Geschwindigkeitsschwankungskoeffizient für SchwungradDie Formel für den Geschwindigkeitsschwankungskoeffizienten für Schwungräder ist als Maß für die Geschwindigkeitsschwankung eines Schwungrads definiert, bei dem es sich um ein rotierendes Rad handelt, das Energie speichert und die Geschwindigkeitsschwankungen eines Motors oder einer anderen Maschine ausgleicht.
Geschwindigkeit der progressiven WelleDie Formel zur Geschwindigkeit fortschreitender Wellen ist definiert als Maß für die Geschwindigkeit, mit der sich eine Welle durch ein Medium ausbreitet. Sie beschreibt die Rate der Störungsübertragung in einem physikalischen System und ist ein grundlegendes Konzept zum Verständnis der Wellendynamik und ihrer Anwendungen in verschiedenen Bereichen der Physik.
Geschwindigkeit der progressiven Welle unter Verwendung der FrequenzDie Geschwindigkeit fortschreitender Wellen wird mithilfe der Frequenzformel als Maß für die Geschwindigkeit definiert, mit der sich eine Welle durch ein Medium ausbreitet. Dies ist für das Verständnis verschiedener physikalischer Phänomene wie Schallwellen, Lichtwellen und seismischer Wellen von wesentlicher Bedeutung und spielt in Bereichen wie Physik, Ingenieurwesen und Geologie eine entscheidende Rolle.
Geschwindigkeit einer progressiven Welle bei gegebener WinkelfrequenzDie Formel für die Geschwindigkeit einer fortschreitenden Welle bei gegebener Winkelfrequenz ist definiert als Maß für die Geschwindigkeit einer Welle, die sich in eine bestimmte Richtung bewegt, beeinflusst durch die Winkelfrequenz, und ist von entscheidender Bedeutung für das Verständnis des Verhaltens von Wellen in verschiedenen physikalischen Systemen, einschließlich Schall- und Lichtwellen.
Geschwindigkeit der Welle bei gegebener WellennummerDie Formel zur Berechnung der WellenGeschwindigkeit bei gegebener Wellenzahl ist ein Maß für die Geschwindigkeit, mit der sich eine Welle durch ein Medium ausbreitet. Sie bietet Aufschluss über die Frequenz und Wellenlänge der Welle und ist von entscheidender Bedeutung für das Verständnis verschiedener physikalischer Phänomene, wie etwa Schall- und Lichtwellen, in der Physik und in technischen Anwendungen.
Geschwindigkeit von FluidpartikelnDie Geschwindigkeit von Fluidpartikeln in der Fluiddynamik-Terminologie wird verwendet, um die Bewegung eines Kontinuums mathematisch zu beschreiben.
Geschwindigkeit hinter Normalschock durch Normalschock-ImpulsgleichungDie Geschwindigkeit hinter dem Normalschock durch die Normalschock-Impulsgleichung berechnet die Geschwindigkeit einer Flüssigkeit stromabwärts einer normalen Stoßwelle unter Verwendung der Normalschock-Impulsgleichung. Diese Formel berücksichtigt Parameter wie die statischen Drücke vor und hinter dem Stoß, die Dichte vor dem Stoß und die Geschwindigkeit vor dem Stoß. Es liefert entscheidende Einblicke in die Geschwindigkeitsänderung, die sich aus dem Durchgang der Stoßwelle ergibt.
Geschwindigkeit vor Normalschock durch Normalschock-ImpulsgleichungDie Gleichung „Geschwindigkeit vor Normalstoß durch Normalstoßimpuls“ berechnet die Geschwindigkeit einer Flüssigkeit vor einer Normalstoßwelle mithilfe der Gleichung „Normalschockimpuls“. Diese Formel berücksichtigt Parameter wie den statischen Druck vor und hinter dem Stoß, die Dichte hinter dem Stoß und die Geschwindigkeit hinter dem Stoß. Es liefert wichtige Informationen über die FlüssigkeitsGeschwindigkeit vor dem Auftreffen auf die Stoßwelle und hilft bei der Analyse des kompressiblen Strömungsverhaltens.
Geschwindigkeit des Kolbens beim AusfahrenDie Formel für die KolbenGeschwindigkeit während der Ausdehnung ist definiert als die Bewegungsrate eines Kolbens in einem hydraulischen Aktuator oder Motor. Sie ist ein entscheidender Parameter bei der Bestimmung der Leistung und Effizienz des Systems und wird von der Durchflussrate und der Kolbenfläche beeinflusst.
Geschwindigkeit des Kolbens beim EinfahrenDie Formel für die KolbenGeschwindigkeit während des Rückzugs ist definiert als die Bewegungsrate eines Kolbens während der Rückzugsphase in einem Hydrauliksystem, die für die Bestimmung der Gesamtleistung und Effizienz von Hydraulikantrieben und -motoren entscheidend ist.
GeschwindigkeitsverhältnisDie Formel für das Drehzahlverhältnis ist eine dimensionslose Größe, die das Strömungsverhalten einer Kreiselpumpe charakterisiert. Sie stellt eine Beziehung zwischen der UmfangsGeschwindigkeit des Laufrads und der SpritzGeschwindigkeit der Flüssigkeit her, die für die Konstruktion und Optimierung der Pumpenleistung von wesentlicher Bedeutung ist.
Geschwindigkeitspotential für gleichmäßige inkompressible StrömungDie Geschwindigkeitspotentialfunktion für gleichmäßige inkompressible Strömung (ϕ) steigt linear mit der Entfernung in Strömungsrichtung (x) an, was die gleichmäßige Natur der Strömung widerspiegelt. Folglich gibt es keine Variation des Geschwindigkeitspotentials in Bezug auf die y-Koordinate, was die Homogenität der Strömung in y-Richtung veranschaulicht.
Geschwindigkeitspotential für gleichmäßige inkompressible Strömung in PolarkoordinatenDas Geschwindigkeitspotential für gleichmäßige inkompressible Strömung in Polarkoordinaten besagt, dass die Funktion direkt proportional zum radialen Abstand vom Ursprung (r) und dem Kosinus der Winkelkoordinate (θ) ist, skaliert durch die StrömungsGeschwindigkeit (U). Dies bedeutet, dass der Wert der Geschwindigkeitspotentialfunktion linear mit dem radialen Abstand vom Ursprung zunimmt und mit dem Kosinus des Winkels variiert, was die gleichmäßige Natur der Strömung und ihre Abhängigkeit von der Winkelrichtung widerspiegelt.
Geschwindigkeitspotential für den 2D-QuellenflussDie Formel für das Geschwindigkeitspotenzial für den zweidimensionalen Quellenfluss besagt, dass die Funktion direkt proportional zum natürlichen Logarithmus des radialen Abstands vom Quellpunkt und der Stärke der Quelle ist. Diese logarithmische Beziehung spiegelt die Eigenschaft des Potenzialflusses wider, bei dem die Geschwindigkeit mit zunehmendem Abstand von der Quelle logarithmisch abnimmt.
Geschwindigkeit entlang der Gierachse bei kleinem AnstellwinkelDie Geschwindigkeit entlang der Gierachse bei kleinem Anstellwinkel ist ein Maß für die Änderungsrate der Position eines Objekts entlang der Gierachse im Verhältnis zu seiner Bewegung aufgrund eines kleinen Anstellwinkels. Sie wird berechnet, indem die Geschwindigkeit entlang der Rollachse mit dem Anstellwinkel im Bogenmaß multipliziert wird und stellt einen entscheidenden Parameter in der Aerodynamik und Flugdynamik dar.
Geschwindigkeit entlang der Rollachse bei kleinem AnstellwinkelDie Geschwindigkeit entlang der Rollachse bei kleinem Anstellwinkel ist ein Maß für die Geschwindigkeit der Rotation eines Objekts um seine Rollachse, wenn der Anstellwinkel relativ klein ist, und wird berechnet, indem die Geschwindigkeit entlang der Gierbewegung durch den Anstellwinkel im Bogenmaß geteilt wird.
Geschwindigkeit entlang der Nickachse bei kleinem SchwimmwinkelDie Geschwindigkeit entlang der Nickachse bei kleinem Schwimmwinkel ist ein Maß für die Geschwindigkeit eines Flugzeugs oder Objekts, das sich mit kleinem Schwimmwinkel bewegt, und ist für das Verständnis und die Vorhersage seiner Flugbahn und Stabilität von entscheidender Bedeutung.
Geschwindigkeit entlang der Rollachse bei kleinem SchwimmwinkelDie Geschwindigkeit entlang der Rollachse bei kleinem Schwimmwinkel ist ein Maß für die Geschwindigkeit des Flugzeugs in Richtung der Rollachse bei kleinem Schwimmwinkel und gibt Aufschluss über die Stabilität und Reaktionsfähigkeit des Flugzeugs während des Fluges.
GeschwindigkeitsgradientenDie Formel für Geschwindigkeitsgradienten wird als Änderung der Geschwindigkeit im Verhältnis zur Entfernungsänderung entlang der gemessenen Richtung definiert.
Geschwindigkeit an der Oberfläche bei gegebener Scherspannung an der WasseroberflächeDie Formel für die Geschwindigkeit an der Oberfläche bei gegebener Scherspannung an der Wasseroberfläche ist definiert als die Bestimmung der Geschwindigkeit des Wassers an der Oberfläche eines Gewässers basierend auf der auf die Wasseroberfläche ausgeübten Scherspannung. Scherspannung an der Wasseroberfläche wird typischerweise durch Wind oder andere Kräfte erzeugt, die tangential auf die Oberfläche wirken. Es handelt sich um einen Geschwindigkeitsparameter an der Oberfläche, der das Strömungsprofil beeinflusst.
Geschwindigkeitspotential für 3D-inkompressible DublettströmungMit der Formel „Geschwindigkeitspotenzial für dreidimensionale inkompressible Doublettenströmung“ wird das Geschwindigkeitspotenzial berechnet, das eine Funktion der Stärke der Doubletten-, Radial- und Polarkoordinaten für die dreidimensionale inkompressible Doublettenströmung ist.
Geschwindigkeit des Mitläufers nach der Zeit t für ZykloidenbewegungDie Formel für die Geschwindigkeit des Stößels nach der Zeit t bei zykloider Bewegung ist definiert als Maß für die Geschwindigkeit des Stößels in einem Nocken- und Stößelsystem, das einer zykloiden Bewegung unterliegt. Sie beschreibt die Bewegung des Stößels, während dieser sich dreht und auf einer Kreisbahn verschiebt.
Geschwindigkeit für eine gegebene WenderateDie Geschwindigkeit bei einer gegebenen Wenderate ist ein Maß für die Geschwindigkeit eines Flugzeugs während einer Kurve und wird auf Grundlage des Lastfaktors, der Erdbeschleunigung und der Wenderate berechnet.
Geschwindigkeit des Körpers in einfacher harmonischer BewegungDie Formel für die Geschwindigkeit eines Körpers bei einer einfachen harmonischen Bewegung wird als die MaximalGeschwindigkeit eines Objekts definiert, während es um seine Gleichgewichtsposition schwingt. Sie liefert ein Maß für die kinetische Energie des Objekts während seiner Schwingungsbewegung.
Geschwindigkeit für gegebenen Pull-Up-ManöverradiusDie Geschwindigkeit für einen bestimmten Pull-Up-Manöverradius eines Flugzeugs hängt vom Manöverradius und der Auslastung des Flugzeugs ab. Diese Formel bietet eine vereinfachte Annäherung an die Geschwindigkeit, die erforderlich ist, um während des Pull-Up-Manövers die gewünschte SinkGeschwindigkeit aufrechtzuerhalten.
Geschwindigkeit für eine gegebene Pull-up-ManöverrateDie Geschwindigkeit für eine bestimmte Pull-up-Manöverrate ist die Geschwindigkeit, die ein Flugzeug benötigt, um während eines Pull-up-Manövers eine bestimmte Steigrate beizubehalten. Diese Formel berechnet die Geschwindigkeit basierend auf der Erdbeschleunigung, dem Pull-up-Lastfaktor und der Wenderate. Das Verständnis und die Anwendung dieser Formel ist für Piloten und Ingenieure unerlässlich, um sichere und effektive Pull-up-Manöver zu gewährleisten.
Geschwindigkeitsverhältnis von Schnecke und SchneckenradDas Übersetzungsverhältnis von Schnecken- und Schneckenradgetrieben gibt den mechanischen Vorteil an, den das System bietet. Es ist das Verhältnis der durch die Kraft (Eingang) zurückgelegten Strecke zur durch die Last (Ausgang) zurückgelegten Strecke.
Geschwindigkeitsverhältnis von Schnecke und Schneckenrad, wenn die Schnecke ein Doppelgewinde hatDas Geschwindigkeitsverhältnis von Schnecke und Schneckenrad ist bei einer Schnecke mit zwei Gewinden das Verhältnis der Anzahl der Zähne auf dem Schneckenrad zur Anzahl der Gewinde auf der Schnecke. Diese Formel berechnet den mechanischen Vorteil des Schneckengetriebesystems und gibt an, wie viele Umdrehungen der Schnecke erforderlich sind, um eine Umdrehung des Schneckenrads auszuführen.