Suche Formeln

Bitte geben Sie mindestens 3 Zeichen ein, um mit der Suche nach -Formeln zu beginnen.

Wählen Sie Filter

Grenzen Sie Ihre Suchergebnisse mithilfe dieser Filter ein.

50 Passende Formeln gefunden!

Geschwindigkeit des Elektrons in Bohrs Umlaufbahn

Die Geschwindigkeit des Elektrons in Bohrs Umlaufbahn ist eine Vektorgröße (sie hat sowohl Größe als auch Richtung) und ist die zeitliche Änderungsrate der Position (eines Teilchens).

ve_BO=[Charge-e]22[Permitivity-vacuum]nquantum[hP]

Geschwindigkeit eines kleinen Elements für Querschwingungen

Die Formel für die Geschwindigkeit kleiner Elemente bei Querschwingungen ist definiert als Maß für die Geschwindigkeit eines kleinen Elements bei einer Querschwingung, die durch die Trägheit der Einschränkung beeinflusst wird, und wird zur Analyse der Bewegung von Partikeln bei Längs- und Querschwingungen verwendet.

vs=(3lx2-x3)Vtraverse2l3

Geschwindigkeit von Teilchen 1 bei gegebener kinetischer Energie

Die Formel für die Geschwindigkeit von Teilchen 1 bei gegebener kinetischer Energie ist eine Methode zur Berechnung der Geschwindigkeit eines Teilchens, wenn wir die Geschwindigkeit anderer Teilchen und die gesamte kinetische Energie des Systems kennen. Da die gesamte kinetische Energie die Summe der individuellen kinetischen Energie beider Teilchen ist, bleibt uns nur eine Variable, und durch Lösen der Gleichung erhalten wir die erforderliche Geschwindigkeit.

v1=(2KE)-(m2v22)m1

Geschwindigkeit von Teilchen 2 bei gegebener kinetischer Energie

Die Formel für die Geschwindigkeit von Teilchen 2 bei gegebener kinetischer Energie ist eine Methode zur Berechnung der Geschwindigkeit eines Teilchens, wenn wir die Geschwindigkeit anderer Teilchen und die gesamte kinetische Energie des Systems kennen. Kinetische Energie ist die Arbeit, die erforderlich ist, um einen Körper einer bestimmten Masse aus dem Ruhezustand zu beschleunigen zu seiner angegebenen Geschwindigkeit. Da die kinetische Energie KE eine Summe der kinetischen Energie für jede Masse ist, haben wir nur eine Variable übrig gelassen und durch Lösen der Gleichung erhalten wir die erforderliche Geschwindigkeit.

v2=(2KE)-(m1v12)m2

Geschwindigkeitskoeffizient

Die Formel für den Geschwindigkeitskoeffizienten ist definiert als das Verhältnis zwischen der tatsächlichen Geschwindigkeit des Strahls an der Vena-Contracta und der theoretischen Geschwindigkeit am Strahl.

Cv=vaVth

Geschwindigkeitskoeffizient für horizontalen und vertikalen Abstand

Die Formel für den Geschwindigkeitskoeffizienten für die horizontale und vertikale Entfernung wird aus der experimentellen Bestimmung der hydraulischen Koeffizienten definiert.

Cv=R4VH

Geschwindigkeitsdruck gemäß ASCE 7

Der Geschwindigkeitsdruck gemäß ASCE 7 ist definiert als der Geschwindigkeitsdruck gemäß den ASCE 7-Methode-II-Normen unter Berücksichtigung des Winddrucks sowie der externen und internen Druckkoeffizienten.

q=p+qiGCptGCep

Geschwindigkeitsdruck an einem bestimmten Punkt gemäß ASCE 7

Der Geschwindigkeitsdruck an einem bestimmten Punkt gemäß ASCE 7 ist definiert als der Geschwindigkeitsdruck an einem bestimmten Punkt zur Bestimmung des Innendrucks gemäß ASCE 7 Methode II.

qi=(qGCep)-pGCpt

Geschwindigkeit gegebener Wenderadius für hohen Lastfaktor

Die Geschwindigkeit bei Wenderadius unter Bedingungen mit hohem Lastfaktor ist die Geschwindigkeit, die ein Flugzeug benötigt, um einen bestimmten Wenderadius bei einem erheblichen Lastfaktor beizubehalten. Diese Formel berechnet die Geschwindigkeit basierend auf Wenderadius, Lastfaktor und Erdbeschleunigung. Das Verständnis und die Anwendung dieser Formel ist für Piloten und Ingenieure von entscheidender Bedeutung, um die Manövrierfähigkeit von Flugzeugen zu optimieren und die Sicherheit bei Manövern mit hohem Lastfaktor zu gewährleisten.

v=Rn[g]

Geschwindigkeitskoeffizient gegebener Entladungskoeffizient

Der Geschwindigkeitskoeffizient wird in der Formel für den Abflusskoeffizienten als Reduktionsfaktor für die theoretische Geschwindigkeit durch die Öffnung definiert.

Cv=CdCc

Geschwindigkeitspotential für gleichmäßige inkompressible Strömung

Die Geschwindigkeitspotentialfunktion für gleichmäßige inkompressible Strömung (ϕ) steigt linear mit der Entfernung in Strömungsrichtung (x) an, was die gleichmäßige Natur der Strömung widerspiegelt. Folglich gibt es keine Variation des Geschwindigkeitspotentials in Bezug auf die y-Koordinate, was die Homogenität der Strömung in y-Richtung veranschaulicht.

ϕ=Vx

Geschwindigkeit am Punkt des Tragflächenprofils für gegebenen Druckkoeffizienten und freie StrömungsGeschwindigkeit

Die Geschwindigkeit an einem Punkt auf dem Schaufelblatt für einen gegebenen Druckkoeffizienten und eine Formel für die Geschwindigkeit im freien Strom ist das Produkt aus der Geschwindigkeit im freien Strom und der Quadratwurzel aus eins minus dem Druckkoeffizienten in inkompressibler Strömung.

V=u2(1-Cp)

Geschwindigkeitspotential für gleichmäßige inkompressible Strömung in Polarkoordinaten

Das Geschwindigkeitspotential für gleichmäßige inkompressible Strömung in Polarkoordinaten besagt, dass die Funktion direkt proportional zum radialen Abstand vom Ursprung (r) und dem Kosinus der Winkelkoordinate (θ) ist, skaliert durch die StrömungsGeschwindigkeit (U). Dies bedeutet, dass der Wert der Geschwindigkeitspotentialfunktion linear mit dem radialen Abstand vom Ursprung zunimmt und mit dem Kosinus des Winkels variiert, was die gleichmäßige Natur der Strömung und ihre Abhängigkeit von der Winkelrichtung widerspiegelt.

ϕ=Vrcos(θ)

Geschwindigkeitspotential für den 2D-Quellenfluss

Die Formel für das Geschwindigkeitspotenzial für den zweidimensionalen Quellenfluss besagt, dass die Funktion direkt proportional zum natürlichen Logarithmus des radialen Abstands vom Quellpunkt und der Stärke der Quelle ist. Diese logarithmische Beziehung spiegelt die Eigenschaft des Potenzialflusses wider, bei dem die Geschwindigkeit mit zunehmendem Abstand von der Quelle logarithmisch abnimmt.

ϕ=Λ2πln(r)

Geschwindigkeit der Schallwelle bei gegebenem Volumenmodul

Die Geschwindigkeit der Schallwelle in Abhängigkeit vom Kompressionsmodul des Mediums gibt Aufschluss darüber, wie schnell sich Schall durch das Material bewegt. Das Verständnis dieser Beziehung ist in der Akustik, der Materialwissenschaft und in technischen Anwendungen von entscheidender Bedeutung, bei denen die Schallausbreitung und die mechanischen Eigenschaften von Materialien wichtige Überlegungen darstellen.

C=Kρa

Geschwindigkeit der Schallwelle unter Verwendung eines isothermen Prozesses

Die Geschwindigkeit von Schallwellen mithilfe isothermer Prozesse bietet Einblicke in die Auswirkungen der Temperatur und der physikalischen Eigenschaften von Gasen auf die Geschwindigkeit, mit der sich Schall ausbreitet. Dies ermöglicht präzise Berechnungen und fundierte Designentscheidungen in der Akustik, Aerodynamik und verschiedenen technologischen Anwendungen.

C=Rc

Geschwindigkeit der Schallwelle unter Verwendung des adiabatischen Prozesses

Die Geschwindigkeit einer Schallwelle hängt bei einem adiabatischen Prozess vom Adiabatenindex (Verhältnis der spezifischen Wärmekapazitäten), der universellen Gaskonstante, der absoluten Temperatur des Gases und der Molmasse des Gases ab.

C=yRc

Geschwindigkeit der Schallwelle bei gegebener Machzahl für komprimierbare Flüssigkeitsströmung

Die Geschwindigkeit der Schallwelle bei gegebener Mach-Zahl für kompressible Flüssigkeitsströmungen gibt die Geschwindigkeit an, mit der sich Schall durch das Medium ausbreitet, relativ zur SchallGeschwindigkeit in diesem Medium. Diese Beziehung ist von grundlegender Bedeutung in der Aerodynamik, der Luft- und Raumfahrttechnik und der Akustik, wo die Mach-Zahl das Strömungsregime charakterisiert und das Verhalten von Stoßwellen und Schallübertragung beeinflusst.

C=VM

Geschwindigkeit in mittlerer Distanz

Die Formel für die Geschwindigkeit in mittlerer Entfernung ist definiert als die Geschwindigkeit der Lichtwelle, die im EDM-Instrument verwendet wird, wenn sich die Welle von einem Punkt zum anderen bewegt.

c=2DΔt

Geschwindigkeit der Flüssigkeit bei gegebenem Schub, der senkrecht zur Platte ausgeübt wird

Die Geschwindigkeit des Fluids bei gegebenem Schub, der senkrecht zur Platte ausgeübt wird, ist definiert als die Änderungsrate seiner Position in Bezug auf einen Referenzrahmen und ist eine Funktion der Zeit.

vjet=Fp[g]γfAJet(sin(∠D))

Geschwindigkeit der Flüssigkeit bei gegebenem Schub parallel zum Strahl

Die Geschwindigkeit des Fluids bei gegebenem Schub parallel zum Strahl ist die Änderungsrate seiner Position in Bezug auf einen Bezugsrahmen und eine Funktion der Zeit.

vjet=FX[g]γfAJet(sin(∠D))2

Geschwindigkeit der Flüssigkeit bei gegebenem Schub normal zum Strahl

Die Geschwindigkeit des Fluids bei gegebenem Schub normal zum Jet ist die Änderungsrate seiner Position in Bezug auf einen Referenzrahmen und eine Funktion der Zeit.

vjet=FY[g]γfAJet(sin(∠D))cos(∠D)

Geschwindigkeit für die Wellenlänge der Welle

Die Formel zur Berechnung der Geschwindigkeit für die Wellenlänge einer Welle ist definiert als die Geschwindigkeit, mit der sich die Welle durch ein Medium ausbreitet, berechnet als Produkt ihrer Frequenz und Wellenlänge.

C=(λf)

Geschwindigkeit der Schallwelle

Die Formel zur Berechnung der SchallwellenGeschwindigkeit wird als Geschwindigkeit definiert, obwohl Geschwindigkeit eigentlich sowohl Geschwindigkeit als auch Richtung impliziert. Die Geschwindigkeit einer Welle ist gleich dem Produkt aus Wellenlänge und Frequenz (Anzahl der Schwingungen pro Sekunde) und ist unabhängig von ihrer Intensität.

C=20.05T

Geschwindigkeit der Schallwelle gegeben Schallintensität

Die Geschwindigkeit einer Schallwelle wird bei gegebener Schallintensitätsformel als Tempo definiert, obwohl Geschwindigkeit eigentlich sowohl Geschwindigkeit als auch Richtung impliziert. Die Geschwindigkeit einer Welle ist gleich dem Produkt aus Wellenlänge und Frequenz (Anzahl der Schwingungen pro Sekunde) und ist unabhängig von ihrer Intensität.

C=Prms2Iρ

Geschwindigkeit am Einlass für die Masse des Fluids, das pro Sekunde auf die Leitschaufel auftrifft

Die Geschwindigkeit am Einlass für die Masse des auf die Leitschaufel auftreffenden Fluids pro Sekunde ist die Änderungsrate ihrer Position in Bezug auf den Referenzrahmen und ist eine Funktion der Zeit.

v=mfGγfAJet

Geschwindigkeit in Tiefe 1 bei gegebener absoluter Geschwindigkeit der Welle, die sich nach rechts bewegt

Die Geschwindigkeit in der Tiefe1 ist nach der Formel „Absolute Geschwindigkeit der Welle, die sich nach rechts bewegt“ als die resultierende Geschwindigkeit in einer bestimmten Tiefe aufgrund der Kombination von Welle und horizontaler Bewegung definiert.

VNegativesurges=(vabs(D2-h 1))+(V2D2)h 1

Geschwindigkeit in Tiefe2 bei gegebener absoluter Geschwindigkeit der Wellen, die sich nach rechts bewegen

Die Geschwindigkeit in Tiefe 2 ist nach der Formel „Absolute Geschwindigkeit der Wellen, die sich nach rechts bewegen“ als die resultierende Geschwindigkeit in Tiefe 2 unter Berücksichtigung der Wellenbewegung definiert.

V2=(vabs(h 1-D2))+(VNegativesurgesh 1)D2

Geschwindigkeit in Tiefe 1 bei absoluter AnstiegsGeschwindigkeit, wenn der Fluss vollständig gestoppt ist

Die Geschwindigkeit in Tiefe 1, wenn die Formel „Absolute SchwallGeschwindigkeit bei vollständig gestopptem Fluss“ definiert ist, ist als anfängliche WasserGeschwindigkeit während eines abrupten Stopps definiert.

VNegativesurges=vabs(D2-h 1)h 1

Geschwindigkeit der Welle in Wellen

Die Formel für die WellenGeschwindigkeit in Wellen ist definiert als die Addition zur normalen WasserGeschwindigkeit von Kanälen in offener Kanalströmung.

Cw=[g]D2(D2+h 1)2h 1

Geschwindigkeit der Welle bei gegebener Geschwindigkeit in Tiefe1

Die Formel „WellenGeschwindigkeit bei gegebener Geschwindigkeit in der Tiefe“1 ist definiert als die Höhe der Strömungsänderung, die im Kanal auftritt.

Cw=VNegativesurges([g](D2+h 1)2h 1Hch)

Geschwindigkeit in Tiefe 1, wenn die Höhe des Schwalls für die Schwallhöhe eine vernachlässigbare Fließtiefe ist

Die Geschwindigkeit in Tiefe1, wenn die Schwallhöhe für die Schwallhöhe vernachlässigbar ist. Die Formel für die Strömungstiefe ist als Geschwindigkeit des Strömungsschwalls an einem Punkt definiert.

VNegativesurges=(Hch[g]Cw)+V2

Geschwindigkeit der Welle bei gegebener Schwallhöhe, da die Schwallhöhe eine vernachlässigbare Strömungstiefe ist

Die Geschwindigkeit der Welle bei gegebener Schwallhöhe für Schwallhöhe ist vernachlässigbar. Die Formel für die Tiefe der Strömung ist definiert als plötzliche Änderungen in der Strömung.

Cw=Hch[g]VNegativesurges

Geschwindigkeit der Welle bei gegebener absoluter Geschwindigkeit von Überspannungen

Die Wellenschnelligkeit bei absoluter StoßGeschwindigkeit ist definiert als plötzliche Änderungen der Strömung durch Stoßwellen.

Cw=vabs-vm

Geschwindigkeit des Fahrzeugs bei gegebenem Bremsweg

Die Geschwindigkeit des Fahrzeugs bei gegebener Bremswegformel ist definiert als die Geschwindigkeit, mit der sich das Fahrzeug auf der Straßenoberfläche bewegt.

Vb=(BD(2[g]f))0.5

Geschwindigkeitskonstante der irreversiblen Reaktion zweiter Ordnung mit gleichen Reaktantenkonzentrationen

Die Formel für die Geschwindigkeitskonstante der irreversiblen Reaktion zweiter Ordnung mit gleichen Reaktantenkonzentrationen ist definiert als die Proportionalitätskonstante in der Gleichung, die die Beziehung zwischen der Geschwindigkeit einer chemischen Reaktion und den Konzentrationen der reagierenden Substanzen ausdrückt.

k2=r(CA)2

Geschwindigkeitskonstante der irreversiblen Reaktion dritter Ordnung

Die Formel für die Geschwindigkeitskonstante der irreversiblen Reaktion dritter Ordnung ist definiert als die Proportionalitätskonstante in der Gleichung, die die Beziehung zwischen der Geschwindigkeit einer chemischen Reaktion und den Konzentrationen der reagierenden Substanzen ausdrückt.

k3=rCACBCD

Geschwindigkeitsfaktor

Die Formel für den Geschwindigkeitsfaktor ist definiert als der Bruchwert, der sich auf die AusbreitungsGeschwindigkeit einer Übertragungsleitung und die LichtGeschwindigkeit im Vakuum bezieht. Der Geschwindigkeitsfaktor stellt das Verhältnis der Geschwindigkeit einer elektromagnetischen Welle in der Antennenstruktur zur LichtGeschwindigkeit dar.

Vf=1K

Geschwindigkeitskonstante für die Reaktion erster Ordnung unter Verwendung von Raumzeit für Pfropfenströmung

Die Geschwindigkeitskonstante für die Reaktion erster Ordnung unter Verwendung der Raum-Zeit-Formel für Pfropfenströmung ist als die Proportionalitätskonstante definiert, die die Beziehung zwischen der ReaktionsGeschwindigkeit und der ersten Potenz der Konzentration eines der Reaktanten angibt.

kbatch=(1𝛕Batch)ln(11-XA Batch)

Geschwindigkeitskonstante für die Reaktion erster Ordnung unter Verwendung der Reaktantenkonzentration für Pfropfenströmung

Die Geschwindigkeitskonstante für die Reaktion erster Ordnung unter Verwendung der Reaktantenkonzentration für die Pfropfenströmungsformel ist als die Proportionalitätskonstante definiert, die die Beziehung zwischen der ReaktionsGeschwindigkeit und der ersten Potenz der Konzentration eines der Reaktanten angibt.

kbatch=(1𝛕Batch)ln(Co BatchCBatch)

Geschwindigkeitskonstante für die Reaktion zweiter Ordnung unter Verwendung von Raumzeit für Pfropfenströmung

Die Geschwindigkeitskonstante für die Reaktion zweiter Ordnung unter Verwendung der Raum-Zeit-Formel für Pfropfenströmung ist definiert als die Proportionalitätskonstante in der Gleichung, die die Beziehung zwischen der Geschwindigkeit einer chemischen Reaktion und den Konzentrationen der reagierenden Substanzen ausdrückt.

k''=(1𝛕BatchCo Batch)(XA Batch1-XA Batch)

Geschwindigkeiten aus der Länge der Übergangskurven für normale Geschwindigkeiten

Geschwindigkeiten aus Übergangsbogenlänge für NormalGeschwindigkeiten ist definiert als die Geschwindigkeit, mit der Eisenbahnkurven mit normalen Überhöhungswerten bei normaler Geschwindigkeit ausgelegt werden. Umrechnungsfaktor von mm in Meter wird hinzugefügt.

VNormal=134Le1000

Geschwindigkeiten aus der Länge der Übergangskurven für hohe Geschwindigkeiten

Geschwindigkeiten aus der Formel Länge der Übergangsbögen für hohe Geschwindigkeiten ist definiert als die Geschwindigkeit, mit der Eisenbahnkurven mit normalen Überhöhungswerten ausgelegt werden, wenn die Geschwindigkeit hoch ist. Umrechnungsfaktor von mm in Meter wird hinzugefügt.

VHigh=198Le1000

Geschwindigkeit des Strahls von der Düse

Die Formel für die StrahlGeschwindigkeit von der Düse ist als die Geschwindigkeit des Strahls aus der Düse definiert.

VJ=Cv2[g]H

Geschwindigkeitskonstante der Phase zwischen Blase und Wolke

Die Formel für die Geschwindigkeitskonstante der Phase zwischen Blase und Wolke wird als berechnete Geschwindigkeitskonstante definiert, wenn im Wirbelreaktor Blasenbildung auftritt.

Kbc=4.50(umfdb)+5.85(Df R)12([g])14db54

Geschwindigkeitskonstante der Phase zwischen Wolkenwache und Emulsion

Die Geschwindigkeitskonstante der Phase zwischen Wolkenwache und Emulsionsformel wird als berechnete Geschwindigkeitskonstante definiert, wenn Blasenbildung an der Grenzfläche im Wirbelschichtreaktor beim Kunii-Levenspiel-Modell auftritt.

Kce=6.77(εmfDf Rubrdb3)12

Geschwindigkeit für verzögerte Kohärenz bei der Photodissoziation

Die Geschwindigkeitsformel für die verzögerte Kohärenz bei der Photodissoziation ist definiert als die Größe der Änderung seiner Position über die Zeit oder die Größe der Änderung seiner Position pro Zeiteinheit während der verzögerten Kohärenz während der Photodissoziation des KrF-Moleküls.

vcov=2(Vcov_R0-Vcov_R)μcov

Geschwindigkeit im schnellen Wirbelbett

Die Formel „Geschwindigkeit im schnellen Wirbelschichtbett“ bezieht sich auf die AufwärtsGeschwindigkeit des Fluidisierungsgases, das zum Schweben und Fluidisieren fester Partikel im Bett verwendet wird. Schnelle Wirbelschichten zeichnen sich durch hohe GasGeschwindigkeiten aus, und diese Geschwindigkeiten liegen typischerweise deutlich über der minimalen FluidisierungsGeschwindigkeit.

uTB-FF=1.53(ρsolids-ρgas)[g]dpρgas

Geschwindigkeit in der pneumatischen Förderung

Die Geschwindigkeitsformel bei der pneumatischen Förderung ist definiert als die Geschwindigkeit, typischerweise ausgedrückt als Luft- oder GasGeschwindigkeit am Punkt der Injektion oder Einführung der Feststoffpartikel in das Fördersystem.

uFF-PC=((21.6((GSρgas)0.542)(d'p 0.315))[g]dp)11.542

Geschwindigkeitsverhältnis

Die Formel für das Geschwindigkeitsverhältnis ist definiert als das Verhältnis der Drehzahl des angetriebenen Zahnrads zu der des treibenden Zahnrads in einem mechanischen System. Sie hilft dabei, die Effizienz und Drehmomentübertragung des Getriebes zu bestimmen.

i=TdTdr

Wie finde ich Formeln?

Hier sind ein paar Tipps für bessere Suchergebnisse.
Seien Sie konkret: Je konkreter Ihre Suchanfrage, desto besser sind Ihre Ergebnisse.
Verwenden Sie mehrere Schlüsselwörter: Kombinieren Sie mehrere Schlüsselwörter, um die Ergebnisse einzugrenzen.
Experimentieren Sie mit Synonymen: Unterschiedliche Begriffe können zu unterschiedlichen Ergebnissen führen.
Platzhaltersuche: Verwenden Sie den Operator * (Sternchen). BEACHTEN SIE, dass dieser Operator nur am Ende eines Wortes funktioniert. Beispiel: Bio*, Bereich* usw.

Alternativ können Sie durch die Unterkategorien innerhalb von navigieren, um die Formeln einzugrenzen, die Sie interessieren.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!