Important Cinétique pour un ensemble de deux réactions parallèles Formules PDF

Formules Exemples avec unités

Liste de 11

Important Cinétique pour un ensemble de deux réactions parallèles Formules

1) Concentration du produit B dans un ensemble de deux réactions parallèles Formule 🕝

Évaluer la formule (

$$R_{b} = \frac{k_{1}}{k_{1} + k_{2}} \cdot A_{0} \cdot \left(1 - exp\left(-\left(k_{1} + k_{2}\right) \cdot t\right)\right)$$

Exemple avec Unités

$$1.7306\, \text{mol/L} \ = \frac{0.00000567\, \text{s}^{-1}}{0.00000567\, \text{s}^{-1} \ + \ 0.00000887\, \text{s}^{-1}} \ \cdot \ 100\, \text{mol/L} \ \cdot \ \left(\ 1 - exp\left(\ - \ \left(\ 0.00000567\, \text{s}^{-1} \ + \ 0.0000887\, \text{s}^{-1} \ \right) \cdot 3600\, \text{s} \ \right) \right)$$

2) Concentration du produit C dans un ensemble de deux réactions parallèles Formule 🕝

Évaluer la formule (

$$\mathbf{R}_{C} = \frac{\mathbf{k}_{2}}{\mathbf{k}_{1} + \mathbf{k}_{2}} \cdot \mathbf{A}_{0} \cdot \left(\mathbf{1} - \exp\left(-\left(\mathbf{k}_{1} + \mathbf{k}_{2} \right) \right) \right)$$

Exemple avec Unités

$$0.0089\, {}_{mol/L} \, = \frac{0.0000887\, {}_{s^{-1}}}{0.00000567\, {}_{s^{-1}} \, + \, 0.0000887\, {}_{s^{-1}}} \, \cdot \, 100\, {}_{mol/L} \, \cdot \, \big(\, 1 \, - \, exp \, \big(\, - \, \big(\, 0.00000567\, {}_{s^{-1}} \, + \, 0.0000887\, {}_{s^{-1}} \, \, \big) \, \big) \, \big)$$

3) Concentration du réactif A après le temps t dans l'ensemble de deux réactions parallèles Formule

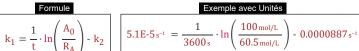
Évaluer la formule 🕝

Évaluer la formule 🕝

$$R_{A} = A_{0} \cdot \exp\left(-\left(k_{1} + k_{2}\right) \cdot t\right)$$

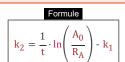
T1.1961 mol/L =
$$100 \text{ mol/L} \cdot \exp\left(-\left(0.00000567 \, \text{s}^{-1} + 0.0000887 \, \text{s}^{-1}\right) \cdot 3600 \, \text{s}\right)$$

4) Concentration initiale du réactif A pour l'ensemble de deux réactions parallèles Formule 🗂


 $A_0 = R_A \cdot \exp((k_1 + k_2) \cdot t)$

Exemple avec Unités

 $84.9766 \, \text{mol/L} = 60.5 \, \text{mol/L} \cdot \exp\left(\left(0.00000567 \, \text{s}^{-1} + 0.0000887 \, \text{s}^{-1} \right) \cdot 3600 \, \text{s} \right)$


5) Constante de vitesse pour la réaction A à B pour un ensemble de deux réactions parallèles Formule

$$k_1 = \frac{1}{t} \cdot \ln \left(\frac{A_0}{R_A} \right) \cdot k_2$$

Évaluer la formule 🕝

6) Constante de vitesse pour la réaction A à C dans un ensemble de deux réactions parallèles Formule (

Évaluer la formule 🕝

 $k_2 = \frac{1}{t} \cdot \ln \left(\frac{A_0}{R_A} \right) - k_1 \quad \left| \quad 0.0001 \, \text{s}^{-1} \right| = \frac{1}{3600 \, \text{s}} \cdot \ln \left(\frac{100 \, \text{mol/L}}{60.5 \, \text{mol/L}} \right) - 0.00000567 \, \text{s}^{-1}$

7) Durée de vie moyenne pour un ensemble de deux réactions parallèles Formule 🕝

Formule
$$t_{1/2avg} = \frac{0.693}{k_1 + k_2}$$

8) Rapport des produits B à C dans un ensemble de deux réactions parallèles Formule 🕝

Évaluer la formule 🕝

9) Temps nécessaire pour former le produit B à partir du réactif A dans un ensemble de deux réactions parallèles Formule

Formule
$$T_{PR} = \frac{k_1}{k_1 + k_2} \cdot A_0$$

$$T_{PR} = \frac{k_1}{k_1 + k_2} \cdot A_0 \qquad \begin{array}{|l|l|l|} \hline \text{Exemple avec Unit\'es} \\ \hline \\ 6008.2653 \, s \end{array} = \frac{0.00000567 \, s^{-1}}{0.00000567 \, s^{-1} + 0.0000887 \, s^{-1}} \cdot 100 \, \text{mol/L} \\ \hline \end{array}$$

Évaluer la formule 🕝

10) Temps nécessaire pour former le produit C à partir du réactif A dans un ensemble de deux réactions parallèles Formule

Formule
$$T_{\text{CtoA}} = \frac{k_2}{k_1 + k_2} \cdot A_0$$

Formule

$$t_{1/2av} = \frac{1}{k_1 + k_2} \cdot ln \left(\frac{A_0}{R_A}\right)$$

Exemple avec Unités

$$5325.0696 \, s \, = \frac{1}{0.00000567 \, s^{\text{-1}} \, + \, 0.0000887 \, s^{\text{-1}}} \cdot \ln\!\left(\frac{100 \, \text{mol/L}}{60.5 \, \text{mol/L}}\right)$$

Variables utilisées dans la liste de Cinétique pour un ensemble de deux réactions parallèles Formules cidessus

- A₀ Concentration initiale du réactif A (mole / litre)
- k₁ Constante de vitesse de réaction 1 (1 par seconde)
- k₂ Constante de vitesse de réaction 2 (1 par seconde)
- RA Réactif A Concentration (mole / litre)
- R_b Concentration du réactif B (mole / litre)
- R_C Concentration du réactif C (mole / litre)
- Rb:Rc Rapport B à C
- t Temps (Deuxième)
- t_{1/2av} Durée de vie pour une réaction parallèle (Deuxième)
- t_{1/2avg} Durée de vie moyenne (Deuxième)
- T_{CtoA} Temps C à A pour 2 réactions parallèles (Deuxième)
- T_{PR} Temps de réaction parallèle (Deuxième)

Constantes, fonctions, mesures utilisées dans la liste des Cinétique pour un ensemble de deux réactions parallèles Formules ci-dessus

- Les fonctions: exp, exp(Number)
 Dans une fonction exponentielle, la valeur de la fonction change d'un facteur constant pour chaque changement d'unité dans la variable indépendante.
- Les fonctions: In, In(Number)
 Le logarithme népérien, également appelé logarithme en base e, est la fonction inverse de la fonction exponentielle naturelle.
- La mesure: Temps in Deuxième (s)
 Temps Conversion d'unité
- La mesure: Constante de taux de réaction de premier ordre in 1 par seconde (s⁻¹)
 Constante de taux de réaction de premier ordre
 Conversion d'unité

Téléchargez d'autres PDF Important Réactions complexes

Important Réactions consécutives
 Formules (*)

Essayez nos calculatrices visuelles uniques

- Pourcentage d'erreur
- PPCM de trois nombres

• Soustraire fraction 🕝

Veuillez PARTAGER ce PDF avec quelqu'un qui en a besoin!

Ce PDF peut être téléchargé dans ces langues

English Spanish French German Russian Italian Portuguese Polish Dutch

7/9/2024 | 4:01:48 AM UTC