Suche Formeln

Bitte geben Sie mindestens 3 Zeichen ein, um mit der Suche nach -Formeln zu beginnen.

Wählen Sie Filter

Grenzen Sie Ihre Suchergebnisse mithilfe dieser Filter ein.

50 Passende Formeln gefunden!

Geschwindigkeit des Elektrons

Die Geschwindigkeit eines Elektrons bezieht sich auf seine Geschwindigkeit und Bewegungsrichtung und wird durch das Energieerhaltungsprinzip bestimmt. Im Wesentlichen heißt es, dass die Änderung der kinetischen Energie des Elektrons gleich der Änderung der potentiellen Energie ist, die es aufgrund des elektrischen Feldes erfährt.

Vv=2[Charge-e]V[Mass-e]

Geschwindigkeit von Elektronen in Kraftfeldern

Die ElektronenGeschwindigkeit in Kraftfeldern wird verwendet, um die Geschwindigkeit eines geladenen Teilchens in ein Feld zu berechnen, in dem sowohl ein elektrisches als auch ein magnetisches Feld vorhanden ist.

Vef=EIH

Geschwindigkeit des Elektrons im Orbit bei gegebener WinkelGeschwindigkeit

Die Geschwindigkeit des Elektrons in der Umlaufbahn bei gegebener WinkelGeschwindigkeit ist eine Vektorgröße (sie hat sowohl Größe als auch Richtung) und ist die Zeitrate der Positionsänderung (eines Teilchens).

ve_AV=ωrorbit

Geschwindigkeit des Elektrons bei gegebener Zeitdauer des Elektrons

Die Geschwindigkeit des Elektrons bei gegebener Zeitdauer des Elektrons ist eine Vektorgröße (sie hat sowohl Größe als auch Richtung) und ist die Zeitrate der Positionsänderung (eines Teilchens).

velectron=2πrorbitT

Geschwindigkeit eines kleinen Elements für Längsschwingung

Die Formel für die Geschwindigkeit kleiner Elemente bei Längsschwingungen ist als Maß für die Geschwindigkeit kleiner Elemente bei einer Längsschwingung definiert, die durch die Trägheit der Einschränkung beeinflusst wird, und wird zur Analyse der Schwingungen in verschiedenen mechanischen Systemen verwendet.

vs=xVlongitudinall

Geschwindigkeitsverhältnis

Die Formel für das Drehzahlverhältnis ist eine dimensionslose Größe, die das Strömungsverhalten einer Kreiselpumpe charakterisiert. Sie stellt eine Beziehung zwischen der UmfangsGeschwindigkeit des Laufrads und der SpritzGeschwindigkeit der Flüssigkeit her, die für die Konstruktion und Optimierung der Pumpenleistung von wesentlicher Bedeutung ist.

Ku=u22[g]Hm

Geschwindigkeitsverhältnis in Westons Differentialriemenscheibe bei gegebener Anzahl von Zähnen

Das Geschwindigkeitsverhältnis in der Differentialriemenscheibe von Weston bei gegebener Zähnezahl kann auch anhand der Zähnezahl der beiden Zahnräder (die den beiden Riemenscheiben entsprechen) ausgedrückt werden.

Vi=2T1T1-T2

Geschwindigkeitsverhältnis in Westons Differenzialriemenscheibe bei gegebenem Riemenscheibenradius

Das Geschwindigkeitsverhältnis in Westons Differentialriemenscheibe bei gegebenem Riemenscheibenradius kann mithilfe der Radien der beiden beteiligten Riemenscheiben ermittelt werden.

Vi=2r1r1-r2

Geschwindigkeitsverhältnis von Schnecke und Schneckenrad

Das Übersetzungsverhältnis von Schnecken- und Schneckenradgetrieben gibt den mechanischen Vorteil an, den das System bietet. Es ist das Verhältnis der durch die Kraft (Eingang) zurückgelegten Strecke zur durch die Last (Ausgang) zurückgelegten Strecke.

Vi=DmTw2Rd

Geschwindigkeitsverhältnis von Schnecke und Schneckenrad, wenn die Schnecke ein Doppelgewinde hat

Das Geschwindigkeitsverhältnis von Schnecke und Schneckenrad ist bei einer Schnecke mit zwei Gewinden das Verhältnis der Anzahl der Zähne auf dem Schneckenrad zur Anzahl der Gewinde auf der Schnecke. Diese Formel berechnet den mechanischen Vorteil des Schneckengetriebesystems und gibt an, wie viele Umdrehungen der Schnecke erforderlich sind, um eine Umdrehung des Schneckenrads auszuführen.

Vi=dwTw4Rd

Geschwindigkeitsverhältnis von Schnecke und Schneckenrad, wenn die Schnecke mehrere Gewindegänge hat

Das Geschwindigkeitsverhältnis von Schnecke und Schneckenrad ist bei Schnecken mit mehreren Gewinden das Verhältnis der Anzahl der Zähne auf dem Schneckenrad zur Anzahl der Gewindegänge (Anfänge) auf der Schnecke. Diese Formel bestimmt, wie viele Umdrehungen der Schnecke erforderlich sind, um das Schneckenrad einmal zu drehen, und gibt den mechanischen Vorteil und die Untersetzung an, die das System bietet.

Vi=dwTw2nRd

Geschwindigkeitsverhältnis des Schneckenrad-Riemenscheibenblocks

Das Geschwindigkeitsverhältnis eines Flaschenzugs mit Schneckengetriebe bezieht sich auf das Verhältnis der durch die Kraft zurückgelegten Distanz zur durch die Last zurückgelegten Distanz. Es ist ein Maß für den mechanischen Vorteil, den der Schneckengetriebemechanismus bietet.

Vi=dwTwR

Geschwindigkeitsverhältnis eines einfachen Spindelhubgetriebes

Das Geschwindigkeitsverhältnis eines einfachen Spindelhubgetriebes beschreibt das Verhältnis zwischen der durch die Kraft zurückgelegten Distanz und der durch die Last zurückgelegten Distanz. Es spiegelt den mechanischen Vorteil wider, den das Spindelhubsystem bietet.

Vi=2πlPs

Geschwindigkeitsverhältnis des Differenzial-Spindelhubgetriebes

Das Geschwindigkeitsverhältnis eines Differentialspindelhubgetriebes ist ein Maß für den mechanischen Vorteil, den das System bietet. Es beschreibt das Verhältnis der durch die Kraft zurückgelegten Distanz zur durch die Last zurückgelegten Distanz.

Vi=2πlpa-pb

Geschwindigkeitsverhältnis des Spindelhubgetriebes mit Schneckengetriebe

Das Übersetzungsverhältnis eines Spindelhubgetriebes mit Schneckengetriebe misst den mechanischen Vorteil des Systems, indem es die durch die Kraft zurückgelegte Distanz mit der durch die Last zurückgelegten Distanz vergleicht. Bei einem Spindelhubgetriebe mit Schneckengetriebe treibt das Schneckengetriebe den Schraubmechanismus an, und das Übersetzungsverhältnis wird durch die Getriebe- und Schraubparameter beeinflusst.

Vi=2πRwTsPs

Geschwindigkeitsverhältnis eines Spindelhubgetriebes mit Schneckengetriebe und Doppelgewinde

Geschwindigkeitsverhältnis eines Spindelhubelements mit Schneckengetriebe und parallel verlaufenden Doppelgewinden, die sich auf die Steigung und damit auf das Geschwindigkeitsverhältnis auswirken.

Vi=2πRwTw2Ps

Geschwindigkeitsverhältnis eines Spindelhubgetriebes mit Schneckengetriebe und mehreren Gewindegängen

Das Geschwindigkeitsverhältnis eines Spindelhubgetriebes mit Schneckengetriebe und mehreren Gewinden wird durch die Anzahl der Gewinde beeinflusst, die wiederum die Steigung der Schraube bestimmen.

Vi=2πRwTwnPs

Geschwindigkeitskonstante für die Reaktion nullter Ordnung aus der Arrhenius-Gleichung

Die Geschwindigkeitskonstante für eine Reaktion nullter Ordnung aus der Arrhenius-Gleichungsformel ist definiert als das Produkt des Frequenzfaktors mit einer empirischen Form der negativen Aktivierungsenergie pro universeller Gaskonstante multipliziert mit der Temperatur, und die Geschwindigkeitskonstante der Arrhenius-Gleichung ist umgekehrt proportional zur Reaktionstemperatur.

k0=Afactor-zeroorderexp(-Ea1[R]TZeroOrder)

Geschwindigkeitskonstante für die Reaktion erster Ordnung aus der Arrhenius-Gleichung

Die Geschwindigkeitskonstante für die Reaktion erster Ordnung aus der Arrhenius-Gleichungsformel ist definiert als der Frequenzfaktor multipliziert mit dem Exponential der negativen Aktivierungsenergie pro universeller Gaskonstante und Temperatur. Die Geschwindigkeitskonstante der Reaktion erster Ordnung ist umgekehrt proportional zur Reaktionstemperatur. Mit steigender Reaktionstemperatur nimmt die Geschwindigkeitskonstante ab.

kfirst=Afactor-firstorderexp(-Ea1[R]TFirstOrder)

Geschwindigkeitskonstante für die Reaktion zweiter Ordnung aus der Arrhenius-Gleichung

Die Geschwindigkeitskonstante für die Reaktion zweiter Ordnung aus der Arrhenius-Gleichungsformel ist definiert als Frequenzfaktor multipliziert mit der Exponentialform der negativen Aktivierungsenergie pro universeller Gaskonstante und Temperatur. Die Geschwindigkeitskonstante der Reaktion zweiter Ordnung ist umgekehrt proportional zur Reaktionstemperatur.

Ksecond=Afactor-secondorderexp(-Ea1[R]TSecondOrder)

Geschwindigkeit des Projektils bei gegebener Höhe über dem Projektionspunkt

Die Formel für die Geschwindigkeit eines Projektils in einer bestimmten Höhe über dem Projektilpunkt ist definiert als Maß für die Geschwindigkeit eines Projektils in einer bestimmten Höhe über dem Projektilpunkt, wobei die AnfangsGeschwindigkeit, die Erdbeschleunigung und die Höhe über dem Projektilpunkt berücksichtigt werden.

vp=vpm2-2[g]h

Geschwindigkeit in mittlerer Distanz

Die Formel für die Geschwindigkeit in mittlerer Entfernung ist definiert als die Geschwindigkeit der Lichtwelle, die im EDM-Instrument verwendet wird, wenn sich die Welle von einem Punkt zum anderen bewegt.

c=2DΔt

Geschwindigkeit des Fahrzeugs bei gegebener Zentrifugalkraft

Die Formel für die Geschwindigkeit des Fahrzeugs bei gegebener Zentrifugalkraft ist definiert als die Geschwindigkeit oder Geschwindigkeit des Fahrzeugs beim Durchfahren einer Übergangskurve. Es bezieht sich auf Parameter, Zentrifugalkraft, Kurvenradius, Gewicht des Fahrzeugs und Erdbeschleunigung.

V=FcgRCurveW

Geschwindigkeit am Einlass bei gegebenem Drehmoment durch die Flüssigkeit

Die Geschwindigkeit am Einlass eines gegebenen Drehmoments durch Fluid ist die Änderungsrate seiner Position in Bezug auf einen Referenzrahmen und ist eine Funktion der Zeit am Einlass eines beliebigen Objekts.

vf=(τGwf)+(vr)rO

Geschwindigkeit am Auslass bei gegebenem Drehmoment durch Flüssigkeit

Die Geschwindigkeit am Auslass bei gegebenem Drehmoment durch Flüssigkeit ist die Änderungsrate ihrer Position in Bezug auf einen Bezugsrahmen und eine Funktion der Zeit am Auslass eines beliebigen Objekts.

v=(τGwf)-(vfr)rO

Geschwindigkeit am Einlass bei gegebener am Rad geleisteter Arbeit

Die Geschwindigkeit am Einlass bei gegebener am Rad geleisteter Arbeit ist die Änderungsrate seiner Position in Bezug auf einen Referenzrahmen und ist eine Funktion der Zeit am Einlass eines beliebigen Objekts.

vf=(wGwfω)-vrOr

Geschwindigkeit am Auslass bei geleisteter Arbeit am Rad

Die Geschwindigkeit am Ausgang bei gegebener am Rad geleisteter Arbeit ist die Änderungsrate seiner Position in Bezug auf einen Bezugsrahmen und eine Funktion der Zeit am Ausgang eines beliebigen Objekts.

v=(wGwfω)-(vfr)rO

Geschwindigkeit der Tiefwasserwelle

Die Geschwindigkeit von Tiefwasserwellen bezieht sich auf die Geschwindigkeit, mit der sich Wellen in Wassertiefen von mehr als der Hälfte ihrer Wellenlänge ausbreiten.

Co=[g]λo2π

Geschwindigkeit des freien Stroms bei gegebener Strouhal-Zahl

Die Formel für die FreistromGeschwindigkeit bei gegebener Strouhal-Zahl ist definiert als der Durchschnitt zwischen der KanaleintrittsGeschwindigkeit und der DurchschnittsGeschwindigkeit.

V=nDvortexS

Geschwindigkeitsdruck in Kanälen

Die Formel für den Geschwindigkeitsdruck in Kanälen ist definiert als der Druck, der durch den Luft- oder Gasstrom in einem Kanal ausgeübt wird. Dieser ist ein entscheidender Faktor bei der Bestimmung der Leistung von Heizungs-, Lüftungs- und Klimaanlagen sowie anderen industriellen Prozessen, bei denen ein Luftstrom eine Rolle spielt.

Pv=0.6Vm2

Geschwindigkeit des Wassers am Auslass des Saugrohrs bei gegebenem Wirkungsgrad des Saugrohrs

Die WasserGeschwindigkeit am Auslass des Saugrohrs bei gegebenem Saugrohrwirkungsgrad wird verwendet, um die Geschwindigkeit des Wassers am Auslass des Saugrohrs zu ermitteln, der das Ende mit einer größeren Querschnittsfläche ist.

V2=(V12)(1-ηd)-(hf2[g])

Geschwindigkeit des Wassers am Einlass des Saugrohrs bei gegebenem Wirkungsgrad des Saugrohrs

Die WasserGeschwindigkeit am Einlass des Saugrohrs bei gegebenem Saugrohrwirkungsgrad wird verwendet, um die Geschwindigkeit des Wassers am Einlass des Saugrohrs zu ermitteln, der das Ende des Saugrohrs mit einer geringeren Querschnittsfläche ist.

V1=(V22)+(hf2[g])1-ηd

Geschwindigkeitsverhältnis des Hooke-Gelenks

Das Geschwindigkeitsverhältnis der Hakengelenkformel wird verwendet, um das Verhältnis der WinkelGeschwindigkeiten der angetriebenen Welle zur antreibenden Welle zu finden.

V=cos(α)1-cos(θ)2sin(α)2

Geschwindigkeitskonstante für die Reaktion erster Ordnung unter Verwendung von Raumzeit für Pfropfenströmung

Die Geschwindigkeitskonstante für die Reaktion erster Ordnung unter Verwendung der Raum-Zeit-Formel für Pfropfenströmung ist als die Proportionalitätskonstante definiert, die die Beziehung zwischen der ReaktionsGeschwindigkeit und der ersten Potenz der Konzentration eines der Reaktanten angibt.

kbatch=(1𝛕Batch)ln(11-XA Batch)

Geschwindigkeitskonstante für die Reaktion erster Ordnung unter Verwendung der Reaktantenkonzentration für Pfropfenströmung

Die Geschwindigkeitskonstante für die Reaktion erster Ordnung unter Verwendung der Reaktantenkonzentration für die Pfropfenströmungsformel ist als die Proportionalitätskonstante definiert, die die Beziehung zwischen der ReaktionsGeschwindigkeit und der ersten Potenz der Konzentration eines der Reaktanten angibt.

kbatch=(1𝛕Batch)ln(Co BatchCBatch)

Geschwindigkeitskonstante für die Reaktion zweiter Ordnung unter Verwendung von Raumzeit für Pfropfenströmung

Die Geschwindigkeitskonstante für die Reaktion zweiter Ordnung unter Verwendung der Raum-Zeit-Formel für Pfropfenströmung ist definiert als die Proportionalitätskonstante in der Gleichung, die die Beziehung zwischen der Geschwindigkeit einer chemischen Reaktion und den Konzentrationen der reagierenden Substanzen ausdrückt.

k''=(1𝛕BatchCo Batch)(XA Batch1-XA Batch)

Geschwindigkeitskonstante für die Reaktion erster Stufe im ersten Schritt für MFR bei maximaler Zwischenkonzentration

Die Geschwindigkeitskonstante für die Reaktion erster Stufe im ersten Schritt für MFR bei maximaler Zwischenkonzentration ist definiert als die Proportionalitätskonstante für die Reaktion im ersten Schritt in einer irreversiblen Reaktion erster Ordnung in zwei Schritten in Reihe für Reaktoren mit gemischter Strömung bei maximaler Zwischenkonzentration.

kI=1k2(τR,max2)

Geschwindigkeitskonstante für die Reaktion erster Ordnung im zweiten Schritt für MFR bei maximaler Zwischenkonzentration

Die Geschwindigkeitskonstante für die Reaktion erster Ordnung im zweiten Schritt für MFR bei maximaler Zwischenkonzentration ist definiert als die Proportionalitätskonstante für die Reaktion im zweiten Schritt in einer irreversiblen Reaktion erster Ordnung in zwei Schritten in Reihe für Reaktoren mit gemischter Strömung bei maximaler Zwischenkonzentration.

k2=1kI(τR,max2)

Geschwindigkeit des Insassen im Verhältnis zum Fahrzeug nach der Kollision

Die Formel für die Geschwindigkeit des Insassen im Verhältnis zum Fahrzeug nach einer Kollision ist definiert als Maß für die Geschwindigkeit eines Insassen im Verhältnis zum Fahrzeug nach einer Kollision. Sie ist von entscheidender Bedeutung für die Einschätzung der Schwere des Aufpralls und der daraus resultierenden Verletzungen.

Vr=Voδoccd

Geschwindigkeitskonstante der Phase zwischen Blase und Wolke

Die Formel für die Geschwindigkeitskonstante der Phase zwischen Blase und Wolke wird als berechnete Geschwindigkeitskonstante definiert, wenn im Wirbelreaktor Blasenbildung auftritt.

Kbc=4.50(umfdb)+5.85(Df R)12([g])14db54

Geschwindigkeitskonstante der Phase zwischen Wolkenwache und Emulsion

Die Geschwindigkeitskonstante der Phase zwischen Wolkenwache und Emulsionsformel wird als berechnete Geschwindigkeitskonstante definiert, wenn Blasenbildung an der Grenzfläche im Wirbelschichtreaktor beim Kunii-Levenspiel-Modell auftritt.

Kce=6.77(εmfDf Rubrdb3)12

Geschwindigkeit für verzögerte Kohärenz bei der Photodissoziation

Die Geschwindigkeitsformel für die verzögerte Kohärenz bei der Photodissoziation ist definiert als die Größe der Änderung seiner Position über die Zeit oder die Größe der Änderung seiner Position pro Zeiteinheit während der verzögerten Kohärenz während der Photodissoziation des KrF-Moleküls.

vcov=2(Vcov_R0-Vcov_R)μcov

Geschwindigkeit im schnellen Wirbelbett

Die Formel „Geschwindigkeit im schnellen Wirbelschichtbett“ bezieht sich auf die AufwärtsGeschwindigkeit des Fluidisierungsgases, das zum Schweben und Fluidisieren fester Partikel im Bett verwendet wird. Schnelle Wirbelschichten zeichnen sich durch hohe GasGeschwindigkeiten aus, und diese Geschwindigkeiten liegen typischerweise deutlich über der minimalen FluidisierungsGeschwindigkeit.

uTB-FF=1.53(ρsolids-ρgas)[g]dpρgas

Geschwindigkeit in der pneumatischen Förderung

Die Geschwindigkeitsformel bei der pneumatischen Förderung ist definiert als die Geschwindigkeit, typischerweise ausgedrückt als Luft- oder GasGeschwindigkeit am Punkt der Injektion oder Einführung der Feststoffpartikel in das Fördersystem.

uFF-PC=((21.6((GSρgas)0.542)(d'p 0.315))[g]dp)11.542

Geschwindigkeit des Elektrons in Bohrs Umlaufbahn

Die Geschwindigkeit des Elektrons in Bohrs Umlaufbahn ist eine Vektorgröße (sie hat sowohl Größe als auch Richtung) und ist die zeitliche Änderungsrate der Position (eines Teilchens).

ve_BO=[Charge-e]22[Permitivity-vacuum]nquantum[hP]

Geschwindigkeit eines kleinen Elements für Querschwingungen

Die Formel für die Geschwindigkeit kleiner Elemente bei Querschwingungen ist definiert als Maß für die Geschwindigkeit eines kleinen Elements bei einer Querschwingung, die durch die Trägheit der Einschränkung beeinflusst wird, und wird zur Analyse der Bewegung von Partikeln bei Längs- und Querschwingungen verwendet.

vs=(3lx2-x3)Vtraverse2l3

Geschwindigkeit unter Verwendung der Wasserströmungsgleichung

Die Geschwindigkeit wird mithilfe der Wasserdurchflussgleichung als FließGeschwindigkeit definiert, wenn der Querschnittsbereich des Rohrs und der Wasserdurchfluss gegeben sind.

Vf=QwAcs

Geschwindigkeit bei gegebenem Pulldown-Manöverradius

Die Geschwindigkeit bei Pull-Down-Manöverradius ist die Geschwindigkeit, die ein Flugzeug benötigt, um während eines Pull-Down-Manövers einen bestimmten Wenderadius beizubehalten. Diese Formel berechnet die Geschwindigkeit basierend auf dem Wenderadius, der Erdbeschleunigung und dem Lastfaktor. Das Verständnis und die Anwendung dieser Formel ist für Piloten und Ingenieure von entscheidender Bedeutung, um sichere und kontrollierte Pull-Down-Manöver zu gewährleisten.

Vpull-down=R[g](n+1)

Geschwindigkeit für gegebene Pull-Down-Manöverrate

Die Geschwindigkeit für eine bestimmte Pull-Down-Manöverrate hängt vom Lastfaktor und der WendeGeschwindigkeit des Flugzeugs ab. Diese Formel bietet eine vereinfachte Annäherung an die Geschwindigkeit, die erforderlich ist, um die gewünschte Sinkrate während des Pull-Down-Manövers aufrechtzuerhalten.

Vpull-down=[g]1+nωpull-down

Geschwindigkeit entlang der Gierachse bei kleinem Anstellwinkel

Die Geschwindigkeit entlang der Gierachse bei kleinem Anstellwinkel ist ein Maß für die Änderungsrate der Position eines Objekts entlang der Gierachse im Verhältnis zu seiner Bewegung aufgrund eines kleinen Anstellwinkels. Sie wird berechnet, indem die Geschwindigkeit entlang der Rollachse mit dem Anstellwinkel im Bogenmaß multipliziert wird und stellt einen entscheidenden Parameter in der Aerodynamik und Flugdynamik dar.

w=uα

Wie finde ich Formeln?

Hier sind ein paar Tipps für bessere Suchergebnisse.
Seien Sie konkret: Je konkreter Ihre Suchanfrage, desto besser sind Ihre Ergebnisse.
Verwenden Sie mehrere Schlüsselwörter: Kombinieren Sie mehrere Schlüsselwörter, um die Ergebnisse einzugrenzen.
Experimentieren Sie mit Synonymen: Unterschiedliche Begriffe können zu unterschiedlichen Ergebnissen führen.
Platzhaltersuche: Verwenden Sie den Operator * (Sternchen). BEACHTEN SIE, dass dieser Operator nur am Ende eines Wortes funktioniert. Beispiel: Bio*, Bereich* usw.

Alternativ können Sie durch die Unterkategorien innerhalb von navigieren, um die Formeln einzugrenzen, die Sie interessieren.

Copied!