Important Basics of Modes of Heat Transfer Formulas **PDF**

Examples with Units

List of 13

Important Basics of Modes of Heat Transfer Formulas

1) Heat Transfer through Plane Wall or Surface Formula

Example with Units

Evaluate Formula

$$q = -k \cdot A_c \cdot \frac{t_o - t_i}{w}$$

 $799.8571 \,\mathrm{w} \; = \; - \; 10.18 \,\mathrm{w/(m^*K)} \; \cdot \; 11 \,\mathrm{m^2} \; \cdot \; \frac{321 \,\mathrm{\kappa} \; - \; 371 \,\mathrm{\kappa}}{7 \,\mathrm{m}}$

2) Ohm's Law Formula 🕝

Formula $V = I \cdot R$

Example with Units $31.5v = 2.1a \cdot 15\alpha$ Evaluate Formula

Evaluate Formula

3) Overall Heat Transfer based on Thermal Resistance Formula 🕝

Formula

Example with Units

 $2.7947 \text{w} = \frac{55 \text{ K}}{19.68 \text{ K/W}}$

4) Radial Heat Flowing through Cylinder Formula C

Formula

Evaluate Formula 🕝

$$Q = k \cdot 2 \cdot \pi \cdot \Delta T \cdot \frac{1}{\ln \left(\frac{r_{outer}}{r_{inner}}\right)}$$

Example with Units

$$2731.399 \text{J} = 10.18 \text{W/(m*K)} \cdot 2 \cdot 3.1416 \cdot 5.25 \text{K} \cdot \frac{6.21 \text{m}}{\ln \left(\frac{7.51 \text{m}}{3.5 \text{m}}\right)}$$

5) Radiation Thermal Resistance Formula C

$$\begin{aligned} & & & & & & & \\ R_{th} &= & & & & & & \\ & & & & & & \\ \hline \epsilon \cdot \left[Stefan\text{-BoltZ} \right] \cdot A_{base} \cdot \left(\left. T_1 + T_2 \right. \right) \cdot \left(\left. \left(\left. \left(\left. T_1 \right. \right)^2 \right. \right) + \left. \left(\left. \left(\left. T_2 \right. \right)^2 \right. \right) \right) \end{aligned} \end{aligned}$$

Evaluate Formula

Evaluate Formula

Evaluate Formula

Evaluate Formula

Example with Units

$$0.0076 \, \text{K/W} = \frac{1}{0.95 \cdot 5.7 \text{E-8} \cdot 9 \, \text{m}^2 \cdot \left(503 \, \text{K} + 293 \, \text{K}\right) \cdot \left(\left(\left(503 \, \text{K}\right)^2\right) + \left(\left(293 \, \text{K}\right)^2\right)\right)}$$

6) Radiative Heat Transfer Formula

Formula

$$Q = [Stefan-BoltZ] \cdot SA_{Body} \cdot F \cdot \left(T_1^4 - T_2^4\right)$$

Example with Units $2730.1103 \, \text{j} \, = 5.7 \text{E} \cdot 8 \cdot 8.5 \, \text{m}^{2} \, \cdot 0.1 \cdot \left(\, 503 \, \text{k}^{\, \, 4} \, - \, 293 \, \text{k}^{\, \, 4} \, \right)$

7) Radiosity Formula C

Formula

Example with Units $0.0588 \, \text{W/m}^2 = \frac{19 \, \text{J}}{8.5 \, \text{m}^2 + 38 \, \text{c}}$

8) Rate of Convective Heat Transfer Formula [7]

Formula $q = h_{transfer} \cdot A_{Exposed} \cdot (T_w - T_a)$

Example with Units $732.6 \text{ w} = 13.2 \text{ W/m}^{2*}\text{K} \cdot 11.1 \text{ m}^2 \cdot (305 \text{ K} - 300 \text{ K})$

9) Temperature Difference using Thermal Analogy to Ohm's Law Formula 🕝

Example with Units $\Delta T = \mathbf{q} \cdot \mathbf{R}_{th}$ 7.5 k = 750 w · 0.01 k/w

Evaluate Formula 🕝

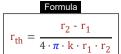
Evaluate Formula 🕝

10) Thermal Diffusivity Formula 🕝

Formula

Example with Units

 $\alpha = \frac{k}{\rho \cdot C_0} \left[0.4619 \,\text{m}^2/\text{s} = \frac{10.18 \,\text{W}/(\text{m}^*\text{K})}{5.51 \,\text{kg/m}^3 \cdot 4 \,\text{J}/(\text{kg}^*\text{K})} \right]$


11) Thermal Resistance in Convection Heat Transfer Formula

Example with Units
$$0.0045 \, \text{K/W} = \frac{1}{1}$$

Evaluate Formula 🕝

12) Thermal Resistance of Spherical Wall Formula

$$0.0013 \, \text{K/W} \, = \frac{6 \, \text{m} \, \cdot 5 \, \text{m}}{4 \cdot 3.1416 \cdot 2 \, \text{W/(m*K)} \, \cdot 5 \, \text{m} \, \cdot 6 \, \text{m}}$$

Evaluate Formula 🕝

Evaluate Formula (

13) Total Emissive Power of Radiating Body Formula

 $\mathbf{E_{b}} = \left(\epsilon \cdot \left(\mathbf{T_{e}} \right)^{4} \right) \cdot [\text{Stefan-BoltZ}]$

Variables used in list of Basics of Modes of Heat Transfer Formulas above

- A_{base} Base Area (Square Meter)
- A_c Cross Sectional Area (Square Meter)
- A_{expo} Exposed Surface Area (Square Meter)
- A_{Exposed} Exposed Surface Area (Square Meter)
- C_o Specific Heat Capacity (Joule per Kilogram per K)
- **E**_b Emissive Power per Unit Area (Watt)
- E_{Leaving} Energy Leaving Surface (Joule)
- F Geometric View Factor
- h_{conv} Co-efficient of Convective Heat Transfer (Watt per Square Meter per Kelvin)
- h_{transfer} Heat Transfer Coefficient (Watt per Square Meter per Kelvin)
- I Electric Current (Ampere)
- J Radiosity (Watt per Square Meter)
- k Thermal Conductivity (Watt per Meter per K)
- **k** Thermal Conductivity (Watt per Meter per K)
- **k** Thermal Conductivity (Watt per Meter per K)
- I Length of Cylinder (Meter)
- **q** Heat Flow Rate (Watt)
- Q Heat (Joule)
- q_{overall} Overall Heat Transfer (Watt)
- R Resistance (Ohm)
- r₁ Radius of 1st Concentric Sphere (Meter)
- r₂ Radius of 2nd Concentric Sphere (Meter)
- r_{inner} Inner Radius of Cylinder (Meter)
- r_{outer} Outer Radius of Cylinder (Meter)
- r_{th} Thermal Resistance of Sphere Without Convection (Kelvin per Watt)
- R_{th} Thermal Resistance (Kelvin per Watt)
- SA_{Body} Body Surface Area (Square Meter)
- T₁ Temperature of Surface 1 (Kelvin)

Constants, Functions, Measurements used in list of Basics of Modes of Heat Transfer Formulas above

- constant(s): pi,
 3.14159265358979323846264338327950288
 Archimedes' constant
- constant(s): [Stefan-BoltZ], 5.670367E-8
 Stefan-Boltzmann Constant
- Functions: In, In(Number)
 The natural logarithm, also known as the logarithm to the base e, is the inverse function of the natural exponential function.
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Time in Second (s)
 Time Unit Conversion
- Measurement: Electric Current in Ampere (A)
 Electric Current Unit Conversion
- Measurement: Temperature in Kelvin (K)
 Temperature Unit Conversion
- Measurement: Area in Square Meter (m²)
 Area Unit Conversion
- Measurement: Energy in Joule (J)
 Energy Unit Conversion
- Measurement: Power in Watt (W)

 Power Unit Conversion
- Measurement: Electric Resistance in Ohm (Ω)
 Electric Resistance Unit Conversion
- Measurement: Temperature Difference in Kelvin (K)

Temperature Difference Unit Conversion

 Measurement: Thermal Resistance in Kelvin per Watt (K/W)

Thermal Resistance Unit Conversion 🕝

 Measurement: Thermal Conductivity in Watt per Meter per K (W/(m*K))
 Thermal Conductivity Unit Conversion

- Measurement: Electric Potential in Volt (V)

 Electric Potential Unit Conversion
- Measurement: Specific Heat Capacity in Joule per Kilogram per K (J/(kg*K))

- T₂ Temperature of Surface 2 (Kelvin)
- T_a Ambient Air Temperature (Kelvin)
- Te Effective Radiating Temperature (Kelvin)
- **t**_i Inside Temperature (Kelvin)
- **t_o** Outside Temperature (*Kelvin*)
- t_{sec} Time in seconds (Second)
- T_w Surface Temperature (Kelvin)
- V Voltage (Volt)
- w Width of Plane Surface (Meter)
- α Thermal Diffusivity (Square Meter Per Second)
- **\Delta T** Temperature Difference (Kelvin)
- ΔT_{Overall} Overall Temperature Difference (Kelvin)
- Emissivity
- ρ Density (Kilogram per Cubic Meter)
- ΣR_{Thermal} Total Thermal Resistance (Kelvin per Watt)

Specific Heat Capacity Unit Conversion

· Measurement: Heat Flux Density in Watt per Square Meter (W/m²) Heat Flux Density Unit Conversion

 Measurement: Heat Transfer Coefficient in Watt per Square Meter per Kelvin (W/m2*K) Heat Transfer Coefficient Unit Conversion

· Measurement: Density in Kilogram per Cubic Meter (kg/m³) Density Unit Conversion

· Measurement: Diffusivity in Square Meter Per Second (m²/s) Diffusivity Unit Conversion

Download other Important Modes of Heat Transfer PDFs

- Important Basics of Modes of Heat Transfer Formulas
- Important Convection Heat Transfer
 Formulas

Try our Unique Visual Calculators

- **R** Percentage change **C**
- LCM of two numbers

Proper fraction

Please SHARE this PDF with someone who needs it!

This PDF can be downloaded in these languages

English Spanish French German Russian Italian Portuguese Polish Dutch

7/8/2024 | 12:56:37 PM UTC