Wichtig Wärmekraftwerk Formeln PDF

Liste von 12 Wichtig Wärmekraftwerk Formeln

Formel auswerten

Formel auswerten 🕝

Formel auswerten

Formel auswerten [7]

Formel auswerten

1) Ausgangsleistung vom Generator Formel [7]

Formel

Beispiel mit Einheiten

 $P_{out} = V_{out} \cdot (J_c - J_a)$

 $0.0567 \,\mathrm{W/cm^2} = 0.27 \,\mathrm{v} \cdot (0.47 \,\mathrm{A/cm^2} - 0.26 \,\mathrm{A/cm^2})$

2) Ausgangsspannung bei Anoden- und Kathodenarbeitsfunktionen Formel 🕝

Beispiel mit Einheiten $V_{\text{out}} = \Phi_{\text{c}} - \Phi_{\text{a}}$ 0.27v = 1.42v - 1.15v

3) Ausgangsspannung bei Fermi-Energieniveaus Formel C

Beispiel mit Einheiten

 $V_{out} = \frac{\varepsilon f_a - \varepsilon f_c}{\text{[Charge-e]}} \left| \quad \right| \quad 0.27 \text{ v} = \frac{2.87 \text{ eV} - 2.6 \text{ eV}}{1.6 \text{E} - 19 \text{c}}$

4) Ausgangsspannung bei gegebenen Anoden- und Kathodenspannungen Formel 🕝

 $V_{out} = V_c - V_a$

Beispiel mit Einheiten

0.27v = 1.25v - 0.98v

5) Effizienz des Rankine-Zyklus Formel C

 $0.9958 = \frac{947.35}{951.37}$

6) Gesamteffizienz des Kraftwerks Formel

Formel

 $\eta_{overall} = \eta_{thermal} \cdot \eta_{electrical}$

 $0.276 = 0.3 \cdot 0.92$

Formel auswerten Beispiel

7) Kinetische Nettoenergie des Elektrons Formel 🕝

Beispiel mit Einheiten

Formel auswerten 🕝

 $Q_{e} = J_{c} \cdot \left(\frac{2 \cdot [BoltZ] \cdot T_{c}}{[Charge-e]} \right) \left| \quad 0.1094 \, \text{w/cm}^{2} = 0.47 \, \text{A/cm}^{2} \cdot \left(\frac{2 \cdot 1.4 \text{E} - 23 \text{J/K} \cdot 1350 \, \text{K}}{1.6 \text{E} - 19 \text{c}} \right) \right|$

8) Maximaler Elektronenstrom pro Flächeneinheit Formel

Formel auswerten

 $J = A \cdot T^{2} \cdot \exp\left(-\frac{\Phi}{[Rolt Z] \cdot T}\right)$

Beispiel mit Einheiten

$$3.1381 \,\text{A/cm}^2 = 120 \cdot 1100 \,\text{K}^2 \cdot \exp \left(-\frac{0.8 \,\text{eV}}{1.4 \text{E} \cdot 23 \,\text{J/K} \cdot 1100 \,\text{K}} \right)$$

9) Mindestenergie, die ein Elektron benötigt, um die Kathode zu verlassen Formel 🕝

Beispiel mit Einheiten

Formel auswerten

 $Q = J_c \cdot V_c$ 0.5875 w/cm² = 0.47 A/cm² · 1.25 v

10) Stromdichte von Kathode zu Anode Formel

 $| J_{c} = A \cdot T_{c}^{2} \cdot exp \left(- \frac{[Charge-e] \cdot V_{c}}{[BoltZ] \cdot T_{c}} \right) |$

Formel auswerten

Beispiel mit Einheiten

$$0.4714\,\text{A/cm}^2 \ = \ 120 \cdot 1350\,\text{K}^{-2} \cdot exp\Bigg(\ - \frac{1.6\text{E-}19\text{c} \cdot 1.25\,\text{v}}{1.4\text{E-}23\text{J/K} \cdot 1350\,\text{K}} \Bigg)$$

11) Verbrauch von Kohle pro Stunde Formel 🕝

Formel

Beispiel mit Einheiten $CCP_{coal} = \frac{Q_h}{CV_{coal}}$ 1.4904 at (UK) = $\frac{311.6 \text{ J/K}}{6400 \text{ J/K}}$ Formel auswerten

12) Wärmewirkungsgrad des Kraftwerks Formel

Formel

 $\eta_{\text{thermal}} = \frac{\eta_{\text{overall}}}{\eta_{\text{electrical}}} \qquad 0.3 = \frac{0.276}{0.92}$

Formel auswerten

In der Liste von Wärmekraftwerk Formeln oben verwendete Variablen

- A Emissionskonstante
- CCP_{coal} Verbrauch von Kohle pro Stunde (Tonne (Assay) (Vereinigtes Königreich))
- CV_{coal} Brennwert von Kohle (Joule pro Kelvin)
- **J** Stromdichte (Ampere pro Quadratzentimeter)
- J_a Anodenstromdichte (Ampere pro Quadratzentimeter)
- J_c Kathodenstromdichte (Ampere pro Quadratzentimeter)
- Pout Leistung (Watt pro Quadratzentimeter)
- Q Netto Energie (Watt pro Quadratzentimeter)
- Q_e Elektronen-Nettoenergie (Watt pro Quadratzentimeter)
- Q_h Wärmeeintrag pro Stunde (Joule pro Kelvin)
- **q** Wärmeversorgung
- T Temperatur (Kelvin)
- T_c Kathodentemperatur (Kelvin)
- **V**_a Anodenspannung (Volt)
- **V**_C Kathodenspannung (*Volt*)
- V_{out} Ausgangsspannung (Volt)
- Wnet Netzwerkarbeitsausgabe
- εf_a Anoden-Fermi-Energieniveau (Elektronen Volt)
- εf_c Kathoden-Fermi-Energieniveau (Elektronen Volt)
- **η**electrical Elektrischer Wirkungsgrad
- η_{overall} Gesamteffizienz
- η_R Effizienz des Rankine-Zyklus
- η_{thermal} Thermischen Wirkungsgrad
- Φ Arbeitsfuntkion (Elektronen Volt)
- Φ_a Anodenarbeitsfunktion (Volt)
- Φ_c Kathodenarbeitsfunktion (Volt)

Konstanten, Funktionen, Messungen, die in der Liste von Wärmekraftwerk Formeln oben verwendet werden

- Konstante(n): [BoltZ], 1.38064852E-23
 Boltzmann-Konstante
- Konstante(n): [Charge-e], 1.60217662E-19
 Ladung eines Elektrons
- Funktionen: exp, exp(Number)
 Bei einer Exponentialfunktion ändert sich der
 Funktionswert bei jeder Einheitsänderung der
 unabhängigen Variablen um einen konstanten
 Faktor.
- Messung: Gewicht in Tonne (Assay) (Vereinigtes Königreich) (AT (UK))
 Gewicht Einheitenumrechnung
- Messung: Temperatur in Kelvin (K)
 Temperatur Einheitenumrechnung
- Messung: Energie in Elektronen Volt (eV)
 Energie Einheitenumrechnung
- Messung: Oberflächenstromdichte in Ampere pro Quadratzentimeter (A/cm²)
 Oberflächenstromdichte Einheitenumrechnung ()
- Messung: Elektrisches Potenzial in Volt (V)
 Elektrisches Potenzial Einheitenumrechnung
- Messung: Wärmekapazität in Joule pro Kelvin (J/K)
 Wärmekapazität Einheitenumrechnung
- Messung: Intensität in Watt pro Quadratzentimeter (W/cm²)
 Intensität Einheitenumrechnung

Laden Sie andere Wichtig Kraftwerksbetrieb-PDFs herunter

- Wichtig Dieselmotor-Kraftwerk
 Formeln
- Wichtig Wasserkraftwerk Formeln 🗂
- Wichtig Kraftwerksbetriebsfaktoren
 Formeln (*)
- Wichtig Wärmekraftwerk Formeln (*)

Probieren Sie unsere einzigartigen visuellen Rechner aus

- Prozentualer Wachstum
- KGV rechner

Dividiere bruch

Bitte TEILEN Sie dieses PDF mit jemandem, der es braucht!

Dieses PDF kann in diesen Sprachen heruntergeladen werden

English Spanish French German Russian Italian Portuguese Polish Dutch

7/9/2024 | 4:06:49 AM UTC