referenzrahmen und ist eine Funktion der Zeit am Einlass eines beliebigen Objekts.

vf=(wGwfω)-vrOr

Geschwindigkeit am Auslass bei geleisteter Arbeit am Rad

Die Geschwindigkeit am Ausgang bei gegebener am Rad geleisteter Arbeit ist die Änderungsrate seiner Position in Bezug auf einen Bezugsrahmen und eine Funktion der Zeit am Ausgang eines beliebigen Objekts.

v=(wGwfω)-(vfr)rO

Geschwindigkeit bei Leckage

Geschwindigkeit bei Leckage: Im Kontext der Strömungsdynamik, speziell im Umgang mit Leckagen, bezieht sich der Begriff „Geschwindigkeit“ auf die Geschwindigkeit, mit der die Flüssigkeit durch ein Leck entweicht.

v=QoA

Geschwindigkeit des Satelliten im kreisförmigen LEO als Funktion der Höhe

Die Formel zur Berechnung der SatellitenGeschwindigkeit in einer kreisförmigen erdnahen Umlaufbahn als Funktion der Höhe ist definiert als die Geschwindigkeit, mit der ein Satellit die Erde in einer kreisförmigen erdnahen Umlaufbahn umkreist. Sie ist abhängig von der Höhe des Satelliten über der Erdoberfläche und stellt einen entscheidenden Parameter bei der Konstruktion und dem Betrieb von Satelliten in Weltraummissionen dar.

v=[GM.Earth][Earth-R]+z

Geschwindigkeit des Satelliten in seinem kreisförmigen GEO-Radius

Die Geschwindigkeit eines Satelliten in seiner kreisförmigen geosynchronen Umlaufbahn wird in Abhängigkeit von der Gravitationskonstante und dem Radius der Umlaufbahn als die Geschwindigkeit definiert, mit der ein Satellit die Erde in einer kreisförmigen geosynchronen Umlaufbahn umkreist.

v=[GM.Earth]Rgso

Geschwindigkeitskonstante der Phase zwischen Blase und Wolke

Die Formel für die Geschwindigkeitskonstante der Phase zwischen Blase und Wolke wird als berechnete Geschwindigkeitskonstante definiert, wenn im Wirbelreaktor Blasenbildung auftritt.

Kbc=4.50(umfdb)+5.85(Df R)12([g])14db54

Geschwindigkeitskonstante der Phase zwischen Wolkenwache und Emulsion

Die Geschwindigkeitskonstante der Phase zwischen Wolkenwache und Emulsionsformel wird als berechnete Geschwindigkeitskonstante definiert, wenn Blasenbildung an der Grenzfläche im Wirbelschichtreaktor beim Kunii-Levenspiel-Modell auftritt.

Kce=6.77(εmfDf Rubrdb3)12

Geschwindigkeit für verzögerte Kohärenz bei der Photodissoziation

Die Geschwindigkeitsformel für die verzögerte Kohärenz bei der Photodissoziation ist definiert als die Größe der Änderung seiner Position über die Zeit oder die Größe der Änderung seiner Position pro Zeiteinheit während der verzögerten Kohärenz während der Photodissoziation des KrF-Moleküls.

vcov=2(Vcov_R0-Vcov_R)μcov

Geschwindigkeit im schnellen Wirbelbett

Die Formel „Geschwindigkeit im schnellen Wirbelschichtbett“ bezieht sich auf die AufwärtsGeschwindigkeit des Fluidisierungsgases, das zum Schweben und Fluidisieren fester Partikel im Bett verwendet wird. Schnelle Wirbelschichten zeichnen sich durch hohe GasGeschwindigkeiten aus, und diese Geschwindigkeiten liegen typischerweise deutlich über der minimalen FluidisierungsGeschwindigkeit.

uTB-FF=1.53(ρsolids-ρgas)[g]dpρgas

Geschwindigkeit in der pneumatischen Förderung

Die Geschwindigkeitsformel bei der pneumatischen Förderung ist definiert als die Geschwindigkeit, typischerweise ausgedrückt als Luft- oder GasGeschwindigkeit am Punkt der Injektion oder Einführung der Feststoffpartikel in das Fördersystem.

uFF-PC=((21.6((GSρgas)0.542)(d'p 0.315))[g]dp)11.542

Geschwindigkeitsverhältnis in Westons Differentialriemenscheibe bei gegebener Anzahl von Zähnen

Das Geschwindigkeitsverhältnis in der Differentialriemenscheibe von Weston bei gegebener Zähnezahl kann auch anhand der Zähnezahl der beiden Zahnräder (die den beiden Riemenscheiben entsprechen) ausgedrückt werden.

Vi=2T1T1-T2

Geschwindigkeitsverhältnis in Westons Differenzialriemenscheibe bei gegebenem Riemenscheibenradius

Das Geschwindigkeitsverhältnis in Westons Differentialriemenscheibe bei gegebenem Riemenscheibenradius kann mithilfe der Radien der beiden beteiligten Riemenscheiben ermittelt werden.

Vi=2r1r1-r2

Geschwindigkeitsverhältnis von Schnecke und Schneckenrad

Das Übersetzungsverhältnis von Schnecken- und Schneckenradgetrieben gibt den mechanischen Vorteil an, den das System bietet. Es ist das Verhältnis der durch die Kraft (Eingang) zurückgelegten Strecke zur durch die Last (Ausgang) zurückgelegten Strecke.

Vi=DmTw2Rd

Geschwindigkeitsverhältnis von Schnecke und Schneckenrad, wenn die Schnecke ein Doppelgewinde hat

Das Geschwindigkeitsverhältnis von Schnecke und Schneckenrad ist bei einer Schnecke mit zwei Gewinden das Verhältnis der Anzahl der Zähne auf dem Schneckenrad zur Anzahl der Gewinde auf der Schnecke. Diese Formel berechnet den mechanischen Vorteil des Schneckengetriebesystems und gibt an, wie viele Umdrehungen der Schnecke erforderlich sind, um eine Umdrehung des Schneckenrads auszuführen.

Vi=dwTw4Rd

Geschwindigkeitsverhältnis von Schnecke und Schneckenrad, wenn die Schnecke mehrere Gewindegänge hat

Das Geschwindigkeitsverhältnis von Schnecke und Schneckenrad ist bei Schnecken mit mehreren Gewinden das Verhältnis der Anzahl der Zähne auf dem Schneckenrad zur Anzahl der Gewindegänge (Anfänge) auf der Schnecke. Diese Formel bestimmt, wie viele Umdrehungen der Schnecke erforderlich sind, um das Schneckenrad einmal zu drehen, und gibt den mechanischen Vorteil und die Untersetzung an, die das System bietet.

Vi=dwTw2nRd

Geschwindigkeitsverhältnis des Schneckenrad-Riemenscheibenblocks

Das Geschwindigkeitsverhältnis eines Flaschenzugs mit Schneckengetriebe bezieht sich auf das Verhältnis der durch die Kraft zurückgelegten Distanz zur durch die Last zurückgelegten Distanz. Es ist ein Maß für den mechanischen Vorteil, den der Schneckengetriebemechanismus bietet.

Vi=dwTwR

Geschwindigkeitsverhältnis eines einfachen Spindelhubgetriebes

Das Geschwindigkeitsverhältnis eines einfachen Spindelhubgetriebes beschreibt das Verhältnis zwischen der durch die Kraft zurückgelegten Distanz und der durch die Last zurückgelegten Distanz. Es spiegelt den mechanischen Vorteil wider, den das Spindelhubsystem bietet.

Vi=2πlPs

Geschwindigkeitsverhältnis des Differenzial-Spindelhubgetriebes

Das Geschwindigkeitsverhältnis eines Differentialspindelhubgetriebes ist ein Maß für den mechanischen Vorteil, den das System bietet. Es beschreibt das Verhältnis der durch die Kraft zurückgelegten Distanz zur durch die Last zurückgelegten Distanz.

Vi=2πlpa-pb

Geschwindigkeitsverhältnis des Spindelhubgetriebes mit Schneckengetriebe

Das Übersetzungsverhältnis eines Spindelhubgetriebes mit Schneckengetriebe misst den mechanischen Vorteil des Systems, indem es die durch die Kraft zurückgelegte Distanz mit der durch die Last zurückgelegten Distanz vergleicht. Bei einem Spindelhubgetriebe mit Schneckengetriebe treibt das Schneckengetriebe den Schraubmechanismus an, und das Übersetzungsverhältnis wird durch die Getriebe- und Schraubparameter beeinflusst.

Vi=2πRwTsPs

Geschwindigkeitsverhältnis eines Spindelhubgetriebes mit Schneckengetriebe und Doppelgewinde

Geschwindigkeitsverhältnis eines Spindelhubelements mit Schneckengetriebe und parallel verlaufenden Doppelgewinden, die sich auf die Steigung und damit auf das Geschwindigkeitsverhältnis auswirken.

Vi=2πRwTw2Ps

Geschwindigkeitsverhältnis eines Spindelhubgetriebes mit Schneckengetriebe und mehreren Gewindegängen

Das Geschwindigkeitsverhältnis eines Spindelhubgetriebes mit Schneckengetriebe und mehreren Gewinden wird durch die Anzahl der Gewinde beeinflusst, die wiederum die Steigung der Schraube bestimmen.

Vi=2πRwTwnPs

Geschwindigkeitsverhältnis im Differenzial-Riemenscheibenblock von Weston

Das Geschwindigkeitsverhältnis im Differential-Flaschenzug von Weston ist ein Maß für den mechanischen Vorteil, den das System bietet. Es stellt das Verhältnis der durch die Kraft zurückgelegten Strecke (die gezogene Kette) zur zurückgelegten Strecke durch die Last dar.

Vi=2dldl-ds

Geschwindigkeit entlang der Gierachse bei kleinem Anstellwinkel

Die Geschwindigkeit entlang der Gierachse bei kleinem Anstellwinkel ist ein Maß für die Änderungsrate der Position eines Objekts entlang der Gierachse im Verhältnis zu seiner Bewegung aufgrund eines kleinen Anstellwinkels. Sie wird berechnet, indem die Geschwindigkeit entlang der Rollachse mit dem Anstellwinkel im Bogenmaß multipliziert wird und stellt einen entscheidenden Parameter in der Aerodynamik und Flugdynamik dar.

w=uα

Geschwindigkeit entlang der Rollachse bei kleinem Anstellwinkel

Die Geschwindigkeit entlang der Rollachse bei kleinem Anstellwinkel ist ein Maß für die Geschwindigkeit der Rotation eines Objekts um seine Rollachse, wenn der Anstellwinkel relativ klein ist, und wird berechnet, indem die Geschwindigkeit entlang der Gierbewegung durch den Anstellwinkel im Bogenmaß geteilt wird.

u=wα

Geschwindigkeit entlang der Nickachse bei kleinem Schwimmwinkel

Die Geschwindigkeit entlang der Nickachse bei kleinem Schwimmwinkel ist ein Maß für die Geschwindigkeit eines Flugzeugs oder Objekts, das sich mit kleinem Schwimmwinkel bewegt, und ist für das Verständnis und die Vorhersage seiner Flugbahn und Stabilität von entscheidender Bedeutung.

v=βu

Geschwindigkeit entlang der Rollachse bei kleinem Schwimmwinkel

Die Geschwindigkeit entlang der Rollachse bei kleinem Schwimmwinkel ist ein Maß für die Geschwindigkeit des Flugzeugs in Richtung der Rollachse bei kleinem Schwimmwinkel und gibt Aufschluss über die Stabilität und Reaktionsfähigkeit des Flugzeugs während des Fluges.

u=vβ

Geschwindigkeit bei teilweise voller Fahrt bei gegebener proportionaler Geschwindigkeit

Die Geschwindigkeit bei teilweiser Füllung, angegeben als proportionale Geschwindigkeit, wird als die Durchflussrate einer Flüssigkeit in einer Leitung definiert, wenn diese nicht vollständig gefüllt ist und von Tiefe und Geschwindigkeit beeinflusst wird.

Vs=VPv

Geschwindigkeit beim Laufen mit voller gegebener proportionaler Geschwindigkeit

Die Geschwindigkeit bei vollem Durchfluss, angegeben als proportionale Geschwindigkeit, wird als die FließGeschwindigkeit einer Flüssigkeit in einem Rohr definiert, wenn dieses vollständig gefüllt ist, beeinflusst durch die Neigung und Rauheit des Rohrs.

V=VsPv

Geschwindigkeitskonstante bei gegebener Desoxygenierungskonstante

Die Geschwindigkeitskonstante wird in der Formel zur Desoxygenierungskonstanten als Oxidationsrate von organischer Materie definiert und hängt von der Art der darin vorhandenen organischen Materie und der Temperatur ab.

K=2.3KD

Geschwindigkeitsgradienten

Die Formel für Geschwindigkeitsgradienten wird als Änderung der Geschwindigkeit im Verhältnis zur Entfernungsänderung entlang der gemessenen Richtung definiert.

VG=πr2Ω30(r2-r1)

Geschwindigkeit des äußeren Zylinders bei gegebenem Geschwindigkeitsgradienten

Die Geschwindigkeit des äußeren Zylinders wird mit der Geschwindigkeitsgradientenformel als die Geschwindigkeit definiert, mit der sich der Zylinder in Umdrehungen pro Minute dreht.

Ω=VGπr230(r2-r1)

Geschwindigkeit des äußeren Zylinders bei gegebener dynamischer Viskosität der Flüssigkeit

Die Geschwindigkeit des Außenzylinders wird anhand der Formel zur dynamischen Viskosität einer Flüssigkeit als Geschwindigkeit des Zylinders in Umdrehungen pro Minute definiert.

Ω=15T(r2-r1)ππr1r1r2hμ

Geschwindigkeit des Außenzylinders bei gegebenem Drehmoment, das auf den Außenzylinder ausgeübt wird

Die Geschwindigkeit des Außenzylinders bei auf den Außenzylinder ausgeübtem Drehmoment wird gemäß der Formel als das auf ihn ausgeübte Drehmoment definiert, wobei die Beziehung zwischen Drehmoment, Rotationsträgheit und Winkelbeschleunigung gilt.

Ω=Toππμr1460C

Geschwindigkeit des äußeren Zylinders bei gegebenem Gesamtdrehmoment

Die Geschwindigkeit des äußeren Zylinders wird bei gegebener Gesamtdrehmomentformel als die Geschwindigkeit des Zylinders in Umdrehungen pro Minute definiert.

Ω=ΤTorqueVcμ

Geschwindigkeit in der Tiefe bei gegebener absoluter Geschwindigkeit der Welle, die sich nach rechts bewegt

Die Geschwindigkeit in der Tiefe, gegeben durch die Formel „Absolute Geschwindigkeit des Schwalls, der sich nach rechts bewegt“, ist definiert als die resultierende Geschwindigkeit der Flüssigkeitspartikel, die für die Schwallbewegung verantwortlich sind.

VNegativesurges=(vabs(h 1-D2))+(V2D2)h 1

Geschwindigkeit der Welle bei zwei Tiefen

Die Geschwindigkeit der Welle bei zwei Tiefen ist definiert als die Addition der normalen WasserGeschwindigkeit der Kanäle im offenen Kanalfluss.

Cw=[g]D2(D2+h 1)2h 1

Geschwindigkeit in Tiefe 1, wenn die Schwallhöhe vernachlässigbar ist

Die Geschwindigkeit in Tiefe1, wenn die Schwallhöhe vernachlässigbar ist, wird als Geschwindigkeit des Strömungsstoßes an einem Punkt definiert.

VNegativesurges=(Hch[g]Cw)+V2

Wie finde ich Formeln?

Hier sind ein paar Tipps für bessere Suchergebnisse.
Seien Sie konkret: Je konkreter Ihre Suchanfrage, desto besser sind Ihre Ergebnisse.
Verwenden Sie mehrere Schlüsselwörter: Kombinieren Sie mehrere Schlüsselwörter, um die Ergebnisse einzugrenzen.
Experimentieren Sie mit Synonymen: Unterschiedliche Begriffe können zu unterschiedlichen Ergebnissen führen.
Platzhaltersuche: Verwenden Sie den Operator * (Sternchen). BEACHTEN SIE, dass dieser Operator nur am Ende eines Wortes funktioniert. Beispiel: Bio*, Bereich* usw.

Alternativ können Sie durch die Unterkategorien innerhalb von navigieren, um die Formeln einzugrenzen, die Sie interessieren.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!