Important Paramètres industriels Formules PDF

Formules Exemples avec unités

Liste de 12

Important Paramètres industriels Formules

1) Crashing Formule C

$$CS = \frac{CC - NC}{C}$$

Exemple avec Unités

2) Densité de trafic macroscopique Formule 🕝

Formule

$$K_{c} = \frac{Q_{i}}{\frac{V_{m}}{0.277778}}$$

Exemple avec Unités

$$K_{c} = \frac{Q_{i}}{\frac{V_{m}}{0.277778}}$$

$$33.3334 = \frac{1000}{\frac{30 \text{ km/h}}{0.277778}}$$

3) Distribution binomiale Formule

Formule

$$P_{binomial} = n_{trials}! \cdot p^{x} \cdot \frac{q^{n_{trials} - x}}{x! \cdot (n_{trials} - x)!}$$
 0.1935 = 7! \cdot 0.6 \(^{3} \cdot \frac{0.4^{7 - 3}}{3! \cdot (7 - 3)!}\)

$$0.1935 = 7! \cdot 0.6^{3} \cdot \frac{0.4^{7-3}}{3! \cdot (7-3)}$$

4) Distribution normale Formule

$$P_{normal} = \frac{e^{-\frac{(x-\mu)^2}{2 \cdot \sigma^2}}}{\sigma \cdot \sqrt{2 \cdot \pi}}$$

$$P_{\text{normal}} = \frac{e^{-\frac{(x \cdot \mu)^2}{2 \cdot \sigma^2}}}{\sigma \cdot \sqrt{2 \cdot \pi}} = 0.0967 = \frac{e^{-\frac{(3 \cdot 2)^2}{2 \cdot 4^2}}}{4 \cdot \sqrt{2 \cdot 3.1416}}$$

5) Données générales de couture Formule C

Exemple avec Unités

6) Erreur de prévision Formule

Formule Exemple
$$e_t = D_t - F_t \qquad 5 = 45 - 40$$

Évaluer la formule 🕝

Évaluer la formule 🕝

Évaluer la formule 🕝

Évaluer la formule

Évaluer la formule

Évaluer la formule

7) Facteur d'apprentissage Formule 🕝

$$k = \frac{\log 10(a_1) - \log 10(a_n)}{\log 10}(n_{tasks})$$

Exemple avec Unités

$$0.4582 = \frac{\log 10 \left(3600 \text{ s}\right) - \log 10 \left(1200 \text{ s}\right)}{\log 10} \left(11\right)$$

8) Intensité du trafic Formule 🕝

Formule
$$\rho = \frac{\lambda_a}{\Pi}$$

Formule Exemple
$$\rho = \frac{\lambda_a}{\mu} \qquad 0.9 = \frac{1800}{2000}$$

9) Loi de Poisson Formule 🕝

Formule

P_{poisson} =
$$\mu^{\times} \cdot \frac{e^{-\mu}}{x!}$$
 0.1804 = $2^{3} \cdot \frac{e^{-2}}{3!}$

10) Point de commande Formule 🕝

Exemple

Formule

11) Taux de dévaluation annuel Formule

12) Variance Formule 🕝

$$\sigma^2 = \left(\frac{\mathsf{t}_p - \mathsf{t}_0}{6}\right)^2$$

Formule Exemple avec Unités
$$\sigma^2 = \left(\frac{t_p - t_0}{6}\right)^2$$

$$40000 = \left(\frac{174000 \text{ s} - 172800 \text{ s}}{6}\right)^2$$

Évaluer la formule (

Évaluer la formule

Évaluer la formule 🕝

Évaluer la formule

Évaluer la formule 🕝

Variables utilisées dans la liste de Paramètres industriels Formules cidessus

- µ Taux de service moyen
- a₁ II est temps de passer à la tâche 1 (Deuxième)
- **a**_n Temps pour n tâches (Deuxième)
- · CC Coût de l'accident
- CS Pente des coûts
- CT Heure du crash (Deuxième)
- D_t Valeur observée au temps t
- DL Délai de livraison de la demande
- et Erreur de prévision
- fc Taux de dévaluation annuel
- **F** Prévision moyenne lisse pour la période t
- GSD GSD
- ifc Taux de rendement des devises étrangères
- i_{u.s} Taux de rendement USD
- k Facteur d'apprentissage
- K_c Densité de trafic en vpm
- M Main d'oeuvre
- n_{tasks} Nombre de tâches
- n_{trials} Nombre d'essais
- NC Coût normal
- NT Heure normale (Deuxième)
- p Probabilité de succès d'un essai unique
- P_{binomial} Distribution binomiale
- Pnormal Distribution normale
- Ppoisson Distribution de Poisson
- q Probabilité d'échec d'un essai unique
- Qi Débit horaire en vph
- RP Point de commande
- S Stock de sécurité
- T Cible
- t₀ Temps optimiste (Deuxième)
- t_p Temps pessimiste (Deuxième)

Constantes, fonctions, mesures utilisées dans la liste des Paramètres industriels Formules cidessus

- constante(s): pi,
 3.14159265358979323846264338327950288
 Constante d'Archimède
- constante(s): e,
- 2.71828182845904523536028747135266249 constante de Napier
- Les fonctions: log10, log10(Number)
 Le logarithme décimal, également connu sous le nom de logarithme de base 10 ou logarithme décimal, est une fonction mathématique qui est l'inverse de la fonction exponentielle.
- Les fonctions: sqrt, sqrt(Number)
 Une fonction racine carrée est une fonction qui prend un nombre non négatif comme entrée et renvoie la racine carrée du nombre d'entrée donné
- La mesure: Temps in Deuxième (s)
 Temps Conversion d'unité
- La mesure: La rapidité in Kilomètre / heure (km/h)

La rapidité Conversion d'unité

• **V**_m Vitesse de déplacement moyenne (Kilomètre / heure)

- W_T Horaires de travail (Deuxième)
- X Résultats spécifiques des essais
- λ_a Taux moyen d'arrivée
- µ Moyenne de distribution
- ρ Intensité du trafic
- σ Écart type de la distribution
- σ^2 Variance

Téléchargez d'autres PDF Important Ingénierie mécanique

- Important Paramètres industriels
 Formules (*)
- Important Modèle de fabrication et d'achat Formules (*)
- Important Facteurs opérationnels et financiers Formules
- Important Estimation du temps
 Formules

Essayez nos calculatrices visuelles uniques

- **M** inversé de pourcentage **C**
- Calculateur PGCD

• Image: Fraction simple 🕝

Veuillez PARTAGER ce PDF avec quelqu'un qui en a besoin!

Ce PDF peut être téléchargé dans ces langues

English Spanish French German Russian Italian Portuguese Polish Dutch

12/5/2024 | 4:32:43 AM UTC