Wichtig Bewegung in durch Schnüre verbundenen Körpern Formeln PDF

Formeln
Beispiele
mit Einheiten

Liste von 13

Wichtig Bewegung in durch Schnüre verbundenen Körpern Formeln

1) Körper liegt auf einer rauen geneigten Ebene Formeln

1.1) Beschleunigung des Systems bei gegebener Masse von Körper A Formel

 $a_{mb} = \frac{m_{a} \cdot [g] \cdot \sin(\alpha_{1}) - \mu_{cm} \cdot m_{a} \cdot [g] \cdot \cos(\alpha_{1}) - T}{m_{a}}$

Beispiel mit Einheiten

$$3.3574_{\text{m/s}^2} = \frac{29.1_{\text{kg}} \cdot 9.8066_{\text{m/s}^2} \cdot \sin\left(34^{\circ}\right) - 0.2 \cdot 29.1_{\text{kg}} \cdot 9.8066_{\text{m/s}^2} \cdot \cos\left(34^{\circ}\right) - 14.56_{\text{N}}}{29.1_{\text{kg}}}$$

1.2) Beschleunigung des Systems bei gegebener Masse von Körper B Formel 🗗

Formel

Formel auswerten 🕝

Formel auswerten

 $a_{mb} = \frac{T - m_b \cdot [g] \cdot \sin(\alpha_2) - \mu_{cm} \cdot m_b \cdot [g] \cdot \cos(\alpha_2)}{m_b}$

Beispiel mit Einheiten

 $3.959_{\text{m/s}^2} = \frac{14.56_{\text{N}} - 1.11_{\text{kg}} + 9.8066_{\text{m/s}^2} \cdot \sin(55^{\circ}) - 0.2 \cdot 1.11_{\text{kg}} + 9.8066_{\text{m/s}^2} \cdot \cos(55^{\circ})}{1.11_{\text{kg}}}$

1.3) Reibungskraft auf Körper A Formel 🕝

Formel

Beispiel mit Einheiten

Formel auswerten

 $F_{A} = \mu_{cm} \cdot m_{a} \cdot [g] \cdot \cos(\alpha_{1})$ 47.3171 N = 0.2 \cdot 29.1 kg \cdot 9.8066 m/s^{2} \cdot \cos (34\cdot)

1.4) Reibungskraft auf Körper B Formel 🗂

Formel

Beispiel mit Einheiten

Formel auswerten

 $F_{B} = \mu_{cm} \cdot m_{b} \cdot [g] \cdot \cos(\alpha_{2})$

 $1.2487 \,\mathrm{N} = 0.2 \cdot 1.11 \,\mathrm{kg} \cdot 9.8066 \,\mathrm{m/s^2} \cdot \cos \left(\,55^{\circ} \,\right)$

1.5) Spannung in der Saite bei gegebener Masse von Körper A Formel 🕝

 $T_{a} = m_{a} \cdot \left([g] \cdot sin(\alpha_{1}) - \mu_{cm} \cdot [g] \cdot cos(\alpha_{1}) - a_{min} \right)$

Beispiel mit Einheiten

 $97.7118 \,\mathrm{N} \,=\, 29.1 \,\mathrm{kg} \,\cdot\, \left(\, 9.8066 \,\mathrm{m/s^2} \,\cdot \sin\left(\,34^\circ\,\right) \,-\, 0.2 \,\cdot\, 9.8066 \,\mathrm{m/s^2} \,\cdot \cos\left(\,34^\circ\,\right) \,-\, 0.5 \,\mathrm{m/s^2}\,\,\right)$

1.6) Spannung in der Saite bei gegebener Masse von Körper B Formel 🕝

Formel auswerten

Formel auswerten 🕝

Formel auswerten [7]

Formel auswerten

Formel auswerten

 $T_b = m_b \cdot \left(\left[\mathbf{g} \right] \cdot \sin \left(\right. \alpha_2 \left. \right) + \mu_{cm} \cdot \left[\mathbf{g} \right] \cdot \cos \left(\right. \alpha_2 \left. \right) + a_{mb} \left. \right)$

Beispiel mit Einheiten $13.884_{\text{N}} = 1.11_{\text{kg}} \cdot \left(9.8066_{\text{m/s}^2} \cdot \sin(55^{\circ}) + 0.2 \cdot 9.8066_{\text{m/s}^2} \cdot \cos(55^{\circ}) + 3.35_{\text{m/s}^2}\right)$

2) Der Körper liegt auf einer glatten, geneigten Ebene Formeln 🕝

2.1) Beschleunigung eines Systems mit durch Schnüre verbundenen Körpern, die auf glatten geneigten Ebenen liegen Formel

 $a_{mb} = \frac{m_a \cdot \sin(\alpha_a) - m_b \cdot \sin(\alpha_b)}{m_b + m_b} \cdot [g]$

Beispiel mit Einheiten

 $3.3488 \,\mathrm{m/s^2} = \frac{29.1 \,\mathrm{kg} \cdot \sin\left(23.11^{\circ}\right) - 1.11 \,\mathrm{kg} \cdot \sin\left(84.85^{\circ}\right)}{29.1 \,\mathrm{kg} + 1.11 \,\mathrm{kg}} \cdot 9.8066 \,\mathrm{m/s^2}$

2.2) Neigungswinkel der Ebene mit Körper A Formel C

Beispiel mit Einheiten

 $\alpha_{\rm a} = a \sin \left(\frac{\rm m_a \cdot a_{\rm mb} + T}{\rm m_a \cdot [g]} \right) \left| 23.118^{\circ} = a \sin \left(\frac{29.1 \, \rm kg \cdot 3.35 \, m/s^2 + 14.56 \, N}{29.1 \, \rm kg \cdot 9.8066 \, m/s^2} \right) \right|$

2.3) Neigungswinkel der Ebene mit Körper B Formel

Formel Beispiel mit Einheiten

 $\alpha_{\rm b} = a \sin \left(\frac{\text{T} \cdot \text{m}_{\rm b} \cdot \text{a}_{\rm mb}}{\text{m}_{\rm b} \cdot [\rm g]} \right) \left| \quad 84.8536^{\circ} = a \sin \left(\frac{14.56 \,\text{N} \cdot 1.11 \,\text{kg} \cdot 3.35 \,\text{m/s}^2}{1.11 \,\text{kg} \cdot 9.8066 \,\text{m/s}^2} \right) \right|$

Formel auswerten

Formel auswerten

Formel auswerten

Formel auswerten 🕝

$$T = \frac{m_a \cdot m_b}{m_a + m_b} \cdot [g] \cdot \left(\sin \left(\alpha_1 \right) + \sin \left(\alpha_2 \right) \right)$$

Beispiel mit Einheiten

$$14.4525_{N} = \frac{29.1_{kg} \cdot 1.11_{kg}}{29.1_{kg} + 1.11_{kg}} \cdot 9.8066_{m/s^{2}} \cdot (\sin(34^{\circ}) + \sin(55^{\circ}))$$

3) Körper fährt über glatte Riemenscheibe Formeln 🕝

3.1) Beschleunigung von Körpern Formel 🕝

Formel

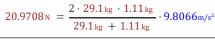
$$a_{bs} = \frac{m_a - m_b}{m_a + m_b} \cdot [g]$$

Beispiel mit Einheiten

$$9.086\,\text{m/s}^2 \,=\, \frac{29.1\,\text{kg}\,\,\cdot\,\,1.11\,\text{kg}}{29.1\,\text{kg}\,\,+\,\,1.11\,\text{kg}} \cdot 9.8066\,\text{m/s}^2$$

3.2) Masse von Körper B mit kleinerer Masse Formel

Formel


Beispiel mit Einheiten

$$1.1067 \, \mathrm{kg} \, = \frac{14.56 \, \mathrm{N}}{3.35 \, \mathrm{m/s^2} \, + 9.8066 \, \mathrm{m/s^2}}$$

3.3) Spannung in der Saite, wenn beide Körper frei hängen Formel 🕝

$$T_{h} = \frac{2 \cdot m_{a} \cdot m_{b}}{m_{a} + m_{b}} \cdot [g]$$

Beispiel mit Einheiten

In der Liste von Bewegung in durch Schnüre verbundenen Körpern Formeln oben verwendete Variablen

- a_{bs} Beschleunigung von Körpern (Meter / Quadratsekunde)
- a_{mb} Beschleunigung des Körpers in Bewegung (Meter / Quadratsekunde)
- a_{min} Minimale Beschleunigung des Körpers in Bewegung (Meter / Quadratsekunde)
- F_▲ Reibungskraft A (Newton)
- F_B Reibungskraft B (Newton)
- m_a Masse von Körper A (Kilogramm)
- m_h Masse von Körper B (Kilogramm)
- **T** Spannung der Saite (Newton)
- T_a Spannung der Saite im Körper A (Newton)
- T_b Spannung der Saite im Körper B (Newton)
- Th Spannung in hängender Saite (Newton)
- α₁ Neigung der Ebene 1 (Grad)
- α₂ Neigung der Ebene 2 (Grad)
- αa Neigungswinkel mit Körper A (Grad)
- α_b Neigungswinkel mit Körper B (Grad)
- µ_{cm} Reibungskoeffizient

Konstanten, Funktionen, Messungen, die in der Liste von Bewegung in durch Schnüre verbundenen Körpern Formeln oben verwendet werden

- Konstante(n): [g], 9.80665
 Gravitationsbeschleunigung auf der Erde
- Funktionen: asin, asin(Number)
 Die inverse Sinusfunktion ist eine
 trigonometrische Funktion, die das Verhältnis
 zweier Seiten eines rechtwinkligen Dreiecks
 berechnet und den Winkel gegenüber der Seite
 mit dem angegebenen Verhältnis ausgibt.
- Funktionen: cos, cos(Angle)
 Der Kosinus eines Winkels ist das Verhältnis der an den Winkel angrenzenden Seite zur Hypothenuse des Dreiecks.
- Funktionen: sin, sin(Angle)
 Sinus ist eine trigonometrische Funktion, die das
 Verhältnis der Länge der gegenüberliegenden
 Seite eines rechtwinkligen Dreiecks zur Länge der
 Hypothenuse beschreibt.
- Messung: Gewicht in Kilogramm (kg)
 Gewicht Einheitenumrechnung
- Messung: Beschleunigung in Meter / Quadratsekunde (m/s²)
 Beschleunigung Einheitenumrechnung
- Messung: Macht in Newton (N)

 Macht Einheitenumrechnung
- Messung: Winkel in Grad (°)
 Winkel Einheitenumrechnung

Laden Sie andere Wichtig Bewegungsarten-PDFs herunter

- Wichtig Krummlinige Bewegung
 Formeln
- egung

 Wichtig Bewegung in Körpern, die an einer Schnur hängen Formeln
- Wichtig Lineare Bewegung Formeln Wichtig Projektilbewegung Formeln
- Wichtig Bewegung in durch Schnüre verbundenen Körpern Formeln

Probieren Sie unsere einzigartigen visuellen Rechner aus

- 🎇 Prozentualer Wachstum 🕝
- KGV rechner

• 🌆 Dividiere bruch 💣

Bitte TEILEN Sie dieses PDF mit jemandem, der es braucht!

Dieses PDF kann in diesen Sprachen heruntergeladen werden

English Spanish French German Russian Italian Portuguese Polish Dutch

9/18/2024 | 11:30:31 AM UTC