Suche Formeln

Bitte geben Sie mindestens 3 Zeichen ein, um mit der Suche nach -Formeln zu beginnen.

Wählen Sie Filter

Grenzen Sie Ihre Suchergebnisse mithilfe dieser Filter ein.

50 Passende Formeln gefunden!

Geschwindigkeit der chemischen Reaktion

Die Formel für die Geschwindigkeit der chemischen Reaktion ist definiert als die Geschwindigkeitsänderung der Konzentration eines der Reaktanten oder Produkte pro Zeiteinheit. Die Geschwindigkeit der chemischen Reaktion bedeutet die Geschwindigkeit, mit der die Reaktion stattfindet.

r=ΔcΔt

Geschwindigkeitskonstante der Reaktion nullter Ordnung

Die Formel für die Geschwindigkeitskonstante der Reaktion nullter Ordnung ist definiert als die Subtraktion der Konzentration eines Reaktanten zum Zeitpunkt t von der Anfangskonzentration des Reaktanten in einem bestimmten Zeitintervall der Reaktion.

k=C0-Cttreaction

Geschwindigkeitskonstante zur Halbzeit der Reaktion nullter Ordnung

Die Geschwindigkeitskonstante zur Halbwertszeit der Reaktionsformel nullter Ordnung ist definiert als die Anfangskonzentration des Reaktanten geteilt durch die doppelte Halbwertszeit der Reaktion. Die doppelte Hälfte der Reaktion ist die Gesamtzeit für den Abschluss der Reaktion.

k=C02T1/2

Geschwindigkeit des Flugzeugs bei gegebener Überschussleistung

Die Geschwindigkeit des Flugzeugs bei gegebener Überschussleistung ist die LuftGeschwindigkeit, die erforderlich ist, um eine gegebene Steigrate beizubehalten, wobei die verfügbare Überschussleistung und das Gleichgewicht zwischen Schub- und Widerstandskräften während des Steigflugs berücksichtigt werden. Das Verständnis und die Anwendung dieser Formel ist für Piloten und Ingenieure von entscheidender Bedeutung, um die Steigleistung zu optimieren.

v=PexcessT-FD

Geschwindigkeit an jedem Punkt für den Staurohrkoeffizienten

Die Geschwindigkeit an jedem Punkt für den Koeffizienten der Pitotrohrformel ist bekannt, wenn man den Anstieg der Flüssigkeit im Rohr über die freie Oberfläche betrachtet, die die Höhe der Flüssigkeit am oberen Rand des Pitotrohrs ist.

Vp=Cv29.81hp

Geschwindigkeit über dem Normalschock aus der Normalschockenergiegleichung

Die Geschwindigkeit vor dem normalen Schock aus der Formel der normalen Schockenergiegleichung ist definiert als die Funktion der Gesamtenthalpie und der AufwärtsGeschwindigkeit vor dem normalen Schock. Die in der Formel verwendete Enthalpie ist die Enthalpie pro Masseneinheit.

V1=2(h2+V222-h1)

Geschwindigkeit hinter dem Normalschock aus der Normalschock-Energiegleichung

Die Geschwindigkeit hinter dem Normalschock aus der Normalschock-Energiegleichung berechnet die Geschwindigkeit einer Flüssigkeit stromabwärts einer normalen Stoßwelle unter Verwendung der Normalschock-Energiegleichung. Diese Formel berücksichtigt Parameter wie die Enthalpie vor und hinter dem Stoß und die Geschwindigkeit vor dem Stoß. Es liefert wesentliche Erkenntnisse über die Geschwindigkeitsänderung, die sich aus dem Durchgang der Stoßwelle ergibt.

V2=2(h1+V122-h2)

Geschwindigkeit beim Hin- und Rücktransport in Meilen pro Stunde bei variabler Zeit

Die Geschwindigkeit beim Hin- und Rücktransport in Meilen pro Stunde bei gegebener variabler Zeitformel ist definiert als zurückgelegte Strecke pro Zeiteinheit.

Smph=Hft+Rft88Tv

Geschwindigkeit beim Hin- und Rücktransport in Kilometer pro Stunde bei variabler Zeit

Die Geschwindigkeit beim Transport und bei der Rückfahrt in Kilometern pro Stunde bei gegebener variabler Zeit ist definiert als die Geschwindigkeit, wenn wir vorher Informationen über die Rück- und Transportdistanz haben.

Skmph=hm+Rmeter16.7Tv

Geschwindigkeit des Kolbens oder Körpers für die Bewegung des Kolbens im Dash-Pot

Die Geschwindigkeit des Kolbens oder Körpers für die Bewegung des Kolbens in der Stoßdämpferformel ist unter Berücksichtigung des Gewichts, der Länge und des Durchmessers des Kolbens, der Viskosität der Flüssigkeit oder des Öls und des Spiels zwischen dem Stoßdämpfer und dem Kolben bekannt.

V=4WbC33πLdp3μ

Geschwindigkeitsverteilung in rauer turbulenter Strömung

Die Formel für die Geschwindigkeitsverteilung in rauer turbulenter Strömung ist als die Funktion definiert, die beschreibt, wie molekulare Geschwindigkeiten im Durchschnitt in einer rauen, turbulenten Strömung verteilt sind.

v=5.75vshearlog10(30yks)

Geschwindigkeit des beweglichen Bootes

Die Formel für die Geschwindigkeit eines fahrenden Bootes ist als Strömungsmesser vom Propellertyp definiert, der sich frei um eine vertikale Achse bewegen kann und in einem Boot mit einer bestimmten Geschwindigkeit gezogen wird.

vb=Vcos(θ)

Geschwindigkeit des sich bewegenden Bootes bei gegebener Breite zwischen zwei Vertikalen

Die Formel für die Geschwindigkeit des sich bewegenden Bootes bei gegebener Breite zwischen zwei Vertikalen ist definiert als die kombinierte Bewegung des Bootes relativ zum Wasser und die Bewegung des Wassers relativ zum Ufer.

vb=WΔt

Geschwindigkeitskonstante nach Titrationsverfahren für Reaktionen nullter Ordnung

Die Geschwindigkeitskonstante durch Titrationsmethode für die Reaktionsformel nullter Ordnung ist definiert als die Geschwindigkeitskonstante, die direkt proportional zur Volumendifferenz und umgekehrt proportional zum Zeitpunkt der Fertigstellung ist.

k=V0-Vtt

Geschwindigkeitskonstante für dasselbe Produkt durch Titrationsmethode für Reaktionen zweiter Ordnung

Die Ratenkonstante für dasselbe Produkt durch Titrationsverfahren für die Reaktionsformel zweiter Ordnung ist definiert als die Subtraktion des Kehrwerts des Anfangsvolumens und des Zeitintervalls vom Kehrwert des Volumens eines Reaktanten zum Zeitpunkt t und Zeitintervall.

Ksecond=(1Vttcompletion)-(1V0tcompletion)

Geschwindigkeit des Strahls im Verhältnis zur Bewegung des Schiffs bei gegebener kinetischer Energie

Die Geschwindigkeit des Strahls relativ zur Bewegung des Schiffs bei gegebener kinetischer Energie wird als relative Geschwindigkeit des Aufpralls definiert.

Vr=KE2[g]Wbody

Geschwindigkeit des sich bewegenden Schiffes bei relativer Geschwindigkeit

Die Geschwindigkeit des sich bewegenden Schiffes bei gegebener relativer Geschwindigkeit ist definiert als die Geschwindigkeit, die das Schiff tatsächlich im Propeller erzeugt.

u=Vr-V

Geschwindigkeitsgradient gegebener piezometrischer Gradient mit Scherspannung

Der Geschwindigkeitsgradient bei einem gegebenen piezometrischen Gradienten mit Scherspannung ist als Änderung der Geschwindigkeit in Bezug auf den radialen Abstand definiert.

VG=(γfμ)dh/dx0.5dradial

Geschwindigkeitsverteilungsprofil

Das Geschwindigkeitsverteilungsprofil ist definiert als die Geschwindigkeit relativ zur Platte in Strömungsrichtung im Strom.

v=-(12μ)dp|dr(wR-(R2))

Geschwindigkeitsverhältnis bei gegebenem Verhältnis der Bettneigung

Das Geschwindigkeitsverhältnis (Verhältnis der Sohlenneigung) wird als die FließGeschwindigkeit in einem teilweise gefüllten Rohr im Vergleich zu der in einem voll gefüllten Rohr definiert und gibt Effizienzunterschiede an.

νsVratio=(Nnp)(rpfRrf)23S

Geschwindigkeit bei voller Fahrt unter Verwendung des Bettneigungsverhältnisses

Die Geschwindigkeit bei vollem Betrieb unter Verwendung des Bettneigungsverhältnisses wird als die FließGeschwindigkeit einer Flüssigkeit in einem Rohr definiert, wenn dieses vollständig gefüllt ist, beeinflusst durch die Rohrneigung und Rauheit.

V=Vs(Nnp)(rpfRrf)23S

Geschwindigkeit bei Vollbetrieb unter Verwendung von Bed Slope für Partial Flow

Die Geschwindigkeit bei Volldurchfluss unter Verwendung der Bettneigung für Teildurchfluss wird als die Geschwindigkeit des Flüssigkeitsflusses in einem Rohr definiert, wenn dieses vollständig gefüllt ist, beeinflusst durch die Rohrneigung und -rauheit.

V=Vs(Nnp)(rpfRrf)23sss

Geschwindigkeit bei gegebener Länge

Die Geschwindigkeit bei gegebener Länge ist als beizubehaltende FahrzeugGeschwindigkeit definiert, wenn eine Beschleunigungsrate und eine Änderung des Gradienten der vertikalen Kurve bereitgestellt werden.

V=Lc100fg1-(g2)

Geschwindigkeit des Strahls für dynamischen Schub, der vom Strahl auf die Platte ausgeübt wird

Die Geschwindigkeit des Strahls für den dynamischen Schub, der vom Strahl auf die Platte ausgeübt wird, ist die Änderungsrate seiner Position in Bezug auf einen Bezugssystem und ist eine Funktion der Zeit.

v=-(mfGγfAJet(∠D(180π))-Vabsolute)

Geschwindigkeit der Strömungsfelder

Die Formel für die Geschwindigkeit der Strömungsfelder ist definiert als die Geschwindigkeit, mit der Wasser im Kanal von Kopf bis Schwanz fließt.

vm=Hf1-Ke(2[g])+((n)2)l2.21rh1.33333

Geschwindigkeitskonstante bei gegebener AnfangsGeschwindigkeit und Konzentration des Enzymsubstratkomplexes

Die Formel für die Geschwindigkeitskonstante bei gegebener AnfangsGeschwindigkeit und Enzym-Substrat-Komplex-Konzentration ist als das Verhältnis der AnfangsGeschwindigkeit des Systems zur Konzentration des Enzym-Substrat-Komplexes definiert.

k2=V0ES

Geschwindigkeitskonstante bei maximaler Geschwindigkeit und anfänglicher Enzymkonzentration

Die Formel für die Geschwindigkeitskonstante bei maximaler Geschwindigkeit und anfänglicher Enzymkonzentration ist als das Verhältnis der maximalen Geschwindigkeit des Systems zur anfänglichen Enzymkonzentration definiert.

k2=Vmax[E0]

Geschwindigkeit bei gegebener Länge des Kabelkanals nach Verwendung des Bereichs des Rohrs im Abfluss

Die Geschwindigkeit bei gegebener Leitungslänge nach Verwendung des Rohrbereichs im Abfluss ist als Wasserdurchflussrate definiert.

Vmax=C1HfLpipe

Geschwindigkeit des überholenden Fahrzeugs für vorwärts fahrende FahrzeugGeschwindigkeit in Meter pro Sekunde

Geschwindigkeit des überholenden Fahrzeugs für vorwärts fahrendes Fahrzeug Die Geschwindigkeit in Metern pro Sekunde ist definiert als die Geschwindigkeit, mit der sich das Fahrzeug auf der Straße bewegt.

V=Vb+4.5

Geschwindigkeit des Kraftstoffstrahls

Die Formel für die KraftstoffstrahlGeschwindigkeit ist definiert als die Geschwindigkeit, mit der der Kraftstoff von der Kraftstoffeinspritzdüse in die Brennkammer des Motors eingespritzt wird. Sie hängt von der Ausflussziffer der Blende, der Kraftstoffdichte und auch der durchschnittlichen Druckdifferenz über die Einspritzdauer ab.

Vfj=Cd(2(pin-pcy)ρf)

Geschwindigkeit der größeren Riemenscheibe gegeben Übersetzungsverhältnis des Synchronriemenantriebs

Die Drehzahl der größeren Riemenscheibe bei gegebenem Übersetzungsverhältnis des Synchronriemenantriebs wird verwendet, um die Drehzahl der größeren Riemenscheibe zu ermitteln, wenn die Drehzahl der kleineren Riemenscheibe und das Übersetzungsverhältnis des Systems bekannt sind.

n2=n1i

Geschwindigkeit der kleineren Riemenscheibe gegeben Übersetzungsverhältnis des Synchronriemenantriebs

Die Drehzahl der kleineren Riemenscheibe bei gegebenem Übersetzungsverhältnis des Synchronriemenantriebs wird verwendet, um die Drehzahl der größeren Riemenscheibe zu ermitteln, wenn die Drehzahl der größeren Riemenscheibe und das Übersetzungsverhältnis des Systems bekannt sind.

n1=n2i

Geschwindigkeit bei maximaler Ausdauer bei vorläufiger Ausdauer für Propeller-angetriebene Flugzeuge

Die Formel zur Berechnung der Geschwindigkeit bei maximaler Ausdauer bei vorläufiger Ausdauer für Propellerflugzeuge gibt Ihnen die Geschwindigkeit an, bei der das Flugzeug seine maximale Ausdauer erreicht. Dies ermöglicht eine effiziente Flugplanung und Optimierung des Treibstoffverbrauchs bei Ausdauermissionen.

V(Emax)=LDEmaxratioηln(WL(beg)WL,end)cE

Geschwindigkeitskonstante für die Reaktion nullter Ordnung für Pfropfenströmung

Die Formel für die Geschwindigkeitskonstante für die Reaktion nullter Ordnung für Pfropfenströmung ist als die ReaktionsGeschwindigkeit für eine Reaktion nullter Ordnung definiert, bei der die fraktionelle Volumenänderung beträchtlich ist.

k0=XA-PFRCo pfr𝛕pfr

Geschwindigkeitskonstante für die Reaktion nullter Ordnung für gemischten Fluss

Die Formel für die Geschwindigkeitskonstante für die Reaktion nullter Ordnung für eine gemischte Strömung ist als die ReaktionsGeschwindigkeit für eine Reaktion nullter Ordnung definiert, bei der die fraktionelle Volumenänderung beträchtlich ist.

k0-MFR=XMFRCo-MFR𝛕MFR

Geschwindigkeitskonstante für die Reaktion erster Ordnung für Pfropfenströmung

Die Formel für die Geschwindigkeitskonstante für die Reaktion erster Ordnung für die Pfropfenströmung ist als die Proportionalitätskonstante definiert, die das Verhältnis zwischen der ReaktionsGeschwindigkeit und der ersten Potenz der Konzentration eines der Reaktanten angibt, wenn die fraktionelle Volumenänderung beträchtlich ist.

kplug flow=(1𝛕pfr)((1+εPFR)ln(11-XA-PFR)-(εPFRXA-PFR))

Geschwindigkeitskonstante für die Reaktion erster Ordnung für gemischte Strömung

Die Formel für die Geschwindigkeitskonstante für die Reaktion erster Ordnung bei gemischter Strömung ist als die Proportionalitätskonstante definiert, die die Beziehung zwischen der ReaktionsGeschwindigkeit und der ersten Potenz der Konzentration eines der Reaktanten für die gemischte Strömung angibt.

k1MFR=(1𝛕MFR)(XMFR(1+(εXMFR))1-XMFR)

Geschwindigkeitskonstante für die Reaktion nullter Ordnung unter Verwendung der Geschwindigkeitskonstante für die Reaktion erster Ordnung

Die Geschwindigkeitskonstante für die Reaktion nullter Ordnung unter Verwendung der Formel 'Geschwindigkeitskonstante für die Reaktion erster Ordnung' ist definiert als die Proportionalitätskonstante für die Reaktion nullter Ordnung, die auf die Reaktion erster Ordnung folgt, unter Verwendung der Geschwindigkeitskonstante für die Reaktion erster Ordnung.

k0,k1=(CA0Δt)(1-exp((-kI)Δt)-(CRCA0))

Geschwindigkeitskonstante der Phase zwischen Blase und Wolke

Die Formel für die Geschwindigkeitskonstante der Phase zwischen Blase und Wolke wird als berechnete Geschwindigkeitskonstante definiert, wenn im Wirbelreaktor Blasenbildung auftritt.

Kbc=4.50(umfdb)+5.85(Df R)12([g])14db54

Geschwindigkeitskonstante der Phase zwischen Wolkenwache und Emulsion

Die Geschwindigkeitskonstante der Phase zwischen Wolkenwache und Emulsionsformel wird als berechnete Geschwindigkeitskonstante definiert, wenn Blasenbildung an der Grenzfläche im Wirbelschichtreaktor beim Kunii-Levenspiel-Modell auftritt.

Kce=6.77(εmfDf Rubrdb3)12

Geschwindigkeit für verzögerte Kohärenz bei der Photodissoziation

Die Geschwindigkeitsformel für die verzögerte Kohärenz bei der Photodissoziation ist definiert als die Größe der Änderung seiner Position über die Zeit oder die Größe der Änderung seiner Position pro Zeiteinheit während der verzögerten Kohärenz während der Photodissoziation des KrF-Moleküls.

vcov=2(Vcov_R0-Vcov_R)μcov

Geschwindigkeit im schnellen Wirbelbett

Die Formel „Geschwindigkeit im schnellen Wirbelschichtbett“ bezieht sich auf die AufwärtsGeschwindigkeit des Fluidisierungsgases, das zum Schweben und Fluidisieren fester Partikel im Bett verwendet wird. Schnelle Wirbelschichten zeichnen sich durch hohe GasGeschwindigkeiten aus, und diese Geschwindigkeiten liegen typischerweise deutlich über der minimalen FluidisierungsGeschwindigkeit.

uTB-FF=1.53(ρsolids-ρgas)[g]dpρgas

Geschwindigkeit in der pneumatischen Förderung

Die Geschwindigkeitsformel bei der pneumatischen Förderung ist definiert als die Geschwindigkeit, typischerweise ausgedrückt als Luft- oder GasGeschwindigkeit am Punkt der Injektion oder Einführung der Feststoffpartikel in das Fördersystem.

uFF-PC=((21.6((GSρgas)0.542)(d'p 0.315))[g]dp)11.542

Geschwindigkeit des freien Stroms der laminaren Strömung der flachen Platte

Die Formel für die freie StrömungsGeschwindigkeit einer laminaren Flachplatte ist definiert als die Geschwindigkeit der Flüssigkeit, die sich der Flachplatte in einem laminaren Strömungsregime nähert. Dies ist ein entscheidender Parameter bei konvektiven Massenübertragungsprozessen, insbesondere im Zusammenhang mit der Strömungsdynamik und der Wärmeübertragung.

u=kL(Sc0.67)(Re0.5)0.322

Geschwindigkeitskonstante für die Reaktion nullter Ordnung aus der Arrhenius-Gleichung

Die Geschwindigkeitskonstante für eine Reaktion nullter Ordnung aus der Arrhenius-Gleichungsformel ist definiert als das Produkt des Frequenzfaktors mit einer empirischen Form der negativen Aktivierungsenergie pro universeller Gaskonstante multipliziert mit der Temperatur, und die Geschwindigkeitskonstante der Arrhenius-Gleichung ist umgekehrt proportional zur Reaktionstemperatur.

k0=Afactor-zeroorderexp(-Ea1[R]TZeroOrder)

Geschwindigkeitskonstante für die Reaktion erster Ordnung aus der Arrhenius-Gleichung

Die Geschwindigkeitskonstante für die Reaktion erster Ordnung aus der Arrhenius-Gleichungsformel ist definiert als der Frequenzfaktor multipliziert mit dem Exponential der negativen Aktivierungsenergie pro universeller Gaskonstante und Temperatur. Die Geschwindigkeitskonstante der Reaktion erster Ordnung ist umgekehrt proportional zur Reaktionstemperatur. Mit steigender Reaktionstemperatur nimmt die Geschwindigkeitskonstante ab.

kfirst=Afactor-firstorderexp(-Ea1[R]TFirstOrder)

Geschwindigkeitskonstante für die Reaktion zweiter Ordnung aus der Arrhenius-Gleichung

Die Geschwindigkeitskonstante für die Reaktion zweiter Ordnung aus der Arrhenius-Gleichungsformel ist definiert als Frequenzfaktor multipliziert mit der Exponentialform der negativen Aktivierungsenergie pro universeller Gaskonstante und Temperatur. Die Geschwindigkeitskonstante der Reaktion zweiter Ordnung ist umgekehrt proportional zur Reaktionstemperatur.

Ksecond=Afactor-secondorderexp(-Ea1[R]TSecondOrder)

Geschwindigkeit der Schallwelle bei gegebenem Volumenmodul

Die Geschwindigkeit der Schallwelle in Abhängigkeit vom Kompressionsmodul des Mediums gibt Aufschluss darüber, wie schnell sich Schall durch das Material bewegt. Das Verständnis dieser Beziehung ist in der Akustik, der Materialwissenschaft und in technischen Anwendungen von entscheidender Bedeutung, bei denen die Schallausbreitung und die mechanischen Eigenschaften von Materialien wichtige Überlegungen darstellen.

C=Kρa

Geschwindigkeit der Schallwelle unter Verwendung eines isothermen Prozesses

Die Geschwindigkeit von Schallwellen mithilfe isothermer Prozesse bietet Einblicke in die Auswirkungen der Temperatur und der physikalischen Eigenschaften von Gasen auf die Geschwindigkeit, mit der sich Schall ausbreitet. Dies ermöglicht präzise Berechnungen und fundierte Designentscheidungen in der Akustik, Aerodynamik und verschiedenen technologischen Anwendungen.

C=Rc

Geschwindigkeit der Schallwelle unter Verwendung des adiabatischen Prozesses

Die Geschwindigkeit einer Schallwelle hängt bei einem adiabatischen Prozess vom Adiabatenindex (Verhältnis der spezifischen Wärmekapazitäten), der universellen Gaskonstante, der absoluten Temperatur des Gases und der Molmasse des Gases ab.

C=yRc

Wie finde ich Formeln?

Hier sind ein paar Tipps für bessere Suchergebnisse.
Seien Sie konkret: Je konkreter Ihre Suchanfrage, desto besser sind Ihre Ergebnisse.
Verwenden Sie mehrere Schlüsselwörter: Kombinieren Sie mehrere Schlüsselwörter, um die Ergebnisse einzugrenzen.
Experimentieren Sie mit Synonymen: Unterschiedliche Begriffe können zu unterschiedlichen Ergebnissen führen.
Platzhaltersuche: Verwenden Sie den Operator * (Sternchen). BEACHTEN SIE, dass dieser Operator nur am Ende eines Wortes funktioniert. Beispiel: Bio*, Bereich* usw.

Alternativ können Sie durch die Unterkategorien innerhalb von navigieren, um die Formeln einzugrenzen, die Sie interessieren.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!