Suche Formeln

Bitte geben Sie mindestens 3 Zeichen ein, um mit der Suche nach -Formeln zu beginnen.

Wählen Sie Filter

Grenzen Sie Ihre Suchergebnisse mithilfe dieser Filter ein.

50 Passende Formeln gefunden!

Geschwindigkeitsverhältnis des Riemenantriebs

Die Formel für das Geschwindigkeitsverhältnis des Riemenantriebs ist definiert als das Verhältnis der WinkelGeschwindigkeit der Folgewelle zu der der Antriebswelle in einem Riemenantriebssystem, bei dem es sich um ein mechanisches Gerät zur Kraftübertragung über eine Distanz handelt.

i=NfNd

Geschwindigkeitsverhältnis des Verbundriemenantriebs bei gegebenem Produkt des Durchmessers des angetriebenen

Das Geschwindigkeitsverhältnis eines zusammengesetzten Riemenantriebs, gegeben durch das Produkt aus Durchmesser der angetriebenen Scheibe, wird als das Verhältnis der WinkelGeschwindigkeit der Antriebsscheibe zu der der angetriebenen Scheibe in einem zusammengesetzten Riemenantriebssystem definiert und stellt ein Maß für die mechanische Verstärkung des Systems dar.

i=P1P2

Geschwindigkeitsverhältnis des Verbundriemenantriebs

Die Formel für das Geschwindigkeitsverhältnis eines zusammengesetzten Riemenantriebs ist definiert als das Verhältnis der WinkelGeschwindigkeit der angetriebenen Welle zu der der Antriebswelle in einem zusammengesetzten Riemenantriebssystem, bei dem es sich um ein mechanisches System zur Kraftübertragung von einer Welle auf eine andere handelt.

i=NnNd′

Geschwindigkeitsverhältnis des einfachen Riemenantriebs, wenn die Dicke nicht berücksichtigt wird

Die Formel für das Geschwindigkeitsverhältnis eines einfachen Riemenantriebs ohne Berücksichtigung der Dicke ist definiert als Maß für das Verhältnis der WinkelGeschwindigkeit der Antriebsscheibe zur WinkelGeschwindigkeit der Folgescheibe in einem einfachen Riemenantriebssystem, bei dem die Dicke des Riemens nicht berücksichtigt wird, und stellt eine vereinfachte Berechnung für Maschinenbauingenieure dar.

i=dddf

Geschwindigkeitsverhältnis des einfachen Riemenantriebs unter Berücksichtigung der Dicke

Die Formel für das Geschwindigkeitsverhältnis eines einfachen Riemenantriebs unter Berücksichtigung der Dicke ist definiert als Maß für das Verhältnis der WinkelGeschwindigkeit der Antriebsscheibe zur WinkelGeschwindigkeit der Folgescheibe in einem einfachen Riemenantriebssystem unter Berücksichtigung der Dicke des Riemens.

i=dd+tdf+t

Geschwindigkeitsverhältnis des Riemens bei prozentualem Gesamtschlupf

Das Geschwindigkeitsverhältnis des Riemens bei gegebenem prozentualen Gesamtschlupf wird als das Verhältnis der Geschwindigkeit der Antriebsscheibe zur Geschwindigkeit der Folgescheibe in einem Riemenantriebssystem definiert, wobei der prozentuale Gesamtschlupf zwischen den beiden Scheiben berücksichtigt wird und ein Maß für die Effizienz des Systems bereitgestellt wird.

i=(dd+t)1-0.01sdf+t

Geschwindigkeitsverhältnis des Riemens bei gegebenem Kriechen des Riemens

Das Geschwindigkeitsverhältnis des Riemens bei gegebener Formel zur Kriechneigung des Riemens ist als dimensionslose Größe definiert, die das Verhältnis der Geschwindigkeit der Antriebsscheibe zur Geschwindigkeit der Folgescheibe in einem riemengetriebenen System ausdrückt, wobei die Kriechneigung des Riemens berücksichtigt wird, die sich auf die Gesamteffizienz des Systems auswirkt.

i=dd(E+σ2)df(E+σ1)

Geschwindigkeit für die Übertragung maximaler Leistung durch Riemen

Die Formel für die Geschwindigkeit zur Übertragung maximaler Leistung durch einen Riemen wird als die maximale LeistungsübertragungsGeschwindigkeit eines Riemenantriebssystems definiert und ist für die Konstruktion und Optimierung von Riemenantriebssystemen zur effizienten Leistungsübertragung von entscheidender Bedeutung.

v=Pm3m

Geschwindigkeit des Mitläufers nach der Zeit t für Zykloidenbewegung

Die Formel für die Geschwindigkeit des Stößels nach der Zeit t bei zykloider Bewegung ist definiert als Maß für die Geschwindigkeit des Stößels in einem Nocken- und Stößelsystem, das einer zykloiden Bewegung unterliegt. Sie beschreibt die Bewegung des Stößels, während dieser sich dreht und auf einer Kreisbahn verschiebt.

v=ωSθo(1-cos(2πθrotationθo))

Geschwindigkeit des Wasserflusses durch gesättigten Boden nach Darcys Gesetz

Die FließGeschwindigkeit von Wasser durch gesättigten Boden wird nach Darcys Gesetz als der Fluss einer Flüssigkeit durch ein poröses Medium definiert. In der Geotechnik wird sie häufig verwendet, um die Bewegung von Wasser durch Boden zu beschreiben.

qflow=(kiAcs)

Geschwindigkeit für eine gegebene Wenderate

Die Geschwindigkeit bei einer gegebenen Wenderate ist ein Maß für die Geschwindigkeit eines Flugzeugs während einer Kurve und wird auf Grundlage des Lastfaktors, der Erdbeschleunigung und der Wenderate berechnet.

V=[g]n2-1ω

Geschwindigkeit des Körpers in einfacher harmonischer Bewegung

Die Formel für die Geschwindigkeit eines Körpers bei einer einfachen harmonischen Bewegung wird als die MaximalGeschwindigkeit eines Objekts definiert, während es um seine Gleichgewichtsposition schwingt. Sie liefert ein Maß für die kinetische Energie des Objekts während seiner Schwingungsbewegung.

V=A'ωcos(ωtsec)

Geschwindigkeit für gegebenen Pull-Up-Manöverradius

Die Geschwindigkeit für einen bestimmten Pull-Up-Manöverradius eines Flugzeugs hängt vom Manöverradius und der Auslastung des Flugzeugs ab. Diese Formel bietet eine vereinfachte Annäherung an die Geschwindigkeit, die erforderlich ist, um während des Pull-Up-Manövers die gewünschte SinkGeschwindigkeit aufrechtzuerhalten.

Vpull-up=R[g](n-1)

Geschwindigkeit für eine gegebene Pull-up-Manöverrate

Die Geschwindigkeit für eine bestimmte Pull-up-Manöverrate ist die Geschwindigkeit, die ein Flugzeug benötigt, um während eines Pull-up-Manövers eine bestimmte Steigrate beizubehalten. Diese Formel berechnet die Geschwindigkeit basierend auf der Erdbeschleunigung, dem Pull-up-Lastfaktor und der Wenderate. Das Verständnis und die Anwendung dieser Formel ist für Piloten und Ingenieure unerlässlich, um sichere und effektive Pull-up-Manöver zu gewährleisten.

Vpull-up=[g]npull-up-1ω

Geschwindigkeit des Windkanal-Testabschnitts

Die Geschwindigkeitsformel des Windkanal-Testabschnitts basiert auf dem Bernoulli-Prinzip und ist eine Funktion der Druckdifferenz zwischen Reservoir und Testabschnitt.

V2=2(P1-P2)ρ0(1-1Alift2)

Geschwindigkeitskoeffizient gegebener Entladungskoeffizient

Der Geschwindigkeitskoeffizient wird in der Formel für den Abflusskoeffizienten als Reduktionsfaktor für die theoretische Geschwindigkeit durch die Öffnung definiert.

Cv=CdCc

Geschwindigkeitspotential für gleichmäßige inkompressible Strömung

Die Geschwindigkeitspotentialfunktion für gleichmäßige inkompressible Strömung (ϕ) steigt linear mit der Entfernung in Strömungsrichtung (x) an, was die gleichmäßige Natur der Strömung widerspiegelt. Folglich gibt es keine Variation des Geschwindigkeitspotentials in Bezug auf die y-Koordinate, was die Homogenität der Strömung in y-Richtung veranschaulicht.

ϕ=Vx

Geschwindigkeit am Punkt des Tragflächenprofils für gegebenen Druckkoeffizienten und freie StrömungsGeschwindigkeit

Die Geschwindigkeit an einem Punkt auf dem Schaufelblatt für einen gegebenen Druckkoeffizienten und eine Formel für die Geschwindigkeit im freien Strom ist das Produkt aus der Geschwindigkeit im freien Strom und der Quadratwurzel aus eins minus dem Druckkoeffizienten in inkompressibler Strömung.

V=u2(1-Cp)

Geschwindigkeitspotential für gleichmäßige inkompressible Strömung in Polarkoordinaten

Das Geschwindigkeitspotential für gleichmäßige inkompressible Strömung in Polarkoordinaten besagt, dass die Funktion direkt proportional zum radialen Abstand vom Ursprung (r) und dem Kosinus der Winkelkoordinate (θ) ist, skaliert durch die StrömungsGeschwindigkeit (U). Dies bedeutet, dass der Wert der Geschwindigkeitspotentialfunktion linear mit dem radialen Abstand vom Ursprung zunimmt und mit dem Kosinus des Winkels variiert, was die gleichmäßige Natur der Strömung und ihre Abhängigkeit von der Winkelrichtung widerspiegelt.

ϕ=Vrcos(θ)

Geschwindigkeitspotential für den 2D-Quellenfluss

Die Formel für das Geschwindigkeitspotenzial für den zweidimensionalen Quellenfluss besagt, dass die Funktion direkt proportional zum natürlichen Logarithmus des radialen Abstands vom Quellpunkt und der Stärke der Quelle ist. Diese logarithmische Beziehung spiegelt die Eigenschaft des Potenzialflusses wider, bei dem die Geschwindigkeit mit zunehmendem Abstand von der Quelle logarithmisch abnimmt.

ϕ=Λ2πln(r)

Geschwindigkeit der Schallwelle bei gegebenem Volumenmodul

Die Geschwindigkeit der Schallwelle in Abhängigkeit vom Kompressionsmodul des Mediums gibt Aufschluss darüber, wie schnell sich Schall durch das Material bewegt. Das Verständnis dieser Beziehung ist in der Akustik, der Materialwissenschaft und in technischen Anwendungen von entscheidender Bedeutung, bei denen die Schallausbreitung und die mechanischen Eigenschaften von Materialien wichtige Überlegungen darstellen.

C=Kρa

Geschwindigkeit der Schallwelle unter Verwendung eines isothermen Prozesses

Die Geschwindigkeit von Schallwellen mithilfe isothermer Prozesse bietet Einblicke in die Auswirkungen der Temperatur und der physikalischen Eigenschaften von Gasen auf die Geschwindigkeit, mit der sich Schall ausbreitet. Dies ermöglicht präzise Berechnungen und fundierte Designentscheidungen in der Akustik, Aerodynamik und verschiedenen technologischen Anwendungen.

C=Rc

Geschwindigkeit der Schallwelle unter Verwendung des adiabatischen Prozesses

Die Geschwindigkeit einer Schallwelle hängt bei einem adiabatischen Prozess vom Adiabatenindex (Verhältnis der spezifischen Wärmekapazitäten), der universellen Gaskonstante, der absoluten Temperatur des Gases und der Molmasse des Gases ab.

C=yRc

Geschwindigkeit der Schallwelle bei gegebener Machzahl für komprimierbare Flüssigkeitsströmung

Die Geschwindigkeit der Schallwelle bei gegebener Mach-Zahl für kompressible Flüssigkeitsströmungen gibt die Geschwindigkeit an, mit der sich Schall durch das Medium ausbreitet, relativ zur SchallGeschwindigkeit in diesem Medium. Diese Beziehung ist von grundlegender Bedeutung in der Aerodynamik, der Luft- und Raumfahrttechnik und der Akustik, wo die Mach-Zahl das Strömungsregime charakterisiert und das Verhalten von Stoßwellen und Schallübertragung beeinflusst.

C=VM

Geschwindigkeitskonstante bei gegebenem Sauerstoffäquivalent

Die Geschwindigkeitskonstante der Formel zum Sauerstoffäquivalent wird als Oxidationsrate organischer Stoffe definiert und hängt von der Art der organischen Stoffe und der Temperatur ab.

Kh=c-log(Lt,e)t

Geschwindigkeitskonstante bei gegebener Desoxygenierungskonstante

Die Geschwindigkeitskonstante in der Formel zur Sauerstoffentzugskonstante wird als Oxidationsrate organischer Stoffe definiert. Sie hängt von der Temperatur und der Art der im Abwasser vorhandenen organischen Stoffe ab.

K=KD0.434

Geschwindigkeit des Kolbens für die Scherkraft, die der Bewegung des Kolbens widersteht

Die Geschwindigkeit des Kolbens zur Widerstandsfähigkeit gegen Scherkräfte ist definiert als die durchschnittliche Geschwindigkeit, mit der sich der Kolben bewegt.

vpiston=FsπμLP(1.5(DCR)2+4(DCR))

Geschwindigkeit der Flüssigkeit

Die FlüssigkeitsGeschwindigkeit ist definiert als die Geschwindigkeit, mit der sich Flüssigkeit oder Öl im Tank aufgrund der Anwendung der Kolbenkraft bewegt.

uOiltank=dp|dr0.5RR-CHRμ

Geschwindigkeit des Kolbens bei Scherspannung

Die Geschwindigkeit des Kolbens bei Scherbeanspruchung ist definiert als die durchschnittliche Geschwindigkeit im Tank aufgrund der Bewegung des Kolbens.

vpiston=𝜏1.5DμCHCH

Geschwindigkeit für die Wellenlänge der Welle

Die Formel zur Berechnung der Geschwindigkeit für die Wellenlänge einer Welle ist definiert als die Geschwindigkeit, mit der sich die Welle durch ein Medium ausbreitet, berechnet als Produkt ihrer Frequenz und Wellenlänge.

C=(λf)

Geschwindigkeit der Schallwelle

Die Formel zur Berechnung der SchallwellenGeschwindigkeit wird als Geschwindigkeit definiert, obwohl Geschwindigkeit eigentlich sowohl Geschwindigkeit als auch Richtung impliziert. Die Geschwindigkeit einer Welle ist gleich dem Produkt aus Wellenlänge und Frequenz (Anzahl der Schwingungen pro Sekunde) und ist unabhängig von ihrer Intensität.

C=20.05T

Geschwindigkeit der Schallwelle gegeben Schallintensität

Die Geschwindigkeit einer Schallwelle wird bei gegebener Schallintensitätsformel als Tempo definiert, obwohl Geschwindigkeit eigentlich sowohl Geschwindigkeit als auch Richtung impliziert. Die Geschwindigkeit einer Welle ist gleich dem Produkt aus Wellenlänge und Frequenz (Anzahl der Schwingungen pro Sekunde) und ist unabhängig von ihrer Intensität.

C=Prms2Iρ

Geschwindigkeit am Einlass für die Masse des Fluids, das pro Sekunde auf die Leitschaufel auftrifft

Die Geschwindigkeit am Einlass für die Masse des auf die Leitschaufel auftreffenden Fluids pro Sekunde ist die Änderungsrate ihrer Position in Bezug auf den Referenzrahmen und ist eine Funktion der Zeit.

v=mfGγfAJet

Geschwindigkeit am Auslass bei gegebener an das Rad abgegebener Leistung

Die Geschwindigkeit am Auslass bei gegebener Leistung, die an das Rad geliefert wird, ist die Geschwindigkeit, mit der sich die Position ändert. Die durchschnittliche Geschwindigkeit ist das Verhältnis von Verschiebung oder Positionsänderung (eine Vektorgröße) pro Zeit.

v=(PdcGwf)-(vfu)vf

Geschwindigkeit am Auslass bei geleisteter Arbeit, wenn der Jet in Bewegung des Rades abfliegt

Die Geschwindigkeit am Auslass bei gegebener Arbeit, wenn der Strahl in Bewegung des Rades austritt, ist die Geschwindigkeit, mit der sich die Position ändert. Die DurchschnittsGeschwindigkeit ist die Verschiebung oder Positionsänderung (eine Vektorgröße) pro Zeitverhältnis.

v=(wGwf)-(vfu)vf

Geschwindigkeit am Einlass, wenn die Arbeit im Schaufelwinkel 90 beträgt und die Geschwindigkeit Null ist

Die Geschwindigkeit am Einlass, wenn die Arbeit bei einem Flügelwinkel von 90 und die Geschwindigkeit Null ist, ist die Änderungsrate seiner Position in Bezug auf einen Bezugssystem und ist eine Funktion der Zeit.

vf=wGwfu

Geschwindigkeitsskala angesichts der relativen Bedeutung der Viskosität

Die Geschwindigkeitsskala mit der relativen Bedeutung der Viskosität wird als typische Strömungssituation im Küstenbereich definiert. Bei einer Geschwindigkeitsskala von 1 ms−1 und einer Längenskala von 2 m ergibt sich ein Verhältnis von etwa 0,5 × 10−6, sodass wir die Auswirkungen der Viskosität vernachlässigen können.

V=vkLRi

Geschwindigkeit des Riemens bei Spannung des Riemens im Zugtrum

Die Geschwindigkeit des Riemens bei Spannung des Riemens auf der straffen Seite ist ein Maß für die RotationsGeschwindigkeit des Riemens, bei der die Rotationskraft von einer Riemenscheibe auf eine andere übertragen wird.

vb=((eμα)P2)-P1m((eμα)-1)

Geschwindigkeit bei Leckage

Geschwindigkeit bei Leckage: Im Kontext der Strömungsdynamik, speziell im Umgang mit Leckagen, bezieht sich der Begriff „Geschwindigkeit“ auf die Geschwindigkeit, mit der die Flüssigkeit durch ein Leck entweicht.

v=QoA

Geschwindigkeitskonstante für die Reaktion zweiter Ordnung unter Verwendung der Reaktantenkonzentration für Pfropfenströmung

Die Geschwindigkeitskonstante für die Reaktion zweiter Ordnung unter Verwendung der Reaktantenkonzentration für die Formel Pfropfenströmung ist definiert als die Proportionalitätskonstante in der Gleichung, die die Beziehung zwischen der Geschwindigkeit einer chemischen Reaktion und den Konzentrationen der reagierenden Substanzen ausdrückt.

k''=Co Batch-CBatch𝛕BatchCo BatchCBatch

Geschwindigkeitskonstante für die Reaktion zweiter Ordnung unter Verwendung der Reaktantenkonzentration für gemischten Fluss

Die Formel „Geschwindigkeitskonstante für Reaktionen zweiter Ordnung unter Verwendung der Reaktantenkonzentration für Mischströmung“ ist als die Proportionalitätskonstante in der Gleichung definiert, die die Beziehung zwischen der Geschwindigkeit einer chemischen Reaktion und den Konzentrationen der reagierenden Substanzen für Mischströmung ausdrückt.

kmixed=Co-C(𝛕mixed)(C)2

Geschwindigkeitskonstante für die Reaktion zweiter Ordnung unter Verwendung von Raumzeit für gemischte Strömung

Die Formel „Geschwindigkeitskonstante für Reaktionen zweiter Ordnung unter Verwendung von Raumzeit für Mischströmung“ ist definiert als die Proportionalitätskonstante in der Gleichung, die die Beziehung zwischen der Geschwindigkeit einer chemischen Reaktion und den Konzentrationen der reagierenden Substanzen für Mischströmung ausdrückt.

kmixed=Xmfr(1-Xmfr)2(𝛕mixed)(Co)

Geschwindigkeitskonstante für die Reaktion nullter Ordnung unter Verwendung der Geschwindigkeitskonstante für die Reaktion erster Ordnung

Die Geschwindigkeitskonstante für die Reaktion nullter Ordnung unter Verwendung der Formel 'Geschwindigkeitskonstante für die Reaktion erster Ordnung' ist definiert als die Proportionalitätskonstante für die Reaktion nullter Ordnung, die auf die Reaktion erster Ordnung folgt, unter Verwendung der Geschwindigkeitskonstante für die Reaktion erster Ordnung.

k0,k1=(CA0Δt)(1-exp((-kI)Δt)-(CRCA0))

Geschwindigkeit von Fluidpartikeln

Die Geschwindigkeit von Fluidpartikeln in der Fluiddynamik-Terminologie wird verwendet, um die Bewegung eines Kontinuums mathematisch zu beschreiben.

vf=dta

Geschwindigkeit der chemischen Reaktion

Die Formel für die Geschwindigkeit der chemischen Reaktion ist definiert als die Geschwindigkeitsänderung der Konzentration eines der Reaktanten oder Produkte pro Zeiteinheit. Die Geschwindigkeit der chemischen Reaktion bedeutet die Geschwindigkeit, mit der die Reaktion stattfindet.

r=ΔcΔt

Geschwindigkeitskonstante der Reaktion nullter Ordnung

Die Formel für die Geschwindigkeitskonstante der Reaktion nullter Ordnung ist definiert als die Subtraktion der Konzentration eines Reaktanten zum Zeitpunkt t von der Anfangskonzentration des Reaktanten in einem bestimmten Zeitintervall der Reaktion.

k=C0-Cttreaction

Geschwindigkeitskonstante zur Halbzeit der Reaktion nullter Ordnung

Die Geschwindigkeitskonstante zur Halbwertszeit der Reaktionsformel nullter Ordnung ist definiert als die Anfangskonzentration des Reaktanten geteilt durch die doppelte Halbwertszeit der Reaktion. Die doppelte Hälfte der Reaktion ist die Gesamtzeit für den Abschluss der Reaktion.

k=C02T1/2

Geschwindigkeit hinter Normalschock durch Normalschock-Impulsgleichung

Die Geschwindigkeit hinter dem Normalschock durch die Normalschock-Impulsgleichung berechnet die Geschwindigkeit einer Flüssigkeit stromabwärts einer normalen Stoßwelle unter Verwendung der Normalschock-Impulsgleichung. Diese Formel berücksichtigt Parameter wie die statischen Drücke vor und hinter dem Stoß, die Dichte vor dem Stoß und die Geschwindigkeit vor dem Stoß. Es liefert entscheidende Einblicke in die Geschwindigkeitsänderung, die sich aus dem Durchgang der Stoßwelle ergibt.

V2=P1-P2+ρ1V12ρ2

Geschwindigkeit vor Normalschock durch Normalschock-Impulsgleichung

Die Gleichung „Geschwindigkeit vor Normalstoß durch Normalstoßimpuls“ berechnet die Geschwindigkeit einer Flüssigkeit vor einer Normalstoßwelle mithilfe der Gleichung „Normalschockimpuls“. Diese Formel berücksichtigt Parameter wie den statischen Druck vor und hinter dem Stoß, die Dichte hinter dem Stoß und die Geschwindigkeit hinter dem Stoß. Es liefert wichtige Informationen über die FlüssigkeitsGeschwindigkeit vor dem Auftreffen auf die Stoßwelle und hilft bei der Analyse des kompressiblen Strömungsverhaltens.

V1=P2-P1+ρ2V22ρ1

Geschwindigkeit des Kolbens beim Ausfahren

Die Formel für die KolbenGeschwindigkeit während der Ausdehnung ist definiert als die Bewegungsrate eines Kolbens in einem hydraulischen Aktuator oder Motor. Sie ist ein entscheidender Parameter bei der Bestimmung der Leistung und Effizienz des Systems und wird von der Durchflussrate und der Kolbenfläche beeinflusst.

vpiston=QextAp

Wie finde ich Formeln?

Hier sind ein paar Tipps für bessere Suchergebnisse.
Seien Sie konkret: Je konkreter Ihre Suchanfrage, desto besser sind Ihre Ergebnisse.
Verwenden Sie mehrere Schlüsselwörter: Kombinieren Sie mehrere Schlüsselwörter, um die Ergebnisse einzugrenzen.
Experimentieren Sie mit Synonymen: Unterschiedliche Begriffe können zu unterschiedlichen Ergebnissen führen.
Platzhaltersuche: Verwenden Sie den Operator * (Sternchen). BEACHTEN SIE, dass dieser Operator nur am Ende eines Wortes funktioniert. Beispiel: Bio*, Bereich* usw.

Alternativ können Sie durch die Unterkategorien innerhalb von navigieren, um die Formeln einzugrenzen, die Sie interessieren.

© 2024-2026. Developed & Maintained by softUsvista Inc.
Copied!