Suche Formeln

Bitte geben Sie mindestens 3 Zeichen ein, um mit der Suche nach -Formeln zu beginnen.

Wählen Sie Filter

Grenzen Sie Ihre Suchergebnisse mithilfe dieser Filter ein.

50 Passende Formeln gefunden!

Geschwindigkeit der Führungsrolle

Die Formel für die Geschwindigkeit der Führungsrolle ist definiert als Maß für die RotationsGeschwindigkeit der Führungsrolle in einem mechanischen System, die für die Bestimmung der Bewegung des Systems von entscheidender Bedeutung ist, insbesondere im Kontext der Bewegungskinetik, wo die Geschwindigkeit der Führungsrolle die Gesamtleistung und Effizienz des Systems beeinflusst.

NP=NDdd1

Geschwindigkeit des Objekts in Kreisbewegung

Die Formel zur Berechnung der Geschwindigkeit eines Objekts bei einer Kreisbewegung ist definiert als die Rate, mit der sich ein Objekt auf einer Kreisbahn bewegt. Dabei spielt der Radius des Kreises und die Rotationsfrequenz eine Rolle. Sie bietet ein grundlegendes Konzept zum Verständnis der Kreisbewegung und ihrer Anwendungen in der Physik und Technik.

V=2πrf

Geschwindigkeit beim Hin- und Rücktransport in Meilen pro Stunde bei variabler Zeit

Die Geschwindigkeit beim Hin- und Rücktransport in Meilen pro Stunde bei gegebener variabler Zeitformel ist definiert als zurückgelegte Strecke pro Zeiteinheit.

Smph=Hft+Rft88Tv

Geschwindigkeit beim Hin- und Rücktransport in Kilometer pro Stunde bei variabler Zeit

Die Geschwindigkeit beim Transport und bei der Rückfahrt in Kilometern pro Stunde bei gegebener variabler Zeit ist definiert als die Geschwindigkeit, wenn wir vorher Informationen über die Rück- und Transportdistanz haben.

Skmph=hm+Rmeter16.7Tv

Geschwindigkeit des Kolbens oder Körpers für die Bewegung des Kolbens im Dash-Pot

Die Geschwindigkeit des Kolbens oder Körpers für die Bewegung des Kolbens in der Stoßdämpferformel ist unter Berücksichtigung des Gewichts, der Länge und des Durchmessers des Kolbens, der Viskosität der Flüssigkeit oder des Öls und des Spiels zwischen dem Stoßdämpfer und dem Kolben bekannt.

V=4WbC33πLdp3μ

Geschwindigkeit in Abschnitt 1 aus der Bernoulli-Gleichung

Die Geschwindigkeit in Abschnitt 1 aus der Bernoulli-Gleichung ist als Geschwindigkeit in einem bestimmten Rohrabschnitt definiert.

V1=2[g]((P2γf)+(0.5(Vp22[g]))+Z2-Z1-P1γf)

Geschwindigkeitskopf für gleichmäßigen, nicht viskosen Fluss

Die Geschwindigkeitshöhe für eine stationäre, nicht viskose Strömung wird als Energiehöhe aufgrund der StrömungsGeschwindigkeit definiert.

Vh=V22[g]

Geschwindigkeitsverteilung in rauer turbulenter Strömung

Die Formel für die Geschwindigkeitsverteilung in rauer turbulenter Strömung ist als die Funktion definiert, die beschreibt, wie molekulare Geschwindigkeiten im Durchschnitt in einer rauen, turbulenten Strömung verteilt sind.

v=5.75vshearlog10(30yks)

Geschwindigkeit des beweglichen Bootes

Die Formel für die Geschwindigkeit eines fahrenden Bootes ist als Strömungsmesser vom Propellertyp definiert, der sich frei um eine vertikale Achse bewegen kann und in einem Boot mit einer bestimmten Geschwindigkeit gezogen wird.

vb=Vcos(θ)

Geschwindigkeit des sich bewegenden Bootes bei gegebener Breite zwischen zwei Vertikalen

Die Formel für die Geschwindigkeit des sich bewegenden Bootes bei gegebener Breite zwischen zwei Vertikalen ist definiert als die kombinierte Bewegung des Bootes relativ zum Wasser und die Bewegung des Wassers relativ zum Ufer.

vb=WΔt

Geschwindigkeitskonstante nach Titrationsverfahren für Reaktionen nullter Ordnung

Die Geschwindigkeitskonstante durch Titrationsmethode für die Reaktionsformel nullter Ordnung ist definiert als die Geschwindigkeitskonstante, die direkt proportional zur Volumendifferenz und umgekehrt proportional zum Zeitpunkt der Fertigstellung ist.

k=V0-Vtt

Geschwindigkeitskonstante für dasselbe Produkt durch Titrationsmethode für Reaktionen zweiter Ordnung

Die Ratenkonstante für dasselbe Produkt durch Titrationsverfahren für die Reaktionsformel zweiter Ordnung ist definiert als die Subtraktion des Kehrwerts des Anfangsvolumens und des Zeitintervalls vom Kehrwert des Volumens eines Reaktanten zum Zeitpunkt t und Zeitintervall.

Ksecond=(1Vttcompletion)-(1V0tcompletion)

Geschwindigkeit des Strahls im Verhältnis zur Bewegung des Schiffs bei gegebener kinetischer Energie

Die Geschwindigkeit des Strahls relativ zur Bewegung des Schiffs bei gegebener kinetischer Energie wird als relative Geschwindigkeit des Aufpralls definiert.

Vr=KE2[g]Wbody

Geschwindigkeit des sich bewegenden Schiffes bei relativer Geschwindigkeit

Die Geschwindigkeit des sich bewegenden Schiffes bei gegebener relativer Geschwindigkeit ist definiert als die Geschwindigkeit, die das Schiff tatsächlich im Propeller erzeugt.

u=Vr-V

Geschwindigkeit für die Wellenlänge der Welle

Die Formel zur Berechnung der Geschwindigkeit für die Wellenlänge einer Welle ist definiert als die Geschwindigkeit, mit der sich die Welle durch ein Medium ausbreitet, berechnet als Produkt ihrer Frequenz und Wellenlänge.

C=(λf)

Geschwindigkeit der Schallwelle

Die Formel zur Berechnung der SchallwellenGeschwindigkeit wird als Geschwindigkeit definiert, obwohl Geschwindigkeit eigentlich sowohl Geschwindigkeit als auch Richtung impliziert. Die Geschwindigkeit einer Welle ist gleich dem Produkt aus Wellenlänge und Frequenz (Anzahl der Schwingungen pro Sekunde) und ist unabhängig von ihrer Intensität.

C=20.05T

Geschwindigkeit der Schallwelle gegeben Schallintensität

Die Geschwindigkeit einer Schallwelle wird bei gegebener Schallintensitätsformel als Tempo definiert, obwohl Geschwindigkeit eigentlich sowohl Geschwindigkeit als auch Richtung impliziert. Die Geschwindigkeit einer Welle ist gleich dem Produkt aus Wellenlänge und Frequenz (Anzahl der Schwingungen pro Sekunde) und ist unabhängig von ihrer Intensität.

C=Prms2Iρ

Geschwindigkeit am Einlass für die Masse des Fluids, das pro Sekunde auf die Leitschaufel auftrifft

Die Geschwindigkeit am Einlass für die Masse des auf die Leitschaufel auftreffenden Fluids pro Sekunde ist die Änderungsrate ihrer Position in Bezug auf den Referenzrahmen und ist eine Funktion der Zeit.

v=mfGγfAJet

Geschwindigkeit für geleistete Arbeit, wenn kein Energieverlust auftritt

Die Geschwindigkeit für geleistete Arbeit, wenn kein Energieverlust auftritt, ist die Änderungsrate seiner Position in Bezug auf einen Bezugssystem und ist eine Funktion der Zeit.

vf=(w2Gwf)+v2

Geschwindigkeit bei gegebener Effizienz des Systems

Die Geschwindigkeit bei gegebener Effizienz des Systems ist die Änderungsrate seiner Position in Bezug auf einen Bezugsrahmen und ist eine Funktion der Zeit.

vf=v1-η

Geschwindigkeit am Punkt bei gegebener Effizienz des Systems

Die Geschwindigkeit am Punkt bei gegebener Effizienz des Systems ist die Änderungsrate seiner Position in Bezug auf einen Referenzrahmen und ist eine Funktion der Zeit.

v=1-ηvf

Geschwindigkeit der Welle bei TiefwasserGeschwindigkeit und Wellenlänge

Die Wellenschnelligkeit bei Tiefwasserschnelligkeit und -wellenlänge ist definiert als die Geschwindigkeit, mit der sich eine einzelne Welle fortbewegt oder „ausbreitet“.

Cs=Coλsλo

Geschwindigkeitsverhältnis der Francis-Turbine

Das Francis-Turbinen-Drehzahlverhältnis ist das Verhältnis der tatsächlichen Drehzahl der Turbine zur idealen Drehzahl für maximale Effizienz. Es hilft bei der Beurteilung, wie nahe die Turbine an ihrer optimalen Drehzahl für die Stromerzeugung arbeitet.

Ku=u12gHi

Geschwindigkeit der Schaufel am Einlass bei gegebenem Geschwindigkeitsverhältnis der Francis-Turbine

Die Geschwindigkeit der Leitschaufel am Einlass bei gegebenem Drehzahlverhältnis der Francis-Turbine ist definiert als die Geschwindigkeit der Leitschaufel am Einlass der Turbine.

u1=Ku2gHi

Geschwindigkeit bei Wellenhöhen zwischen 1 und 7 Fuß

Die Formel für die Geschwindigkeit bei Wellenhöhen zwischen 1 und 7 Fuß ist als Geschwindigkeit der Windwelle des Schnittteils definiert.

Vw=7+2ha

Geschwindigkeit zur Maximierung der Reichweite bei gegebener Reichweite für Düsenflugzeuge

Die Geschwindigkeit zur Maximierung der Reichweite bei einer gegebenen Reichweite für Düsenflugzeuge bezieht sich auf die AnfangsGeschwindigkeit, mit der ein Projektil abgefeuert werden muss, um die größte horizontale Distanz zu erreichen, die unter dem Einfluss der Schwerkraft zurückgelegt wird. Mit dieser Formel wird die Geschwindigkeit berechnet, die zur Maximierung des Auftriebs-Widerstands-Verhältnisses eines Flugzeugs erforderlich ist. Dabei werden verschiedene Parameter wie Reichweite, leistungsspezifischer Kraftstoffverbrauch, Flugzeuggewicht und das maximale Auftriebs-Widerstands-Verhältnis berücksichtigt.

VL/D(max)=RcLDmaxratioln(WiWf)

Geschwindigkeitskonstante für Reaktion A bis B für einen Satz von drei Parallelreaktionen

Die Formel für die Geschwindigkeitskonstante für die Reaktionen A bis B für den Satz aus drei parallelen Reaktionen ist definiert als die Beziehung zwischen der molaren Konzentration der Reaktanten und der Geschwindigkeit der stattfindenden chemischen Reaktion.

k1=1tln(A0RA)-(k2+k3)

Geschwindigkeitskonstante für Reaktion A bis C für Satz von drei Parallelreaktionen

Die Formel für die Geschwindigkeitskonstante für die Reaktionen A bis C für den Satz aus drei parallelen Reaktionen ist definiert als die Beziehung zwischen der molaren Konzentration der Reaktanten und der Geschwindigkeit der stattfindenden chemischen Reaktion.

k2=1tln(A0RA)-(k1+k3)

Geschwindigkeitskonstante für Reaktion A bis D für Satz von drei Parallelreaktionen

Die Formel für die Geschwindigkeitskonstante für die Reaktionen A bis D für den Satz aus drei parallelen Reaktionen ist definiert als die Beziehung zwischen der molaren Konzentration der Reaktanten und der Geschwindigkeit der stattfindenden chemischen Reaktion.

k3=1tln(A0RA)-(k1+k2)

Geschwindigkeitsverhältnis des Verbundgetriebes

Das Übersetzungsverhältnis eines zusammengesetzten Getriebes ist das Produkt der Übersetzungsverhältnisse jedes Zahnradpaars im Getriebe. Es wird durch Multiplikation der einzelnen Übersetzungsverhältnisse berechnet, wobei jedes Übersetzungsverhältnis das Verhältnis der Anzahl der Zähne des Antriebsrads zur Anzahl der Zähne des angetriebenen Rads ist.

i=PdP'd

Geschwindigkeit des Mitnehmers für Kreisbogennocken, wenn der Kontakt auf der Kreisflanke erfolgt

Die Formel für die Geschwindigkeit des Stößels für einen Kreisbogennocken, wenn der Kontakt auf einer Kreisflanke liegt, ist definiert als Maß für die Geschwindigkeit des Stößels in einem Kreisbogennockenmechanismus, wenn sich der Kontaktpunkt auf der Kreisflanke befindet. Dies ist ein kritischer Parameter bei der Konstruktion und Optimierung von Nockenstößelsystemen.

v=ω(R-r1)sin(θturned)

Geschwindigkeitskonstante der Reaktion erster Ordnung unter Verwendung des Logarithmus zur Basis 10

Die Geschwindigkeitskonstante der Reaktion erster Ordnung unter Verwendung des Logarithmus zur Basis-10-Formel ist definiert als die ReaktionsGeschwindigkeit pro Konzentration des Reaktanten. Die Formel ist der Logarithmus zur Basis 10 der Anfangskonzentration pro Konzentration zum Zeitpunkt t, das Ganze wird durch die Zeit dividiert, die für die Vervollständigung der Reaktion erforderlich ist.

kfirst=2.303tcompletionlog10(A0Ct)

Geschwindigkeitskonstante zur Halbzeit für die Reaktion erster Ordnung

Die Geschwindigkeitskonstante zur Halbzeit für die Reaktionsformel erster Ordnung ist definiert als die ReaktionsGeschwindigkeit pro Konzentration des Reaktanten. Die Formel ist ein natürlicher Logarithmus von 2 geteilt durch die Halbwertszeit der Reaktion.

kfirst=0.693t1/2

Geschwindigkeitskonstante für dasselbe Produkt für eine Reaktion zweiter Ordnung

Die Geschwindigkeitskonstante für dasselbe Produkt für die Reaktionsformel zweiter Ordnung ist definiert als die durchschnittliche ReaktionsGeschwindigkeit pro Konzentration des Reaktanten mit einer auf 2 erhöhten Leistung.

Ksecond=1axttcompletion-1atcompletion

Geschwindigkeitskonstante für verschiedene Produkte für die Reaktion zweiter Ordnung

Die Geschwindigkeitskonstante für verschiedene Produkte für die Reaktionsformel zweiter Ordnung ist definiert als die durchschnittliche ReaktionsGeschwindigkeit pro Konzentration der beiden verschiedenen Reaktanten, deren Leistung jeweils auf 1 erhöht ist.

Kfirst=2.303tcompletion(CAO-CBO)log10CBO(ax)CAO(bx)

Geschwindigkeitskonstante unter konstantem Druck und konstanter Temperatur für eine Reaktion nullter Ordnung

Die Geschwindigkeitskonstante unter konstantem Druck und konstanter Temperatur für die Reaktionsformel nullter Ordnung ist definiert als Fortschritt der Gasreaktion, die durch Messen des Gesamtdrucks bei einem festen Volumen und einer festen Temperatur überwacht werden kann. Da die Geschwindigkeitskonstante für eine Reaktion nullter Ordnung gilt, sollte die Reihenfolge der Reaktion (n) durch Null ersetzt werden.

k=(2.303t)log10(P0(n-1)(nP0)-Pt)

Geschwindigkeitskonstante nach Titrationsverfahren für Reaktionen erster Ordnung

Die Geschwindigkeitskonstante durch das Titrationsverfahren für die Formel des Reaktionsverfahrens erster Ordnung ist definiert als die ReaktionsGeschwindigkeit geteilt durch die Konzentration des Reaktanten, der auf die Potenz eins erhöht ist. Die Geschwindigkeitskonstante nach dem Titrationsverfahren ist direkt proportional zum Logarithmus des Anfangsvolumens des Reaktanten pro Volumen eines Reaktanten zum Zeitpunkt t.

kfirst=(2.303tcompletion)log10(V0Vt)

Geschwindigkeitsdruck mit Winddruck

Der Geschwindigkeitsdruck unter Verwendung des Winddrucks wird als Geschwindigkeitsdruck definiert, wenn wir eine vorherige Information über den äquivalenten statischen Winddruck haben.

q=pGCp

Geschwindigkeit für einen gegebenen Kurvenradius

Die Geschwindigkeit bei einem gegebenen Wenderadius ist ein Maß für die Geschwindigkeit eines Objekts, wenn es sich auf einer Kreisbahn dreht, abhängig vom Wenderadius, der Erdbeschleunigung und dem Lastfaktor.

V=R[g](n2-1)

Geschwindigkeitsdruck

Der Geschwindigkeitsdruck wird als Geschwindigkeitsdruck definiert, wenn wir die GrundwindGeschwindigkeit und andere Faktoren kennen, die den Geschwindigkeitsdruck beeinflussen, wie Windrichtungsfaktor, topografischer Faktor usw.

q=0.00256KzKztKd(VB2)I

Geschwindigkeit der Schallwelle bei gegebenem Volumenmodul

Die Geschwindigkeit der Schallwelle in Abhängigkeit vom Kompressionsmodul des Mediums gibt Aufschluss darüber, wie schnell sich Schall durch das Material bewegt. Das Verständnis dieser Beziehung ist in der Akustik, der Materialwissenschaft und in technischen Anwendungen von entscheidender Bedeutung, bei denen die Schallausbreitung und die mechanischen Eigenschaften von Materialien wichtige Überlegungen darstellen.

C=Kρa

Geschwindigkeit der Schallwelle unter Verwendung eines isothermen Prozesses

Die Geschwindigkeit von Schallwellen mithilfe isothermer Prozesse bietet Einblicke in die Auswirkungen der Temperatur und der physikalischen Eigenschaften von Gasen auf die Geschwindigkeit, mit der sich Schall ausbreitet. Dies ermöglicht präzise Berechnungen und fundierte Designentscheidungen in der Akustik, Aerodynamik und verschiedenen technologischen Anwendungen.

C=Rc

Geschwindigkeit der Schallwelle unter Verwendung des adiabatischen Prozesses

Die Geschwindigkeit einer Schallwelle hängt bei einem adiabatischen Prozess vom Adiabatenindex (Verhältnis der spezifischen Wärmekapazitäten), der universellen Gaskonstante, der absoluten Temperatur des Gases und der Molmasse des Gases ab.

C=yRc

Geschwindigkeit der Schallwelle bei gegebener Machzahl für komprimierbare Flüssigkeitsströmung

Die Geschwindigkeit der Schallwelle bei gegebener Mach-Zahl für kompressible Flüssigkeitsströmungen gibt die Geschwindigkeit an, mit der sich Schall durch das Medium ausbreitet, relativ zur SchallGeschwindigkeit in diesem Medium. Diese Beziehung ist von grundlegender Bedeutung in der Aerodynamik, der Luft- und Raumfahrttechnik und der Akustik, wo die Mach-Zahl das Strömungsregime charakterisiert und das Verhalten von Stoßwellen und Schallübertragung beeinflusst.

C=VM

Geschwindigkeitsverhältnis bei gegebenem hydraulischen mittleren Tiefenverhältnis

Das Geschwindigkeitsverhältnis bei gegebener hydraulischer mittlerer Tiefe wird als die FließGeschwindigkeit in einer teilweise gefüllten Leitung im Vergleich zu der in einer voll gefüllten Leitung definiert und gibt Effizienzunterschiede an.

νsVratio=((Nnp)(R)16)

Geschwindigkeit des vollen Flusses bei gegebenem hydraulischen mittleren Tiefenverhältnis

Die Geschwindigkeit des vollen Durchflusses bei einem hydraulischen mittleren Tiefenverhältnis wird als die FließGeschwindigkeit einer Flüssigkeit in einem vollständig gefüllten Rohr definiert und ist von der Neigung und Rauheit des Rohrs abhängig.

V=Vs(Nnp)(R)16

Geschwindigkeit des vollen Flusses bei gegebener hydraulischer mittlerer Tiefe für vollen Fluss

Die Geschwindigkeit des vollen Durchflusses bei vorgegebener hydraulischer Durchschnittstiefe für den vollen Durchfluss wird als die FließGeschwindigkeit einer Flüssigkeit in einem Rohr definiert, wenn dieses vollständig gefüllt ist, beeinflusst durch die Neigung und Rauheit des Rohrs.

V=Vs(Nnp)(rpfRrf)16

Geschwindigkeit des Kolbens bei gegebener StrömungsGeschwindigkeit im Öltank

Die Geschwindigkeit des Kolbens bei gegebener StrömungsGeschwindigkeit im Öltank ist definiert als die Geschwindigkeit, mit der der Kolben in Bezug auf den vertikalen Abstand nach unten geht.

vpiston=((0.5dp|drRR-CHRμ)-uOiltank)(CHR)

Geschwindigkeit für auf die Platte ausgeübte Kraft in Strömungsrichtung des Strahls

Die Geschwindigkeit der auf die Platte in Strömungsrichtung des Strahls ausgeübten Kraft ist die Änderungsrate ihrer Position in Bezug auf einen Bezugsrahmen und eine Funktion der Zeit.

vjet=Fjet[g]γfAJet(1+cos(θt))

Geschwindigkeit der vom Strahl auf die Leitschaufel ausgeübten Kraft in x-Richtung

Die KraftGeschwindigkeit, die vom Strahl auf die Leitschaufel in x-Richtung ausgeübt wird, ist die Änderungsrate ihrer Position in Bezug auf einen Bezugssystem und ist eine Funktion der Zeit.

vjet=FxgγfAJet(cos(θ)+cos(∠D))

Wie finde ich Formeln?

Hier sind ein paar Tipps für bessere Suchergebnisse.
Seien Sie konkret: Je konkreter Ihre Suchanfrage, desto besser sind Ihre Ergebnisse.
Verwenden Sie mehrere Schlüsselwörter: Kombinieren Sie mehrere Schlüsselwörter, um die Ergebnisse einzugrenzen.
Experimentieren Sie mit Synonymen: Unterschiedliche Begriffe können zu unterschiedlichen Ergebnissen führen.
Platzhaltersuche: Verwenden Sie den Operator * (Sternchen). BEACHTEN SIE, dass dieser Operator nur am Ende eines Wortes funktioniert. Beispiel: Bio*, Bereich* usw.

Alternativ können Sie durch die Unterkategorien innerhalb von navigieren, um die Formeln einzugrenzen, die Sie interessieren.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!