Suche Formeln

Bitte geben Sie mindestens 3 Zeichen ein, um mit der Suche nach -Formeln zu beginnen.

Wählen Sie Filter

Grenzen Sie Ihre Suchergebnisse mithilfe dieser Filter ein.

50 Passende Formeln gefunden!

Geschwindigkeitsverhältnis

Die Formel für das Geschwindigkeitsverhältnis ist definiert als das Verhältnis der Drehzahl des angetriebenen Zahnrads zu der des treibenden Zahnrads in einem mechanischen System. Sie hilft dabei, die Effizienz und Drehmomentübertragung des Getriebes zu bestimmen.

i=TdTdr

Geschwindigkeit des Alpha-Teilchens unter Verwendung der Entfernung der nächsten Annäherung

Die Geschwindigkeit des Alpha-Teilchens unter Verwendung der Entfernung der nächsten Annäherung ist die Geschwindigkeit, mit der sich ein Alpha-Teilchen in einem Atomkern bewegt.

v=[Coulomb]Z([Charge-e]2)[Atomic-m]r0

Geschwindigkeit des Stößels für Rollenstößel-Tangentennocken, wenn der Kontakt mit geraden Flanken erfolgt

Die Formel für die Geschwindigkeit des Stößels für einen Rollenstößel mit tangentialem Nocken bei Kontakt mit geraden Flanken ist als Maß für die Geschwindigkeit des Stößels in einem Nockenstößelsystem definiert, bei dem der Kontakt mit geraden Flanken erfolgt. Sie bietet Einblick in die Kinematik des Systems und ermöglicht die Entwicklung effizienter mechanischer Systeme.

v=ω(r1+rroller)sin(θ)(cos(θ))2

Geschwindigkeitskoeffizient für das Peltonrad

Der Geschwindigkeitskoeffizient für das Peltonrad ist das Verhältnis der tatsächlichen Geschwindigkeit des Wasserstrahls, der die Düse verlässt, zur theoretischen Geschwindigkeit. Er berücksichtigt die Verluste durch Reibung und andere Ineffizienzen in der Düse und wird verwendet, um die Effizienz der Strahlbildung zu bestimmen. Dieser Koeffizient ist normalerweise kleiner als 1.

Cv=V12[g]H

Geschwindigkeit des Stößels der Rollenstößel-Tangentennocke für den Kontakt mit der Nase

Die Formel für die Geschwindigkeit des Stößels eines Rollenstößels und des Tangentialnockens bei Kontakt mit der Nase ist definiert als die Geschwindigkeit des Stößels in einem Nocken- und Stößelsystem. Sie ist ein entscheidender Parameter bei der Bestimmung der Leistung und Effizienz des Systems, insbesondere wenn der Stößel mit der Nase des Nockens in Kontakt ist.

v=ωr(sin(θ1)+rsin(2θ1)2L2-r2(sin(θ1))2)

Geschwindigkeit der chemischen Reaktion

Die Formel für die Geschwindigkeit der chemischen Reaktion ist definiert als die Geschwindigkeitsänderung der Konzentration eines der Reaktanten oder Produkte pro Zeiteinheit. Die Geschwindigkeit der chemischen Reaktion bedeutet die Geschwindigkeit, mit der die Reaktion stattfindet.

r=ΔcΔt

Geschwindigkeitskonstante der Reaktion nullter Ordnung

Die Formel für die Geschwindigkeitskonstante der Reaktion nullter Ordnung ist definiert als die Subtraktion der Konzentration eines Reaktanten zum Zeitpunkt t von der Anfangskonzentration des Reaktanten in einem bestimmten Zeitintervall der Reaktion.

k=C0-Cttreaction

Geschwindigkeitskonstante zur Halbzeit der Reaktion nullter Ordnung

Die Geschwindigkeitskonstante zur Halbwertszeit der Reaktionsformel nullter Ordnung ist definiert als die Anfangskonzentration des Reaktanten geteilt durch die doppelte Halbwertszeit der Reaktion. Die doppelte Hälfte der Reaktion ist die Gesamtzeit für den Abschluss der Reaktion.

k=C02T1/2

Geschwindigkeit des Flugzeugs bei gegebener Steigrate

Die Geschwindigkeit eines Flugzeugs bei einer bestimmten Steigrate ist die Geschwindigkeit, die ein Flugzeug benötigt, um eine bestimmte Steigrate zu erreichen. Diese Formel berechnet die Geschwindigkeit, indem sie die Steigrate durch den Sinus des Flugwegwinkels während des Steigens dividiert. Das Verständnis und die Anwendung dieser Formel ist für Piloten und Ingenieure von entscheidender Bedeutung, um die Steigleistung zu optimieren.

v=RCsin(γ)

Geschwindigkeit auf Meereshöhe bei gegebenem Auftriebskoeffizienten

Die Geschwindigkeit auf Meereshöhe bei gegebenem Auftriebskoeffizienten ist ein Maß zur Berechnung der Geschwindigkeit eines Objekts auf Meereshöhe unter Berücksichtigung des Körpergewichts, der Luftdichte auf Meereshöhe, der Referenzfläche und des Auftriebskoeffizienten und stellt einen entscheidenden Parameter in der Aerodynamik und im Flugzeugbau dar.

V0=2Wbody[Std-Air-Density-Sea]SCL

Geschwindigkeit in der Höhe

Die Geschwindigkeit in der Höhe ist ein Maß für die Geschwindigkeit eines Objekts in einer bestimmten Höhe über der Erdoberfläche. Unter Berücksichtigung des Körpergewichts, der Luftdichte, der Bezugsfläche und des Auftriebskoeffizienten ermöglicht diese Formel die Berechnung der Geschwindigkeit in aerodynamischen Systemen und liefert wertvolle Erkenntnisse für Ingenieure und Forscher in den Bereichen Luft- und Raumfahrt und Aerodynamik.

Valt=2Wbodyρ0SCL

Geschwindigkeit in Höhe gegeben Geschwindigkeit auf Meereshöhe

Geschwindigkeit in angegebener Höhe Die Geschwindigkeit auf Meereshöhe ist ein Maß für die Geschwindigkeit eines Objekts in einer bestimmten Höhe. Sie wird berechnet, indem die Geschwindigkeit auf Meereshöhe mit der Quadratwurzel des Verhältnisses zwischen der Standardluftdichte auf Meereshöhe und der Luftdichte in der angegebenen Höhe multipliziert wird.

Valt=V0[Std-Air-Density-Sea]ρ0

Geschwindigkeit bei jedem gegebenen Radius des Rohrs und maximale Geschwindigkeit

Geschwindigkeit bei jedem Radius bei gegebenem Rohrradius und MaximalGeschwindigkeit hängt von der MaximalGeschwindigkeit und dem Rohrradius ab. Die Geschwindigkeitsverteilung variiert normalerweise mit dem Radius und folgt oft einem bestimmten Profil, abhängig von den Strömungsbedingungen.

V=Vm(1-(rpdo2)2)

Geschwindigkeit beim Hin- und Rücktransport in Meilen pro Stunde bei variabler Zeit

Die Geschwindigkeit beim Hin- und Rücktransport in Meilen pro Stunde bei gegebener variabler Zeitformel ist definiert als zurückgelegte Strecke pro Zeiteinheit.

Smph=Hft+Rft88Tv

Geschwindigkeit beim Hin- und Rücktransport in Kilometer pro Stunde bei variabler Zeit

Die Geschwindigkeit beim Transport und bei der Rückfahrt in Kilometern pro Stunde bei gegebener variabler Zeit ist definiert als die Geschwindigkeit, wenn wir vorher Informationen über die Rück- und Transportdistanz haben.

Skmph=hm+Rmeter16.7Tv

Geschwindigkeit des Kolbens oder Körpers für die Bewegung des Kolbens im Dash-Pot

Die Geschwindigkeit des Kolbens oder Körpers für die Bewegung des Kolbens in der Stoßdämpferformel ist unter Berücksichtigung des Gewichts, der Länge und des Durchmessers des Kolbens, der Viskosität der Flüssigkeit oder des Öls und des Spiels zwischen dem Stoßdämpfer und dem Kolben bekannt.

V=4WbC33πLdp3μ

Geschwindigkeit am Auslass für Druckverlust am Rohrausgang

Die Formel für die Geschwindigkeit am Auslass für den Druckverlust am Rohrausgang ist unter Berücksichtigung der Quadratwurzel des Druckverlusts am Rohrausgang und der Erdbeschleunigung bekannt.

v=ho2[g]

Geschwindigkeitsgradient bei Scherspannung

Die Formel für den Geschwindigkeitsgradienten bei gegebener Scherspannung ist als Geschwindigkeitsdifferenz zwischen benachbarten Fluidschichten definiert. Es ist das Verhältnis zwischen Geschwindigkeitsänderung und Abstandsänderung zwischen den Schichten.

dvdy=τμ

Geschwindigkeitsgradient

Die Geschwindigkeitsgradientenformel ist definiert als ein Verhältnis zwischen der Änderung der Geschwindigkeit zwischen benachbarten Schichten und der Änderung des Abstands zwischen aufeinanderfolgenden Punkten zwischen benachbarten Schichten.

dvdy=dvdy

Geschwindigkeit der Flüssigkeit bei gegebener Scherspannung

Die Formel für die Geschwindigkeit der Flüssigkeit bei gegebener Scherspannung ist als Funktion der Scherspannung, der dynamischen Viskosität und des Abstands zwischen den benachbarten Flüssigkeitsschichten definiert.

V=Yτμ

Geschwindigkeitspotential für 2D-Dublettströmung

Die Formel für das Geschwindigkeitspotenzial für eine 2D-Dublettströmung stellt das Geschwindigkeitspotenzial für eine 2D-Dublettströmung dar. Sie zeigt an, dass es umgekehrt proportional zur Entfernung vom Dublett ist und mit dem Winkel variiert.

ϕ=κ2πrcos(θ)

Geschwindigkeitspotential für 2D-Wirbelströmung

Die Formel für das Geschwindigkeitspotential für eine zweidimensionale Wirbelströmung ist als Funktion des Polarwinkels und der Stärke der Wirbelströmung definiert. Sie beschreibt die durch einen Wirbel verursachte Strömung, bei der das Geschwindigkeitspotential linear mit der Winkelkoordinate abnimmt.

ϕ=-(γ2π)θ

Geschwindigkeit planen

Die ZeitplanGeschwindigkeitsformel ist definiert als das Verhältnis der zwischen zwei Stopps zurückgelegten Strecke zur Gesamtzeit des Laufs einschließlich der Stoppzeit (Planungszeit).

Vs=DTrun+Tstop

Geschwindigkeit des Gasmoleküls bei gegebener Kraft

Die Geschwindigkeit des Gasmoleküls gegebene Kraftformel ist definiert als die Quadratwurzel des Produkts der Länge des rechteckigen Kastens und der Kraft pro Masse des Teilchens.

uF=FLm

Geschwindigkeit des Gasmoleküls in 1D bei gegebenem Druck

Die Geschwindigkeit des Gasmoleküls in der 1D gegebenen Druckformel ist definiert als unter der Wurzel des Verhältnisses des Gasdrucks multipliziert mit dem Volumen mit der Masse des Partikels.

up=PgasVboxm

Geschwindigkeit des Körpers bei gegebenem Impuls

Die Formel für die Geschwindigkeit eines Körpers bei gegebenem Impuls ist definiert als Maß für die Geschwindigkeit eines Objekts in eine bestimmte Richtung. Sie wird berechnet, indem der Impuls des Objekts durch seine Masse geteilt wird. Sie liefert ein grundlegendes Konzept zum Verständnis der Bewegung eines Objekts und ihrer Beziehung zur Kraft.

v=pmo

Geschwindigkeit der Impulsänderung bei gegebener Beschleunigung und Masse

Die Formel zur Änderungsrate des Impulses bei gegebener Beschleunigung und Masse ist definiert als ein Maß für die Rate, mit der sich der Impuls eines Objekts ändert, wenn auf es eine externe Kraft einwirkt, wobei die Masse des Objekts und seine Beschleunigung die Hauptfaktoren sind, die diese Änderung beeinflussen.

rm=moa

Geschwindigkeit des Projektils des Mach-Kegels im komprimierbaren Flüssigkeitsstrom

Die Geschwindigkeit des Projektils eines Mach-Kegels in einer kompressiblen Flüssigkeitsströmung beschreibt die Geschwindigkeit, mit der sich das Projektil bewegt, wenn es die SchallGeschwindigkeit im umgebenden Medium erreicht oder überschreitet. Das Verständnis dieser Geschwindigkeit ist in der Aerodynamik und Ballistik von entscheidender Bedeutung, da sie den Beginn von Stoßwellen und die aerodynamischen Herausforderungen anzeigt, die mit Überschall- und Hyperschallflügen verbunden sind.

V=Csin(μ)

Geschwindigkeit der Schallwelle unter Berücksichtigung des Mach-Winkels in einem komprimierbaren Flüssigkeitsstrom

Die Geschwindigkeit von Schallwellen unter Berücksichtigung des Mach-Winkels bei kompressibler Fluidströmung ist wichtig für das Verständnis, wie sich Schall durch ein Medium ausbreitet, wenn die FluidGeschwindigkeit die SchallGeschwindigkeit erreicht oder überschreitet. Diese Beziehung hilft bei der Vorhersage des Verhaltens von Stoßwellen und der Schallübertragung in verschiedenen Umgebungen und ist von wesentlicher Bedeutung in der Luft- und Raumfahrttechnik, der Akustik und der Untersuchung der HochGeschwindigkeitsfluiddynamik.

C=Vsin(μ)

Geschwindigkeit durch Sieb bei Druckverlust durch Sieb

Die Geschwindigkeit durch das Sieb, gegeben durch den Druckverlust durch das Sieb, ist die Änderungsrate seiner Position in Bezug auf einen Referenzrahmen und ist eine Funktion der Zeit.

v=(hL0.0729)+u2

Geschwindigkeit über Sieb bei Druckverlust durch Sieb

Die Geschwindigkeit über dem Bildschirm, gegeben durch den Druckverlust durch den Bildschirm, ist die Änderungsrate seiner Position in Bezug auf einen Referenzrahmen und ist eine Funktion der Zeit.

u=v2-(hL0.0729)

Geschwindigkeitsgradienten

Die Formel für Geschwindigkeitsgradienten wird als Änderung der Geschwindigkeit im Verhältnis zur Entfernungsänderung entlang der gemessenen Richtung definiert.

VG=πr2Ω30(r2-r1)

Geschwindigkeit des äußeren Zylinders bei gegebenem Geschwindigkeitsgradienten

Die Geschwindigkeit des äußeren Zylinders wird mit der Geschwindigkeitsgradientenformel als die Geschwindigkeit definiert, mit der sich der Zylinder in Umdrehungen pro Minute dreht.

Ω=VGπr230(r2-r1)

Geschwindigkeit des äußeren Zylinders bei gegebener dynamischer Viskosität der Flüssigkeit

Die Geschwindigkeit des Außenzylinders wird anhand der Formel zur dynamischen Viskosität einer Flüssigkeit als Geschwindigkeit des Zylinders in Umdrehungen pro Minute definiert.

Ω=15T(r2-r1)ππr1r1r2hμ

Geschwindigkeit des Außenzylinders bei gegebenem Drehmoment, das auf den Außenzylinder ausgeübt wird

Die Geschwindigkeit des Außenzylinders bei auf den Außenzylinder ausgeübtem Drehmoment wird gemäß der Formel als das auf ihn ausgeübte Drehmoment definiert, wobei die Beziehung zwischen Drehmoment, Rotationsträgheit und Winkelbeschleunigung gilt.

Ω=Toππμr1460C

Geschwindigkeit des äußeren Zylinders bei gegebenem Gesamtdrehmoment

Die Geschwindigkeit des äußeren Zylinders wird bei gegebener Gesamtdrehmomentformel als die Geschwindigkeit des Zylinders in Umdrehungen pro Minute definiert.

Ω=ΤTorqueVcμ

Geschwindigkeit des Strahls für dynamischen Schub, der vom Strahl auf die Platte ausgeübt wird

Die Geschwindigkeit des Strahls für den dynamischen Schub, der vom Strahl auf die Platte ausgeübt wird, ist die Änderungsrate seiner Position in Bezug auf einen Bezugssystem und ist eine Funktion der Zeit.

v=-(mfGγfAJet(∠D(180π))-Vabsolute)

Geschwindigkeit der Strömungsfelder

Die Formel für die Geschwindigkeit der Strömungsfelder ist definiert als die Geschwindigkeit, mit der Wasser im Kanal von Kopf bis Schwanz fließt.

vm=Hf1-Ke(2[g])+((n)2)l2.21rh1.33333

Geschwindigkeit des Riemens bei Spannung des Riemens im Zugtrum

Die Geschwindigkeit des Riemens bei Spannung des Riemens auf der straffen Seite ist ein Maß für die RotationsGeschwindigkeit des Riemens, bei der die Rotationskraft von einer Riemenscheibe auf eine andere übertragen wird.

vb=((eμα)P2)-P1m((eμα)-1)

Geschwindigkeit bei gewünschter Höhe

Die Formel für die Geschwindigkeit auf der gewünschten Höhe ist definiert als die Geschwindigkeit des Wassers auf einer gewünschten Höhe innerhalb eines Strömungsprofils. Es ist wichtig, die Art der Strömung und die relevanten Bedingungen zu verstehen.

Vz=V10(z10)0.11

Geschwindigkeitskomponente entlang der horizontalen x-Achse

Die Geschwindigkeitskomponente entlang der horizontalen x-Achse wird als beeinflusst definiert, wenn die Meeresoberfläche horizontal bleibt und die einzige treibende Kraft von der Windscherspannung kommt.

ux=VseπzDFcos(45+(πzDF))

Geschwindigkeit an der Oberfläche bei gegebener Geschwindigkeitskomponente entlang der horizontalen x-Achse

Die Geschwindigkeit an der Oberfläche bei gegebener Geschwindigkeitskomponente entlang der horizontalen x-Achse wird als Änderungsrate ihrer Position in Bezug auf den Referenzrahmen definiert und ist eine Funktion der Zeit in x-Richtung.

Vs=uxeπzDFcos(45+(πzDF))

Geschwindigkeit im aktuellen Profil in drei Dimensionen durch Einführung von Polarkoordinaten

Die Geschwindigkeit im Strömungsprofil in drei Dimensionen durch Einführung von Polarkoordinaten ist definiert als die exponentielle Abnahme mit der Tiefe und der Winkel zwischen Wind und Strömungsrichtung, der linear mit der Tiefe im Uhrzeigersinn zunimmt.

VCurrent=VseπzDF

Geschwindigkeit an der Oberfläche gegebenes Geschwindigkeitsdetail des aktuellen Profils in drei Dimensionen

Die Geschwindigkeit an der Oberfläche, gegebene Geschwindigkeitsdetails des Stromprofils in drei Dimensionen, wird als Geschwindigkeitsparameter an der Oberfläche definiert, der das Stromprofil beeinflusst.

Vs=veπzDF

Geschwindigkeit gegebenes Verhältnis von Trägheitskräften und viskosen Kräften unter Verwendung des Newtonschen Reibungsmodells

Das der Geschwindigkeit gegebene Verhältnis von Trägheitskräften und viskosen Kräften unter Verwendung des Newtonschen Reibungsmodells wird unter Verwendung des Newtonschen Reibungsmodells ausgedrückt, während die Trägheitskräfte (von oben) proportional zu den jeweiligen Parametern sind.

Vf=FiμviscosityFvρfluidL

Geschwindigkeit bei gegebener kinematischer Viskosität, Verhältnis von Trägheitskräften und viskosen Kräften

Die Geschwindigkeit gegebene kinematische Viskosität, das Verhältnis von Trägheitskräften und viskosen Kräften können unter Verwendung des Newtonschen Reibungsmodells ausgedrückt werden, während die Trägheitskräfte (von oben) proportional zu den jeweiligen Parametern sind.

Vf=FiνFvL

Geschwindigkeit für Froude-Skalierung

Die Geschwindigkeitsformel für die Froude-Skalierung ist definiert als die Geschwindigkeit, die proportional zur Quadratwurzel des Kräfteverhältnisses angepasst wird.

Vf=Fn[g]Lf

Geschwindigkeitskonstante bei Temperatur 2

Die Geschwindigkeitskonstante bei Temperatur 2 ist definiert als die Proportionalitätskonstante in der chemischen Reaktion, die bei Temperatur 2 abläuft. Arrhenius-Gleichung, um die Auswirkung einer Temperaturänderung auf die Geschwindigkeitskonstante und damit auf die ReaktionsGeschwindigkeit zu zeigen.

K2=((K1)(Φ)T2-T110)

Geschwindigkeitskonstante für die Reaktion nullter Ordnung unter Verwendung von Raumzeit für Pfropfenströmung

Die Geschwindigkeitskonstante für die Reaktion nullter Ordnung unter Verwendung der Raum-Zeit-Formel für Pfropfenströmung ist definiert als die ReaktionsGeschwindigkeit für die Reaktion nullter Ordnung, bei der die fraktionale Volumenänderung null ist.

kBatch=XA BatchCo Batch𝛕Batch

Geschwindigkeit eines langsamen Fahrzeugs mit OSD

Die Geschwindigkeit eines langsamen Fahrzeugs unter Verwendung von OSD wird verwendet, um die Geschwindigkeit des Fahrzeugs zu ermitteln, das von einem sich schnell bewegenden Fahrzeug überholt werden muss, wenn OSD gegeben wird.

Vb=OSD-VT-2ltr+T+1.4

Wie finde ich Formeln?

Hier sind ein paar Tipps für bessere Suchergebnisse.
Seien Sie konkret: Je konkreter Ihre Suchanfrage, desto besser sind Ihre Ergebnisse.
Verwenden Sie mehrere Schlüsselwörter: Kombinieren Sie mehrere Schlüsselwörter, um die Ergebnisse einzugrenzen.
Experimentieren Sie mit Synonymen: Unterschiedliche Begriffe können zu unterschiedlichen Ergebnissen führen.
Platzhaltersuche: Verwenden Sie den Operator * (Sternchen). BEACHTEN SIE, dass dieser Operator nur am Ende eines Wortes funktioniert. Beispiel: Bio*, Bereich* usw.

Alternativ können Sie durch die Unterkategorien innerhalb von navigieren, um die Formeln einzugrenzen, die Sie interessieren.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!