Suche Formeln

Bitte geben Sie mindestens 3 Zeichen ein, um mit der Suche nach -Formeln zu beginnen.

Wählen Sie Filter

Grenzen Sie Ihre Suchergebnisse mithilfe dieser Filter ein.

50 Passende Formeln gefunden!

Geschwindigkeitsverhältnis des Verbundgetriebes

Das Übersetzungsverhältnis eines zusammengesetzten Getriebes ist das Produkt der Übersetzungsverhältnisse jedes Zahnradpaars im Getriebe. Es wird durch Multiplikation der einzelnen Übersetzungsverhältnisse berechnet, wobei jedes Übersetzungsverhältnis das Verhältnis der Anzahl der Zähne des Antriebsrads zur Anzahl der Zähne des angetriebenen Rads ist.

i=PdP'd

Geschwindigkeit des Alpha-Teilchens unter Verwendung der Entfernung der nächsten Annäherung

Die Geschwindigkeit des Alpha-Teilchens unter Verwendung der Entfernung der nächsten Annäherung ist die Geschwindigkeit, mit der sich ein Alpha-Teilchen in einem Atomkern bewegt.

v=[Coulomb]Z([Charge-e]2)[Atomic-m]r0

Geschwindigkeit hinter Normal Shock

Die Geschwindigkeit hinter dem Normalstoß berechnet die Geschwindigkeit einer Flüssigkeit stromabwärts einer normalen Stoßwelle. Diese Formel berücksichtigt Parameter wie die Geschwindigkeit vor dem Stoß, das Verhältnis der spezifischen Wärme für die Flüssigkeit und die Machzahl der Strömung. Es liefert wertvolle Einblicke in die Geschwindigkeitsänderung, die sich aus dem Durchgang der Stoßwelle ergibt.

V2=V1γ+1(γ-1)+2M2

Geschwindigkeit hinter Normalschock durch Normalschock-Impulsgleichung

Die Geschwindigkeit hinter dem Normalschock durch die Normalschock-Impulsgleichung berechnet die Geschwindigkeit einer Flüssigkeit stromabwärts einer normalen Stoßwelle unter Verwendung der Normalschock-Impulsgleichung. Diese Formel berücksichtigt Parameter wie die statischen Drücke vor und hinter dem Stoß, die Dichte vor dem Stoß und die Geschwindigkeit vor dem Stoß. Es liefert entscheidende Einblicke in die Geschwindigkeitsänderung, die sich aus dem Durchgang der Stoßwelle ergibt.

V2=P1-P2+ρ1V12ρ2

Geschwindigkeit vor Normalschock durch Normalschock-Impulsgleichung

Die Gleichung „Geschwindigkeit vor Normalstoß durch Normalstoßimpuls“ berechnet die Geschwindigkeit einer Flüssigkeit vor einer Normalstoßwelle mithilfe der Gleichung „Normalschockimpuls“. Diese Formel berücksichtigt Parameter wie den statischen Druck vor und hinter dem Stoß, die Dichte hinter dem Stoß und die Geschwindigkeit hinter dem Stoß. Es liefert wichtige Informationen über die FlüssigkeitsGeschwindigkeit vor dem Auftreffen auf die Stoßwelle und hilft bei der Analyse des kompressiblen Strömungsverhaltens.

V1=P2-P1+ρ2V22ρ1

Geschwindigkeit des Kolbens beim Ausfahren

Die Formel für die KolbenGeschwindigkeit während der Ausdehnung ist definiert als die Bewegungsrate eines Kolbens in einem hydraulischen Aktuator oder Motor. Sie ist ein entscheidender Parameter bei der Bestimmung der Leistung und Effizienz des Systems und wird von der Durchflussrate und der Kolbenfläche beeinflusst.

vpiston=QextAp

Geschwindigkeit des Kolbens beim Einfahren

Die Formel für die KolbenGeschwindigkeit während des Rückzugs ist definiert als die Bewegungsrate eines Kolbens während der Rückzugsphase in einem Hydrauliksystem, die für die Bestimmung der Gesamtleistung und Effizienz von Hydraulikantrieben und -motoren entscheidend ist.

vpiston=QretAp-Ar

Geschwindigkeitsgleichung der Hydraulik

Die Formel zur Geschwindigkeitsgleichung der Hydraulik ist definiert als das Produkt aus Querschnittsfläche und GrundwasserGeschwindigkeit.

q=Av

Geschwindigkeit der durch Sprengung verursachten Vibrationen

Die Geschwindigkeit der durch Sprengungen verursachten Vibrationen ist definiert als die Änderungsrate der Verschiebung in der Vibrationsarbeit.

V=(λvf)

Geschwindigkeit von Teilchen, die durch Vibrationen gestört werden

Die Formel für die Geschwindigkeit von durch Vibrationen gestörten Partikeln ist definiert als die Geschwindigkeit von Partikeln, die durch Vibrationen beeinflusst werden, und drückt die Geschwindigkeit und Richtung ihrer Bewegung als Reaktion auf Störungen aus.

v=(2πfA)

Geschwindigkeit von Teilchen Eins im Abstand von der Explosion

Die Geschwindigkeit von Partikel Eins in der Entfernung von der Explosion ist definiert als die Geschwindigkeit eines Partikels vom Explosionspunkt in einer bestimmten Entfernung.

v1=v2(D2D1)1.5

Geschwindigkeit von Teilchen Zwei im Abstand von der Explosion

Die Geschwindigkeit von Partikel Zwei im Abstand von der Explosion ist als Änderungsrate der Verschiebung des Partikels definiert.

v2=v1(D1D2)1.5

Geschwindigkeit am Auslass für Druckverlust am Rohrausgang

Die Formel für die Geschwindigkeit am Auslass für den Druckverlust am Rohrausgang ist unter Berücksichtigung der Quadratwurzel des Druckverlusts am Rohrausgang und der Erdbeschleunigung bekannt.

v=ho2[g]

Geschwindigkeitsgradient bei Scherspannung

Die Formel für den Geschwindigkeitsgradienten bei gegebener Scherspannung ist als Geschwindigkeitsdifferenz zwischen benachbarten Fluidschichten definiert. Es ist das Verhältnis zwischen Geschwindigkeitsänderung und Abstandsänderung zwischen den Schichten.

dvdy=τμ

Geschwindigkeitsgradient

Die Geschwindigkeitsgradientenformel ist definiert als ein Verhältnis zwischen der Änderung der Geschwindigkeit zwischen benachbarten Schichten und der Änderung des Abstands zwischen aufeinanderfolgenden Punkten zwischen benachbarten Schichten.

dvdy=dvdy

Geschwindigkeit der Flüssigkeit bei gegebener Scherspannung

Die Formel für die Geschwindigkeit der Flüssigkeit bei gegebener Scherspannung ist als Funktion der Scherspannung, der dynamischen Viskosität und des Abstands zwischen den benachbarten Flüssigkeitsschichten definiert.

V=Yτμ

Geschwindigkeit von Chezys Formel

Die Geschwindigkeit der Chezy-Formel ist bekannt, wenn man die Chezy-Konstante, die Quadratwurzel der hydraulischen mittleren Tiefe und die Neigung des Bettes berücksichtigt.

v=Cmi

Geschwindigkeit im Abfluss bei gegebener Kanaldurchflusszeit

Die Formel für die Geschwindigkeit im Abfluss bei gegebener Kanalfließzeit wird als die Geschwindigkeit des durch den Abfluss fließenden Wassers definiert.

V=LTm/f

Geschwindigkeit des freien Stroms bei lokalem Reibungskoeffizienten

Die Formel für die freie StrömungsGeschwindigkeit bei gegebenem lokalen Reibungskoeffizienten ist definiert als die Geschwindigkeit einer Flüssigkeit, wenn diese weit entfernt von einer Begrenzung oder Wand ist und von der Anwesenheit der Wand unbeeinflusst bleibt. Sie ist ein entscheidender Parameter zum Verständnis des Verhaltens einer Flüssigkeitsströmung über einer flachen Platte.

u=2τwρCfx

Geschwindigkeitsfaktor

Der Geschwindigkeitsfaktor ist definiert als der Wert, der zum Erhöhen des statischen Lastwerts verwendet wird, um den dynamischen Effekt bei der Konstruktion von Schienen zu berücksichtigen. Es wird allgemein als indische Formel bezeichnet.

Fsf=Vt18.2k

Geschwindigkeit gegebener Geschwindigkeitsfaktor

Gegebener Geschwindigkeitsfaktor ist die Geschwindigkeit des Zuges, die als Geschwindigkeit bezeichnet wird, mit der ein Objekt oder Zug eine bestimmte Entfernung zurücklegt. Einheit in km/h.

Vt=Fsf(18.2k)

Geschwindigkeitsfaktor nach deutscher Formel

Der Geschwindigkeitsfaktor nach deutscher Formel ist definiert als der Faktor, der zur Umwandlung der statischen Vertikallast auf die Schiene in eine dynamische Last verwendet wird. Diese Gleichung wird im Allgemeinen für Geschwindigkeiten bis zu 100 km/h verwendet.

Fsf=Vt230000

Geschwindigkeit mit deutscher Formel

Die Geschwindigkeit nach deutscher Formel ist definiert als die Geschwindigkeit des Zuges auf der Strecke. Im Allgemeinen liegt die Geschwindigkeit unter 100 km / h, um diese Gleichung zu verwenden.

Vt=Fsf30000

Geschwindigkeitsfaktor nach deutscher Formel und Geschwindigkeit über 100 km/h

Der Geschwindigkeitsfaktor unter Verwendung der deutschen Formel und Geschwindigkeit über 100 km/h ist definiert als der Faktor, der zur Umrechnung der statischen vertikalen Last auf der Schiene in eine dynamische Last verwendet wird.

Fsf=(4.5Vt2105)-(1.5Vt3107)

Geschwindigkeit in der Tiefe bei gegebener absoluter Geschwindigkeit der Welle, die sich nach rechts bewegt

Die Geschwindigkeit in der Tiefe, gegeben durch die Formel „Absolute Geschwindigkeit des Schwalls, der sich nach rechts bewegt“, ist definiert als die resultierende Geschwindigkeit der Flüssigkeitspartikel, die für die Schwallbewegung verantwortlich sind.

VNegativesurges=(vabs(h 1-D2))+(V2D2)h 1

Geschwindigkeit der Welle bei zwei Tiefen

Die Geschwindigkeit der Welle bei zwei Tiefen ist definiert als die Addition der normalen WasserGeschwindigkeit der Kanäle im offenen Kanalfluss.

Cw=[g]D2(D2+h 1)2h 1

Geschwindigkeit in Tiefe 1, wenn die Schwallhöhe vernachlässigbar ist

Die Geschwindigkeit in Tiefe1, wenn die Schwallhöhe vernachlässigbar ist, wird als Geschwindigkeit des Strömungsstoßes an einem Punkt definiert.

VNegativesurges=(Hch[g]Cw)+V2

Geschwindigkeit der Welle bei ungleichmäßiger Strömung

Die Formel „WellenGeschwindigkeit bei ungleichmäßiger Strömung“ ist definiert als die Geschwindigkeit der Wellenausbreitung bei unterschiedlichen Strömungsbedingungen.

Cw=[g]h 1(1+1.5(Hchh 1)+0.5(Hchh 1)(Hchh 1))

Geschwindigkeit der Welle aus der Geschwindigkeitsgleichung von Lagrange

Die WellenGeschwindigkeit aus Lagranges Geschwindigkeitsgleichungsformel ist definiert als plötzliche Änderungen der Strömungstiefe, die zusätzlich zur normalen WasserGeschwindigkeit der Kanäle eine Geschwindigkeit (WellenGeschwindigkeit) in der Strömung erzeugen.

Cw=[g]h 1

Geschwindigkeit der Schleifpartikel

Die Geschwindigkeit von Schleifpartikeln bezeichnet die Geschwindigkeit, mit der sich diese Partikel bei abrasiven Bearbeitungsprozessen wie Abrasive Jet Machining (AJM) oder Schleifen auf die Werkstückoberfläche zubewegen. Dies ist ein kritischer Parameter, da er die Materialabtragsrate, die Schneidleistung und die Oberflächengüte direkt beeinflusst.

V=(ZwA0Ndmean3(ρ12hb)34)23

Geschwindigkeit der sich bewegenden Platte in Bezug auf die absolute Viskosität

Die Formel für die Geschwindigkeit der sich bewegenden Platte in Bezug auf die absolute Viskosität ist definiert als das Verhältnis des Produkts aus Tangentialkraft und Filmdicke zum Produkt aus absoluter Viskosität und Fläche.

Vm=PhμoApo

Geschwindigkeitsverhältnis der Francis-Turbine

Das Francis-Turbinen-Drehzahlverhältnis ist das Verhältnis der tatsächlichen Drehzahl der Turbine zur idealen Drehzahl für maximale Effizienz. Es hilft bei der Beurteilung, wie nahe die Turbine an ihrer optimalen Drehzahl für die Stromerzeugung arbeitet.

Ku=u12gHi

Geschwindigkeit der Schaufel am Einlass bei gegebenem Geschwindigkeitsverhältnis der Francis-Turbine

Die Geschwindigkeit der Leitschaufel am Einlass bei gegebenem Drehzahlverhältnis der Francis-Turbine ist definiert als die Geschwindigkeit der Leitschaufel am Einlass der Turbine.

u1=Ku2gHi

Geschwindigkeit in Trockenbettkurve

Die Formel für die Geschwindigkeitskurve im Trockenbett ist als die Annahme definiert, dass die Strömung in jede Richtung über die halbe Tiefe erfolgt.

VDbc=0.45H2[g]d

Geschwindigkeitskonstante der irreversiblen Reaktion zweiter Ordnung

Die Formel für die Geschwindigkeitskonstante der irreversiblen Reaktion zweiter Ordnung ist definiert als die Proportionalitätskonstante in der Gleichung, die die Beziehung zwischen der Geschwindigkeit einer chemischen Reaktion und den Konzentrationen der reagierenden Substanzen ausdrückt.

k2=rCACB

Geschwindigkeitskonstante der irreversiblen Reaktion dritter Ordnung mit zwei gleichen Reaktantenkonzentrationen

Die Formel für die Geschwindigkeitskonstante der irreversiblen Reaktion dritter Ordnung mit zwei gleichen Reaktantenkonzentrationen ist als die Proportionalitätskonstante in der Gleichung definiert, die die Beziehung zwischen der Geschwindigkeit der chemischen Reaktion und den Konzentrationen der reagierenden Substanzen ausdrückt.

k3=rCA(CB)2

Geschwindigkeitskonstante für die Reaktion zweiter Ordnung für Pfropfenströmung

Die Formel für die Geschwindigkeitskonstante der Reaktion zweiter Ordnung für Pfropfenströmung ist definiert als die Proportionalitätskonstante in der Gleichung, die die Beziehung zwischen der Geschwindigkeit einer chemischen Reaktion und den Konzentrationen der reagierenden Substanzen für eine beträchtliche Teilvolumenänderung ausdrückt.

kPlugFlow''=(1𝛕Co)(2ε(1+ε)ln(1-XA)+ε2XA+((ε+1)2XA1-XA))

Geschwindigkeitskonstante für Reaktion zweiter Ordnung für gemischte Strömung

Die Formel für die Geschwindigkeitskonstante für die Reaktion zweiter Ordnung bei Mischströmung ist definiert als die Proportionalitätskonstante in der Gleichung, die die Beziehung zwischen der Geschwindigkeit einer chemischen Reaktion und den Konzentrationen der reagierenden Substanzen bei Mischströmung ausdrückt.

kMixedFlow''=(1𝛕MFRCo-MFR)(XMFR(1+(εXMFR))2(1-XMFR)2)

Geschwindigkeitsmodulation von Elektronen im Klystron-Hohlraum

Die Formel für die Geschwindigkeitsmodulation von Elektronen im Klystron-Hohlraum ist definiert als die Variation der Geschwindigkeit eines Elektronenstrahls, die durch die abwechselnde Beschleunigung und Verlangsamung der Elektronen im Strahl verursacht wird.

vp=2[Charge-e]vh[Mass-e]

Geschwindigkeitskonstante der Reaktion erster Ordnung

Die Geschwindigkeitskonstante der Reaktion erster Ordnung ist die Proportionalitätskonstante zur Anfangskonzentration und die Menge des umgesetzten Reaktanten oder des gebildeten Produkts.

Kh=ln(C0C0-x)treaction

Geschwindigkeitsverhältnis

Die Formel für das Geschwindigkeitsverhältnis ist definiert als das Verhältnis der Drehzahl des angetriebenen Zahnrads zu der des treibenden Zahnrads in einem mechanischen System. Sie hilft dabei, die Effizienz und Drehmomentübertragung des Getriebes zu bestimmen.

i=TdTdr

Geschwindigkeit des Mitläufers nach der Zeit t für Zykloidenbewegung

Die Formel für die Geschwindigkeit des Stößels nach der Zeit t bei zykloider Bewegung ist definiert als Maß für die Geschwindigkeit des Stößels in einem Nocken- und Stößelsystem, das einer zykloiden Bewegung unterliegt. Sie beschreibt die Bewegung des Stößels, während dieser sich dreht und auf einer Kreisbahn verschiebt.

v=ωSθo(1-cos(2πθrotationθo))

Geschwindigkeit im beschleunigten Flug

Die Geschwindigkeit im beschleunigten Flug bezieht sich auf die Geschwindigkeit des Flugzeugs, wenn es Geschwindigkeits- oder Richtungsänderungen durchläuft, um bestimmte Flugziele zu erreichen. Sie wird normalerweise als LuftGeschwindigkeit des Flugzeugs gemessen, d. h. die Geschwindigkeit des Flugzeugs im Verhältnis zur umgebenden Luft.

v=(Rcurvaturem(FL+Tsin(σT)-m[g]cos(γ)))12

Geschwindigkeit der Walze bei der Verdichtungsproduktion durch Verdichtungsgeräte

Die Formel für die Geschwindigkeit der Walze bei gegebener Verdichtungsleistung durch Verdichtungsgeräte ist definiert als die Geschwindigkeit, mit der Verdichtungsgeräte wie Walzen während des Verdichtungsprozesses arbeiten. Effiziente Geschwindigkeiten tragen zu einer höheren Produktivität bei Bauprojekten bei, da die Geräte in kürzerer Zeit mehr Fläche abdecken können, ohne die Qualität zu beeinträchtigen.

S=yP16WLPRE

Geschwindigkeit für eine gegebene Wenderate

Die Geschwindigkeit bei einer gegebenen Wenderate ist ein Maß für die Geschwindigkeit eines Flugzeugs während einer Kurve und wird auf Grundlage des Lastfaktors, der Erdbeschleunigung und der Wenderate berechnet.

V=[g]n2-1ω

Geschwindigkeit des Körpers in einfacher harmonischer Bewegung

Die Formel für die Geschwindigkeit eines Körpers bei einer einfachen harmonischen Bewegung wird als die MaximalGeschwindigkeit eines Objekts definiert, während es um seine Gleichgewichtsposition schwingt. Sie liefert ein Maß für die kinetische Energie des Objekts während seiner Schwingungsbewegung.

V=A'ωcos(ωtsec)

Geschwindigkeit für gegebenen Pull-Up-Manöverradius

Die Geschwindigkeit für einen bestimmten Pull-Up-Manöverradius eines Flugzeugs hängt vom Manöverradius und der Auslastung des Flugzeugs ab. Diese Formel bietet eine vereinfachte Annäherung an die Geschwindigkeit, die erforderlich ist, um während des Pull-Up-Manövers die gewünschte SinkGeschwindigkeit aufrechtzuerhalten.

Vpull-up=R[g](n-1)

Geschwindigkeit für eine gegebene Pull-up-Manöverrate

Die Geschwindigkeit für eine bestimmte Pull-up-Manöverrate ist die Geschwindigkeit, die ein Flugzeug benötigt, um während eines Pull-up-Manövers eine bestimmte Steigrate beizubehalten. Diese Formel berechnet die Geschwindigkeit basierend auf der Erdbeschleunigung, dem Pull-up-Lastfaktor und der Wenderate. Das Verständnis und die Anwendung dieser Formel ist für Piloten und Ingenieure unerlässlich, um sichere und effektive Pull-up-Manöver zu gewährleisten.

Vpull-up=[g]npull-up-1ω

Geschwindigkeit in Abschnitt 1-1 für plötzliche Vergrößerung

Die Geschwindigkeit in Abschnitt 1-1 für die Formel für plötzliche Vergrößerung ist bekannt, wenn die StrömungsGeschwindigkeit in Abschnitt 2-2 nach der Vergrößerung und der Druckverlust aufgrund der Reibung für eine durch das Rohr fließende Flüssigkeit berücksichtigt werden.

V1'=V2'+he2[g]

Geschwindigkeit in Abschnitt 2-2 für plötzliche Vergrößerung

Die Geschwindigkeit in Abschnitt 2-2 für die Formel für plötzliche Vergrößerung ist bekannt, wenn die StrömungsGeschwindigkeit in Abschnitt 1-1 vor der Vergrößerung und der Druckverlust aufgrund der Reibung für eine durch das Rohr fließende Flüssigkeit berücksichtigt werden.

V2'=V1'-he2[g]

Wie finde ich Formeln?

Hier sind ein paar Tipps für bessere Suchergebnisse.
Seien Sie konkret: Je konkreter Ihre Suchanfrage, desto besser sind Ihre Ergebnisse.
Verwenden Sie mehrere Schlüsselwörter: Kombinieren Sie mehrere Schlüsselwörter, um die Ergebnisse einzugrenzen.
Experimentieren Sie mit Synonymen: Unterschiedliche Begriffe können zu unterschiedlichen Ergebnissen führen.
Platzhaltersuche: Verwenden Sie den Operator * (Sternchen). BEACHTEN SIE, dass dieser Operator nur am Ende eines Wortes funktioniert. Beispiel: Bio*, Bereich* usw.

Alternativ können Sie durch die Unterkategorien innerhalb von navigieren, um die Formeln einzugrenzen, die Sie interessieren.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!