Suche Formeln

Bitte geben Sie mindestens 3 Zeichen ein, um mit der Suche nach -Formeln zu beginnen.

Wählen Sie Filter

Grenzen Sie Ihre Suchergebnisse mithilfe dieser Filter ein.

50 Passende Formeln gefunden!

Geschwindigkeit der Welle in String

Die Geschwindigkeit der Welle in String bezieht sich im allgemeinen Sprachgebrauch auf Geschwindigkeit, obwohl Geschwindigkeit eigentlich sowohl Geschwindigkeit als auch Richtung impliziert. Die Geschwindigkeit einer Welle ist gleich dem Produkt aus Wellenlänge und Frequenz (Anzahl der Schwingungen pro Sekunde) und unabhängig von ihrer Intensität.

Vw=Tm

Geschwindigkeit des Elektrons in Bohrs Umlaufbahn

Die Geschwindigkeit des Elektrons in Bohrs Umlaufbahn ist eine Vektorgröße (sie hat sowohl Größe als auch Richtung) und ist die zeitliche Änderungsrate der Position (eines Teilchens).

ve_BO=[Charge-e]22[Permitivity-vacuum]nquantum[hP]

Geschwindigkeit des Serien-DC-Motors

Die Formel für die Geschwindigkeit des Serien-DC-Motors ist definiert als die Geschwindigkeit, mit der sich der Rotor dreht, und die SynchronGeschwindigkeit ist die Geschwindigkeit des Statormagnetfelds im Dreiphasen-Induktionsmotor.

N=Vs-Ia(Ra+Rsh)KfΦ

Geschwindigkeit an mittlerer Position

Die Formel für die Geschwindigkeit an der mittleren Position ist definiert als Maß für die Geschwindigkeit eines Objekts an seiner mittleren Position während freier Längsschwingungen und bietet Einblick in das Schwingungsverhalten des Objekts und seine Eigenfrequenz.

v=(ωfx)cos(ωfttotal)

Geschwindigkeitsverhältnis

Die Formel für das Drehzahlverhältnis ist eine dimensionslose Größe, die das Strömungsverhalten einer Kreiselpumpe charakterisiert. Sie stellt eine Beziehung zwischen der UmfangsGeschwindigkeit des Laufrads und der SpritzGeschwindigkeit der Flüssigkeit her, die für die Konstruktion und Optimierung der Pumpenleistung von wesentlicher Bedeutung ist.

Ku=u22[g]Hm

Geschwindigkeitsverhältnis in Westons Differentialriemenscheibe bei gegebener Anzahl von Zähnen

Das Geschwindigkeitsverhältnis in der Differentialriemenscheibe von Weston bei gegebener Zähnezahl kann auch anhand der Zähnezahl der beiden Zahnräder (die den beiden Riemenscheiben entsprechen) ausgedrückt werden.

Vi=2T1T1-T2

Geschwindigkeitsverhältnis in Westons Differenzialriemenscheibe bei gegebenem Riemenscheibenradius

Das Geschwindigkeitsverhältnis in Westons Differentialriemenscheibe bei gegebenem Riemenscheibenradius kann mithilfe der Radien der beiden beteiligten Riemenscheiben ermittelt werden.

Vi=2r1r1-r2

Geschwindigkeitsverhältnis von Schnecke und Schneckenrad

Das Übersetzungsverhältnis von Schnecken- und Schneckenradgetrieben gibt den mechanischen Vorteil an, den das System bietet. Es ist das Verhältnis der durch die Kraft (Eingang) zurückgelegten Strecke zur durch die Last (Ausgang) zurückgelegten Strecke.

Vi=DmTw2Rd

Geschwindigkeitsverhältnis von Schnecke und Schneckenrad, wenn die Schnecke ein Doppelgewinde hat

Das Geschwindigkeitsverhältnis von Schnecke und Schneckenrad ist bei einer Schnecke mit zwei Gewinden das Verhältnis der Anzahl der Zähne auf dem Schneckenrad zur Anzahl der Gewinde auf der Schnecke. Diese Formel berechnet den mechanischen Vorteil des Schneckengetriebesystems und gibt an, wie viele Umdrehungen der Schnecke erforderlich sind, um eine Umdrehung des Schneckenrads auszuführen.

Vi=dwTw4Rd

Geschwindigkeitsverhältnis von Schnecke und Schneckenrad, wenn die Schnecke mehrere Gewindegänge hat

Das Geschwindigkeitsverhältnis von Schnecke und Schneckenrad ist bei Schnecken mit mehreren Gewinden das Verhältnis der Anzahl der Zähne auf dem Schneckenrad zur Anzahl der Gewindegänge (Anfänge) auf der Schnecke. Diese Formel bestimmt, wie viele Umdrehungen der Schnecke erforderlich sind, um das Schneckenrad einmal zu drehen, und gibt den mechanischen Vorteil und die Untersetzung an, die das System bietet.

Vi=dwTw2nRd

Geschwindigkeitsverhältnis des Schneckenrad-Riemenscheibenblocks

Das Geschwindigkeitsverhältnis eines Flaschenzugs mit Schneckengetriebe bezieht sich auf das Verhältnis der durch die Kraft zurückgelegten Distanz zur durch die Last zurückgelegten Distanz. Es ist ein Maß für den mechanischen Vorteil, den der Schneckengetriebemechanismus bietet.

Vi=dwTwR

Geschwindigkeitsverhältnis eines einfachen Spindelhubgetriebes

Das Geschwindigkeitsverhältnis eines einfachen Spindelhubgetriebes beschreibt das Verhältnis zwischen der durch die Kraft zurückgelegten Distanz und der durch die Last zurückgelegten Distanz. Es spiegelt den mechanischen Vorteil wider, den das Spindelhubsystem bietet.

Vi=2πlPs

Geschwindigkeitsverhältnis des Differenzial-Spindelhubgetriebes

Das Geschwindigkeitsverhältnis eines Differentialspindelhubgetriebes ist ein Maß für den mechanischen Vorteil, den das System bietet. Es beschreibt das Verhältnis der durch die Kraft zurückgelegten Distanz zur durch die Last zurückgelegten Distanz.

Vi=2πlpa-pb

Geschwindigkeitsverhältnis des Spindelhubgetriebes mit Schneckengetriebe

Das Übersetzungsverhältnis eines Spindelhubgetriebes mit Schneckengetriebe misst den mechanischen Vorteil des Systems, indem es die durch die Kraft zurückgelegte Distanz mit der durch die Last zurückgelegten Distanz vergleicht. Bei einem Spindelhubgetriebe mit Schneckengetriebe treibt das Schneckengetriebe den Schraubmechanismus an, und das Übersetzungsverhältnis wird durch die Getriebe- und Schraubparameter beeinflusst.

Vi=2πRwTsPs

Geschwindigkeitsverhältnis eines Spindelhubgetriebes mit Schneckengetriebe und Doppelgewinde

Geschwindigkeitsverhältnis eines Spindelhubelements mit Schneckengetriebe und parallel verlaufenden Doppelgewinden, die sich auf die Steigung und damit auf das Geschwindigkeitsverhältnis auswirken.

Vi=2πRwTw2Ps

Geschwindigkeitsverhältnis eines Spindelhubgetriebes mit Schneckengetriebe und mehreren Gewindegängen

Das Geschwindigkeitsverhältnis eines Spindelhubgetriebes mit Schneckengetriebe und mehreren Gewinden wird durch die Anzahl der Gewinde beeinflusst, die wiederum die Steigung der Schraube bestimmen.

Vi=2πRwTwnPs

Geschwindigkeit der Schallwelle bei gegebenem Volumenmodul

Die Geschwindigkeit der Schallwelle in Abhängigkeit vom Kompressionsmodul des Mediums gibt Aufschluss darüber, wie schnell sich Schall durch das Material bewegt. Das Verständnis dieser Beziehung ist in der Akustik, der Materialwissenschaft und in technischen Anwendungen von entscheidender Bedeutung, bei denen die Schallausbreitung und die mechanischen Eigenschaften von Materialien wichtige Überlegungen darstellen.

C=Kρa

Geschwindigkeit der Schallwelle unter Verwendung eines isothermen Prozesses

Die Geschwindigkeit von Schallwellen mithilfe isothermer Prozesse bietet Einblicke in die Auswirkungen der Temperatur und der physikalischen Eigenschaften von Gasen auf die Geschwindigkeit, mit der sich Schall ausbreitet. Dies ermöglicht präzise Berechnungen und fundierte Designentscheidungen in der Akustik, Aerodynamik und verschiedenen technologischen Anwendungen.

C=Rc

Geschwindigkeit der Schallwelle unter Verwendung des adiabatischen Prozesses

Die Geschwindigkeit einer Schallwelle hängt bei einem adiabatischen Prozess vom Adiabatenindex (Verhältnis der spezifischen Wärmekapazitäten), der universellen Gaskonstante, der absoluten Temperatur des Gases und der Molmasse des Gases ab.

C=yRc

Geschwindigkeit der Schallwelle bei gegebener Machzahl für komprimierbare Flüssigkeitsströmung

Die Geschwindigkeit der Schallwelle bei gegebener Mach-Zahl für kompressible Flüssigkeitsströmungen gibt die Geschwindigkeit an, mit der sich Schall durch das Medium ausbreitet, relativ zur SchallGeschwindigkeit in diesem Medium. Diese Beziehung ist von grundlegender Bedeutung in der Aerodynamik, der Luft- und Raumfahrttechnik und der Akustik, wo die Mach-Zahl das Strömungsregime charakterisiert und das Verhalten von Stoßwellen und Schallübertragung beeinflusst.

C=VM

Geschwindigkeit in mittlerer Distanz

Die Formel für die Geschwindigkeit in mittlerer Entfernung ist definiert als die Geschwindigkeit der Lichtwelle, die im EDM-Instrument verwendet wird, wenn sich die Welle von einem Punkt zum anderen bewegt.

c=2DΔt

Geschwindigkeit der Kugel bei gegebener Widerstandskraft auf der Kugeloberfläche

Die Geschwindigkeit der Kugel bei gegebener Widerstandskraft auf der Kugeloberfläche ist definiert als die Geschwindigkeit des Objekts in der fließenden Flüssigkeit.

Vmean=Fresistance3πμDS

Geschwindigkeit der Sphäre bei gegebener Widerstandskraft

Die Geschwindigkeit der Kugel bei gegebener Widerstandskraft ist definiert als die EndGeschwindigkeit, die das Objekt im Strömungsmedium erreicht.

Vmean=FDACDρ0.5

Geschwindigkeit der Kugel bei gegebenem Luftwiderstandsbeiwert

Die Geschwindigkeit der Kugel bei gegebenem Widerstandskoeffizienten ist definiert als die durchschnittliche Geschwindigkeit, mit der die Kugel den Strom bewegt.

Vmean=24μρCDDS

Geschwindigkeit der Flüssigkeit bei gegebenem Schub, der senkrecht zur Platte ausgeübt wird

Die Geschwindigkeit des Fluids bei gegebenem Schub, der senkrecht zur Platte ausgeübt wird, ist definiert als die Änderungsrate seiner Position in Bezug auf einen Referenzrahmen und ist eine Funktion der Zeit.

vjet=Fp[g]γfAJet(sin(∠D))

Geschwindigkeit der Flüssigkeit bei gegebenem Schub parallel zum Strahl

Die Geschwindigkeit des Fluids bei gegebenem Schub parallel zum Strahl ist die Änderungsrate seiner Position in Bezug auf einen Bezugsrahmen und eine Funktion der Zeit.

vjet=FX[g]γfAJet(sin(∠D))2

Geschwindigkeit der Flüssigkeit bei gegebenem Schub normal zum Strahl

Die Geschwindigkeit des Fluids bei gegebenem Schub normal zum Jet ist die Änderungsrate seiner Position in Bezug auf einen Referenzrahmen und eine Funktion der Zeit.

vjet=FY[g]γfAJet(sin(∠D))cos(∠D)

Geschwindigkeit für die Wellenlänge der Welle

Die Formel zur Berechnung der Geschwindigkeit für die Wellenlänge einer Welle ist definiert als die Geschwindigkeit, mit der sich die Welle durch ein Medium ausbreitet, berechnet als Produkt ihrer Frequenz und Wellenlänge.

C=(λf)

Geschwindigkeit der Schallwelle

Die Formel zur Berechnung der SchallwellenGeschwindigkeit wird als Geschwindigkeit definiert, obwohl Geschwindigkeit eigentlich sowohl Geschwindigkeit als auch Richtung impliziert. Die Geschwindigkeit einer Welle ist gleich dem Produkt aus Wellenlänge und Frequenz (Anzahl der Schwingungen pro Sekunde) und ist unabhängig von ihrer Intensität.

C=20.05T

Geschwindigkeit der Schallwelle gegeben Schallintensität

Die Geschwindigkeit einer Schallwelle wird bei gegebener Schallintensitätsformel als Tempo definiert, obwohl Geschwindigkeit eigentlich sowohl Geschwindigkeit als auch Richtung impliziert. Die Geschwindigkeit einer Welle ist gleich dem Produkt aus Wellenlänge und Frequenz (Anzahl der Schwingungen pro Sekunde) und ist unabhängig von ihrer Intensität.

C=Prms2Iρ

Geschwindigkeit am Einlass für die Masse des Fluids, das pro Sekunde auf die Leitschaufel auftrifft

Die Geschwindigkeit am Einlass für die Masse des auf die Leitschaufel auftreffenden Fluids pro Sekunde ist die Änderungsrate ihrer Position in Bezug auf den Referenzrahmen und ist eine Funktion der Zeit.

v=mfGγfAJet

Geschwindigkeit in Tiefe 1 bei gegebener absoluter Geschwindigkeit der Welle, die sich nach rechts bewegt

Die Geschwindigkeit in der Tiefe1 ist nach der Formel „Absolute Geschwindigkeit der Welle, die sich nach rechts bewegt“ als die resultierende Geschwindigkeit in einer bestimmten Tiefe aufgrund der Kombination von Welle und horizontaler Bewegung definiert.

VNegativesurges=(vabs(D2-h 1))+(V2D2)h 1

Geschwindigkeit in Tiefe2 bei gegebener absoluter Geschwindigkeit der Wellen, die sich nach rechts bewegen

Die Geschwindigkeit in Tiefe 2 ist nach der Formel „Absolute Geschwindigkeit der Wellen, die sich nach rechts bewegen“ als die resultierende Geschwindigkeit in Tiefe 2 unter Berücksichtigung der Wellenbewegung definiert.

V2=(vabs(h 1-D2))+(VNegativesurgesh 1)D2

Geschwindigkeit in Tiefe 1 bei absoluter AnstiegsGeschwindigkeit, wenn der Fluss vollständig gestoppt ist

Die Geschwindigkeit in Tiefe 1, wenn die Formel „Absolute SchwallGeschwindigkeit bei vollständig gestopptem Fluss“ definiert ist, ist als anfängliche WasserGeschwindigkeit während eines abrupten Stopps definiert.

VNegativesurges=vabs(D2-h 1)h 1

Geschwindigkeit der Welle in Wellen

Die Formel für die WellenGeschwindigkeit in Wellen ist definiert als die Addition zur normalen WasserGeschwindigkeit von Kanälen in offener Kanalströmung.

Cw=[g]D2(D2+h 1)2h 1

Geschwindigkeit der Welle bei gegebener Geschwindigkeit in Tiefe1

Die Formel „WellenGeschwindigkeit bei gegebener Geschwindigkeit in der Tiefe“1 ist definiert als die Höhe der Strömungsänderung, die im Kanal auftritt.

Cw=VNegativesurges([g](D2+h 1)2h 1Hch)

Geschwindigkeit in Tiefe 1, wenn die Höhe des Schwalls für die Schwallhöhe eine vernachlässigbare Fließtiefe ist

Die Geschwindigkeit in Tiefe1, wenn die Schwallhöhe für die Schwallhöhe vernachlässigbar ist. Die Formel für die Strömungstiefe ist als Geschwindigkeit des Strömungsschwalls an einem Punkt definiert.

VNegativesurges=(Hch[g]Cw)+V2

Geschwindigkeit der Welle bei gegebener Schwallhöhe, da die Schwallhöhe eine vernachlässigbare Strömungstiefe ist

Die Geschwindigkeit der Welle bei gegebener Schwallhöhe für Schwallhöhe ist vernachlässigbar. Die Formel für die Tiefe der Strömung ist definiert als plötzliche Änderungen in der Strömung.

Cw=Hch[g]VNegativesurges

Geschwindigkeit der Welle bei gegebener absoluter Geschwindigkeit von Überspannungen

Die Wellenschnelligkeit bei absoluter StoßGeschwindigkeit ist definiert als plötzliche Änderungen der Strömung durch Stoßwellen.

Cw=vabs-vm

Geschwindigkeit eines langsamen Fahrzeugs mit OSD

Die Geschwindigkeit eines langsamen Fahrzeugs unter Verwendung von OSD wird verwendet, um die Geschwindigkeit des Fahrzeugs zu ermitteln, das von einem sich schnell bewegenden Fahrzeug überholt werden muss, wenn OSD gegeben wird.

Vb=OSD-VT-2ltr+T+1.4

Geschwindigkeit des Insassen im Verhältnis zum Fahrzeug nach der Kollision

Die Formel für die Geschwindigkeit des Insassen im Verhältnis zum Fahrzeug nach einer Kollision ist definiert als Maß für die Geschwindigkeit eines Insassen im Verhältnis zum Fahrzeug nach einer Kollision. Sie ist von entscheidender Bedeutung für die Einschätzung der Schwere des Aufpralls und der daraus resultierenden Verletzungen.

Vr=Voδoccd

Geschwindigkeitskonstante der Phase zwischen Blase und Wolke

Die Formel für die Geschwindigkeitskonstante der Phase zwischen Blase und Wolke wird als berechnete Geschwindigkeitskonstante definiert, wenn im Wirbelreaktor Blasenbildung auftritt.

Kbc=4.50(umfdb)+5.85(Df R)12([g])14db54

Geschwindigkeitskonstante der Phase zwischen Wolkenwache und Emulsion

Die Geschwindigkeitskonstante der Phase zwischen Wolkenwache und Emulsionsformel wird als berechnete Geschwindigkeitskonstante definiert, wenn Blasenbildung an der Grenzfläche im Wirbelschichtreaktor beim Kunii-Levenspiel-Modell auftritt.

Kce=6.77(εmfDf Rubrdb3)12

Geschwindigkeit für verzögerte Kohärenz bei der Photodissoziation

Die Geschwindigkeitsformel für die verzögerte Kohärenz bei der Photodissoziation ist definiert als die Größe der Änderung seiner Position über die Zeit oder die Größe der Änderung seiner Position pro Zeiteinheit während der verzögerten Kohärenz während der Photodissoziation des KrF-Moleküls.

vcov=2(Vcov_R0-Vcov_R)μcov

Geschwindigkeit im schnellen Wirbelbett

Die Formel „Geschwindigkeit im schnellen Wirbelschichtbett“ bezieht sich auf die AufwärtsGeschwindigkeit des Fluidisierungsgases, das zum Schweben und Fluidisieren fester Partikel im Bett verwendet wird. Schnelle Wirbelschichten zeichnen sich durch hohe GasGeschwindigkeiten aus, und diese Geschwindigkeiten liegen typischerweise deutlich über der minimalen FluidisierungsGeschwindigkeit.

uTB-FF=1.53(ρsolids-ρgas)[g]dpρgas

Geschwindigkeit in der pneumatischen Förderung

Die Geschwindigkeitsformel bei der pneumatischen Förderung ist definiert als die Geschwindigkeit, typischerweise ausgedrückt als Luft- oder GasGeschwindigkeit am Punkt der Injektion oder Einführung der Feststoffpartikel in das Fördersystem.

uFF-PC=((21.6((GSρgas)0.542)(d'p 0.315))[g]dp)11.542

Geschwindigkeitsverhältnis des Verbundgetriebes

Das Übersetzungsverhältnis eines zusammengesetzten Getriebes ist das Produkt der Übersetzungsverhältnisse jedes Zahnradpaars im Getriebe. Es wird durch Multiplikation der einzelnen Übersetzungsverhältnisse berechnet, wobei jedes Übersetzungsverhältnis das Verhältnis der Anzahl der Zähne des Antriebsrads zur Anzahl der Zähne des angetriebenen Rads ist.

i=PdP'd

Geschwindigkeit des Elektrons im Orbit bei gegebener WinkelGeschwindigkeit

Die Geschwindigkeit des Elektrons in der Umlaufbahn bei gegebener WinkelGeschwindigkeit ist eine Vektorgröße (sie hat sowohl Größe als auch Richtung) und ist die Zeitrate der Positionsänderung (eines Teilchens).

ve_AV=ωrorbit

Geschwindigkeit des Elektrons bei gegebener Zeitdauer des Elektrons

Die Geschwindigkeit des Elektrons bei gegebener Zeitdauer des Elektrons ist eine Vektorgröße (sie hat sowohl Größe als auch Richtung) und ist die Zeitrate der Positionsänderung (eines Teilchens).

velectron=2πrorbitT

Geschwindigkeit eines kleinen Elements für Längsschwingung

Die Formel für die Geschwindigkeit kleiner Elemente bei Längsschwingungen ist als Maß für die Geschwindigkeit kleiner Elemente bei einer Längsschwingung definiert, die durch die Trägheit der Einschränkung beeinflusst wird, und wird zur Analyse der Schwingungen in verschiedenen mechanischen Systemen verwendet.

vs=xVlongitudinall

Wie finde ich Formeln?

Hier sind ein paar Tipps für bessere Suchergebnisse.
Seien Sie konkret: Je konkreter Ihre Suchanfrage, desto besser sind Ihre Ergebnisse.
Verwenden Sie mehrere Schlüsselwörter: Kombinieren Sie mehrere Schlüsselwörter, um die Ergebnisse einzugrenzen.
Experimentieren Sie mit Synonymen: Unterschiedliche Begriffe können zu unterschiedlichen Ergebnissen führen.
Platzhaltersuche: Verwenden Sie den Operator * (Sternchen). BEACHTEN SIE, dass dieser Operator nur am Ende eines Wortes funktioniert. Beispiel: Bio*, Bereich* usw.

Alternativ können Sie durch die Unterkategorien innerhalb von navigieren, um die Formeln einzugrenzen, die Sie interessieren.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!