Suche Formeln

Bitte geben Sie mindestens 3 Zeichen ein, um mit der Suche nach -Formeln zu beginnen.

Wählen Sie Filter

Grenzen Sie Ihre Suchergebnisse mithilfe dieser Filter ein.

50 Passende Formeln gefunden!

Geschwindigkeit des Alpha-Teilchens unter Verwendung der Entfernung der nächsten Annäherung

Die Geschwindigkeit des Alpha-Teilchens unter Verwendung der Entfernung der nächsten Annäherung ist die Geschwindigkeit, mit der sich ein Alpha-Teilchen in einem Atomkern bewegt.

v=[Coulomb]Z([Charge-e]2)[Atomic-m]r0

Geschwindigkeitsverhältnis in Westons Differentialriemenscheibe bei gegebener Anzahl von Zähnen

Das Geschwindigkeitsverhältnis in der Differentialriemenscheibe von Weston bei gegebener Zähnezahl kann auch anhand der Zähnezahl der beiden Zahnräder (die den beiden Riemenscheiben entsprechen) ausgedrückt werden.

Vi=2T1T1-T2

Geschwindigkeitsverhältnis in Westons Differenzialriemenscheibe bei gegebenem Riemenscheibenradius

Das Geschwindigkeitsverhältnis in Westons Differentialriemenscheibe bei gegebenem Riemenscheibenradius kann mithilfe der Radien der beiden beteiligten Riemenscheiben ermittelt werden.

Vi=2r1r1-r2

Geschwindigkeitsverhältnis von Schnecke und Schneckenrad

Das Übersetzungsverhältnis von Schnecken- und Schneckenradgetrieben gibt den mechanischen Vorteil an, den das System bietet. Es ist das Verhältnis der durch die Kraft (Eingang) zurückgelegten Strecke zur durch die Last (Ausgang) zurückgelegten Strecke.

Vi=DmTw2Rd

Geschwindigkeitsverhältnis von Schnecke und Schneckenrad, wenn die Schnecke ein Doppelgewinde hat

Das Geschwindigkeitsverhältnis von Schnecke und Schneckenrad ist bei einer Schnecke mit zwei Gewinden das Verhältnis der Anzahl der Zähne auf dem Schneckenrad zur Anzahl der Gewinde auf der Schnecke. Diese Formel berechnet den mechanischen Vorteil des Schneckengetriebesystems und gibt an, wie viele Umdrehungen der Schnecke erforderlich sind, um eine Umdrehung des Schneckenrads auszuführen.

Vi=dwTw4Rd

Geschwindigkeitsverhältnis von Schnecke und Schneckenrad, wenn die Schnecke mehrere Gewindegänge hat

Das Geschwindigkeitsverhältnis von Schnecke und Schneckenrad ist bei Schnecken mit mehreren Gewinden das Verhältnis der Anzahl der Zähne auf dem Schneckenrad zur Anzahl der Gewindegänge (Anfänge) auf der Schnecke. Diese Formel bestimmt, wie viele Umdrehungen der Schnecke erforderlich sind, um das Schneckenrad einmal zu drehen, und gibt den mechanischen Vorteil und die Untersetzung an, die das System bietet.

Vi=dwTw2nRd

Geschwindigkeitsverhältnis des Schneckenrad-Riemenscheibenblocks

Das Geschwindigkeitsverhältnis eines Flaschenzugs mit Schneckengetriebe bezieht sich auf das Verhältnis der durch die Kraft zurückgelegten Distanz zur durch die Last zurückgelegten Distanz. Es ist ein Maß für den mechanischen Vorteil, den der Schneckengetriebemechanismus bietet.

Vi=dwTwR

Geschwindigkeitsverhältnis eines einfachen Spindelhubgetriebes

Das Geschwindigkeitsverhältnis eines einfachen Spindelhubgetriebes beschreibt das Verhältnis zwischen der durch die Kraft zurückgelegten Distanz und der durch die Last zurückgelegten Distanz. Es spiegelt den mechanischen Vorteil wider, den das Spindelhubsystem bietet.

Vi=2πlPs

Geschwindigkeitsverhältnis des Differenzial-Spindelhubgetriebes

Das Geschwindigkeitsverhältnis eines Differentialspindelhubgetriebes ist ein Maß für den mechanischen Vorteil, den das System bietet. Es beschreibt das Verhältnis der durch die Kraft zurückgelegten Distanz zur durch die Last zurückgelegten Distanz.

Vi=2πlpa-pb

Geschwindigkeitsverhältnis des Spindelhubgetriebes mit Schneckengetriebe

Das Übersetzungsverhältnis eines Spindelhubgetriebes mit Schneckengetriebe misst den mechanischen Vorteil des Systems, indem es die durch die Kraft zurückgelegte Distanz mit der durch die Last zurückgelegten Distanz vergleicht. Bei einem Spindelhubgetriebe mit Schneckengetriebe treibt das Schneckengetriebe den Schraubmechanismus an, und das Übersetzungsverhältnis wird durch die Getriebe- und Schraubparameter beeinflusst.

Vi=2πRwTsPs

Geschwindigkeitsverhältnis eines Spindelhubgetriebes mit Schneckengetriebe und Doppelgewinde

Geschwindigkeitsverhältnis eines Spindelhubelements mit Schneckengetriebe und parallel verlaufenden Doppelgewinden, die sich auf die Steigung und damit auf das Geschwindigkeitsverhältnis auswirken.

Vi=2πRwTw2Ps

Geschwindigkeitsverhältnis eines Spindelhubgetriebes mit Schneckengetriebe und mehreren Gewindegängen

Das Geschwindigkeitsverhältnis eines Spindelhubgetriebes mit Schneckengetriebe und mehreren Gewinden wird durch die Anzahl der Gewinde beeinflusst, die wiederum die Steigung der Schraube bestimmen.

Vi=2πRwTwnPs

Geschwindigkeitskonstante für die Reaktion nullter Ordnung aus der Arrhenius-Gleichung

Die Geschwindigkeitskonstante für eine Reaktion nullter Ordnung aus der Arrhenius-Gleichungsformel ist definiert als das Produkt des Frequenzfaktors mit einer empirischen Form der negativen Aktivierungsenergie pro universeller Gaskonstante multipliziert mit der Temperatur, und die Geschwindigkeitskonstante der Arrhenius-Gleichung ist umgekehrt proportional zur Reaktionstemperatur.

k0=Afactor-zeroorderexp(-Ea1[R]TZeroOrder)

Geschwindigkeitskonstante für die Reaktion erster Ordnung aus der Arrhenius-Gleichung

Die Geschwindigkeitskonstante für die Reaktion erster Ordnung aus der Arrhenius-Gleichungsformel ist definiert als der Frequenzfaktor multipliziert mit dem Exponential der negativen Aktivierungsenergie pro universeller Gaskonstante und Temperatur. Die Geschwindigkeitskonstante der Reaktion erster Ordnung ist umgekehrt proportional zur Reaktionstemperatur. Mit steigender Reaktionstemperatur nimmt die Geschwindigkeitskonstante ab.

kfirst=Afactor-firstorderexp(-Ea1[R]TFirstOrder)

Geschwindigkeitskonstante für die Reaktion zweiter Ordnung aus der Arrhenius-Gleichung

Die Geschwindigkeitskonstante für die Reaktion zweiter Ordnung aus der Arrhenius-Gleichungsformel ist definiert als Frequenzfaktor multipliziert mit der Exponentialform der negativen Aktivierungsenergie pro universeller Gaskonstante und Temperatur. Die Geschwindigkeitskonstante der Reaktion zweiter Ordnung ist umgekehrt proportional zur Reaktionstemperatur.

Ksecond=Afactor-secondorderexp(-Ea1[R]TSecondOrder)

Geschwindigkeit der Schallwelle bei gegebenem Volumenmodul

Die Geschwindigkeit der Schallwelle in Abhängigkeit vom Kompressionsmodul des Mediums gibt Aufschluss darüber, wie schnell sich Schall durch das Material bewegt. Das Verständnis dieser Beziehung ist in der Akustik, der Materialwissenschaft und in technischen Anwendungen von entscheidender Bedeutung, bei denen die Schallausbreitung und die mechanischen Eigenschaften von Materialien wichtige Überlegungen darstellen.

C=Kρa

Geschwindigkeit der Schallwelle unter Verwendung eines isothermen Prozesses

Die Geschwindigkeit von Schallwellen mithilfe isothermer Prozesse bietet Einblicke in die Auswirkungen der Temperatur und der physikalischen Eigenschaften von Gasen auf die Geschwindigkeit, mit der sich Schall ausbreitet. Dies ermöglicht präzise Berechnungen und fundierte Designentscheidungen in der Akustik, Aerodynamik und verschiedenen technologischen Anwendungen.

C=Rc

Geschwindigkeit der Schallwelle unter Verwendung des adiabatischen Prozesses

Die Geschwindigkeit einer Schallwelle hängt bei einem adiabatischen Prozess vom Adiabatenindex (Verhältnis der spezifischen Wärmekapazitäten), der universellen Gaskonstante, der absoluten Temperatur des Gases und der Molmasse des Gases ab.

C=yRc

Geschwindigkeit der Schallwelle bei gegebener Machzahl für komprimierbare Flüssigkeitsströmung

Die Geschwindigkeit der Schallwelle bei gegebener Mach-Zahl für kompressible Flüssigkeitsströmungen gibt die Geschwindigkeit an, mit der sich Schall durch das Medium ausbreitet, relativ zur SchallGeschwindigkeit in diesem Medium. Diese Beziehung ist von grundlegender Bedeutung in der Aerodynamik, der Luft- und Raumfahrttechnik und der Akustik, wo die Mach-Zahl das Strömungsregime charakterisiert und das Verhalten von Stoßwellen und Schallübertragung beeinflusst.

C=VM

Geschwindigkeit in mittlerer Distanz

Die Formel für die Geschwindigkeit in mittlerer Entfernung ist definiert als die Geschwindigkeit der Lichtwelle, die im EDM-Instrument verwendet wird, wenn sich die Welle von einem Punkt zum anderen bewegt.

c=2DΔt

Geschwindigkeit der Kugel bei gegebener Widerstandskraft auf der Kugeloberfläche

Die Geschwindigkeit der Kugel bei gegebener Widerstandskraft auf der Kugeloberfläche ist definiert als die Geschwindigkeit des Objekts in der fließenden Flüssigkeit.

Vmean=Fresistance3πμDS

Geschwindigkeit der Sphäre bei gegebener Widerstandskraft

Die Geschwindigkeit der Kugel bei gegebener Widerstandskraft ist definiert als die EndGeschwindigkeit, die das Objekt im Strömungsmedium erreicht.

Vmean=FDACDρ0.5

Geschwindigkeit der Kugel bei gegebenem Luftwiderstandsbeiwert

Die Geschwindigkeit der Kugel bei gegebenem Widerstandskoeffizienten ist definiert als die durchschnittliche Geschwindigkeit, mit der die Kugel den Strom bewegt.

Vmean=24μρCDDS

Geschwindigkeit des Kolbens für die Scherkraft, die der Bewegung des Kolbens widersteht

Die Geschwindigkeit des Kolbens zur Widerstandsfähigkeit gegen Scherkräfte ist definiert als die durchschnittliche Geschwindigkeit, mit der sich der Kolben bewegt.

vpiston=FsπμLP(1.5(DCR)2+4(DCR))

Geschwindigkeit der Flüssigkeit

Die FlüssigkeitsGeschwindigkeit ist definiert als die Geschwindigkeit, mit der sich Flüssigkeit oder Öl im Tank aufgrund der Anwendung der Kolbenkraft bewegt.

uOiltank=dp|dr0.5RR-CHRμ

Geschwindigkeit des Kolbens bei Scherspannung

Die Geschwindigkeit des Kolbens bei Scherbeanspruchung ist definiert als die durchschnittliche Geschwindigkeit im Tank aufgrund der Bewegung des Kolbens.

vpiston=𝜏1.5DμCHCH

Geschwindigkeitsfaktor

Der Geschwindigkeitsfaktor ist definiert als der Wert, der zum Erhöhen des statischen Lastwerts verwendet wird, um den dynamischen Effekt bei der Konstruktion von Schienen zu berücksichtigen. Es wird allgemein als indische Formel bezeichnet.

Fsf=Vt18.2k

Geschwindigkeit gegebener Geschwindigkeitsfaktor

Gegebener Geschwindigkeitsfaktor ist die Geschwindigkeit des Zuges, die als Geschwindigkeit bezeichnet wird, mit der ein Objekt oder Zug eine bestimmte Entfernung zurücklegt. Einheit in km/h.

Vt=Fsf(18.2k)

Geschwindigkeitsfaktor nach deutscher Formel

Der Geschwindigkeitsfaktor nach deutscher Formel ist definiert als der Faktor, der zur Umwandlung der statischen Vertikallast auf die Schiene in eine dynamische Last verwendet wird. Diese Gleichung wird im Allgemeinen für Geschwindigkeiten bis zu 100 km/h verwendet.

Fsf=Vt230000

Geschwindigkeit mit deutscher Formel

Die Geschwindigkeit nach deutscher Formel ist definiert als die Geschwindigkeit des Zuges auf der Strecke. Im Allgemeinen liegt die Geschwindigkeit unter 100 km / h, um diese Gleichung zu verwenden.

Vt=Fsf30000

Geschwindigkeitsfaktor nach deutscher Formel und Geschwindigkeit über 100 km/h

Der Geschwindigkeitsfaktor unter Verwendung der deutschen Formel und Geschwindigkeit über 100 km/h ist definiert als der Faktor, der zur Umrechnung der statischen vertikalen Last auf der Schiene in eine dynamische Last verwendet wird.

Fsf=(4.5Vt2105)-(1.5Vt3107)

Geschwindigkeit in Tiefe 1 bei gegebener absoluter Geschwindigkeit der Welle, die sich nach rechts bewegt

Die Geschwindigkeit in der Tiefe1 ist nach der Formel „Absolute Geschwindigkeit der Welle, die sich nach rechts bewegt“ als die resultierende Geschwindigkeit in einer bestimmten Tiefe aufgrund der Kombination von Welle und horizontaler Bewegung definiert.

VNegativesurges=(vabs(D2-h 1))+(V2D2)h 1

Geschwindigkeit in Tiefe2 bei gegebener absoluter Geschwindigkeit der Wellen, die sich nach rechts bewegen

Die Geschwindigkeit in Tiefe 2 ist nach der Formel „Absolute Geschwindigkeit der Wellen, die sich nach rechts bewegen“ als die resultierende Geschwindigkeit in Tiefe 2 unter Berücksichtigung der Wellenbewegung definiert.

V2=(vabs(h 1-D2))+(VNegativesurgesh 1)D2

Geschwindigkeit in Tiefe 1 bei absoluter AnstiegsGeschwindigkeit, wenn der Fluss vollständig gestoppt ist

Die Geschwindigkeit in Tiefe 1, wenn die Formel „Absolute SchwallGeschwindigkeit bei vollständig gestopptem Fluss“ definiert ist, ist als anfängliche WasserGeschwindigkeit während eines abrupten Stopps definiert.

VNegativesurges=vabs(D2-h 1)h 1

Geschwindigkeit der Welle in Wellen

Die Formel für die WellenGeschwindigkeit in Wellen ist definiert als die Addition zur normalen WasserGeschwindigkeit von Kanälen in offener Kanalströmung.

Cw=[g]D2(D2+h 1)2h 1

Geschwindigkeit der Welle bei gegebener Geschwindigkeit in Tiefe1

Die Formel „WellenGeschwindigkeit bei gegebener Geschwindigkeit in der Tiefe“1 ist definiert als die Höhe der Strömungsänderung, die im Kanal auftritt.

Cw=VNegativesurges([g](D2+h 1)2h 1Hch)

Geschwindigkeit in Tiefe 1, wenn die Höhe des Schwalls für die Schwallhöhe eine vernachlässigbare Fließtiefe ist

Die Geschwindigkeit in Tiefe1, wenn die Schwallhöhe für die Schwallhöhe vernachlässigbar ist. Die Formel für die Strömungstiefe ist als Geschwindigkeit des Strömungsschwalls an einem Punkt definiert.

VNegativesurges=(Hch[g]Cw)+V2

Geschwindigkeit der Welle bei gegebener Schwallhöhe, da die Schwallhöhe eine vernachlässigbare Strömungstiefe ist

Die Geschwindigkeit der Welle bei gegebener Schwallhöhe für Schwallhöhe ist vernachlässigbar. Die Formel für die Tiefe der Strömung ist definiert als plötzliche Änderungen in der Strömung.

Cw=Hch[g]VNegativesurges

Geschwindigkeit der Welle bei gegebener absoluter Geschwindigkeit von Überspannungen

Die Wellenschnelligkeit bei absoluter StoßGeschwindigkeit ist definiert als plötzliche Änderungen der Strömung durch Stoßwellen.

Cw=vabs-vm

Geschwindigkeit der Einzelwelle

Die Geschwindigkeit der Einzelwelle ist definiert als die Geschwindigkeit, mit der sich eine einzelne Welle fortbewegt oder "ausbreitet". Bei einer Tiefwasserwelle ist die Geschwindigkeit direkt proportional zur Wellenperiode.

C=[g](Hw+Dw)

Geschwindigkeit des Wasserflusses mit bekannter Wassersäule und Stützpfeilerwiderstand

Die FließGeschwindigkeit des Wassers bei bekannter Wassersäule und bekanntem Pfeilerwiderstand wird als der Wert der FließGeschwindigkeit des Wassers durch die Wasserleitung unter Berücksichtigung der Wassersäule und des Pfeilerwiderstands definiert.

Vfw=(([g]γwater)((PBR2Acssin(θb2)-Hγwater)))

Geschwindigkeit zur Maximierung der Reichweite bei gegebener Reichweite für Düsenflugzeuge

Die Geschwindigkeit zur Maximierung der Reichweite bei einer gegebenen Reichweite für Düsenflugzeuge bezieht sich auf die AnfangsGeschwindigkeit, mit der ein Projektil abgefeuert werden muss, um die größte horizontale Distanz zu erreichen, die unter dem Einfluss der Schwerkraft zurückgelegt wird. Mit dieser Formel wird die Geschwindigkeit berechnet, die zur Maximierung des Auftriebs-Widerstands-Verhältnisses eines Flugzeugs erforderlich ist. Dabei werden verschiedene Parameter wie Reichweite, leistungsspezifischer Kraftstoffverbrauch, Flugzeuggewicht und das maximale Auftriebs-Widerstands-Verhältnis berücksichtigt.

VL/D(max)=RcLDmaxratioln(WiWf)

Geschwindigkeitskonstante für die Reaktion nullter Ordnung unter Verwendung von Raumzeit für Pfropfenströmung

Die Geschwindigkeitskonstante für die Reaktion nullter Ordnung unter Verwendung der Raum-Zeit-Formel für Pfropfenströmung ist definiert als die ReaktionsGeschwindigkeit für die Reaktion nullter Ordnung, bei der die fraktionale Volumenänderung null ist.

kBatch=XA BatchCo Batch𝛕Batch

Geschwindigkeitskonstante für die Reaktion erster Ordnung unter Verwendung des Recyclingverhältnisses

Die Geschwindigkeitskonstante für die Reaktion erster Ordnung unter Verwendung der Rückführungsverhältnisformel ist als die Proportionalitätskonstante definiert, die die Beziehung zwischen der Geschwindigkeit für die Reaktion erster Ordnung und der ersten Potenz der Konzentration eines der Reaktanten für eine fraktionelle Volumenänderung von Null angibt.

k'=(R+1𝛕)ln(Co+(RCf)(R+1)Cf)

Geschwindigkeitskonstante für die Reaktion zweiter Ordnung unter Verwendung des Recyclingverhältnisses

Die Ratenkonstante für die Reaktion zweiter Ordnung unter Verwendung der Recycle-Ratio-Formel ist als die Proportionalitätskonstante für die Reaktion zweiter Ordnung für eine fraktionelle Volumenänderung von Null definiert.

k''=(R+1)Co(Co-Cf)Co𝛕Cf(Co+(RCf))

Geschwindigkeit nach Expansion bei idealem Schub

Die Geschwindigkeit nach der Expansion bei idealem Schub ist ein Maß für die Geschwindigkeit, die ein Objekt nach der Expansion erreicht. Sie wird unter Berücksichtigung des idealen Schubs, der Massenstromrate und der FlugGeschwindigkeit des Objekts berechnet und liefert wertvolle Einblicke in die Bewegung und das Verhalten des Objekts.

Ve=Tidealma+V

Geschwindigkeitskonstante für Reaktion A bis B für einen Satz von zwei parallelen Reaktionen

Die Formel für die Geschwindigkeitskonstante der Reaktionen A bis B für den Satz aus zwei parallelen Reaktionen ist definiert als die Beziehung zwischen der molaren Konzentration der Reaktanten und der Geschwindigkeit der stattfindenden chemischen Reaktion.

k1=1tln(A0RA)-k2

Geschwindigkeitskonstante für Reaktion A bis C in einem Satz von zwei Parallelreaktionen

Die Formel für die Geschwindigkeitskonstante für die Reaktionen A bis C im Satz aus zwei parallelen Reaktionen ist definiert als die Beziehung zwischen der molaren Konzentration der Reaktanten und der Geschwindigkeit der stattfindenden chemischen Reaktion.

k2=1tln(A0RA)-k1

Geschwindigkeitskonstante der Reaktion nullter Ordnung in Reaktion nullter Ordnung, gefolgt von Reaktion erster Ordnung

Die Geschwindigkeitskonstante der Reaktion nullter Ordnung in der Formel „Reaktion nullter Ordnung“, gefolgt von der Formel „Reaktion erster Ordnung“, ist definiert als die Beziehung zwischen ReaktionsGeschwindigkeit und reagierenden Substanzen.

k0=CA0-CAΔt

Geschwindigkeitskonstante für Mixed-Flow-Reaktor mit Gewicht des Katalysators

Die Geschwindigkeitskonstante für einen Mischflussreaktor mit Katalysatorgewicht ist als Geschwindigkeitskonstante definiert, die unter Verwendung der Raumzeit des Reaktors unter Berücksichtigung des Katalysatorgewichts, der Reaktantenumwandlung und der fraktionierten Umwandlung berechnet wird.

k '=XA,out(1+εXA,out)(1-XA,out)𝛕'

Wie finde ich Formeln?

Hier sind ein paar Tipps für bessere Suchergebnisse.
Seien Sie konkret: Je konkreter Ihre Suchanfrage, desto besser sind Ihre Ergebnisse.
Verwenden Sie mehrere Schlüsselwörter: Kombinieren Sie mehrere Schlüsselwörter, um die Ergebnisse einzugrenzen.
Experimentieren Sie mit Synonymen: Unterschiedliche Begriffe können zu unterschiedlichen Ergebnissen führen.
Platzhaltersuche: Verwenden Sie den Operator * (Sternchen). BEACHTEN SIE, dass dieser Operator nur am Ende eines Wortes funktioniert. Beispiel: Bio*, Bereich* usw.

Alternativ können Sie durch die Unterkategorien innerhalb von navigieren, um die Formeln einzugrenzen, die Sie interessieren.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!