Importante Nozioni di base sulla meccanica dei fluidi Formule PDF

Formule Esempi con unità

Lista di 14

Importante Nozioni di base sulla meccanica dei fluidi Formule

Valutare la formula

Valutare la formula

Valutare la formula 🦳

Valutare la formula

Valutare la formula 🦳

Valutare la formula 🦳

1) Bulk Modulus dato lo stress e la deformazione del volume Formula 🕝

Esempio con Unità $k_{\rm v} = \frac{\rm VS}{\varepsilon_{\rm v}} \quad 0.3667 \, \rm Pa = \frac{11 \, Pa}{30}$

2) Densità di peso dato il peso specifico Formula 🕝

Esempio con Unità $\omega = \frac{SW}{g} \left[76.5306 \, \text{kg/m}^3 \right] = \frac{0.75 \, \text{kN/m}^3}{9.8 \, \text{m/s}^2}$

3) Equazione dei fluidi comprimibili di continuità Formula 🕝

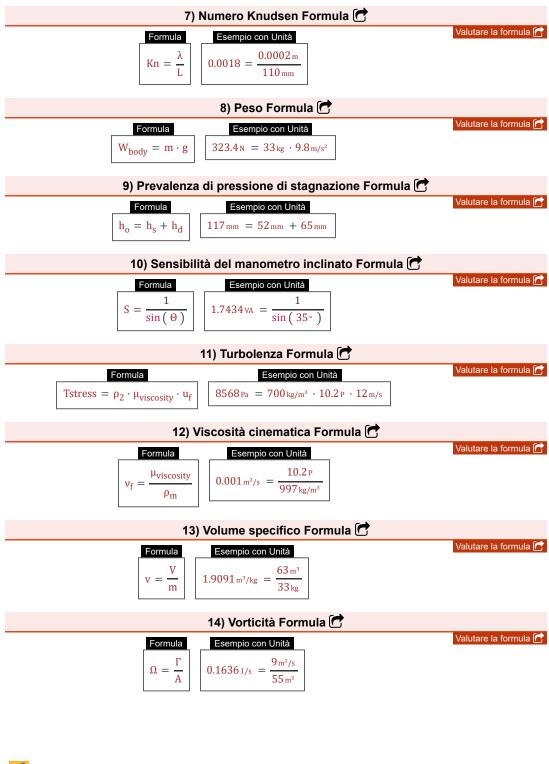
 $V_{1} = \frac{A_{2} \cdot V_{2} \cdot \rho_{2}}{A_{1} \cdot \rho_{1}}$ $2.1739 \, \text{m/s} = \frac{6 \, \text{m}^{2} \cdot 5 \, \text{m/s} \cdot 700 \, \text{kg/m}^{3}}{14 \, \text{m}^{2} \cdot 690 \, \text{kg/m}^{3}}$

4) Equazione di fluidi incomprimibili di continuità Formula C

 $V_1 = \frac{A_2 \cdot V_2}{A_1}$ $2.1429 \,\text{m/s} = \frac{6 \,\text{m}^2 \cdot 5 \,\text{m/s}}{14 \,\text{m}^2}$

5) Equilibrio instabile del corpo fluttuante Formula 🕝

Formula


Esempio con Unità

GM = BG - BM $-27.1 \,\mathrm{mm} = 25 \,\mathrm{mm} - 52.1 \,\mathrm{mm}$

6) Numero di cavitazione Formula 🕝

Esempio con Unità

 $\left| \begin{array}{c} \sigma_{\text{C}} = \frac{p - P_{\text{V}}}{\rho_{\text{m}} \cdot \frac{{u_{\text{f}}}^2}{2}} \end{array} \right| \left| \begin{array}{c} 0.0111 = \frac{800 \, \text{Pa} - 6.01 \, \text{Pa}}{997 \, \text{kg/m}^3 \cdot \frac{12 \, \text{m/s}}{2}} \end{array} \right|$

Variabili utilizzate nell'elenco di Nozioni di base sulla meccanica dei fluidi Formule sopra

- A Area del fluido (Metro quadrato)
- A₁ Area della sezione trasversale nel punto 1 (Metro quadrato)
- A₂ Area della sezione trasversale nel punto 2 (Metro quadrato)
- BG Distanza tra COB e GOG (Millimetro)
- BM Distanza tra COB e COM (Millimetro)
- g Accelerazione dovuta alla gravità (Metro/ Piazza Seconda)
- GM Altezza metacentrica (Millimetro)
- h_d Testa di pressione dinamica (Millimetro)
- h_o Pressione di stagnazione (Millimetro)
- h_s Prevalenza di pressione statica (Millimetro)
- k_v Modulo di massa dato volume sforzo e deformazione (Pasquale)
- Kn Numero di Knudsen
- L Lunghezza caratteristica del flusso (Millimetro)
- m Massa (Chilogrammo)
- **p** Pressione (Pascal)
- P_v Pressione di vapore (Pascal)
- S Sensibilità del manometro (Volt Ampere)
- **SW** Peso specifico (Kilonewton per metro cubo)
- Tstress Turbolenza (Pascal)
- Uf Velocità del fluido (Metro al secondo)
- V Volume specifico (Metro cubo per chilogrammo)
- Volume (Metro cubo)
- V₁ Velocità del fluido a 1 (Metro al secondo)
- V₂ Velocità del fluido a 2 (Metro al secondo)
- VS Sollecitazione di volume (Pascal)
- W_{body} Peso del corpo (Newton)
- ε_ν Deformazione volumetrica
- Θ Angolo tra manometro e superficie (Grado)
- λ Percorso libero medio della molecola (metro)

Costanti, funzioni, misure utilizzate nell'elenco di Nozioni di base sulla meccanica dei fluidi Formule sopra

- Funzioni: sin, sin(Angle)
 Il seno è una funzione trigonometrica che descrive il rapporto tra la lunghezza del lato opposto di un triangolo rettangolo e la lunghezza dell'ipotenusa.
- Misurazione: Lunghezza in Millimetro (mm)
 Lunghezza Conversione di unità
- Misurazione: Peso in Chilogrammo (kg)
 Peso Conversione di unità
- Misurazione: Volume in Metro cubo (m³)

 Volume Conversione di unità
- Misurazione: La zona in Metro quadrato (m²)
 La zona Conversione di unità
- Misurazione: Pressione in Pascal (Pa)
 Pressione Conversione di unità
- Misurazione: Velocità in Metro al secondo (m/s)
 Velocità Conversione di unità
- Misurazione: Accelerazione in Metro/ Piazza Seconda (m/s²)
 Accelerazione Conversione di unità
- Misurazione: Potenza in Volt Ampere (VA)
 Potenza Conversione di unità
- Misurazione: Forza in Newton (N)
 Forza Conversione di unità
- Misurazione: Angolo in Grado (°)
 Angolo Conversione di unità
- Misurazione: Lunghezza d'onda in metro (m)
 Lunghezza d'onda Conversione di unità
- Misurazione: Viscosità dinamica in poise (P)
 Viscosità dinamica Conversione di unità
- Misurazione: Concentrazione di massa in Chilogrammo per metro cubo (kg/m³)
 Concentrazione di massa Conversione di unità
- Misurazione: Viscosità cinematica in Metro quadrato al secondo (m²/s)
 Viscosità cinematica Conversione di unità
- Misurazione: Densità in Chilogrammo per metro cubo (kg/m³)

- μ_{viscosity} Viscosità dinamica (poise)
- V_f Viscosità cinematica del liquido (Metro quadrato al secondo)
- ρ₁ Densità al punto 1 (Chilogrammo per metro cubo)
- ρ₂ Densità al punto 2 (Chilogrammo per metro cubo)
- ρ_m Densità di massa (Chilogrammo per metro cubo)
- σ_c Numero di cavitazione
- ω Densità di peso (Chilogrammo per metro cubo)
- Ω Vorticità (1 al secondo)

Densità Conversione di unità

 Misurazione: Volume specifico in Metro cubo per chilogrammo (m³/kg)

Volume specifico Conversione di unità 🕝

- Misurazione: Diffusività della quantità di moto in Metro quadrato al secondo (m²/s)
 Diffusività della quantità di moto Conversione di unità
- Misurazione: Peso specifico in Kilonewton per metro cubo (kN/m³)
 Peso specifico Conversione di unità
- Misurazione: Vorticità in 1 al secondo (1/s)
 Vorticità Conversione di unità
- Misurazione: Fatica in Pasquale (Pa)
 Fatica Conversione di unità

Scarica altri PDF Importante Introduzione ai fondamenti della meccanica dei fluidi

- Importante Nozioni di base sulla meccanica dei fluidi Formule
- Importante Turbina Formule 🕝

Prova i nostri calcolatori visivi unici

• **K** Errore percentuale

MCM di tre numeri

• Sottrarre frazione

Per favore CONDIVIDI questo PDF con qualcuno che ne ha bisogno!

Questo PDF può essere scaricato in queste lingue

English Spanish French German Russian Italian Portuguese Polish Dutch

12/5/2024 | 4:29:35 AM UTC