Suche Formeln

Bitte geben Sie mindestens 3 Zeichen ein, um mit der Suche nach -Formeln zu beginnen.

Wählen Sie Filter

Grenzen Sie Ihre Suchergebnisse mithilfe dieser Filter ein.

50 Passende Formeln gefunden!

Geschwindigkeitsgradient gegebener Druckgradient am zylindrischen Element

Der Geschwindigkeitsgradient wird durch die Formel für den Druckgradienten am zylindrischen Element als Geschwindigkeitsvariation in Bezug auf den Rohrradius definiert.

VG=(12μ)dp|drdradial

Geschwindigkeit an jedem Punkt im zylindrischen Element

Die Geschwindigkeit an jedem Punkt in der Formel für das zylindrische Element wird als Rate definiert, mit der Flüssigkeit in das Rohr eindringt und ein parabolisches Profil bildet.

vFluid=-(14μ)dp|dr((R2)-(dradial2))

Geschwindigkeit am Auslass der Düse für maximalen Flüssigkeitsdurchfluss

Die Geschwindigkeit am Düsenauslass für die maximale Durchflussrate der Flüssigkeit ist entscheidend für die Bestimmung der Effizienz und Leistung von Fluiddynamiksystemen. Sie korreliert direkt mit dem Druckverhältnis über der Düse, der Flüssigkeitsdichte und den Düsendesignmerkmalen und beeinflusst die Durchflussrate und Antriebseffizienz in Anwendungen wie Raketentriebwerken und industriellen Sprühsystemen. Das Verständnis und die Optimierung dieser Geschwindigkeit ist für das Erreichen der gewünschten Betriebsergebnisse in technischen und technologischen Anwendungen von entscheidender Bedeutung.

Vf=2yP1(y+1)ρa

Geschwindigkeit im Abfluss bei gegebener Kanaldurchflusszeit

Die Formel für die Geschwindigkeit im Abfluss bei gegebener Kanalfließzeit wird als die Geschwindigkeit des durch den Abfluss fließenden Wassers definiert.

V=LTm/f

Geschwindigkeit des freien Stroms bei lokalem Reibungskoeffizienten

Die Formel für die freie StrömungsGeschwindigkeit bei gegebenem lokalen Reibungskoeffizienten ist definiert als die Geschwindigkeit einer Flüssigkeit, wenn diese weit entfernt von einer Begrenzung oder Wand ist und von der Anwesenheit der Wand unbeeinflusst bleibt. Sie ist ein entscheidender Parameter zum Verständnis des Verhaltens einer Flüssigkeitsströmung über einer flachen Platte.

u=2τwρCfx

Geschwindigkeit für organische Materie einstellen

Die AbsetzGeschwindigkeit für organische Materie (auch als "SedimentationsGeschwindigkeit" bezeichnet) ist definiert als die EndGeschwindigkeit eines Partikels in stiller Flüssigkeit.

vs(o)=0.12Dp((3T)+70)

Geschwindigkeit des Rades bei gegebener TangentialGeschwindigkeit an der Auslassspitze des Flügels

Die Geschwindigkeit des Rades bei gegebener TangentialGeschwindigkeit an der Auslassspitze des Flügels, der sich um die Achse dreht, ist die Anzahl der Umdrehungen des Objekts dividiert durch die Zeit, angegeben als Umdrehungen pro Minute (U/min).

Ω=vtangential602πrO

Geschwindigkeit bei gegebenem Tangentialimpuls von Flüssigkeit, die am Einlass auf Leitschaufeln auftrifft

Die Geschwindigkeit bei gegebenem Tangentialimpuls eines Fluids, das Schaufeln am Einlass eines Objekts trifft, ist die Änderungsrate seiner Position in Bezug auf einen Referenzrahmen und ist eine Funktion der Zeit.

u=TmGwf

Geschwindigkeit bei gegebenem Drehimpuls am Einlass

Die gegebene DrehimpulsGeschwindigkeit am Einlass ist die Änderungsrate seiner Position in Bezug auf einen Bezugssystem und ist eine Funktion der Zeit.

vf=LGwfr

Geschwindigkeit bei gegebenem Tangentialimpuls von Flüssigkeit, die am Auslass auf Leitschaufeln auftrifft

Die dem Tangentialimpuls gegebene Geschwindigkeit des Fluids, das am Auslass auf die Leitschaufeln trifft, ist die Änderungsrate seiner Position in Bezug auf den Referenzrahmen und ist eine Funktion der Zeit.

u=TmGwf

Geschwindigkeit bei gegebenem Drehimpuls am Outlet

Die Geschwindigkeit des gegebenen Drehimpulses am Auslass eines Objekts ist die Änderungsrate seiner Position in Bezug auf einen Bezugssystem und ist eine Funktion der Zeit.

v=TmGwfr

Geschwindigkeit des Förderbandes

Die Formel für die Geschwindigkeit des Förderbands ist definiert als Förderer bewegen Kisten mit etwa der gleichen Geschwindigkeit wie eine Person, die sie trägt. Das sind etwa 65 Fuß pro Minute.

S=LQWm

Geschwindigkeit sich bewegender Grenzen

Die Formel für die Geschwindigkeit sich bewegender Grenzen ist definiert als der Bereich oder die Oberfläche der Grenze oder des Objekts, das sich mit konstanter Geschwindigkeit bewegt.

V=FyμA

Geschwindigkeitskonstante für die Reaktion zweiter Ordnung für Pfropfenströmung

Die Formel für die Geschwindigkeitskonstante der Reaktion zweiter Ordnung für Pfropfenströmung ist definiert als die Proportionalitätskonstante in der Gleichung, die die Beziehung zwischen der Geschwindigkeit einer chemischen Reaktion und den Konzentrationen der reagierenden Substanzen für eine beträchtliche Teilvolumenänderung ausdrückt.

kPlugFlow''=(1𝛕Co)(2ε(1+ε)ln(1-XA)+ε2XA+((ε+1)2XA1-XA))

Geschwindigkeitskonstante für Reaktion zweiter Ordnung für gemischte Strömung

Die Formel für die Geschwindigkeitskonstante für die Reaktion zweiter Ordnung bei Mischströmung ist definiert als die Proportionalitätskonstante in der Gleichung, die die Beziehung zwischen der Geschwindigkeit einer chemischen Reaktion und den Konzentrationen der reagierenden Substanzen bei Mischströmung ausdrückt.

kMixedFlow''=(1𝛕MFRCo-MFR)(XMFR(1+(εXMFR))2(1-XMFR)2)

Geschwindigkeitskonstante für die Vorwärtsreaktion

Die Formel für die Geschwindigkeitskonstante der Vorwärtsreaktion ist definiert als die Beziehung zwischen der molaren Konzentration der Reaktanten und der Geschwindigkeit der chemischen Reaktion, die in Vorwärtsrichtung stattfindet.

kf=(1t)(xeq2A0-xeq)ln(A0xeq+x(A0-xeq)A0(xeq-x))

Geschwindigkeit des Fahrzeugs bei gegebenem Bremsweg nach dem Bremsvorgang

Die Formel zur Ermittlung der FahrzeugGeschwindigkeit bei gegebenem Bremsweg nach Bremsvorgang ist definiert als Maß für die Geschwindigkeit eines Fahrzeugs in dem Moment, in dem es mit dem Bremsen beginnt. Dies ist ein entscheidender Parameter bei der Bestimmung des Bremswegs und der Sicherheit eines Fahrzeugs unter verschiedenen Straßen- und Verkehrsbedingungen.

vvehicle=2[g]fl

Geschwindigkeit der Kreisbahn

Die Formel für die KreisbahnGeschwindigkeit ist definiert als Maß für die Geschwindigkeit, mit der ein Objekt auf einer Kreisbahn um einen Himmelskörper, beispielsweise einen Planeten, kreist. Dabei wird die Geschwindigkeit von der Schwerkraft des Zentralkörpers und dem Radius der Umlaufbahn beeinflusst.

vcir=[GM.Earth]r

Geschwindigkeitskonstante der Phase zwischen Blase und Wolke

Die Formel für die Geschwindigkeitskonstante der Phase zwischen Blase und Wolke wird als berechnete Geschwindigkeitskonstante definiert, wenn im Wirbelreaktor Blasenbildung auftritt.

Kbc=4.50(umfdb)+5.85(Df R)12([g])14db54

Geschwindigkeitskonstante der Phase zwischen Wolkenwache und Emulsion

Die Geschwindigkeitskonstante der Phase zwischen Wolkenwache und Emulsionsformel wird als berechnete Geschwindigkeitskonstante definiert, wenn Blasenbildung an der Grenzfläche im Wirbelschichtreaktor beim Kunii-Levenspiel-Modell auftritt.

Kce=6.77(εmfDf Rubrdb3)12

Geschwindigkeit für verzögerte Kohärenz bei der Photodissoziation

Die Geschwindigkeitsformel für die verzögerte Kohärenz bei der Photodissoziation ist definiert als die Größe der Änderung seiner Position über die Zeit oder die Größe der Änderung seiner Position pro Zeiteinheit während der verzögerten Kohärenz während der Photodissoziation des KrF-Moleküls.

vcov=2(Vcov_R0-Vcov_R)μcov

Geschwindigkeit im schnellen Wirbelbett

Die Formel „Geschwindigkeit im schnellen Wirbelschichtbett“ bezieht sich auf die AufwärtsGeschwindigkeit des Fluidisierungsgases, das zum Schweben und Fluidisieren fester Partikel im Bett verwendet wird. Schnelle Wirbelschichten zeichnen sich durch hohe GasGeschwindigkeiten aus, und diese Geschwindigkeiten liegen typischerweise deutlich über der minimalen FluidisierungsGeschwindigkeit.

uTB-FF=1.53(ρsolids-ρgas)[g]dpρgas

Geschwindigkeit in der pneumatischen Förderung

Die Geschwindigkeitsformel bei der pneumatischen Förderung ist definiert als die Geschwindigkeit, typischerweise ausgedrückt als Luft- oder GasGeschwindigkeit am Punkt der Injektion oder Einführung der Feststoffpartikel in das Fördersystem.

uFF-PC=((21.6((GSρgas)0.542)(d'p 0.315))[g]dp)11.542

Geschwindigkeitsschwankungskoeffizient für Schwungrad

Die Formel für den Geschwindigkeitsschwankungskoeffizienten für Schwungräder ist als Maß für die Geschwindigkeitsschwankung eines Schwungrads definiert, bei dem es sich um ein rotierendes Rad handelt, das Energie speichert und die Geschwindigkeitsschwankungen eines Motors oder einer anderen Maschine ausgleicht.

Cs=2ω1-ω2ω1+ω2

Geschwindigkeit der progressiven Welle

Die Formel zur Geschwindigkeit fortschreitender Wellen ist definiert als Maß für die Geschwindigkeit, mit der sich eine Welle durch ein Medium ausbreitet. Sie beschreibt die Rate der Störungsübertragung in einem physikalischen System und ist ein grundlegendes Konzept zum Verständnis der Wellendynamik und ihrer Anwendungen in verschiedenen Bereichen der Physik.

Vw=λTW

Geschwindigkeit der progressiven Welle unter Verwendung der Frequenz

Die Geschwindigkeit fortschreitender Wellen wird mithilfe der Frequenzformel als Maß für die Geschwindigkeit definiert, mit der sich eine Welle durch ein Medium ausbreitet. Dies ist für das Verständnis verschiedener physikalischer Phänomene wie Schallwellen, Lichtwellen und seismischer Wellen von wesentlicher Bedeutung und spielt in Bereichen wie Physik, Ingenieurwesen und Geologie eine entscheidende Rolle.

Vw=λfw

Geschwindigkeit einer progressiven Welle bei gegebener Winkelfrequenz

Die Formel für die Geschwindigkeit einer fortschreitenden Welle bei gegebener Winkelfrequenz ist definiert als Maß für die Geschwindigkeit einer Welle, die sich in eine bestimmte Richtung bewegt, beeinflusst durch die Winkelfrequenz, und ist von entscheidender Bedeutung für das Verständnis des Verhaltens von Wellen in verschiedenen physikalischen Systemen, einschließlich Schall- und Lichtwellen.

Vw=λωf2π

Geschwindigkeit der Welle bei gegebener Wellennummer

Die Formel zur Berechnung der WellenGeschwindigkeit bei gegebener Wellenzahl ist ein Maß für die Geschwindigkeit, mit der sich eine Welle durch ein Medium ausbreitet. Sie bietet Aufschluss über die Frequenz und Wellenlänge der Welle und ist von entscheidender Bedeutung für das Verständnis verschiedener physikalischer Phänomene, wie etwa Schall- und Lichtwellen, in der Physik und in technischen Anwendungen.

Vw=ωfk

Geschwindigkeit des Mitnehmers für Kreisbogennocken, wenn der Kontakt auf der Kreisflanke erfolgt

Die Formel für die Geschwindigkeit des Stößels für einen Kreisbogennocken, wenn der Kontakt auf einer Kreisflanke liegt, ist definiert als Maß für die Geschwindigkeit des Stößels in einem Kreisbogennockenmechanismus, wenn sich der Kontaktpunkt auf der Kreisflanke befindet. Dies ist ein kritischer Parameter bei der Konstruktion und Optimierung von Nockenstößelsystemen.

v=ω(R-r1)sin(θturned)

Geschwindigkeitskonstante der Reaktion erster Ordnung unter Verwendung des Logarithmus zur Basis 10

Die Geschwindigkeitskonstante der Reaktion erster Ordnung unter Verwendung des Logarithmus zur Basis-10-Formel ist definiert als die ReaktionsGeschwindigkeit pro Konzentration des Reaktanten. Die Formel ist der Logarithmus zur Basis 10 der Anfangskonzentration pro Konzentration zum Zeitpunkt t, das Ganze wird durch die Zeit dividiert, die für die Vervollständigung der Reaktion erforderlich ist.

kfirst=2.303tcompletionlog10(A0Ct)

Geschwindigkeitskonstante zur Halbzeit für die Reaktion erster Ordnung

Die Geschwindigkeitskonstante zur Halbzeit für die Reaktionsformel erster Ordnung ist definiert als die ReaktionsGeschwindigkeit pro Konzentration des Reaktanten. Die Formel ist ein natürlicher Logarithmus von 2 geteilt durch die Halbwertszeit der Reaktion.

kfirst=0.693t1/2

Geschwindigkeitskonstante für dasselbe Produkt für eine Reaktion zweiter Ordnung

Die Geschwindigkeitskonstante für dasselbe Produkt für die Reaktionsformel zweiter Ordnung ist definiert als die durchschnittliche ReaktionsGeschwindigkeit pro Konzentration des Reaktanten mit einer auf 2 erhöhten Leistung.

Ksecond=1axttcompletion-1atcompletion

Geschwindigkeitskonstante für verschiedene Produkte für die Reaktion zweiter Ordnung

Die Geschwindigkeitskonstante für verschiedene Produkte für die Reaktionsformel zweiter Ordnung ist definiert als die durchschnittliche ReaktionsGeschwindigkeit pro Konzentration der beiden verschiedenen Reaktanten, deren Leistung jeweils auf 1 erhöht ist.

Kfirst=2.303tcompletion(CAO-CBO)log10CBO(ax)CAO(bx)

Geschwindigkeitskonstante unter konstantem Druck und konstanter Temperatur für eine Reaktion nullter Ordnung

Die Geschwindigkeitskonstante unter konstantem Druck und konstanter Temperatur für die Reaktionsformel nullter Ordnung ist definiert als Fortschritt der Gasreaktion, die durch Messen des Gesamtdrucks bei einem festen Volumen und einer festen Temperatur überwacht werden kann. Da die Geschwindigkeitskonstante für eine Reaktion nullter Ordnung gilt, sollte die Reihenfolge der Reaktion (n) durch Null ersetzt werden.

k=(2.303t)log10(P0(n-1)(nP0)-Pt)

Geschwindigkeitskonstante nach Titrationsverfahren für Reaktionen erster Ordnung

Die Geschwindigkeitskonstante durch das Titrationsverfahren für die Formel des Reaktionsverfahrens erster Ordnung ist definiert als die ReaktionsGeschwindigkeit geteilt durch die Konzentration des Reaktanten, der auf die Potenz eins erhöht ist. Die Geschwindigkeitskonstante nach dem Titrationsverfahren ist direkt proportional zum Logarithmus des Anfangsvolumens des Reaktanten pro Volumen eines Reaktanten zum Zeitpunkt t.

kfirst=(2.303tcompletion)log10(V0Vt)

Geschwindigkeitskoeffizient

Die Geschwindigkeitskoeffizientenformel ist definiert als das Verhältnis der tatsächlichen AustrittsGeschwindigkeit zum Verhältnis der idealen AustrittsGeschwindigkeit.

Cv=CactCideal

Geschwindigkeit in Abschnitt 1-1 für plötzliche Vergrößerung

Die Geschwindigkeit in Abschnitt 1-1 für die Formel für plötzliche Vergrößerung ist bekannt, wenn die StrömungsGeschwindigkeit in Abschnitt 2-2 nach der Vergrößerung und der Druckverlust aufgrund der Reibung für eine durch das Rohr fließende Flüssigkeit berücksichtigt werden.

V1'=V2'+he2[g]

Geschwindigkeit in Abschnitt 2-2 für plötzliche Vergrößerung

Die Geschwindigkeit in Abschnitt 2-2 für die Formel für plötzliche Vergrößerung ist bekannt, wenn die StrömungsGeschwindigkeit in Abschnitt 1-1 vor der Vergrößerung und der Druckverlust aufgrund der Reibung für eine durch das Rohr fließende Flüssigkeit berücksichtigt werden.

V2'=V1'-he2[g]

Geschwindigkeit in Abschnitt 2-2 für plötzliche Kontraktion

Die Geschwindigkeit in Abschnitt 2-2 für die Formel für plötzliche Kontraktion ist bekannt, wenn der Verlust des Kopfes aufgrund plötzlicher Kontraktion und der Kontraktionskoeffizient bei cm³ berücksichtigt werden.

V2'=hc2[g](1Cc)-1

Geschwindigkeitskoeffizient gegebener Entladungskoeffizient

Der Geschwindigkeitskoeffizient wird in der Formel für den Abflusskoeffizienten als Reduktionsfaktor für die theoretische Geschwindigkeit durch die Öffnung definiert.

Cv=CdCc

Geschwindigkeitspotential für gleichmäßige inkompressible Strömung

Die Geschwindigkeitspotentialfunktion für gleichmäßige inkompressible Strömung (ϕ) steigt linear mit der Entfernung in Strömungsrichtung (x) an, was die gleichmäßige Natur der Strömung widerspiegelt. Folglich gibt es keine Variation des Geschwindigkeitspotentials in Bezug auf die y-Koordinate, was die Homogenität der Strömung in y-Richtung veranschaulicht.

ϕ=Vx

Geschwindigkeit am Punkt des Tragflächenprofils für gegebenen Druckkoeffizienten und freie StrömungsGeschwindigkeit

Die Geschwindigkeit an einem Punkt auf dem Schaufelblatt für einen gegebenen Druckkoeffizienten und eine Formel für die Geschwindigkeit im freien Strom ist das Produkt aus der Geschwindigkeit im freien Strom und der Quadratwurzel aus eins minus dem Druckkoeffizienten in inkompressibler Strömung.

V=u2(1-Cp)

Geschwindigkeitspotential für gleichmäßige inkompressible Strömung in Polarkoordinaten

Das Geschwindigkeitspotential für gleichmäßige inkompressible Strömung in Polarkoordinaten besagt, dass die Funktion direkt proportional zum radialen Abstand vom Ursprung (r) und dem Kosinus der Winkelkoordinate (θ) ist, skaliert durch die StrömungsGeschwindigkeit (U). Dies bedeutet, dass der Wert der Geschwindigkeitspotentialfunktion linear mit dem radialen Abstand vom Ursprung zunimmt und mit dem Kosinus des Winkels variiert, was die gleichmäßige Natur der Strömung und ihre Abhängigkeit von der Winkelrichtung widerspiegelt.

ϕ=Vrcos(θ)

Geschwindigkeitspotential für den 2D-Quellenfluss

Die Formel für das Geschwindigkeitspotenzial für den zweidimensionalen Quellenfluss besagt, dass die Funktion direkt proportional zum natürlichen Logarithmus des radialen Abstands vom Quellpunkt und der Stärke der Quelle ist. Diese logarithmische Beziehung spiegelt die Eigenschaft des Potenzialflusses wider, bei dem die Geschwindigkeit mit zunehmendem Abstand von der Quelle logarithmisch abnimmt.

ϕ=Λ2πln(r)

Geschwindigkeitsverhältnis im Differenzial-Riemenscheibenblock von Weston

Das Geschwindigkeitsverhältnis im Differential-Flaschenzug von Weston ist ein Maß für den mechanischen Vorteil, den das System bietet. Es stellt das Verhältnis der durch die Kraft zurückgelegten Strecke (die gezogene Kette) zur zurückgelegten Strecke durch die Last dar.

Vi=2dldl-ds

Geschwindigkeit der Schallwelle bei gegebenem Volumenmodul

Die Geschwindigkeit der Schallwelle in Abhängigkeit vom Kompressionsmodul des Mediums gibt Aufschluss darüber, wie schnell sich Schall durch das Material bewegt. Das Verständnis dieser Beziehung ist in der Akustik, der Materialwissenschaft und in technischen Anwendungen von entscheidender Bedeutung, bei denen die Schallausbreitung und die mechanischen Eigenschaften von Materialien wichtige Überlegungen darstellen.

C=Kρa

Geschwindigkeit der Schallwelle unter Verwendung eines isothermen Prozesses

Die Geschwindigkeit von Schallwellen mithilfe isothermer Prozesse bietet Einblicke in die Auswirkungen der Temperatur und der physikalischen Eigenschaften von Gasen auf die Geschwindigkeit, mit der sich Schall ausbreitet. Dies ermöglicht präzise Berechnungen und fundierte Designentscheidungen in der Akustik, Aerodynamik und verschiedenen technologischen Anwendungen.

C=Rc

Geschwindigkeit der Schallwelle unter Verwendung des adiabatischen Prozesses

Die Geschwindigkeit einer Schallwelle hängt bei einem adiabatischen Prozess vom Adiabatenindex (Verhältnis der spezifischen Wärmekapazitäten), der universellen Gaskonstante, der absoluten Temperatur des Gases und der Molmasse des Gases ab.

C=yRc

Geschwindigkeit der Schallwelle bei gegebener Machzahl für komprimierbare Flüssigkeitsströmung

Die Geschwindigkeit der Schallwelle bei gegebener Mach-Zahl für kompressible Flüssigkeitsströmungen gibt die Geschwindigkeit an, mit der sich Schall durch das Medium ausbreitet, relativ zur SchallGeschwindigkeit in diesem Medium. Diese Beziehung ist von grundlegender Bedeutung in der Aerodynamik, der Luft- und Raumfahrttechnik und der Akustik, wo die Mach-Zahl das Strömungsregime charakterisiert und das Verhalten von Stoßwellen und Schallübertragung beeinflusst.

C=VM

Geschwindigkeit des Kolbens für die Scherkraft, die der Bewegung des Kolbens widersteht

Die Geschwindigkeit des Kolbens zur Widerstandsfähigkeit gegen Scherkräfte ist definiert als die durchschnittliche Geschwindigkeit, mit der sich der Kolben bewegt.

vpiston=FsπμLP(1.5(DCR)2+4(DCR))

Wie finde ich Formeln?

Hier sind ein paar Tipps für bessere Suchergebnisse.
Seien Sie konkret: Je konkreter Ihre Suchanfrage, desto besser sind Ihre Ergebnisse.
Verwenden Sie mehrere Schlüsselwörter: Kombinieren Sie mehrere Schlüsselwörter, um die Ergebnisse einzugrenzen.
Experimentieren Sie mit Synonymen: Unterschiedliche Begriffe können zu unterschiedlichen Ergebnissen führen.
Platzhaltersuche: Verwenden Sie den Operator * (Sternchen). BEACHTEN SIE, dass dieser Operator nur am Ende eines Wortes funktioniert. Beispiel: Bio*, Bereich* usw.

Alternativ können Sie durch die Unterkategorien innerhalb von navigieren, um die Formeln einzugrenzen, die Sie interessieren.

© 2024-2025. Developed & Maintained by softUsvista Inc.
Copied!