Suche Formeln

Bitte geben Sie mindestens 3 Zeichen ein, um mit der Suche nach -Formeln zu beginnen.

Wählen Sie Filter

Grenzen Sie Ihre Suchergebnisse mithilfe dieser Filter ein.

50 Passende Formeln gefunden!

Geschwindigkeit unter Verwendung der Wasserströmungsgleichung

Die Geschwindigkeit wird mithilfe der Wasserdurchflussgleichung als FließGeschwindigkeit definiert, wenn der Querschnittsbereich des Rohrs und der Wasserdurchfluss gegeben sind.

Vf=QwAcs

Geschwindigkeit für gegebene Wenderate bei hohem Lastfaktor

Die Geschwindigkeit für eine bestimmte Wenderate bei hohem Lastfaktor ist die Geschwindigkeit, die ein Flugzeug benötigt, um eine bestimmte Wenderate bei hohem Lastfaktor beizubehalten. Diese Formel berechnet die Geschwindigkeit basierend auf der Erdbeschleunigung, dem Lastfaktor und der Wenderate. Das Verständnis und die Anwendung dieser Formel ist für Piloten und Ingenieure unerlässlich, um die Manövrierfähigkeit von Flugzeugen zu optimieren.

v=[g]nω

Geschwindigkeitspotential für 2D-Dublettströmung

Die Formel für das Geschwindigkeitspotenzial für eine 2D-Dublettströmung stellt das Geschwindigkeitspotenzial für eine 2D-Dublettströmung dar. Sie zeigt an, dass es umgekehrt proportional zur Entfernung vom Dublett ist und mit dem Winkel variiert.

ϕ=κ2πrcos(θ)

Geschwindigkeitspotential für 2D-Wirbelströmung

Die Formel für das Geschwindigkeitspotential für eine zweidimensionale Wirbelströmung ist als Funktion des Polarwinkels und der Stärke der Wirbelströmung definiert. Sie beschreibt die durch einen Wirbel verursachte Strömung, bei der das Geschwindigkeitspotential linear mit der Winkelkoordinate abnimmt.

ϕ=-(γ2π)θ

Geschwindigkeit planen

Die ZeitplanGeschwindigkeitsformel ist definiert als das Verhältnis der zwischen zwei Stopps zurückgelegten Strecke zur Gesamtzeit des Laufs einschließlich der Stoppzeit (Planungszeit).

Vs=DTrun+Tstop

Geschwindigkeitsgradient gegebener Druckgradient am zylindrischen Element

Der Geschwindigkeitsgradient wird durch die Formel für den Druckgradienten am zylindrischen Element als Geschwindigkeitsvariation in Bezug auf den Rohrradius definiert.

VG=(12μ)dp|drdradial

Geschwindigkeit an jedem Punkt im zylindrischen Element

Die Geschwindigkeit an jedem Punkt in der Formel für das zylindrische Element wird als Rate definiert, mit der Flüssigkeit in das Rohr eindringt und ein parabolisches Profil bildet.

vFluid=-(14μ)dp|dr((R2)-(dradial2))

Geschwindigkeit am Auslass der Düse für maximalen Flüssigkeitsdurchfluss

Die Geschwindigkeit am Düsenauslass für die maximale Durchflussrate der Flüssigkeit ist entscheidend für die Bestimmung der Effizienz und Leistung von Fluiddynamiksystemen. Sie korreliert direkt mit dem Druckverhältnis über der Düse, der Flüssigkeitsdichte und den Düsendesignmerkmalen und beeinflusst die Durchflussrate und Antriebseffizienz in Anwendungen wie Raketentriebwerken und industriellen Sprühsystemen. Das Verständnis und die Optimierung dieser Geschwindigkeit ist für das Erreichen der gewünschten Betriebsergebnisse in technischen und technologischen Anwendungen von entscheidender Bedeutung.

Vf=2yP1(y+1)ρa

Geschwindigkeitsgradient gegebener piezometrischer Gradient mit Scherspannung

Der Geschwindigkeitsgradient bei einem gegebenen piezometrischen Gradienten mit Scherspannung ist als Änderung der Geschwindigkeit in Bezug auf den radialen Abstand definiert.

VG=(γfμ)dh/dx0.5dradial

Geschwindigkeitsverteilungsprofil

Das Geschwindigkeitsverteilungsprofil ist definiert als die Geschwindigkeit relativ zur Platte in Strömungsrichtung im Strom.

v=-(12μ)dp|dr(wR-(R2))

Geschwindigkeit beim Laufen bei teilweise voller Entladung

Die Geschwindigkeit bei teilweiser Füllung eines Abwasserkanals wird als die FließGeschwindigkeit bei nicht vollständig gefülltem Abwasserkanal definiert und ist von der Tiefe und dem Gefälle abhängig.

Vs=qa

Geschwindigkeit beim Laufen bei voller Entladung

Die Geschwindigkeit bei vollem Durchfluss wird als die Geschwindigkeit definiert, mit der sich eine Flüssigkeit durch ein vollständig gefülltes Rohr oder einen Kanal bewegt, normalerweise bei maximaler Kapazität.

V=QA

Geschwindigkeit bei teilweise vollem Lauf bei proportionaler Entladung

Die Geschwindigkeit bei teilweiser Füllung und anteiliger Abflussmenge ist definiert als die FließGeschwindigkeit bei nicht vollständig gefülltem Abwasserkanal, beeinflusst durch Tiefe und Neigung.

Vs=PqVAa

Geschwindigkeit während des Volllaufs bei proportionaler Entladung

Die Geschwindigkeit bei vollem Betrieb und proportionaler Entladung wird als die FließGeschwindigkeit einer Flüssigkeit in einem Rohr definiert, wenn dieses vollständig gefüllt ist, beeinflusst durch die Neigung und Rauheit des Rohrs.

V=VsaPqA

Geschwindigkeitskonstante bei gegebener Desoxygenierungskonstante

Die Geschwindigkeitskonstante wird in der Formel zur Desoxygenierungskonstanten als Oxidationsrate von organischer Materie definiert und hängt von der Art der darin vorhandenen organischen Materie und der Temperatur ab.

K=2.3KD

Geschwindigkeit bei gegebener Länge

Die Geschwindigkeit bei gegebener Länge ist als beizubehaltende FahrzeugGeschwindigkeit definiert, wenn eine Beschleunigungsrate und eine Änderung des Gradienten der vertikalen Kurve bereitgestellt werden.

V=Lc100fg1-(g2)

Geschwindigkeit des Strahls bei normalem Schub parallel zur Richtung des Strahls

Die Geschwindigkeit des Strahls bei normalem Schub parallel zur Richtung des Strahls ist die Änderungsrate seiner Position in Bezug auf einen Bezugsrahmen und eine Funktion der Zeit.

v=-(FtGγfAJet(∠D(180π))2-Vabsolute)

Geschwindigkeit des Strahls bei normalem Schub Normal zur Richtung des Strahls

Die Geschwindigkeit des Strahls bei normalem Schub normal zur Richtung des Strahls ist die Änderungsrate seiner Position in Bezug auf einen Bezugsrahmen und eine Funktion der Zeit.

v=-(FtGγfAJet(∠D(180π))cos(θ))+Vabsolute

Geschwindigkeit des Rades bei gegebener TangentialGeschwindigkeit an der Einlassspitze der Leitschaufel

Die Geschwindigkeit des Rades, gegeben durch die TangentialGeschwindigkeit an der Einlassspitze der Schaufel, die sich um eine Achse dreht, ist die Anzahl der Umdrehungen des Objekts dividiert durch die Zeit, angegeben als Umdrehungen pro Minute (U/min).

Ω=vtangential602πr

Geschwindigkeit an der Oberfläche bei gegebener Scherspannung an der Wasseroberfläche

Die Formel für die Geschwindigkeit an der Oberfläche bei gegebener Scherspannung an der Wasseroberfläche ist definiert als die Bestimmung der Geschwindigkeit des Wassers an der Oberfläche eines Gewässers basierend auf der auf die Wasseroberfläche ausgeübten Scherspannung. Scherspannung an der Wasseroberfläche wird typischerweise durch Wind oder andere Kräfte erzeugt, die tangential auf die Oberfläche wirken. Es handelt sich um einen Geschwindigkeitsparameter an der Oberfläche, der das Strömungsprofil beeinflusst.

Vs=πτ2DFρwaterΩEsin(L)

Geschwindigkeit des Fahrzeugs bei gegebenem Verzögerungsabstand oder Reaktionsabstand

Die Geschwindigkeit des Fahrzeugs bei gegebener Verzögerungsentfernungs- oder Reaktionsentfernungsformel ist definiert als Geschwindigkeit, mit der sich das Fahrzeug auf der Straßenoberfläche bewegt.

Vb=LDt

Geschwindigkeit des Flüssigkeitsflusses in den Luftbehälter bei gegebener Hublänge

Die Formel für die Durchflussrate von Flüssigkeit in einen Luftbehälter bei gegebener Hublänge ist definiert als die volumetrische Durchflussrate einer Flüssigkeit, die in einen Luftbehälter einer Kolbenpumpe eintritt. Sie wird beeinflusst durch Faktoren wie Hublänge, WinkelGeschwindigkeit und Neigungswinkel, die sich erheblich auf die Gesamtleistung und Effizienz der Pumpe auswirken.

Qr=(Aω(L2))(sin(θ)-(2π))

Geschwindigkeitskonstante bei Temperatur 2

Die Geschwindigkeitskonstante bei Temperatur 2 ist definiert als die Proportionalitätskonstante in der chemischen Reaktion, die bei Temperatur 2 abläuft. Arrhenius-Gleichung, um die Auswirkung einer Temperaturänderung auf die Geschwindigkeitskonstante und damit auf die ReaktionsGeschwindigkeit zu zeigen.

K2=((K1)(Φ)T2-T110)

Geschwindigkeitsverhältnis des Hooke-Gelenks

Das Geschwindigkeitsverhältnis der Hakengelenkformel wird verwendet, um das Verhältnis der WinkelGeschwindigkeiten der angetriebenen Welle zur antreibenden Welle zu finden.

V=cos(α)1-cos(θ)2sin(α)2

Geschwindigkeit nach Expansion bei idealem Schub

Die Geschwindigkeit nach der Expansion bei idealem Schub ist ein Maß für die Geschwindigkeit, die ein Objekt nach der Expansion erreicht. Sie wird unter Berücksichtigung des idealen Schubs, der Massenstromrate und der FlugGeschwindigkeit des Objekts berechnet und liefert wertvolle Einblicke in die Bewegung und das Verhalten des Objekts.

Ve=Tidealma+V

Geschwindigkeitskonstante für Reaktion A bis B für einen Satz von zwei parallelen Reaktionen

Die Formel für die Geschwindigkeitskonstante der Reaktionen A bis B für den Satz aus zwei parallelen Reaktionen ist definiert als die Beziehung zwischen der molaren Konzentration der Reaktanten und der Geschwindigkeit der stattfindenden chemischen Reaktion.

k1=1tln(A0RA)-k2

Geschwindigkeitskonstante für Reaktion A bis C in einem Satz von zwei Parallelreaktionen

Die Formel für die Geschwindigkeitskonstante für die Reaktionen A bis C im Satz aus zwei parallelen Reaktionen ist definiert als die Beziehung zwischen der molaren Konzentration der Reaktanten und der Geschwindigkeit der stattfindenden chemischen Reaktion.

k2=1tln(A0RA)-k1

Geschwindigkeitskonstante der Reaktion nullter Ordnung in Reaktion nullter Ordnung, gefolgt von Reaktion erster Ordnung

Die Geschwindigkeitskonstante der Reaktion nullter Ordnung in der Formel „Reaktion nullter Ordnung“, gefolgt von der Formel „Reaktion erster Ordnung“, ist definiert als die Beziehung zwischen ReaktionsGeschwindigkeit und reagierenden Substanzen.

k0=CA0-CAΔt

Geschwindigkeitsausbreitung in einer verlustfreien Leitung

Die Formel für die Geschwindigkeitsausbreitung in einer verlustfreien Leitung ist umgekehrt proportional zur Quadratwurzel des Produkts aus Serieninduktivität und Serienkapazität einer Leitung.

Vp=1lc

Geschwindigkeit des Stößels für Rollenstößel-Tangentennocken, wenn der Kontakt mit geraden Flanken erfolgt

Die Formel für die Geschwindigkeit des Stößels für einen Rollenstößel mit tangentialem Nocken bei Kontakt mit geraden Flanken ist als Maß für die Geschwindigkeit des Stößels in einem Nockenstößelsystem definiert, bei dem der Kontakt mit geraden Flanken erfolgt. Sie bietet Einblick in die Kinematik des Systems und ermöglicht die Entwicklung effizienter mechanischer Systeme.

v=ω(r1+rroller)sin(θ)(cos(θ))2

Geschwindigkeitskoeffizient für das Peltonrad

Der Geschwindigkeitskoeffizient für das Peltonrad ist das Verhältnis der tatsächlichen Geschwindigkeit des Wasserstrahls, der die Düse verlässt, zur theoretischen Geschwindigkeit. Er berücksichtigt die Verluste durch Reibung und andere Ineffizienzen in der Düse und wird verwendet, um die Effizienz der Strahlbildung zu bestimmen. Dieser Koeffizient ist normalerweise kleiner als 1.

Cv=V12[g]H

Geschwindigkeit des Stößels der Rollenstößel-Tangentennocke für den Kontakt mit der Nase

Die Formel für die Geschwindigkeit des Stößels eines Rollenstößels und des Tangentialnockens bei Kontakt mit der Nase ist definiert als die Geschwindigkeit des Stößels in einem Nocken- und Stößelsystem. Sie ist ein entscheidender Parameter bei der Bestimmung der Leistung und Effizienz des Systems, insbesondere wenn der Stößel mit der Nase des Nockens in Kontakt ist.

v=ωr(sin(θ1)+rsin(2θ1)2L2-r2(sin(θ1))2)

Geschwindigkeit hinter Normal Shock

Die Geschwindigkeit hinter dem Normalstoß berechnet die Geschwindigkeit einer Flüssigkeit stromabwärts einer normalen Stoßwelle. Diese Formel berücksichtigt Parameter wie die Geschwindigkeit vor dem Stoß, das Verhältnis der spezifischen Wärme für die Flüssigkeit und die Machzahl der Strömung. Es liefert wertvolle Einblicke in die Geschwindigkeitsänderung, die sich aus dem Durchgang der Stoßwelle ergibt.

V2=V1γ+1(γ-1)+2M2

Geschwindigkeit der Walze bei der Verdichtungsproduktion durch Verdichtungsgeräte

Die Formel für die Geschwindigkeit der Walze bei gegebener Verdichtungsleistung durch Verdichtungsgeräte ist definiert als die Geschwindigkeit, mit der Verdichtungsgeräte wie Walzen während des Verdichtungsprozesses arbeiten. Effiziente Geschwindigkeiten tragen zu einer höheren Produktivität bei Bauprojekten bei, da die Geräte in kürzerer Zeit mehr Fläche abdecken können, ohne die Qualität zu beeinträchtigen.

S=yP16WLPRE

Geschwindigkeitskoeffizient

Die Geschwindigkeitskoeffizientenformel ist definiert als das Verhältnis der tatsächlichen AustrittsGeschwindigkeit zum Verhältnis der idealen AustrittsGeschwindigkeit.

Cv=CactCideal

Geschwindigkeitskoeffizient gegebener Entladungskoeffizient

Der Geschwindigkeitskoeffizient wird in der Formel für den Abflusskoeffizienten als Reduktionsfaktor für die theoretische Geschwindigkeit durch die Öffnung definiert.

Cv=CdCc

Geschwindigkeitspotential für gleichmäßige inkompressible Strömung

Die Geschwindigkeitspotentialfunktion für gleichmäßige inkompressible Strömung (ϕ) steigt linear mit der Entfernung in Strömungsrichtung (x) an, was die gleichmäßige Natur der Strömung widerspiegelt. Folglich gibt es keine Variation des Geschwindigkeitspotentials in Bezug auf die y-Koordinate, was die Homogenität der Strömung in y-Richtung veranschaulicht.

ϕ=Vx

Geschwindigkeit am Punkt des Tragflächenprofils für gegebenen Druckkoeffizienten und freie StrömungsGeschwindigkeit

Die Geschwindigkeit an einem Punkt auf dem Schaufelblatt für einen gegebenen Druckkoeffizienten und eine Formel für die Geschwindigkeit im freien Strom ist das Produkt aus der Geschwindigkeit im freien Strom und der Quadratwurzel aus eins minus dem Druckkoeffizienten in inkompressibler Strömung.

V=u2(1-Cp)

Geschwindigkeitspotential für gleichmäßige inkompressible Strömung in Polarkoordinaten

Das Geschwindigkeitspotential für gleichmäßige inkompressible Strömung in Polarkoordinaten besagt, dass die Funktion direkt proportional zum radialen Abstand vom Ursprung (r) und dem Kosinus der Winkelkoordinate (θ) ist, skaliert durch die StrömungsGeschwindigkeit (U). Dies bedeutet, dass der Wert der Geschwindigkeitspotentialfunktion linear mit dem radialen Abstand vom Ursprung zunimmt und mit dem Kosinus des Winkels variiert, was die gleichmäßige Natur der Strömung und ihre Abhängigkeit von der Winkelrichtung widerspiegelt.

ϕ=Vrcos(θ)

Geschwindigkeitspotential für den 2D-Quellenfluss

Die Formel für das Geschwindigkeitspotenzial für den zweidimensionalen Quellenfluss besagt, dass die Funktion direkt proportional zum natürlichen Logarithmus des radialen Abstands vom Quellpunkt und der Stärke der Quelle ist. Diese logarithmische Beziehung spiegelt die Eigenschaft des Potenzialflusses wider, bei dem die Geschwindigkeit mit zunehmendem Abstand von der Quelle logarithmisch abnimmt.

ϕ=Λ2πln(r)

Geschwindigkeit des Projektils bei gegebener Höhe über dem Projektionspunkt

Die Formel für die Geschwindigkeit eines Projektils in einer bestimmten Höhe über dem Projektilpunkt ist definiert als Maß für die Geschwindigkeit eines Projektils in einer bestimmten Höhe über dem Projektilpunkt, wobei die AnfangsGeschwindigkeit, die Erdbeschleunigung und die Höhe über dem Projektilpunkt berücksichtigt werden.

vp=vpm2-2[g]h

Geschwindigkeit des Strahls für dynamischen Schub, der vom Strahl auf die Platte ausgeübt wird

Die Geschwindigkeit des Strahls für den dynamischen Schub, der vom Strahl auf die Platte ausgeübt wird, ist die Änderungsrate seiner Position in Bezug auf einen Bezugssystem und ist eine Funktion der Zeit.

v=-(mfGγfAJet(∠D(180π))-Vabsolute)

Geschwindigkeit des Rades bei gegebener TangentialGeschwindigkeit an der Auslassspitze des Flügels

Die Geschwindigkeit des Rades bei gegebener TangentialGeschwindigkeit an der Auslassspitze des Flügels, der sich um die Achse dreht, ist die Anzahl der Umdrehungen des Objekts dividiert durch die Zeit, angegeben als Umdrehungen pro Minute (U/min).

Ω=vtangential602πrO

Geschwindigkeit bei gegebenem Tangentialimpuls von Flüssigkeit, die am Einlass auf Leitschaufeln auftrifft

Die Geschwindigkeit bei gegebenem Tangentialimpuls eines Fluids, das Schaufeln am Einlass eines Objekts trifft, ist die Änderungsrate seiner Position in Bezug auf einen Referenzrahmen und ist eine Funktion der Zeit.

u=TmGwf

Geschwindigkeit bei gegebenem Drehimpuls am Einlass

Die gegebene DrehimpulsGeschwindigkeit am Einlass ist die Änderungsrate seiner Position in Bezug auf einen Bezugssystem und ist eine Funktion der Zeit.

vf=LGwfr

Geschwindigkeit bei gegebenem Tangentialimpuls von Flüssigkeit, die am Auslass auf Leitschaufeln auftrifft

Die dem Tangentialimpuls gegebene Geschwindigkeit des Fluids, das am Auslass auf die Leitschaufeln trifft, ist die Änderungsrate seiner Position in Bezug auf den Referenzrahmen und ist eine Funktion der Zeit.

u=TmGwf

Geschwindigkeit bei gegebenem Drehimpuls am Outlet

Die Geschwindigkeit des gegebenen Drehimpulses am Auslass eines Objekts ist die Änderungsrate seiner Position in Bezug auf einen Bezugssystem und ist eine Funktion der Zeit.

v=TmGwfr

Geschwindigkeit in der Tiefsee bei gegebener Wellenkraft in der Tiefsee

Die Formel zur Berechnung der TiefseeGeschwindigkeit anhand der Wellenkraft in der Tiefsee wird als die Geschwindigkeit definiert, mit der sich eine einzelne Welle fortbewegt oder „ausbreitet“.

Co=Pd0.5E

Geschwindigkeit der größeren Riemenscheibe gegebene Geschwindigkeit der kleineren Riemenscheibe

Drehzahl der größeren Scheibe bei gegebener Drehzahl der kleineren Scheibe ist definiert als die Drehzahl, mit der sich die größere Scheibe des Riementriebs dreht.

n2=d(n1D)

Geschwindigkeitsverhältnis von Kettenantrieben

Die Formel für das Geschwindigkeitsverhältnis von Kettenantrieben ist definiert als das Verhältnis der Anzahl der Zähne des Antriebsrads zur Anzahl der Zähne des angetriebenen Rads in einem Kettenantriebssystem, das die Geschwindigkeit der Ausgangswelle im Verhältnis zur Eingangswelle bestimmt.

i=N1N2

Wie finde ich Formeln?

Hier sind ein paar Tipps für bessere Suchergebnisse.
Seien Sie konkret: Je konkreter Ihre Suchanfrage, desto besser sind Ihre Ergebnisse.
Verwenden Sie mehrere Schlüsselwörter: Kombinieren Sie mehrere Schlüsselwörter, um die Ergebnisse einzugrenzen.
Experimentieren Sie mit Synonymen: Unterschiedliche Begriffe können zu unterschiedlichen Ergebnissen führen.
Platzhaltersuche: Verwenden Sie den Operator * (Sternchen). BEACHTEN SIE, dass dieser Operator nur am Ende eines Wortes funktioniert. Beispiel: Bio*, Bereich* usw.

Alternativ können Sie durch die Unterkategorien innerhalb von navigieren, um die Formeln einzugrenzen, die Sie interessieren.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!