Important Eye Formulas PDF

Formulas Examples with Units

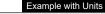
List of 16 Important Eye Formulas

1) Bending Stress in Knuckle Pin given Bending Moment in Pin Formula 🕝

$$\sigma_{b} = \frac{32 \cdot M_{b}}{\pi \cdot d^{3}}$$

$$\sigma_{b} = \frac{32 \cdot M_{b}}{\pi \cdot d^{3}} = \frac{32 \cdot 450000 \,\text{N*mm}}{3.1416 \cdot 37 \,\text{mm}^{3}}$$

2) Bending Stress in Knuckle Pin given Load, Thickness of Eyes and Pin Diameter Formula 🕝



Evaluate Formula (

Evaluate Formula (

Evaluate Formula C

$$\sigma_{\mathbf{b}} = \frac{32 \cdot \frac{\mathbf{L}}{2} \cdot \left(\frac{\mathbf{b}}{4} + \frac{\mathbf{a}}{3}\right)}{\pi \cdot \mathbf{d}^{3}}$$

3) Compressive Stress in Pin Inside Eye of Knuckle Joint given Load and Pin Dimensions Formula 🕝

Example with Units

$$\sigma_{c} = \frac{L}{b \cdot d}$$
 $27.4541 \, \text{N/mm}^{2} = \frac{45000 \, \text{N}}{44.3 \, \text{mm} \cdot 37 \, \text{mm}}$

4) Compressive Stress in Pin Inside Fork of Knuckle Joint given Load and Pin Dimensions Formula 🕝

Formula

$$\sigma_{c} = \frac{L}{2 \cdot a \cdot d}$$

Example with Units

$$\sigma_{\rm c} = \frac{\rm L}{2 \cdot a \cdot d}$$
 $22.8612 \, \text{N/mm}^2 = \frac{45000 \, \text{N}}{2 \cdot 26.6 \, \text{mm} \cdot 37 \, \text{mm}}$

5) Max Bending Moment in Knuckle Pin given Load, Thickness of Eye and Fork Formula 🕝

Evaluate Formula (

$$\mathsf{M}_b = \frac{\mathsf{L}}{2} \cdot \left(\frac{\mathsf{b}}{4} + \frac{\mathsf{a}}{3} \right)$$

Example with Units

$$M_b = \frac{L}{2} \cdot \left(\frac{b}{4} + \frac{a}{3}\right) \qquad 448687.5 \, N^* mm = \frac{45000 \, N}{2} \cdot \left(\frac{44.3 \, mm}{4} + \frac{26.6 \, mm}{3}\right)$$

6) Shear Stress in Eye of Knuckle Joint given Load, Outer Diameter of Eye and its Thickness Formula (

Example with Units

Evaluate Formula (

Evaluate Formula (

Evaluate Formula (

Evaluate Formula

Evaluate Formula (

Evaluate Formula 🕝

 $\tau_{e} = \frac{L}{b \cdot (d_{o} - d)}$ $23.6233 \, \text{N/mm}^{2} = \frac{45000 \, \text{N}}{44.3 \, \text{mm} \cdot (80 \, \text{mm} - 37 \, \text{mm})}$

7) Shear Stress in Fork of Knuckle Joint given Load, Outer Diameter of Eye and Pin Diameter Formula 🕝 Evaluate Formula

$$\tau_f = \frac{L}{2 \cdot a \cdot \left(\left. d_o - d \right. \right)}$$

 $\tau_{f} = \frac{L}{2 \cdot a \cdot (d_{o} - d)} \left| 19.6713 \,\text{N/mm}^{2} = \frac{45000 \,\text{N}}{2 \cdot 26.6 \,\text{mm} \cdot (80 \,\text{mm} - 37 \,\text{mm})} \right|$

8) Shear Stress in Pin of Knuckle Joint given Load and Pin Diameter Formula 🕝

Example with Units

Formula Example with Units
$$\tau_{p} = \frac{2 \cdot L}{\pi \cdot d^{2}}$$

$$20.9261 \, \text{N/mm}^{2} = \frac{2 \cdot 45000 \, \text{N}}{3.1416 \cdot 37 \, \text{mm}^{2}}$$

9) Tensile Stress in Eye of Knuckle Joint given Load, Outer Diameter of Eye and its Thickness Formula 🕝

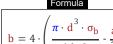
10) Tensile Stress in Fork of Knuckle Joint given Load, Outer Diameter of Eye and Pin Diameter Formula

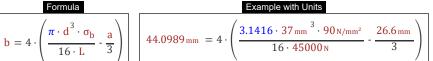
$$\sigma_{tf} = \frac{L}{2 \cdot a \cdot \left(d_o - d \right)} \left[\begin{array}{c} \text{Example with Units} \\ \\ 19.6713 \, \text{N/mm}^2 \end{array} \right. = \frac{45000 \, \text{N}}{2 \cdot 26.6 \, \text{mm} \cdot \left(80 \, \text{mm} - 37 \, \text{mm} \right)}$$

11) Tensile Stress in Rod of Knuckle Joint Formula 🕝

Formula Example with Units
$$\sigma_{t} = \frac{4 \cdot L}{7 \cdot d^{2}}$$

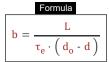
$$59.621 \text{ N/mm}^{2} = \frac{4 \cdot 45000 \text{ N}}{21416 \cdot 21}$$


$\sigma_{t} = \frac{4 \cdot L}{\pi \cdot d_{r1}^{2}}$ $59.621 \, \text{N/mm}^{2} = \frac{4 \cdot 45000 \, \text{N}}{3.1416 \cdot 31 \, \text{mm}^{2}}$


12) Thickness of Eye End of Knuckle Joint given Bending Moment in Pin Formula 🕝 Formula

Formula Example with Units
$$b = 4 \cdot \left(2 \cdot \frac{M_b}{L} - \frac{a}{3}\right) \boxed{ 44.5333 \, \text{mm} = 4 \cdot \left(2 \cdot \frac{450000 \, \text{N*mm}}{45000 \, \text{N}} - \frac{26.6 \, \text{mm}}{3}\right) }$$

© formuladen.com



Evaluate Formula (

14) Thickness of Eye End of Knuckle Joint given Shear Stress in Eye Formula 🕝

Formula Example with Units
$$b = \frac{L}{\tau_e \cdot \left(d_o - d \right)} = \frac{45000 \, \text{N}}{24 \, \text{N/mm}^2 \cdot \left(80 \, \text{mm} - 37 \, \text{mm} \right)}$$

Evaluate Formula [

Evaluate Formula (

15) Thickness of Eye End of Knuckle Joint given Tensile Stress in Eye Formula 🕝

$$b = \frac{L}{\sigma_{te} \cdot (d_o - d)}$$

Example with Units
$$23.2558 \,\text{mm} = \frac{45000 \,\text{N}}{45 \,\text{N/mm}^2 \cdot \left(80 \,\text{mm} - 37 \,\text{mm}\right)}$$

16) Thickness of Eye of Knuckle Joint given Rod Diameter Formula 🕝

Evaluate Formula [

Variables used in list of Eye Formulas above

- a Thickess of Fork Eye of Knuckle Joint (Millimeter)
- **b** Thickess of Eye of Knuckle Joint (Millimeter)
- d Diameter of Knuckle Pin (Millimeter)
- d_o Outer Diameter of Eye of Knuckle Joint (Millimeter)
- d_{r1} Diameter of Rod of Knuckle Joint (Millimeter)
- L Load on Knuckle Joint (Newton)
- M_b Bending Moment in Knuckle Pin (Newton Millimeter)
- σ_b Bending Stress in Knuckle Pin (Newton per Square Millimeter)
- σ_c Compressive Stress in Knuckle Pin (Newton per Square Millimeter)
- σ_t Tensile Stress in Knuckle Joint Rod (Newton per Square Millimeter)
- σ_{te} Tensile Stress in Eye of Knuckle Joint (Newton per Square Millimeter)
- σ_{tf} Tensile Stress in Fork of Knuckle Joint (Newton per Square Millimeter)
- T_e Shear Stress in Eye of Knuckle Joint (Newton per Square Millimeter)
- T_f Shear Stress in Fork of Knuckle Joint (Newton per Square Millimeter)
- T_p Shear Stress in Knuckle Pin (Newton per Square Millimeter)

Constants, Functions, Measurements used in list of Eye Formulas above

- constant(s): pi,
 3.14159265358979323846264338327950288
 Archimedes' constant
- Measurement: Length in Millimeter (mm)
 Length Unit Conversion
- Measurement: Force in Newton (N)
 Force Unit Conversion
- Measurement: Torque in Newton Millimeter (N*mm)
 Torque Unit Conversion
- Measurement: Stress in Newton per Square Millimeter (N/mm²)
 Stress Unit Conversion

Download other Important Design of Knuckle Joint PDFs

- Important Eye Formulas
- Important Pin Formulas

Try our Unique Visual Calculators

- Percentage decrease
- HCF of three numbers

37 Multiply fraction

Please SHARE this PDF with someone who needs it!

This PDF can be downloaded in these languages

English Spanish French German Russian Italian Portuguese Polish Dutch

9/18/2024 | 11:29:42 AM UTC