Wichtig Gelenkgeometrie und -abmessungen Formeln **PDF**

Formeln Beispiele mit Einheiten

Liste von 27

Wichtig Gelenkgeometrie und abmessungen Formeln

1) Breite des Splints unter Berücksichtigung der Biegung Formel

Formel auswerten

$$b = \left(3 \cdot \frac{L}{t_c \cdot \sigma_b} \cdot \left(\frac{d_2}{4} + \frac{d_4 \cdot d_2}{6}\right)\right)^{0.5}$$

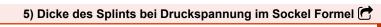
$$34.4636\,\text{mm} \; = \left(3 \cdot \frac{50000\,\text{N}}{21.478\,\text{mm} \cdot 98\,\text{N/mm}^2} \cdot \left(\frac{40\,\text{mm}}{4} + \frac{80\,\text{mm} - 40\,\text{mm}}{6}\right)\right)^{0.5}$$

2) Breite des Splints unter Berücksichtigung der Scherung Formel 🕝 Beispiel mit Einheiten

Formel

 $b = \frac{V}{2 \cdot \tau_{co} \cdot t_c} \left| \quad 23.0856 \, \text{mm} \right| = \frac{23800 \, \text{N}}{2 \cdot 24 \, \text{N/mm}^2 \cdot 21.478 \, \text{mm}}$

3) Dicke der Splintverbindung Formel C


Beispiel mit Einheiten

Formel auswerten

4) Dicke der Splintverbindung bei gegebener Biegespannung im Splint Formel C Formel auswerten 🕝

Beispiel mit Einheiten

$$10.845\,\mathrm{mm} \ = \ \left(\ 2\cdot80\,\mathrm{mm} \ + \ 40\,\mathrm{mm}\ \right) \cdot \left(\frac{50000\,\mathrm{N}}{4\cdot48.5\,\mathrm{mm}^2\cdot98\,\mathrm{N/mm}^2}\right)$$

$$t_{c} = \frac{L}{\left(d_{4} - d_{2}\right) \cdot \sigma_{cs}}$$

Formel auswerten (

$$t_{c} = \frac{L}{\left(d_{4} - d_{2}\right) \cdot \sigma_{cso}}$$

 $t_{c} = \frac{L}{\left(d_{4} - d_{2}\right) \cdot \sigma_{cso}} \left[21.4777 \,\text{mm} = \frac{50000 \,\text{N}}{\left(80 \,\text{mm} - 40 \,\text{mm}\right) \cdot 58.20 \,\text{N/mm}^{2}} \right]$

6) Dicke des Splints bei Druckspannung im Zapfen Formel 🕝

Formel
$$t_c = \frac{L}{\sigma_{c1} \cdot d_2}$$

Formel Beispiel mit Einheiten
$$t_{c} = \frac{L}{\sigma_{c1} \cdot d_{2}} \qquad 21.4777 \, \text{mm} = \frac{50000 \, \text{N}}{58.2 \, \text{N/mm}^{2} \cdot 40 \, \text{mm}}$$

Formel auswerten

Formel auswerten

Formel auswerten

7) Dicke des Splints bei gegebener Scherspannung im Splint Formel 🕝 Formel

$$t_{c} = \frac{L}{2 \cdot \tau_{co} \cdot t}$$

Formel Beispiel mit Einheiten
$$t_c = \frac{L}{2 \cdot \tau_{co} \cdot b} \qquad 21.4777 \, \text{mm} \, = \frac{50000 \, \text{N}}{2 \cdot 24 \, \text{N/mm}^2 \cdot 48.5 \, \text{mm}}$$

8) Dicke des Splints bei Zugspannung im Sockel Formel

 $t_c = \frac{\left(\frac{\pi}{4} \cdot \left(d_1^2 - d_2^2\right)\right) - \frac{F_c}{\sigma_t so}}{d_1 - d_2}$

$$68.5926\,\text{mm} \,=\, \frac{\left(\frac{3.1416}{4} \cdot \left(54\,\text{mm}^2 - 40\,\text{mm}^2\right)\right) - \frac{5000\,\text{N}}{68.224\,\text{N/mm}^2}}{54\,\text{mm} \,-\,40\,\text{mm}}$$

9) Dicke des Zapfenkragens, wenn Stangendurchmesser verfügbar ist Formel 🗂

10) Durchmesser der Splintstange bei gegebenem Durchmesser des Zapfenkragens Formel 🕝

Formel Beispiel mit Einheiten
$$d = \frac{d_3}{1.5} \qquad 32_{\text{ mm}} = \frac{48_{\text{ mm}}}{1.5}$$

Formel auswerten

11) Durchmesser der Splintstange bei gegebener Dicke des Zapfenkragens Formel 🕝

Beispiel mit Einheiten

Formel auswerten

 $d = \frac{t_1}{0.45} \quad 28.8889 \, \text{mm} = \frac{13 \, \text{mm}}{0.45}$

13) Durchmesser der Stange der Splintverbindung bei gegebenem Muffenkragendurchmesser Formel

Formel auswerten

Formel auswerten

Formel auswerten

Formel auswerten

Formel auswerten 🕝

Formel auswerten

14) Durchmesser des Muffenbundes der Splintverbindung bei Schubspannung in der Muffe Formel

15) Durchmesser des Muffenkragens bei gegebenem Stangendurchmesser Formel

16) Durchmesser des Muffenkragens der Splintverbindung bei gegebener Druckspannung Formel

17) Durchmesser des Sockelkragens der Splintverbindung bei gegebener Biegespannung im Splint Formel

18) Durchmesser des Zapfenkragens bei gegebenem Stangendurchmesser Formel

19) Durchmesser des Zapfens der Splintverbindung bei gegebener Biegespannung im Splint Formel

Formel auswerten

$$d_2 = 4 \cdot b^2 \cdot \sigma_b \cdot \frac{t_c}{L} - 2 \cdot d_4$$

Beispiel mit Einheiten

$$236.0895 \, \text{mm} = 4 \cdot 48.5 \, \text{mm}^{2} \cdot 98 \, \text{N/mm}^{2} \cdot \frac{21.478 \, \text{mm}}{50000 \, \text{N}} - 2 \cdot 80 \, \text{mm}$$

20) Durchmesser des Zapfens der Splintverbindung bei gegebener Druckspannung Formel 🕝

21) Durchmesser des Zapfens der Splintverbindung bei gegebener Scherspannung im Zapfen Formel

Beispiel mit Einheiten

Formel auswerten

Formel auswerten

$$d_2 = \frac{L}{2 \cdot L_a \cdot \tau_{sp}}$$

$$d_2 = \frac{L}{2 \cdot L_a \cdot \tau_{sp}} \qquad 39.9996 \, \text{mm} = \frac{50000 \, \text{N}}{2 \cdot 23.5 \, \text{mm} \cdot 26.596 \, \text{N/mm}^2}$$

22) Innendurchmesser der Buchse der Splintverbindung bei gegebener Scherspannung in der **Buchse Formel**

Beispiel mit Einheiten

Formel auswerten

$$d_2 = d_4 - \frac{L}{2 \cdot c \cdot \tau_{so}}$$

$$d_2 = d_4 - \frac{L}{2 \cdot c \cdot \tau_{so}} \qquad 40_{mm} = 80_{mm} - \frac{50000_{N}}{2 \cdot 25.0_{mm} \cdot 25_{N/mm^2}}$$

23) Mindestdurchmesser des Zapfens in der Splintverbindung, der einer Druckbeanspruchung ausgesetzt ist Formel 🕝

Formel auswerten

Formel Beispiel mit Einheiten
$$d_2 = \frac{L}{\sigma_c \cdot t_c} \quad \boxed{18.4759_{mm} = \frac{50000 \, \text{N}}{126 \, \text{N/mm}^2 \cdot 21.478_{mm}}}$$

24) Mindeststabdurchmesser in der Splintverbindung bei axialer Zugkraft und Spannung Formel

Formel auswerten

$$d = \sqrt{\frac{4 \cdot L}{\sigma t_{rod} \cdot \pi}}$$

$$d = \sqrt{\frac{4 \cdot L}{\sigma t_{rod} \cdot \pi}} \qquad 35.6825 \, \text{mm} = \sqrt{\frac{4 \cdot 50000 \, \text{N}}{50 \, \text{N/mm}^2 \cdot 3.1416}}$$

25) Querschnittsbereich der Buchse der Splintverbindung, die fehleranfällig ist Formel 🕝

Formel auswerten 🦳

Formel auswerten

Formel auswerten

$$A = \frac{\pi}{4} \cdot \left(d_1^2 - d_2^2 \right) - t_c \cdot \left(d_1 - d_2 \right)$$

Beispiel mit Einheiten

$$732.892 \, \text{mm}^2 = \frac{3.1416}{4} \cdot \left(54 \, \text{mm}^2 - 40 \, \text{mm}^2\right) - 21.478 \, \text{mm} \cdot \left(54 \, \text{mm} - 40 \, \text{mm}\right)$$

26) Querschnittsbereich des Zapfens einer Splintverbindung, der zum Versagen neigt Formel

$$A_{s} = \frac{\pi \cdot d_{2}^{2}}{4} - d_{2} \cdot t_{c}$$

$$A_{s} = \frac{\pi \cdot d_{2}^{2}}{4} - d_{2} \cdot t_{c}$$
 397.5171 mm² = $\frac{3.1416 \cdot 40 \text{ mm}^{2}}{4} - 40 \text{ mm} \cdot 21.478 \text{ mm}$

27) Querschnittsfläche des Muffenendes, die einem Scherversagen standhält Formel 🕝

In der Liste von Gelenkgeometrie und -abmessungen Formeln oben verwendete Variablen

- A Querschnittsfläche der Steckdose (Quadratmillimeter)
- A_s Querschnittsfläche des Zapfens (Quadratmillimeter)
- b Mittlere Breite des Splints (Millimeter)
- C Axialer Abstand vom Schlitz zum Ende des Sockelbundes (Millimeter)
- d Durchmesser der Stange der Splintverbindung (Millimeter)
- d₁ Außendurchmesser der Buchse (Millimeter)
- d₂ Durchmesser des Zapfens (Millimeter)
- d₃ Durchmesser des Zapfenbundes (Millimeter)
- d₄ Durchmesser des Sockelkragens (Millimeter)
- F_c Kraft auf Splintverbindung (Newton)
- L Belastung auf Splintverbindung (Newton)
- L_a Abstand zwischen Schlitzende und Zapfenende (Millimeter)
- t₁ Dicke des Zapfenbundes (Millimeter)
- t_c Dicke des Splints (Millimeter)
- V Scherkraft auf Splint (Newton)
- σ_b Biegespannung im Splint (Newton pro Quadratmillimeter)
- σ_c Im Splint verursachte Quetschspannung (Newton pro Quadratmillimeter)
- σ_{c1} Druckspannung im Zapfen (Newton pro Quadratmillimeter)
- σ_{cso} Druckspannung in der Fassung (Newton pro Quadratmillimeter)
- σ_tso Zugspannung in der Fassung (Newton pro Quadratmillimeter)
- ot_{rod} Zugspannung in Splintstangen (Newton pro Quadratmillimeter)
- T_{co} Scherspannung im Splint (Newton pro Quadratmillimeter)

Konstanten, Funktionen, Messungen, die in der Liste von Gelenkgeometrie und abmessungen Formeln oben verwendet werden

- Konstante(n): pi, 3.14159265358979323846264338327950288 Archimedes-Konstante
- Funktionen: sqrt, sqrt(Number)
 Eine Quadratwurzelfunktion ist eine Funktion, die
 eine nicht negative Zahl als Eingabe verwendet
 und die Quadratwurzel der gegebenen
 Eingabezahl zurückgibt.
- Messung: Länge in Millimeter (mm)
 Länge Einheitenumrechnung
- Messung: Bereich in Quadratmillimeter (mm²)
 Bereich Einheitenumrechnung
- Messung: Macht in Newton (N)

 Macht Einheitenumrechnung
- Messung: Betonen in Newton pro Quadratmillimeter (N/mm²)
 Betonen Einheitenumrechnung

- T_{SO} Scherspannung in der Fassung (Newton pro Quadratmillimeter)
- T_{sp} Schubspannung im Zapfen (Newton pro Quadratmillimeter)

Laden Sie andere Wichtig Design der Splintverbindung-PDFs herunter

- Wichtig Kräfte und Belastungen auf Gelenke Formeln
- Wichtig Gelenkgeometrie und abmessungen Formeln
- Wichtig Kraft und Stress Formeln

Probieren Sie unsere einzigartigen visuellen Rechner aus

- Prozentualer Wachstum
- KGV rechner

Dividiere bruch

Bitte TEILEN Sie dieses PDF mit jemandem, der es braucht!

Dieses PDF kann in diesen Sprachen heruntergeladen werden

English Spanish French German Russian Italian Portuguese Polish Dutch

9/18/2024 | 11:28:40 AM UTC