Suche Formeln

Bitte geben Sie mindestens 3 Zeichen ein, um mit der Suche nach -Formeln zu beginnen.

Wählen Sie Filter

Grenzen Sie Ihre Suchergebnisse mithilfe dieser Filter ein.

50 Passende Formeln gefunden!

Geschwindigkeit der Führungsrolle

Die Formel für die Geschwindigkeit der Führungsrolle ist definiert als Maß für die RotationsGeschwindigkeit der Führungsrolle in einem mechanischen System, die für die Bestimmung der Bewegung des Systems von entscheidender Bedeutung ist, insbesondere im Kontext der Bewegungskinetik, wo die Geschwindigkeit der Führungsrolle die Gesamtleistung und Effizienz des Systems beeinflusst.

NP=NDdd1

Geschwindigkeit des Objekts in Kreisbewegung

Die Formel zur Berechnung der Geschwindigkeit eines Objekts bei einer Kreisbewegung ist definiert als die Rate, mit der sich ein Objekt auf einer Kreisbahn bewegt. Dabei spielt der Radius des Kreises und die Rotationsfrequenz eine Rolle. Sie bietet ein grundlegendes Konzept zum Verständnis der Kreisbewegung und ihrer Anwendungen in der Physik und Technik.

V=2πrf

Geschwindigkeit im beschleunigten Flug

Die Geschwindigkeit im beschleunigten Flug bezieht sich auf die Geschwindigkeit des Flugzeugs, wenn es Geschwindigkeits- oder Richtungsänderungen durchläuft, um bestimmte Flugziele zu erreichen. Sie wird normalerweise als LuftGeschwindigkeit des Flugzeugs gemessen, d. h. die Geschwindigkeit des Flugzeugs im Verhältnis zur umgebenden Luft.

v=(Rcurvaturem(FL+Tsin(σT)-m[g]cos(γ)))12

Geschwindigkeit des Flugzeugs bei gegebener Steigrate

Die Geschwindigkeit eines Flugzeugs bei einer bestimmten Steigrate ist die Geschwindigkeit, die ein Flugzeug benötigt, um eine bestimmte Steigrate zu erreichen. Diese Formel berechnet die Geschwindigkeit, indem sie die Steigrate durch den Sinus des Flugwegwinkels während des Steigens dividiert. Das Verständnis und die Anwendung dieser Formel ist für Piloten und Ingenieure von entscheidender Bedeutung, um die Steigleistung zu optimieren.

v=RCsin(γ)

Geschwindigkeit auf Meereshöhe bei gegebenem Auftriebskoeffizienten

Die Geschwindigkeit auf Meereshöhe bei gegebenem Auftriebskoeffizienten ist ein Maß zur Berechnung der Geschwindigkeit eines Objekts auf Meereshöhe unter Berücksichtigung des Körpergewichts, der Luftdichte auf Meereshöhe, der Referenzfläche und des Auftriebskoeffizienten und stellt einen entscheidenden Parameter in der Aerodynamik und im Flugzeugbau dar.

V0=2Wbody[Std-Air-Density-Sea]SCL

Geschwindigkeit in der Höhe

Die Geschwindigkeit in der Höhe ist ein Maß für die Geschwindigkeit eines Objekts in einer bestimmten Höhe über der Erdoberfläche. Unter Berücksichtigung des Körpergewichts, der Luftdichte, der Bezugsfläche und des Auftriebskoeffizienten ermöglicht diese Formel die Berechnung der Geschwindigkeit in aerodynamischen Systemen und liefert wertvolle Erkenntnisse für Ingenieure und Forscher in den Bereichen Luft- und Raumfahrt und Aerodynamik.

Valt=2Wbodyρ0SCL

Geschwindigkeit in Höhe gegeben Geschwindigkeit auf Meereshöhe

Geschwindigkeit in angegebener Höhe Die Geschwindigkeit auf Meereshöhe ist ein Maß für die Geschwindigkeit eines Objekts in einer bestimmten Höhe. Sie wird berechnet, indem die Geschwindigkeit auf Meereshöhe mit der Quadratwurzel des Verhältnisses zwischen der Standardluftdichte auf Meereshöhe und der Luftdichte in der angegebenen Höhe multipliziert wird.

Valt=V0[Std-Air-Density-Sea]ρ0

Geschwindigkeit des freien Stroms der laminaren Strömung der flachen Platte

Die Formel für die freie StrömungsGeschwindigkeit einer laminaren Flachplatte ist definiert als die Geschwindigkeit der Flüssigkeit, die sich der Flachplatte in einem laminaren Strömungsregime nähert. Dies ist ein entscheidender Parameter bei konvektiven Massenübertragungsprozessen, insbesondere im Zusammenhang mit der Strömungsdynamik und der Wärmeübertragung.

u=kL(Sc0.67)(Re0.5)0.322

Geschwindigkeitskonstante für die Reaktion nullter Ordnung aus der Arrhenius-Gleichung

Die Geschwindigkeitskonstante für eine Reaktion nullter Ordnung aus der Arrhenius-Gleichungsformel ist definiert als das Produkt des Frequenzfaktors mit einer empirischen Form der negativen Aktivierungsenergie pro universeller Gaskonstante multipliziert mit der Temperatur, und die Geschwindigkeitskonstante der Arrhenius-Gleichung ist umgekehrt proportional zur Reaktionstemperatur.

k0=Afactor-zeroorderexp(-Ea1[R]TZeroOrder)

Geschwindigkeitskonstante für die Reaktion erster Ordnung aus der Arrhenius-Gleichung

Die Geschwindigkeitskonstante für die Reaktion erster Ordnung aus der Arrhenius-Gleichungsformel ist definiert als der Frequenzfaktor multipliziert mit dem Exponential der negativen Aktivierungsenergie pro universeller Gaskonstante und Temperatur. Die Geschwindigkeitskonstante der Reaktion erster Ordnung ist umgekehrt proportional zur Reaktionstemperatur. Mit steigender Reaktionstemperatur nimmt die Geschwindigkeitskonstante ab.

kfirst=Afactor-firstorderexp(-Ea1[R]TFirstOrder)

Geschwindigkeitskonstante für die Reaktion zweiter Ordnung aus der Arrhenius-Gleichung

Die Geschwindigkeitskonstante für die Reaktion zweiter Ordnung aus der Arrhenius-Gleichungsformel ist definiert als Frequenzfaktor multipliziert mit der Exponentialform der negativen Aktivierungsenergie pro universeller Gaskonstante und Temperatur. Die Geschwindigkeitskonstante der Reaktion zweiter Ordnung ist umgekehrt proportional zur Reaktionstemperatur.

Ksecond=Afactor-secondorderexp(-Ea1[R]TSecondOrder)

Geschwindigkeit des Projektils bei gegebener Höhe über dem Projektionspunkt

Die Formel für die Geschwindigkeit eines Projektils in einer bestimmten Höhe über dem Projektilpunkt ist definiert als Maß für die Geschwindigkeit eines Projektils in einer bestimmten Höhe über dem Projektilpunkt, wobei die AnfangsGeschwindigkeit, die Erdbeschleunigung und die Höhe über dem Projektilpunkt berücksichtigt werden.

vp=vpm2-2[g]h

Geschwindigkeitsgradient gegebener Druckgradient am zylindrischen Element

Der Geschwindigkeitsgradient wird durch die Formel für den Druckgradienten am zylindrischen Element als Geschwindigkeitsvariation in Bezug auf den Rohrradius definiert.

VG=(12μ)dp|drdradial

Geschwindigkeit an jedem Punkt im zylindrischen Element

Die Geschwindigkeit an jedem Punkt in der Formel für das zylindrische Element wird als Rate definiert, mit der Flüssigkeit in das Rohr eindringt und ein parabolisches Profil bildet.

vFluid=-(14μ)dp|dr((R2)-(dradial2))

Geschwindigkeit am Auslass der Düse für maximalen Flüssigkeitsdurchfluss

Die Geschwindigkeit am Düsenauslass für die maximale Durchflussrate der Flüssigkeit ist entscheidend für die Bestimmung der Effizienz und Leistung von Fluiddynamiksystemen. Sie korreliert direkt mit dem Druckverhältnis über der Düse, der Flüssigkeitsdichte und den Düsendesignmerkmalen und beeinflusst die Durchflussrate und Antriebseffizienz in Anwendungen wie Raketentriebwerken und industriellen Sprühsystemen. Das Verständnis und die Optimierung dieser Geschwindigkeit ist für das Erreichen der gewünschten Betriebsergebnisse in technischen und technologischen Anwendungen von entscheidender Bedeutung.

Vf=2yP1(y+1)ρa

Geschwindigkeitsgradient gegebener piezometrischer Gradient mit Scherspannung

Der Geschwindigkeitsgradient bei einem gegebenen piezometrischen Gradienten mit Scherspannung ist als Änderung der Geschwindigkeit in Bezug auf den radialen Abstand definiert.

VG=(γfμ)dh/dx0.5dradial

Geschwindigkeitsverteilungsprofil

Das Geschwindigkeitsverteilungsprofil ist definiert als die Geschwindigkeit relativ zur Platte in Strömungsrichtung im Strom.

v=-(12μ)dp|dr(wR-(R2))

Geschwindigkeitsverhältnis bei gegebenem Verhältnis der Bettneigung

Das Geschwindigkeitsverhältnis (Verhältnis der Sohlenneigung) wird als die FließGeschwindigkeit in einem teilweise gefüllten Rohr im Vergleich zu der in einem voll gefüllten Rohr definiert und gibt Effizienzunterschiede an.

νsVratio=(Nnp)(rpfRrf)23S

Geschwindigkeit bei voller Fahrt unter Verwendung des Bettneigungsverhältnisses

Die Geschwindigkeit bei vollem Betrieb unter Verwendung des Bettneigungsverhältnisses wird als die FließGeschwindigkeit einer Flüssigkeit in einem Rohr definiert, wenn dieses vollständig gefüllt ist, beeinflusst durch die Rohrneigung und Rauheit.

V=Vs(Nnp)(rpfRrf)23S

Geschwindigkeit bei Vollbetrieb unter Verwendung von Bed Slope für Partial Flow

Die Geschwindigkeit bei Volldurchfluss unter Verwendung der Bettneigung für Teildurchfluss wird als die Geschwindigkeit des Flüssigkeitsflusses in einem Rohr definiert, wenn dieses vollständig gefüllt ist, beeinflusst durch die Rohrneigung und -rauheit.

V=Vs(Nnp)(rpfRrf)23sss

Geschwindigkeit für die von der stationären Platte auf den Jet ausgeübte Kraft

Die Geschwindigkeit der Kraft, die von der stationären Platte auf den Jet ausgeübt wird, ist die Änderungsrate seiner Position in Bezug auf einen Referenzrahmen und eine Funktion der Zeit.

vjet=FSt,⊥p[g]γfAJet

Geschwindigkeit bei gegebener Flüssigkeitsmasse

Die Geschwindigkeit bei gegebener Masse des Fluids ist die Änderungsrate seiner Position in Bezug auf den Referenzrahmen und ist eine Funktion der Zeit.

vjet=mpS[g]γfAJet

Geschwindigkeit im Turn

Die Geschwindigkeit in der Kurve ist als Geschwindigkeit des Flugzeugs in der Kurve oder Kurve definiert und ist eine Funktion des Kurvenradius.

VTurning Speed=4.1120RTaxiway0.5

Geschwindigkeit bei gewünschter Höhe

Die Formel für die Geschwindigkeit auf der gewünschten Höhe ist definiert als die Geschwindigkeit des Wassers auf einer gewünschten Höhe innerhalb eines Strömungsprofils. Es ist wichtig, die Art der Strömung und die relevanten Bedingungen zu verstehen.

Vz=V10(z10)0.11

Geschwindigkeit des Flüssigkeitsflusses in den Luftbehälter bei gegebener Hublänge

Die Formel für die Durchflussrate von Flüssigkeit in einen Luftbehälter bei gegebener Hublänge ist definiert als die volumetrische Durchflussrate einer Flüssigkeit, die in einen Luftbehälter einer Kolbenpumpe eintritt. Sie wird beeinflusst durch Faktoren wie Hublänge, WinkelGeschwindigkeit und Neigungswinkel, die sich erheblich auf die Gesamtleistung und Effizienz der Pumpe auswirken.

Qr=(Aω(L2))(sin(θ)-(2π))

Geschwindigkeitskonstante bei Temperatur 2

Die Geschwindigkeitskonstante bei Temperatur 2 ist definiert als die Proportionalitätskonstante in der chemischen Reaktion, die bei Temperatur 2 abläuft. Arrhenius-Gleichung, um die Auswirkung einer Temperaturänderung auf die Geschwindigkeitskonstante und damit auf die ReaktionsGeschwindigkeit zu zeigen.

K2=((K1)(Φ)T2-T110)

Geschwindigkeitsverhältnis des Hooke-Gelenks

Das Geschwindigkeitsverhältnis der Hakengelenkformel wird verwendet, um das Verhältnis der WinkelGeschwindigkeiten der angetriebenen Welle zur antreibenden Welle zu finden.

V=cos(α)1-cos(θ)2sin(α)2

Geschwindigkeitskonstante für die Reaktion erster Stufe im ersten Schritt für MFR bei maximaler Zwischenkonzentration

Die Geschwindigkeitskonstante für die Reaktion erster Stufe im ersten Schritt für MFR bei maximaler Zwischenkonzentration ist definiert als die Proportionalitätskonstante für die Reaktion im ersten Schritt in einer irreversiblen Reaktion erster Ordnung in zwei Schritten in Reihe für Reaktoren mit gemischter Strömung bei maximaler Zwischenkonzentration.

kI=1k2(τR,max2)

Geschwindigkeitskonstante für die Reaktion erster Ordnung im zweiten Schritt für MFR bei maximaler Zwischenkonzentration

Die Geschwindigkeitskonstante für die Reaktion erster Ordnung im zweiten Schritt für MFR bei maximaler Zwischenkonzentration ist definiert als die Proportionalitätskonstante für die Reaktion im zweiten Schritt in einer irreversiblen Reaktion erster Ordnung in zwei Schritten in Reihe für Reaktoren mit gemischter Strömung bei maximaler Zwischenkonzentration.

k2=1kI(τR,max2)

Geschwindigkeitskonstante für Reaktion A bis B für einen Satz von drei Parallelreaktionen

Die Formel für die Geschwindigkeitskonstante für die Reaktionen A bis B für den Satz aus drei parallelen Reaktionen ist definiert als die Beziehung zwischen der molaren Konzentration der Reaktanten und der Geschwindigkeit der stattfindenden chemischen Reaktion.

k1=1tln(A0RA)-(k2+k3)

Geschwindigkeitskonstante für Reaktion A bis C für Satz von drei Parallelreaktionen

Die Formel für die Geschwindigkeitskonstante für die Reaktionen A bis C für den Satz aus drei parallelen Reaktionen ist definiert als die Beziehung zwischen der molaren Konzentration der Reaktanten und der Geschwindigkeit der stattfindenden chemischen Reaktion.

k2=1tln(A0RA)-(k1+k3)

Geschwindigkeitskonstante für Reaktion A bis D für Satz von drei Parallelreaktionen

Die Formel für die Geschwindigkeitskonstante für die Reaktionen A bis D für den Satz aus drei parallelen Reaktionen ist definiert als die Beziehung zwischen der molaren Konzentration der Reaktanten und der Geschwindigkeit der stattfindenden chemischen Reaktion.

k3=1tln(A0RA)-(k1+k2)

Geschwindigkeit des Satelliten im kreisförmigen LEO als Funktion der Höhe

Die Formel zur Berechnung der SatellitenGeschwindigkeit in einer kreisförmigen erdnahen Umlaufbahn als Funktion der Höhe ist definiert als die Geschwindigkeit, mit der ein Satellit die Erde in einer kreisförmigen erdnahen Umlaufbahn umkreist. Sie ist abhängig von der Höhe des Satelliten über der Erdoberfläche und stellt einen entscheidenden Parameter bei der Konstruktion und dem Betrieb von Satelliten in Weltraummissionen dar.

v=[GM.Earth][Earth-R]+z

Geschwindigkeit des Satelliten in seinem kreisförmigen GEO-Radius

Die Geschwindigkeit eines Satelliten in seiner kreisförmigen geosynchronen Umlaufbahn wird in Abhängigkeit von der Gravitationskonstante und dem Radius der Umlaufbahn als die Geschwindigkeit definiert, mit der ein Satellit die Erde in einer kreisförmigen geosynchronen Umlaufbahn umkreist.

v=[GM.Earth]Rgso

Geschwindigkeit in krummliniger Bewegung bei gegebener WinkelGeschwindigkeit

Die Geschwindigkeit bei krummliniger Bewegung wird mithilfe der Formel für die WinkelGeschwindigkeit als Maß für die Änderungsrate der Position eines Objekts entlang eines gekrümmten Pfads definiert. Sie beschreibt die Bewegung eines Objekts, das sich auf einer Kreisbahn um eine feste Achse bewegt, wobei die Größe der Bewegung von der WinkelGeschwindigkeit und dem Radius der Kreisbahn abhängt.

vcm=ωr

Geschwindigkeitsausbreitung in einer verlustfreien Leitung

Die Formel für die Geschwindigkeitsausbreitung in einer verlustfreien Leitung ist umgekehrt proportional zur Quadratwurzel des Produkts aus Serieninduktivität und Serienkapazität einer Leitung.

Vp=1lc

Geschwindigkeitsverhältnis des Riemenantriebs

Die Formel für das Geschwindigkeitsverhältnis des Riemenantriebs ist definiert als das Verhältnis der WinkelGeschwindigkeit der Folgewelle zu der der Antriebswelle in einem Riemenantriebssystem, bei dem es sich um ein mechanisches Gerät zur Kraftübertragung über eine Distanz handelt.

i=NfNd

Geschwindigkeitsverhältnis des Verbundriemenantriebs bei gegebenem Produkt des Durchmessers des angetriebenen

Das Geschwindigkeitsverhältnis eines zusammengesetzten Riemenantriebs, gegeben durch das Produkt aus Durchmesser der angetriebenen Scheibe, wird als das Verhältnis der WinkelGeschwindigkeit der Antriebsscheibe zu der der angetriebenen Scheibe in einem zusammengesetzten Riemenantriebssystem definiert und stellt ein Maß für die mechanische Verstärkung des Systems dar.

i=P1P2

Geschwindigkeitsverhältnis des Verbundriemenantriebs

Die Formel für das Geschwindigkeitsverhältnis eines zusammengesetzten Riemenantriebs ist definiert als das Verhältnis der WinkelGeschwindigkeit der angetriebenen Welle zu der der Antriebswelle in einem zusammengesetzten Riemenantriebssystem, bei dem es sich um ein mechanisches System zur Kraftübertragung von einer Welle auf eine andere handelt.

i=NnNd′

Geschwindigkeitsverhältnis des einfachen Riemenantriebs, wenn die Dicke nicht berücksichtigt wird

Die Formel für das Geschwindigkeitsverhältnis eines einfachen Riemenantriebs ohne Berücksichtigung der Dicke ist definiert als Maß für das Verhältnis der WinkelGeschwindigkeit der Antriebsscheibe zur WinkelGeschwindigkeit der Folgescheibe in einem einfachen Riemenantriebssystem, bei dem die Dicke des Riemens nicht berücksichtigt wird, und stellt eine vereinfachte Berechnung für Maschinenbauingenieure dar.

i=dddf

Geschwindigkeitsverhältnis des einfachen Riemenantriebs unter Berücksichtigung der Dicke

Die Formel für das Geschwindigkeitsverhältnis eines einfachen Riemenantriebs unter Berücksichtigung der Dicke ist definiert als Maß für das Verhältnis der WinkelGeschwindigkeit der Antriebsscheibe zur WinkelGeschwindigkeit der Folgescheibe in einem einfachen Riemenantriebssystem unter Berücksichtigung der Dicke des Riemens.

i=dd+tdf+t

Geschwindigkeitsverhältnis des Riemens bei prozentualem Gesamtschlupf

Das Geschwindigkeitsverhältnis des Riemens bei gegebenem prozentualen Gesamtschlupf wird als das Verhältnis der Geschwindigkeit der Antriebsscheibe zur Geschwindigkeit der Folgescheibe in einem Riemenantriebssystem definiert, wobei der prozentuale Gesamtschlupf zwischen den beiden Scheiben berücksichtigt wird und ein Maß für die Effizienz des Systems bereitgestellt wird.

i=(dd+t)1-0.01sdf+t

Geschwindigkeitsverhältnis des Riemens bei gegebenem Kriechen des Riemens

Das Geschwindigkeitsverhältnis des Riemens bei gegebener Formel zur Kriechneigung des Riemens ist als dimensionslose Größe definiert, die das Verhältnis der Geschwindigkeit der Antriebsscheibe zur Geschwindigkeit der Folgescheibe in einem riemengetriebenen System ausdrückt, wobei die Kriechneigung des Riemens berücksichtigt wird, die sich auf die Gesamteffizienz des Systems auswirkt.

i=dd(E+σ2)df(E+σ1)

Geschwindigkeit für die Übertragung maximaler Leistung durch Riemen

Die Formel für die Geschwindigkeit zur Übertragung maximaler Leistung durch einen Riemen wird als die maximale LeistungsübertragungsGeschwindigkeit eines Riemenantriebssystems definiert und ist für die Konstruktion und Optimierung von Riemenantriebssystemen zur effizienten Leistungsübertragung von entscheidender Bedeutung.

v=Pm3m

Geschwindigkeit des Stößels für Rollenstößel-Tangentennocken, wenn der Kontakt mit geraden Flanken erfolgt

Die Formel für die Geschwindigkeit des Stößels für einen Rollenstößel mit tangentialem Nocken bei Kontakt mit geraden Flanken ist als Maß für die Geschwindigkeit des Stößels in einem Nockenstößelsystem definiert, bei dem der Kontakt mit geraden Flanken erfolgt. Sie bietet Einblick in die Kinematik des Systems und ermöglicht die Entwicklung effizienter mechanischer Systeme.

v=ω(r1+rroller)sin(θ)(cos(θ))2

Geschwindigkeitskoeffizient für das Peltonrad

Der Geschwindigkeitskoeffizient für das Peltonrad ist das Verhältnis der tatsächlichen Geschwindigkeit des Wasserstrahls, der die Düse verlässt, zur theoretischen Geschwindigkeit. Er berücksichtigt die Verluste durch Reibung und andere Ineffizienzen in der Düse und wird verwendet, um die Effizienz der Strahlbildung zu bestimmen. Dieser Koeffizient ist normalerweise kleiner als 1.

Cv=V12[g]H

Geschwindigkeit des Stößels der Rollenstößel-Tangentennocke für den Kontakt mit der Nase

Die Formel für die Geschwindigkeit des Stößels eines Rollenstößels und des Tangentialnockens bei Kontakt mit der Nase ist definiert als die Geschwindigkeit des Stößels in einem Nocken- und Stößelsystem. Sie ist ein entscheidender Parameter bei der Bestimmung der Leistung und Effizienz des Systems, insbesondere wenn der Stößel mit der Nase des Nockens in Kontakt ist.

v=ωr(sin(θ1)+rsin(2θ1)2L2-r2(sin(θ1))2)

Geschwindigkeitskoeffizient

Die Geschwindigkeitskoeffizientenformel ist definiert als das Verhältnis der tatsächlichen AustrittsGeschwindigkeit zum Verhältnis der idealen AustrittsGeschwindigkeit.

Cv=CactCideal

Geschwindigkeitskoeffizient gegebener Entladungskoeffizient

Der Geschwindigkeitskoeffizient wird in der Formel für den Abflusskoeffizienten als Reduktionsfaktor für die theoretische Geschwindigkeit durch die Öffnung definiert.

Cv=CdCc

Geschwindigkeitspotential für gleichmäßige inkompressible Strömung

Die Geschwindigkeitspotentialfunktion für gleichmäßige inkompressible Strömung (ϕ) steigt linear mit der Entfernung in Strömungsrichtung (x) an, was die gleichmäßige Natur der Strömung widerspiegelt. Folglich gibt es keine Variation des Geschwindigkeitspotentials in Bezug auf die y-Koordinate, was die Homogenität der Strömung in y-Richtung veranschaulicht.

ϕ=Vx

Wie finde ich Formeln?

Hier sind ein paar Tipps für bessere Suchergebnisse.
Seien Sie konkret: Je konkreter Ihre Suchanfrage, desto besser sind Ihre Ergebnisse.
Verwenden Sie mehrere Schlüsselwörter: Kombinieren Sie mehrere Schlüsselwörter, um die Ergebnisse einzugrenzen.
Experimentieren Sie mit Synonymen: Unterschiedliche Begriffe können zu unterschiedlichen Ergebnissen führen.
Platzhaltersuche: Verwenden Sie den Operator * (Sternchen). BEACHTEN SIE, dass dieser Operator nur am Ende eines Wortes funktioniert. Beispiel: Bio*, Bereich* usw.

Alternativ können Sie durch die Unterkategorien innerhalb von navigieren, um die Formeln einzugrenzen, die Sie interessieren.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!