Suche Formeln

Bitte geben Sie mindestens 3 Zeichen ein, um mit der Suche nach -Formeln zu beginnen.

Wählen Sie Filter

Grenzen Sie Ihre Suchergebnisse mithilfe dieser Filter ein.

50 Passende Formeln gefunden!

Geschwindigkeitskonstante der Reaktion erster Ordnung

Die Geschwindigkeitskonstante der Reaktion erster Ordnung ist die Proportionalitätskonstante zur Anfangskonzentration und die Menge des umgesetzten Reaktanten oder des gebildeten Produkts.

Kh=ln(C0C0-x)treaction

Geschwindigkeit der Welle in String

Die Geschwindigkeit der Welle in String bezieht sich im allgemeinen Sprachgebrauch auf Geschwindigkeit, obwohl Geschwindigkeit eigentlich sowohl Geschwindigkeit als auch Richtung impliziert. Die Geschwindigkeit einer Welle ist gleich dem Produkt aus Wellenlänge und Frequenz (Anzahl der Schwingungen pro Sekunde) und unabhängig von ihrer Intensität.

Vw=Tm

Geschwindigkeit des Elektrons in Bohrs Umlaufbahn

Die Geschwindigkeit des Elektrons in Bohrs Umlaufbahn ist eine Vektorgröße (sie hat sowohl Größe als auch Richtung) und ist die zeitliche Änderungsrate der Position (eines Teilchens).

ve_BO=[Charge-e]22[Permitivity-vacuum]nquantum[hP]

Geschwindigkeit unter Verwendung der Wasserströmungsgleichung

Die Geschwindigkeit wird mithilfe der Wasserdurchflussgleichung als FließGeschwindigkeit definiert, wenn der Querschnittsbereich des Rohrs und der Wasserdurchfluss gegeben sind.

Vf=QwAcs

Geschwindigkeit beim Hin- und Rücktransport in Meilen pro Stunde bei variabler Zeit

Die Geschwindigkeit beim Hin- und Rücktransport in Meilen pro Stunde bei gegebener variabler Zeitformel ist definiert als zurückgelegte Strecke pro Zeiteinheit.

Smph=Hft+Rft88Tv

Geschwindigkeit beim Hin- und Rücktransport in Kilometer pro Stunde bei variabler Zeit

Die Geschwindigkeit beim Transport und bei der Rückfahrt in Kilometern pro Stunde bei gegebener variabler Zeit ist definiert als die Geschwindigkeit, wenn wir vorher Informationen über die Rück- und Transportdistanz haben.

Skmph=hm+Rmeter16.7Tv

Geschwindigkeit des Kolbens oder Körpers für die Bewegung des Kolbens im Dash-Pot

Die Geschwindigkeit des Kolbens oder Körpers für die Bewegung des Kolbens in der Stoßdämpferformel ist unter Berücksichtigung des Gewichts, der Länge und des Durchmessers des Kolbens, der Viskosität der Flüssigkeit oder des Öls und des Spiels zwischen dem Stoßdämpfer und dem Kolben bekannt.

V=4WbC33πLdp3μ

Geschwindigkeit in Abschnitt 1 aus der Bernoulli-Gleichung

Die Geschwindigkeit in Abschnitt 1 aus der Bernoulli-Gleichung ist als Geschwindigkeit in einem bestimmten Rohrabschnitt definiert.

V1=2[g]((P2γf)+(0.5(Vp22[g]))+Z2-Z1-P1γf)

Geschwindigkeitskopf für gleichmäßigen, nicht viskosen Fluss

Die Geschwindigkeitshöhe für eine stationäre, nicht viskose Strömung wird als Energiehöhe aufgrund der StrömungsGeschwindigkeit definiert.

Vh=V22[g]

Geschwindigkeitsverteilung in rauer turbulenter Strömung

Die Formel für die Geschwindigkeitsverteilung in rauer turbulenter Strömung ist als die Funktion definiert, die beschreibt, wie molekulare Geschwindigkeiten im Durchschnitt in einer rauen, turbulenten Strömung verteilt sind.

v=5.75vshearlog10(30yks)

Geschwindigkeit des beweglichen Bootes

Die Formel für die Geschwindigkeit eines fahrenden Bootes ist als Strömungsmesser vom Propellertyp definiert, der sich frei um eine vertikale Achse bewegen kann und in einem Boot mit einer bestimmten Geschwindigkeit gezogen wird.

vb=Vcos(θ)

Geschwindigkeit des sich bewegenden Bootes bei gegebener Breite zwischen zwei Vertikalen

Die Formel für die Geschwindigkeit des sich bewegenden Bootes bei gegebener Breite zwischen zwei Vertikalen ist definiert als die kombinierte Bewegung des Bootes relativ zum Wasser und die Bewegung des Wassers relativ zum Ufer.

vb=WΔt

Geschwindigkeitskonstante nach Titrationsverfahren für Reaktionen nullter Ordnung

Die Geschwindigkeitskonstante durch Titrationsmethode für die Reaktionsformel nullter Ordnung ist definiert als die Geschwindigkeitskonstante, die direkt proportional zur Volumendifferenz und umgekehrt proportional zum Zeitpunkt der Fertigstellung ist.

k=V0-Vtt

Geschwindigkeitskonstante für dasselbe Produkt durch Titrationsmethode für Reaktionen zweiter Ordnung

Die Ratenkonstante für dasselbe Produkt durch Titrationsverfahren für die Reaktionsformel zweiter Ordnung ist definiert als die Subtraktion des Kehrwerts des Anfangsvolumens und des Zeitintervalls vom Kehrwert des Volumens eines Reaktanten zum Zeitpunkt t und Zeitintervall.

Ksecond=(1Vttcompletion)-(1V0tcompletion)

Geschwindigkeit des Teilchens nach einer bestimmten Zeit

Die Formel zur PartikelGeschwindigkeit nach einer bestimmten Zeit ist definiert als Maß für die Geschwindigkeit eines Partikels zu einem bestimmten Zeitpunkt unter Berücksichtigung der AnfangsGeschwindigkeit, Beschleunigung und verstrichenen Zeit und bietet Aufschluss über die Bewegung des Partikels und seine sich im Laufe der Zeit ändernde Geschwindigkeit.

vl=u+almt

Geschwindigkeit des Strahls für dynamischen Schub, der vom Strahl auf die Platte ausgeübt wird

Die Geschwindigkeit des Strahls für den dynamischen Schub, der vom Strahl auf die Platte ausgeübt wird, ist die Änderungsrate seiner Position in Bezug auf einen Bezugssystem und ist eine Funktion der Zeit.

v=-(mfGγfAJet(∠D(180π))-Vabsolute)

Geschwindigkeit für geleistete Arbeit, wenn kein Energieverlust auftritt

Die Geschwindigkeit für geleistete Arbeit, wenn kein Energieverlust auftritt, ist die Änderungsrate seiner Position in Bezug auf einen Bezugssystem und ist eine Funktion der Zeit.

vf=(w2Gwf)+v2

Geschwindigkeit bei gegebener Effizienz des Systems

Die Geschwindigkeit bei gegebener Effizienz des Systems ist die Änderungsrate seiner Position in Bezug auf einen Bezugsrahmen und ist eine Funktion der Zeit.

vf=v1-η

Geschwindigkeit am Punkt bei gegebener Effizienz des Systems

Die Geschwindigkeit am Punkt bei gegebener Effizienz des Systems ist die Änderungsrate seiner Position in Bezug auf einen Referenzrahmen und ist eine Funktion der Zeit.

v=1-ηvf

Geschwindigkeitskonstante bei gegebener AnfangsGeschwindigkeit und Konzentration des Enzymsubstratkomplexes

Die Formel für die Geschwindigkeitskonstante bei gegebener AnfangsGeschwindigkeit und Enzym-Substrat-Komplex-Konzentration ist als das Verhältnis der AnfangsGeschwindigkeit des Systems zur Konzentration des Enzym-Substrat-Komplexes definiert.

k2=V0ES

Geschwindigkeitskonstante bei maximaler Geschwindigkeit und anfänglicher Enzymkonzentration

Die Formel für die Geschwindigkeitskonstante bei maximaler Geschwindigkeit und anfänglicher Enzymkonzentration ist als das Verhältnis der maximalen Geschwindigkeit des Systems zur anfänglichen Enzymkonzentration definiert.

k2=Vmax[E0]

Geschwindigkeit bei gegebener Länge des Kabelkanals nach Verwendung des Bereichs des Rohrs im Abfluss

Die Geschwindigkeit bei gegebener Leitungslänge nach Verwendung des Rohrbereichs im Abfluss ist als Wasserdurchflussrate definiert.

Vmax=C1HfLpipe

Geschwindigkeit des überholenden Fahrzeugs für vorwärts fahrende FahrzeugGeschwindigkeit in Meter pro Sekunde

Geschwindigkeit des überholenden Fahrzeugs für vorwärts fahrendes Fahrzeug Die Geschwindigkeit in Metern pro Sekunde ist definiert als die Geschwindigkeit, mit der sich das Fahrzeug auf der Straße bewegt.

V=Vb+4.5

Geschwindigkeit zur Maximierung der Reichweite bei gegebener Reichweite für Düsenflugzeuge

Die Geschwindigkeit zur Maximierung der Reichweite bei einer gegebenen Reichweite für Düsenflugzeuge bezieht sich auf die AnfangsGeschwindigkeit, mit der ein Projektil abgefeuert werden muss, um die größte horizontale Distanz zu erreichen, die unter dem Einfluss der Schwerkraft zurückgelegt wird. Mit dieser Formel wird die Geschwindigkeit berechnet, die zur Maximierung des Auftriebs-Widerstands-Verhältnisses eines Flugzeugs erforderlich ist. Dabei werden verschiedene Parameter wie Reichweite, leistungsspezifischer Kraftstoffverbrauch, Flugzeuggewicht und das maximale Auftriebs-Widerstands-Verhältnis berücksichtigt.

VL/D(max)=RcLDmaxratioln(WiWf)

Geschwindigkeitskonstante für die Reaktion erster Ordnung für Pfropfenströmung oder für unendliche Reaktoren

Die Formel für die Geschwindigkeitskonstante für die Reaktion erster Ordnung für Pfropfenströmung oder für unendliche Reaktoren ist als die Proportionalitätskonstante definiert, die die Beziehung zwischen der Geschwindigkeit für die Reaktion erster Ordnung und der ersten Potenz der Konzentration eines der Reaktanten angibt.

k'=(1𝛕p)ln(CoC)

Geschwindigkeitskonstante für die Reaktion erster Ordnung in Behälter i

Die Geschwindigkeitskonstante für die Reaktion erster Ordnung in der Formel von Behälter i ist als die Proportionalitätskonstante definiert, die die Beziehung zwischen der Geschwindigkeit für die Reaktion erster Ordnung und der ersten Konzentrationskraft eines der Reaktanten angibt.

k'=C i-1-CiCi𝛕i

Geschwindigkeit nach Expansion bei idealem Schub

Die Geschwindigkeit nach der Expansion bei idealem Schub ist ein Maß für die Geschwindigkeit, die ein Objekt nach der Expansion erreicht. Sie wird unter Berücksichtigung des idealen Schubs, der Massenstromrate und der FlugGeschwindigkeit des Objekts berechnet und liefert wertvolle Einblicke in die Bewegung und das Verhalten des Objekts.

Ve=Tidealma+V

Geschwindigkeitskonstante für Reaktion A bis B für einen Satz von zwei parallelen Reaktionen

Die Formel für die Geschwindigkeitskonstante der Reaktionen A bis B für den Satz aus zwei parallelen Reaktionen ist definiert als die Beziehung zwischen der molaren Konzentration der Reaktanten und der Geschwindigkeit der stattfindenden chemischen Reaktion.

k1=1tln(A0RA)-k2

Geschwindigkeitskonstante für Reaktion A bis C in einem Satz von zwei Parallelreaktionen

Die Formel für die Geschwindigkeitskonstante für die Reaktionen A bis C im Satz aus zwei parallelen Reaktionen ist definiert als die Beziehung zwischen der molaren Konzentration der Reaktanten und der Geschwindigkeit der stattfindenden chemischen Reaktion.

k2=1tln(A0RA)-k1

Geschwindigkeitskonstante der Reaktion nullter Ordnung in Reaktion nullter Ordnung, gefolgt von Reaktion erster Ordnung

Die Geschwindigkeitskonstante der Reaktion nullter Ordnung in der Formel „Reaktion nullter Ordnung“, gefolgt von der Formel „Reaktion erster Ordnung“, ist definiert als die Beziehung zwischen ReaktionsGeschwindigkeit und reagierenden Substanzen.

k0=CA0-CAΔt

Geschwindigkeit des Mitläufers nach der Zeit t für Zykloidenbewegung

Die Formel für die Geschwindigkeit des Stößels nach der Zeit t bei zykloider Bewegung ist definiert als Maß für die Geschwindigkeit des Stößels in einem Nocken- und Stößelsystem, das einer zykloiden Bewegung unterliegt. Sie beschreibt die Bewegung des Stößels, während dieser sich dreht und auf einer Kreisbahn verschiebt.

v=ωSθo(1-cos(2πθrotationθo))

Geschwindigkeit des freien Stroms der laminaren Strömung der flachen Platte

Die Formel für die freie StrömungsGeschwindigkeit einer laminaren Flachplatte ist definiert als die Geschwindigkeit der Flüssigkeit, die sich der Flachplatte in einem laminaren Strömungsregime nähert. Dies ist ein entscheidender Parameter bei konvektiven Massenübertragungsprozessen, insbesondere im Zusammenhang mit der Strömungsdynamik und der Wärmeübertragung.

u=kL(Sc0.67)(Re0.5)0.322

Geschwindigkeitsgradient gegebener Druckgradient am zylindrischen Element

Der Geschwindigkeitsgradient wird durch die Formel für den Druckgradienten am zylindrischen Element als Geschwindigkeitsvariation in Bezug auf den Rohrradius definiert.

VG=(12μ)dp|drdradial

Geschwindigkeit an jedem Punkt im zylindrischen Element

Die Geschwindigkeit an jedem Punkt in der Formel für das zylindrische Element wird als Rate definiert, mit der Flüssigkeit in das Rohr eindringt und ein parabolisches Profil bildet.

vFluid=-(14μ)dp|dr((R2)-(dradial2))

Geschwindigkeit am Auslass der Düse für maximalen Flüssigkeitsdurchfluss

Die Geschwindigkeit am Düsenauslass für die maximale Durchflussrate der Flüssigkeit ist entscheidend für die Bestimmung der Effizienz und Leistung von Fluiddynamiksystemen. Sie korreliert direkt mit dem Druckverhältnis über der Düse, der Flüssigkeitsdichte und den Düsendesignmerkmalen und beeinflusst die Durchflussrate und Antriebseffizienz in Anwendungen wie Raketentriebwerken und industriellen Sprühsystemen. Das Verständnis und die Optimierung dieser Geschwindigkeit ist für das Erreichen der gewünschten Betriebsergebnisse in technischen und technologischen Anwendungen von entscheidender Bedeutung.

Vf=2yP1(y+1)ρa

Geschwindigkeit beim Laufen bei teilweise voller Entladung

Die Geschwindigkeit bei teilweiser Füllung eines Abwasserkanals wird als die FließGeschwindigkeit bei nicht vollständig gefülltem Abwasserkanal definiert und ist von der Tiefe und dem Gefälle abhängig.

Vs=qa

Geschwindigkeit beim Laufen bei voller Entladung

Die Geschwindigkeit bei vollem Durchfluss wird als die Geschwindigkeit definiert, mit der sich eine Flüssigkeit durch ein vollständig gefülltes Rohr oder einen Kanal bewegt, normalerweise bei maximaler Kapazität.

V=QA

Geschwindigkeit bei teilweise vollem Lauf bei proportionaler Entladung

Die Geschwindigkeit bei teilweiser Füllung und anteiliger Abflussmenge ist definiert als die FließGeschwindigkeit bei nicht vollständig gefülltem Abwasserkanal, beeinflusst durch Tiefe und Neigung.

Vs=PqVAa

Geschwindigkeit während des Volllaufs bei proportionaler Entladung

Die Geschwindigkeit bei vollem Betrieb und proportionaler Entladung wird als die FließGeschwindigkeit einer Flüssigkeit in einem Rohr definiert, wenn dieses vollständig gefüllt ist, beeinflusst durch die Neigung und Rauheit des Rohrs.

V=VsaPqA

Geschwindigkeit für organische Materie einstellen

Die AbsetzGeschwindigkeit für organische Materie (auch als "SedimentationsGeschwindigkeit" bezeichnet) ist definiert als die EndGeschwindigkeit eines Partikels in stiller Flüssigkeit.

vs(o)=0.12Dp((3T)+70)

Geschwindigkeit in Trockenbettkurve

Die Formel für die Geschwindigkeitskurve im Trockenbett ist als die Annahme definiert, dass die Strömung in jede Richtung über die halbe Tiefe erfolgt.

VDbc=0.45H2[g]d

Geschwindigkeit des Fahrzeugs bei gegebenem Verzögerungsabstand oder Reaktionsabstand

Die Geschwindigkeit des Fahrzeugs bei gegebener Verzögerungsentfernungs- oder Reaktionsentfernungsformel ist definiert als Geschwindigkeit, mit der sich das Fahrzeug auf der Straßenoberfläche bewegt.

Vb=LDt

Geschwindigkeit eines langsamen Fahrzeugs mit OSD

Die Geschwindigkeit eines langsamen Fahrzeugs unter Verwendung von OSD wird verwendet, um die Geschwindigkeit des Fahrzeugs zu ermitteln, das von einem sich schnell bewegenden Fahrzeug überholt werden muss, wenn OSD gegeben wird.

Vb=OSD-VT-2ltr+T+1.4

Geschwindigkeit des Strahls von der Düse

Die Formel für die StrahlGeschwindigkeit von der Düse ist als die Geschwindigkeit des Strahls aus der Düse definiert.

VJ=Cv2[g]H

Geschwindigkeitskonstante basierend auf dem Gewicht des Katalysators in Batch-Feststoffen und Batch-Flüssigkeiten

Die Formel „Geschwindigkeitskonstante basierend auf dem Gewicht des Katalysators in Batch-Feststoffen und Batch-Flüssigkeiten“ ist definiert als die Geschwindigkeitskonstante basierend auf dem Gewicht des Katalysators, einem Parameter, der zur Beschreibung der Kinetik einer chemischen Reaktion, insbesondere im Zusammenhang mit der Katalyse, verwendet wird. Sie wird durch das Verhältnis der ReaktionsGeschwindigkeit zum Gewicht des vorhandenen Katalysators definiert.

k'=(VkdWd)exp(ln(ln(CACA∞))+kdt)

Geschwindigkeitskonstante basierend auf dem Gewicht des Katalysators in den Chargenfeststoffen und dem gemischten konstanten Flüssigkeitsfluss

Die Formel für die Geschwindigkeitskonstante basierend auf dem Gewicht des Katalysators in den Chargenfeststoffen und dem gemischten konstanten Flüssigkeitsfluss ist als Geschwindigkeitskonstante definiert, die berechnet wird, wenn die Chargenfeststoffe und der gemischte konstante Flüssigkeitsfluss in den Reaktoren bei der Deaktivierung des Katalysators berücksichtigt werden.

k'=exp(ln((CA0CA)-1)+kd,MFt)𝛕 '

Geschwindigkeitskonstante basierend auf dem Gewicht des Katalysators in den Chargenfeststoffen und dem gemischten, sich ändernden Flüssigkeitsfluss

Die Formel für die Geschwindigkeitskonstante basierend auf dem Gewicht des Katalysators in den Chargenfeststoffen und dem gemischten, sich ändernden Flüssigkeitsfluss ist als Geschwindigkeitskonstante definiert, die berechnet wird, wenn die Chargenfeststoffe und der gemischte Flüssigkeitsfluss in den Reaktoren bei der Deaktivierung des Katalysators berücksichtigt werden.

k'=CA0-CACAexp(ln(𝛕 ')-kd,MFt)

Geschwindigkeitsverhältnis bei gegebener zurückgelegter Distanz aufgrund von Anstrengung und zurückgelegter Distanz aufgrund von Last

Das Geschwindigkeitsverhältnis bei durch Kraftaufwand zurückgelegter Strecke und durch Last zurückgelegter Strecke ist das Verhältnis der durch Kraftaufwand zurückgelegten Strecke zu der durch Last zurückgelegten Strecke. Es gibt an, wie die Maschine die durch Kraftaufwand zurückgelegte Strecke in die durch Last zurückgelegte Strecke umwandelt.

Vi=DeDl

Geschwindigkeitskoeffizient bei Druckverlust

Die Formel für den Geschwindigkeitskoeffizienten bei gegebenem Druckverlust ist durch Anwendung der Bernoulli-Gleichung am Auslass der Düse und auf den Wasserstrahl bekannt.

Cv=1-(hfH)

Geschwindigkeit bei jedem gegebenen Radius des Rohrs und maximale Geschwindigkeit

Geschwindigkeit bei jedem Radius bei gegebenem Rohrradius und MaximalGeschwindigkeit hängt von der MaximalGeschwindigkeit und dem Rohrradius ab. Die Geschwindigkeitsverteilung variiert normalerweise mit dem Radius und folgt oft einem bestimmten Profil, abhängig von den Strömungsbedingungen.

V=Vm(1-(rpdo2)2)

Wie finde ich Formeln?

Hier sind ein paar Tipps für bessere Suchergebnisse.
Seien Sie konkret: Je konkreter Ihre Suchanfrage, desto besser sind Ihre Ergebnisse.
Verwenden Sie mehrere Schlüsselwörter: Kombinieren Sie mehrere Schlüsselwörter, um die Ergebnisse einzugrenzen.
Experimentieren Sie mit Synonymen: Unterschiedliche Begriffe können zu unterschiedlichen Ergebnissen führen.
Platzhaltersuche: Verwenden Sie den Operator * (Sternchen). BEACHTEN SIE, dass dieser Operator nur am Ende eines Wortes funktioniert. Beispiel: Bio*, Bereich* usw.

Alternativ können Sie durch die Unterkategorien innerhalb von navigieren, um die Formeln einzugrenzen, die Sie interessieren.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!