Important Lifting Flow over Cylinder Formulas PDF

Formulas Examples with Units

List of 10

Important Lifting Flow over Cylinder **Formulas**

1) 2-D Lift Coefficient for Cylinder Formula

Example with Units

$$C_{L} = \frac{\Gamma}{R \cdot V_{\infty}}$$
 1.2681 = $\frac{0.7 \, \text{m}^{2}/\text{s}}{0.08 \, \text{m} \cdot 6.9 \, \text{m/s}}$

2) Angular Position given Radial Velocity for Lifting Flow over Circular Cylinder Formula 🕝

 $\theta = \arccos\left[\frac{V_r}{\left(1 - \left(\frac{R}{r}\right)^2\right) \cdot V_{\infty}}\right] \left[\begin{array}{c} 0.9025_{\,\text{rad}} = \arccos\left[\frac{3.9\,\text{m/s}}{\left(1 - \left(\frac{0.08\,\text{m}}{0.27\,\text{m}}\right)^2\right) \cdot 6.9\,\text{m/s}} \end{array}\right]$

3) Angular Position of Stagnation Point for Lifting Flow over Circular Cylinder Formula 🕝

Formula

Example with Units

$$\theta_0 = ar \sin \left(-\frac{\Gamma_0}{4 \cdot \pi \cdot V_{s,\infty} \cdot R} \right) -1.056 rad = ar \sin \left(-\frac{7 m^2/s}{4 \cdot 3.1416 \cdot 8 m/s \cdot 0.08 m} \right)$$

4) Freestream Velocity given 2-D Lift Coefficient for Lifting Flow Formula 🕝

Example with Units

$$V_{\infty} = \frac{\Gamma}{R \cdot C_L} \qquad 7.2917 \, \text{m/s} \ = \frac{0.7 \, \text{m}^2/\text{s}}{0.08 \, \text{m} \, \cdot 1.2}$$

Evaluate Formula (

Evaluate Formula (

Evaluate Formula (

Evaluate Formula (

5) Location of Stagnation Point Outside Cylinder for Lifting Flow Formula 🕝

EvaluateFormula 🕝

Formula

$$r_0 = \frac{\Gamma_0}{4 \cdot \pi \cdot V_{\infty}} + \sqrt{\left(\frac{\Gamma_0}{4 \cdot \pi \cdot V_{\infty}}\right)^2 - R^2}$$

Example with Units

$$0.0916\,\mathrm{m} \,= \frac{7\,\mathrm{m}^2/\mathrm{s}}{4\cdot 3.1416\cdot 6.9\,\mathrm{m/s}} + \sqrt{\left(\frac{7\,\mathrm{m}^2/\mathrm{s}}{4\cdot 3.1416\cdot 6.9\,\mathrm{m/s}}\right)^2 - 0.08\,\mathrm{m}^2}$$

6) Radial Velocity for Lifting Flow over Circular Cylinder Formula 🕝

Evaluate Formula

Formula
$$V_{r} = \left(1 - \left(\frac{R}{r}\right)^{2}\right) \cdot V_{\infty} \cdot \cos\left(\theta\right)$$

Example with Units

$$3.9126\,\text{m/s} = \left(1 - \left(\frac{0.08\,\text{m}}{0.27\,\text{m}}\right)^2\right) \cdot 6.9\,\text{m/s} \cdot \cos\left(0.9\,\text{rad}\right)$$

7) Radius of Cylinder for Lifting Flow Formula 🕝

Evaluate Formula

$$R = \frac{\Gamma}{C_L \cdot V_{\infty}}$$

Formula Example with Units
$$R = \frac{\Gamma}{C_L \cdot V_{\infty}} \qquad 0.0845 \, \text{m} = \frac{0.7 \, \text{m}^2/\text{s}}{1.2 \cdot 6.9 \, \text{m/s}}$$

8) Stream Function for Lifting Flow over Circular Cylinder Formula C

Evaluate Formula

$$\psi = V_{\infty} \cdot r \cdot \sin\left(\theta\right) \cdot \left(1 - \left(\frac{R}{r}\right)^{2}\right) + \frac{\Gamma}{2 \cdot \pi} \cdot \ln\left(\frac{r}{R}\right)$$

Example with Units

$$1.4667\,\mathrm{m^2/s}\ =\ 6.9\,\mathrm{m/s}\ \cdot\ 0.27\,\mathrm{m}\ \cdot \sin\left(\ 0.9\,\mathrm{rad}\ \right) \cdot \left(1 - \left(\frac{0.08\,\mathrm{m}}{0.27\,\mathrm{m}}\right)^2\right) + \frac{0.7\,\mathrm{m^2/s}}{2 \cdot 3.1416} \cdot \ln\left(\frac{0.27\,\mathrm{m}}{0.08\,\mathrm{m}}\right)$$

9) Surface Pressure Coefficient for Lifting Flow over Circular Cylinder Formula

Formula

$$C_{p} = 1 - \left(\left(2 \cdot \sin \left(\theta \right) \right)^{2} + \frac{2 \cdot \Gamma \cdot \sin \left(\theta \right)}{\pi \cdot R \cdot V_{\infty}} + \left(\frac{\Gamma}{2 \cdot \pi \cdot R \cdot V_{\infty}} \right)^{2} \right)$$

Evample with Units

$$-2.1275 = 1 - \left(\left(2 \cdot \sin \left(0.9_{\,\text{rad}} \right) \right)^2 + \frac{2 \cdot 0.7_{\,\text{m}^2/\text{s}} \cdot \sin \left(0.9_{\,\text{rad}} \right)}{3.1416 \cdot 0.08_{\,\text{m}} \cdot 6.9_{\,\text{m/s}}} + \left(\frac{0.7_{\,\text{m}^2/\text{s}}}{2 \cdot 3.1416 \cdot 0.08_{\,\text{m}} \cdot 6.9_{\,\text{m/s}}} \right)^2 \right)$$

10) Tangential Velocity for Lifting Flow over Circular Cylinder Formula 🕝

Formula

$$V_{\theta} = -\left(1 + \left(\frac{R}{r}\right)^{2}\right) \cdot V_{\infty} \cdot \sin\left(\theta\right) - \frac{\Gamma}{2 \cdot \pi \cdot r}$$

Example with Units

$$-6.2921\,\text{m/s}\ =\ -\left(1+\left(\frac{0.08\,\text{m}}{0.27\,\text{m}}\right)^2\right)\cdot 6.9\,\text{m/s}\,\cdot \sin\left(\ 0.9\,\text{rad}\ \right) \, -\frac{0.7\,\text{m}^2/\text{s}}{2\cdot 3.1416\cdot 0.27\,\text{m}}$$

Evaluate Formula (

Evaluate Formula [

Variables used in list of Lifting Flow over Cylinder Formulas above

- C1 Lift Coefficient
- C_p Surface Pressure Coefficient
- r Radial Coordinate (Meter)
- R Cylinder Radius (Meter)
- r₀ Radial Coordinate of Stagnation Point (Meter)
- V_∞ Freestream Velocity (Meter per Second)
- V_r Radial Velocity (Meter per Second)
- V_{s,∞} Stagnation Freestream Velocity (Meter per Second)
- **V**_A Tangential Velocity (Meter per Second)
- **Γ** Vortex Strength (Square Meter per Second)
- Γ₀ Stagnation Vortex Strength (Square Meter per Second)
- θ Polar Angle (Radian)
- θ_0 Polar Angle of Stagnation Point (Radian)
- Ψ Stream Function (Square Meter per Second)

Constants, Functions, Measurements used in list of Lifting Flow over Cylinder Formulas above

- constant(s): pi,
 3.14159265358979323846264338327950288
 Archimedes' constant
- Functions: arccos, arccos(Number)
 Arccosine function, is the inverse function of the cosine function. It is the function that takes a ratio as an input and returns the angle whose cosine is equal to that ratio.
- Functions: arsin, arsin(Number)
 Arcsine function, is a trigonometric function that takes a ratio of two sides of a right triangle and outputs the angle opposite the side with the given ratio.
- Functions: cos, cos(Angle)
 Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.
- Functions: In, In(Number)
 The natural logarithm, also known as the logarithm to the base e, is the inverse function of the natural exponential function.
- Functions: sin, sin(Angle)
 Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.
- Functions: sqrt, sqrt(Number)
 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Speed in Meter per Second (m/s)
 Speed Unit Conversion
- Measurement: Angle in Radian (rad)

 Angle Unit Conversion
- Measurement: Velocity Potential in Square Meter per Second (m²/s)

 Velocity Potential Unit Conversion

Download other Important Flow over Cylinder PDFs

- Important Lifting Flow over Cylinder Formulas (*)
- Important Nonlifting Flow over Cylinder Formulas

Try our Unique Visual Calculators

- Winning percentage
- ECM of two numbers

Mixed fraction

Please SHARE this PDF with someone who needs it!

This PDF can be downloaded in these languages

English Spanish French German Russian Italian Portuguese Polish Dutch

7/8/2024 | 12:00:56 PM UTC