Suche Formeln

Bitte geben Sie mindestens 3 Zeichen ein, um mit der Suche nach -Formeln zu beginnen.

Wählen Sie Filter

Grenzen Sie Ihre Suchergebnisse mithilfe dieser Filter ein.

50 Passende Formeln gefunden!

Geschwindigkeit der chemischen Reaktion

Die Formel für die Geschwindigkeit der chemischen Reaktion ist definiert als die Geschwindigkeitsänderung der Konzentration eines der Reaktanten oder Produkte pro Zeiteinheit. Die Geschwindigkeit der chemischen Reaktion bedeutet die Geschwindigkeit, mit der die Reaktion stattfindet.

r=ΔcΔt

Geschwindigkeitskonstante der Reaktion nullter Ordnung

Die Formel für die Geschwindigkeitskonstante der Reaktion nullter Ordnung ist definiert als die Subtraktion der Konzentration eines Reaktanten zum Zeitpunkt t von der Anfangskonzentration des Reaktanten in einem bestimmten Zeitintervall der Reaktion.

k=C0-Cttreaction

Geschwindigkeitskonstante zur Halbzeit der Reaktion nullter Ordnung

Die Geschwindigkeitskonstante zur Halbwertszeit der Reaktionsformel nullter Ordnung ist definiert als die Anfangskonzentration des Reaktanten geteilt durch die doppelte Halbwertszeit der Reaktion. Die doppelte Hälfte der Reaktion ist die Gesamtzeit für den Abschluss der Reaktion.

k=C02T1/2

Geschwindigkeit des Flugzeugs bei gegebener Überschussleistung

Die Geschwindigkeit des Flugzeugs bei gegebener Überschussleistung ist die LuftGeschwindigkeit, die erforderlich ist, um eine gegebene Steigrate beizubehalten, wobei die verfügbare Überschussleistung und das Gleichgewicht zwischen Schub- und Widerstandskräften während des Steigflugs berücksichtigt werden. Das Verständnis und die Anwendung dieser Formel ist für Piloten und Ingenieure von entscheidender Bedeutung, um die Steigleistung zu optimieren.

v=PexcessT-FD

Geschwindigkeit an jedem Punkt für den Staurohrkoeffizienten

Die Geschwindigkeit an jedem Punkt für den Koeffizienten der Pitotrohrformel ist bekannt, wenn man den Anstieg der Flüssigkeit im Rohr über die freie Oberfläche betrachtet, die die Höhe der Flüssigkeit am oberen Rand des Pitotrohrs ist.

Vp=Cv29.81hp

Geschwindigkeit über dem Normalschock aus der Normalschockenergiegleichung

Die Geschwindigkeit vor dem normalen Schock aus der Formel der normalen Schockenergiegleichung ist definiert als die Funktion der Gesamtenthalpie und der AufwärtsGeschwindigkeit vor dem normalen Schock. Die in der Formel verwendete Enthalpie ist die Enthalpie pro Masseneinheit.

V1=2(h2+V222-h1)

Geschwindigkeit hinter dem Normalschock aus der Normalschock-Energiegleichung

Die Geschwindigkeit hinter dem Normalschock aus der Normalschock-Energiegleichung berechnet die Geschwindigkeit einer Flüssigkeit stromabwärts einer normalen Stoßwelle unter Verwendung der Normalschock-Energiegleichung. Diese Formel berücksichtigt Parameter wie die Enthalpie vor und hinter dem Stoß und die Geschwindigkeit vor dem Stoß. Es liefert wesentliche Erkenntnisse über die Geschwindigkeitsänderung, die sich aus dem Durchgang der Stoßwelle ergibt.

V2=2(h1+V122-h2)

Geschwindigkeitsgleichung der Hydraulik

Die Formel zur Geschwindigkeitsgleichung der Hydraulik ist definiert als das Produkt aus Querschnittsfläche und GrundwasserGeschwindigkeit.

q=Av

Geschwindigkeit im radialen Abstand r1 bei gegebenem Drehmoment, das auf die Flüssigkeit ausgeübt wird

Die Geschwindigkeit im radialen Abstand r1 bei gegebenem auf die Flüssigkeit ausgeübtem Drehmoment ist definiert als das auf die Flüssigkeit ausgeübte Drehmoment, das zu einer Rotationsbewegung oder einem Fluss führt.

V1=qflowr2V2-(τΔ)r1qflow

Geschwindigkeit im radialen Abstand r2 bei gegebenem Drehmoment, das auf die Flüssigkeit ausgeübt wird

Die Geschwindigkeit bei radialem Abstand r2 bei gegebenem auf die Flüssigkeit ausgeübtem Drehmoment ist definiert als das Drehmoment, das die WinkelGeschwindigkeit beeinflusst. Es führt zu einer entsprechenden Änderung der Geschwindigkeit der Flüssigkeit, was zu einem bestimmten Wert bei gegebenem radialen Abstand führt.

V2=qflowr1V1+(τΔ)qflowr2

Geschwindigkeitskonstante bei gegebenem Sauerstoffäquivalent

Die Geschwindigkeitskonstante der Formel zum Sauerstoffäquivalent wird als Oxidationsrate organischer Stoffe definiert und hängt von der Art der organischen Stoffe und der Temperatur ab.

Kh=c-log(Lt,e)t

Geschwindigkeitskonstante bei gegebener Desoxygenierungskonstante

Die Geschwindigkeitskonstante in der Formel zur Sauerstoffentzugskonstante wird als Oxidationsrate organischer Stoffe definiert. Sie hängt von der Temperatur und der Art der im Abwasser vorhandenen organischen Stoffe ab.

K=KD0.434

Geschwindigkeit für geleistete Arbeit, wenn kein Energieverlust auftritt

Die Geschwindigkeit für geleistete Arbeit, wenn kein Energieverlust auftritt, ist die Änderungsrate seiner Position in Bezug auf einen Bezugssystem und ist eine Funktion der Zeit.

vf=(w2Gwf)+v2

Geschwindigkeit bei gegebener Effizienz des Systems

Die Geschwindigkeit bei gegebener Effizienz des Systems ist die Änderungsrate seiner Position in Bezug auf einen Bezugsrahmen und ist eine Funktion der Zeit.

vf=v1-η

Geschwindigkeit am Punkt bei gegebener Effizienz des Systems

Die Geschwindigkeit am Punkt bei gegebener Effizienz des Systems ist die Änderungsrate seiner Position in Bezug auf einen Referenzrahmen und ist eine Funktion der Zeit.

v=1-ηvf

Geschwindigkeitsskala angesichts der relativen Bedeutung der Viskosität

Die Geschwindigkeitsskala mit der relativen Bedeutung der Viskosität wird als typische Strömungssituation im Küstenbereich definiert. Bei einer Geschwindigkeitsskala von 1 ms−1 und einer Längenskala von 2 m ergibt sich ein Verhältnis von etwa 0,5 × 10−6, sodass wir die Auswirkungen der Viskosität vernachlässigen können.

V=vkLRi

Geschwindigkeit des Kraftstoffstrahls

Die Formel für die KraftstoffstrahlGeschwindigkeit ist definiert als die Geschwindigkeit, mit der der Kraftstoff von der Kraftstoffeinspritzdüse in die Brennkammer des Motors eingespritzt wird. Sie hängt von der Ausflussziffer der Blende, der Kraftstoffdichte und auch der durchschnittlichen Druckdifferenz über die Einspritzdauer ab.

Vfj=Cd(2(pin-pcy)ρf)

Geschwindigkeit der größeren Riemenscheibe gegeben Übersetzungsverhältnis des Synchronriemenantriebs

Die Drehzahl der größeren Riemenscheibe bei gegebenem Übersetzungsverhältnis des Synchronriemenantriebs wird verwendet, um die Drehzahl der größeren Riemenscheibe zu ermitteln, wenn die Drehzahl der kleineren Riemenscheibe und das Übersetzungsverhältnis des Systems bekannt sind.

n2=n1i

Geschwindigkeit der kleineren Riemenscheibe gegeben Übersetzungsverhältnis des Synchronriemenantriebs

Die Drehzahl der kleineren Riemenscheibe bei gegebenem Übersetzungsverhältnis des Synchronriemenantriebs wird verwendet, um die Drehzahl der größeren Riemenscheibe zu ermitteln, wenn die Drehzahl der größeren Riemenscheibe und das Übersetzungsverhältnis des Systems bekannt sind.

n1=n2i

Geschwindigkeit bei maximaler Ausdauer bei vorläufiger Ausdauer für Propeller-angetriebene Flugzeuge

Die Formel zur Berechnung der Geschwindigkeit bei maximaler Ausdauer bei vorläufiger Ausdauer für Propellerflugzeuge gibt Ihnen die Geschwindigkeit an, bei der das Flugzeug seine maximale Ausdauer erreicht. Dies ermöglicht eine effiziente Flugplanung und Optimierung des Treibstoffverbrauchs bei Ausdauermissionen.

V(Emax)=LDEmaxratioηln(WL(beg)WL,end)cE

Geschwindigkeit des Insassen im Verhältnis zum Fahrzeug nach der Kollision

Die Formel für die Geschwindigkeit des Insassen im Verhältnis zum Fahrzeug nach einer Kollision ist definiert als Maß für die Geschwindigkeit eines Insassen im Verhältnis zum Fahrzeug nach einer Kollision. Sie ist von entscheidender Bedeutung für die Einschätzung der Schwere des Aufpralls und der daraus resultierenden Verletzungen.

Vr=Voδoccd

Geschwindigkeitskonstante der Phase zwischen Blase und Wolke

Die Formel für die Geschwindigkeitskonstante der Phase zwischen Blase und Wolke wird als berechnete Geschwindigkeitskonstante definiert, wenn im Wirbelreaktor Blasenbildung auftritt.

Kbc=4.50(umfdb)+5.85(Df R)12([g])14db54

Geschwindigkeitskonstante der Phase zwischen Wolkenwache und Emulsion

Die Geschwindigkeitskonstante der Phase zwischen Wolkenwache und Emulsionsformel wird als berechnete Geschwindigkeitskonstante definiert, wenn Blasenbildung an der Grenzfläche im Wirbelschichtreaktor beim Kunii-Levenspiel-Modell auftritt.

Kce=6.77(εmfDf Rubrdb3)12

Geschwindigkeit für verzögerte Kohärenz bei der Photodissoziation

Die Geschwindigkeitsformel für die verzögerte Kohärenz bei der Photodissoziation ist definiert als die Größe der Änderung seiner Position über die Zeit oder die Größe der Änderung seiner Position pro Zeiteinheit während der verzögerten Kohärenz während der Photodissoziation des KrF-Moleküls.

vcov=2(Vcov_R0-Vcov_R)μcov

Geschwindigkeit im schnellen Wirbelbett

Die Formel „Geschwindigkeit im schnellen Wirbelschichtbett“ bezieht sich auf die AufwärtsGeschwindigkeit des Fluidisierungsgases, das zum Schweben und Fluidisieren fester Partikel im Bett verwendet wird. Schnelle Wirbelschichten zeichnen sich durch hohe GasGeschwindigkeiten aus, und diese Geschwindigkeiten liegen typischerweise deutlich über der minimalen FluidisierungsGeschwindigkeit.

uTB-FF=1.53(ρsolids-ρgas)[g]dpρgas

Geschwindigkeit in der pneumatischen Förderung

Die Geschwindigkeitsformel bei der pneumatischen Förderung ist definiert als die Geschwindigkeit, typischerweise ausgedrückt als Luft- oder GasGeschwindigkeit am Punkt der Injektion oder Einführung der Feststoffpartikel in das Fördersystem.

uFF-PC=((21.6((GSρgas)0.542)(d'p 0.315))[g]dp)11.542

Geschwindigkeitsverhältnis des Verbundgetriebes

Das Übersetzungsverhältnis eines zusammengesetzten Getriebes ist das Produkt der Übersetzungsverhältnisse jedes Zahnradpaars im Getriebe. Es wird durch Multiplikation der einzelnen Übersetzungsverhältnisse berechnet, wobei jedes Übersetzungsverhältnis das Verhältnis der Anzahl der Zähne des Antriebsrads zur Anzahl der Zähne des angetriebenen Rads ist.

i=PdP'd

Geschwindigkeit des Elektrons im Orbit bei gegebener WinkelGeschwindigkeit

Die Geschwindigkeit des Elektrons in der Umlaufbahn bei gegebener WinkelGeschwindigkeit ist eine Vektorgröße (sie hat sowohl Größe als auch Richtung) und ist die Zeitrate der Positionsänderung (eines Teilchens).

ve_AV=ωrorbit

Geschwindigkeit des Elektrons bei gegebener Zeitdauer des Elektrons

Die Geschwindigkeit des Elektrons bei gegebener Zeitdauer des Elektrons ist eine Vektorgröße (sie hat sowohl Größe als auch Richtung) und ist die Zeitrate der Positionsänderung (eines Teilchens).

velectron=2πrorbitT

Geschwindigkeit eines kleinen Elements für Längsschwingung

Die Formel für die Geschwindigkeit kleiner Elemente bei Längsschwingungen ist als Maß für die Geschwindigkeit kleiner Elemente bei einer Längsschwingung definiert, die durch die Trägheit der Einschränkung beeinflusst wird, und wird zur Analyse der Schwingungen in verschiedenen mechanischen Systemen verwendet.

vs=xVlongitudinall

Geschwindigkeitsverhältnis bei gegebener zurückgelegter Distanz aufgrund von Anstrengung und zurückgelegter Distanz aufgrund von Last

Das Geschwindigkeitsverhältnis bei durch Kraftaufwand zurückgelegter Strecke und durch Last zurückgelegter Strecke ist das Verhältnis der durch Kraftaufwand zurückgelegten Strecke zu der durch Last zurückgelegten Strecke. Es gibt an, wie die Maschine die durch Kraftaufwand zurückgelegte Strecke in die durch Last zurückgelegte Strecke umwandelt.

Vi=DeDl

Geschwindigkeitskoeffizient bei Druckverlust

Die Formel für den Geschwindigkeitskoeffizienten bei gegebenem Druckverlust ist durch Anwendung der Bernoulli-Gleichung am Auslass der Düse und auf den Wasserstrahl bekannt.

Cv=1-(hfH)

Geschwindigkeit für gegebene Wenderate bei hohem Lastfaktor

Die Geschwindigkeit für eine bestimmte Wenderate bei hohem Lastfaktor ist die Geschwindigkeit, die ein Flugzeug benötigt, um eine bestimmte Wenderate bei hohem Lastfaktor beizubehalten. Diese Formel berechnet die Geschwindigkeit basierend auf der Erdbeschleunigung, dem Lastfaktor und der Wenderate. Das Verständnis und die Anwendung dieser Formel ist für Piloten und Ingenieure unerlässlich, um die Manövrierfähigkeit von Flugzeugen zu optimieren.

v=[g]nω

Geschwindigkeit am Auslass für Druckverlust am Rohrausgang

Die Formel für die Geschwindigkeit am Auslass für den Druckverlust am Rohrausgang ist unter Berücksichtigung der Quadratwurzel des Druckverlusts am Rohrausgang und der Erdbeschleunigung bekannt.

v=ho2[g]

Geschwindigkeitsgradient bei Scherspannung

Die Formel für den Geschwindigkeitsgradienten bei gegebener Scherspannung ist als Geschwindigkeitsdifferenz zwischen benachbarten Fluidschichten definiert. Es ist das Verhältnis zwischen Geschwindigkeitsänderung und Abstandsänderung zwischen den Schichten.

dvdy=τμ

Geschwindigkeitsgradient

Die Geschwindigkeitsgradientenformel ist definiert als ein Verhältnis zwischen der Änderung der Geschwindigkeit zwischen benachbarten Schichten und der Änderung des Abstands zwischen aufeinanderfolgenden Punkten zwischen benachbarten Schichten.

dvdy=dvdy

Geschwindigkeit der Flüssigkeit bei gegebener Scherspannung

Die Formel für die Geschwindigkeit der Flüssigkeit bei gegebener Scherspannung ist als Funktion der Scherspannung, der dynamischen Viskosität und des Abstands zwischen den benachbarten Flüssigkeitsschichten definiert.

V=Yτμ

Geschwindigkeitspotential für 2D-Dublettströmung

Die Formel für das Geschwindigkeitspotenzial für eine 2D-Dublettströmung stellt das Geschwindigkeitspotenzial für eine 2D-Dublettströmung dar. Sie zeigt an, dass es umgekehrt proportional zur Entfernung vom Dublett ist und mit dem Winkel variiert.

ϕ=κ2πrcos(θ)

Geschwindigkeitspotential für 2D-Wirbelströmung

Die Formel für das Geschwindigkeitspotential für eine zweidimensionale Wirbelströmung ist als Funktion des Polarwinkels und der Stärke der Wirbelströmung definiert. Sie beschreibt die durch einen Wirbel verursachte Strömung, bei der das Geschwindigkeitspotential linear mit der Winkelkoordinate abnimmt.

ϕ=-(γ2π)θ

Geschwindigkeit planen

Die ZeitplanGeschwindigkeitsformel ist definiert als das Verhältnis der zwischen zwei Stopps zurückgelegten Strecke zur Gesamtzeit des Laufs einschließlich der Stoppzeit (Planungszeit).

Vs=DTrun+Tstop

Geschwindigkeit des Gasmoleküls bei gegebener Kraft

Die Geschwindigkeit des Gasmoleküls gegebene Kraftformel ist definiert als die Quadratwurzel des Produkts der Länge des rechteckigen Kastens und der Kraft pro Masse des Teilchens.

uF=FLm

Geschwindigkeit des Gasmoleküls in 1D bei gegebenem Druck

Die Geschwindigkeit des Gasmoleküls in der 1D gegebenen Druckformel ist definiert als unter der Wurzel des Verhältnisses des Gasdrucks multipliziert mit dem Volumen mit der Masse des Partikels.

up=PgasVboxm

Geschwindigkeit des Körpers bei gegebenem Impuls

Die Formel für die Geschwindigkeit eines Körpers bei gegebenem Impuls ist definiert als Maß für die Geschwindigkeit eines Objekts in eine bestimmte Richtung. Sie wird berechnet, indem der Impuls des Objekts durch seine Masse geteilt wird. Sie liefert ein grundlegendes Konzept zum Verständnis der Bewegung eines Objekts und ihrer Beziehung zur Kraft.

v=pmo

Geschwindigkeit der Impulsänderung bei gegebener Beschleunigung und Masse

Die Formel zur Änderungsrate des Impulses bei gegebener Beschleunigung und Masse ist definiert als ein Maß für die Rate, mit der sich der Impuls eines Objekts ändert, wenn auf es eine externe Kraft einwirkt, wobei die Masse des Objekts und seine Beschleunigung die Hauptfaktoren sind, die diese Änderung beeinflussen.

rm=moa

Geschwindigkeit des Projektils des Mach-Kegels im komprimierbaren Flüssigkeitsstrom

Die Geschwindigkeit des Projektils eines Mach-Kegels in einer kompressiblen Flüssigkeitsströmung beschreibt die Geschwindigkeit, mit der sich das Projektil bewegt, wenn es die SchallGeschwindigkeit im umgebenden Medium erreicht oder überschreitet. Das Verständnis dieser Geschwindigkeit ist in der Aerodynamik und Ballistik von entscheidender Bedeutung, da sie den Beginn von Stoßwellen und die aerodynamischen Herausforderungen anzeigt, die mit Überschall- und Hyperschallflügen verbunden sind.

V=Csin(μ)

Geschwindigkeit der Schallwelle unter Berücksichtigung des Mach-Winkels in einem komprimierbaren Flüssigkeitsstrom

Die Geschwindigkeit von Schallwellen unter Berücksichtigung des Mach-Winkels bei kompressibler Fluidströmung ist wichtig für das Verständnis, wie sich Schall durch ein Medium ausbreitet, wenn die FluidGeschwindigkeit die SchallGeschwindigkeit erreicht oder überschreitet. Diese Beziehung hilft bei der Vorhersage des Verhaltens von Stoßwellen und der Schallübertragung in verschiedenen Umgebungen und ist von wesentlicher Bedeutung in der Luft- und Raumfahrttechnik, der Akustik und der Untersuchung der HochGeschwindigkeitsfluiddynamik.

C=Vsin(μ)

Geschwindigkeit des Kolbens für die Scherkraft, die der Bewegung des Kolbens widersteht

Die Geschwindigkeit des Kolbens zur Widerstandsfähigkeit gegen Scherkräfte ist definiert als die durchschnittliche Geschwindigkeit, mit der sich der Kolben bewegt.

vpiston=FsπμLP(1.5(DCR)2+4(DCR))

Geschwindigkeit der Flüssigkeit

Die FlüssigkeitsGeschwindigkeit ist definiert als die Geschwindigkeit, mit der sich Flüssigkeit oder Öl im Tank aufgrund der Anwendung der Kolbenkraft bewegt.

uOiltank=dp|dr0.5RR-CHRμ

Geschwindigkeit des Kolbens bei Scherspannung

Die Geschwindigkeit des Kolbens bei Scherbeanspruchung ist definiert als die durchschnittliche Geschwindigkeit im Tank aufgrund der Bewegung des Kolbens.

vpiston=𝜏1.5DμCHCH

Geschwindigkeitsfaktor

Der Geschwindigkeitsfaktor ist definiert als der Wert, der zum Erhöhen des statischen Lastwerts verwendet wird, um den dynamischen Effekt bei der Konstruktion von Schienen zu berücksichtigen. Es wird allgemein als indische Formel bezeichnet.

Fsf=Vt18.2k

Wie finde ich Formeln?

Hier sind ein paar Tipps für bessere Suchergebnisse.
Seien Sie konkret: Je konkreter Ihre Suchanfrage, desto besser sind Ihre Ergebnisse.
Verwenden Sie mehrere Schlüsselwörter: Kombinieren Sie mehrere Schlüsselwörter, um die Ergebnisse einzugrenzen.
Experimentieren Sie mit Synonymen: Unterschiedliche Begriffe können zu unterschiedlichen Ergebnissen führen.
Platzhaltersuche: Verwenden Sie den Operator * (Sternchen). BEACHTEN SIE, dass dieser Operator nur am Ende eines Wortes funktioniert. Beispiel: Bio*, Bereich* usw.

Alternativ können Sie durch die Unterkategorien innerhalb von navigieren, um die Formeln einzugrenzen, die Sie interessieren.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!